JP5858386B2 - Organic hybrid catalyst - Google Patents

Organic hybrid catalyst Download PDF

Info

Publication number
JP5858386B2
JP5858386B2 JP2012541861A JP2012541861A JP5858386B2 JP 5858386 B2 JP5858386 B2 JP 5858386B2 JP 2012541861 A JP2012541861 A JP 2012541861A JP 2012541861 A JP2012541861 A JP 2012541861A JP 5858386 B2 JP5858386 B2 JP 5858386B2
Authority
JP
Japan
Prior art keywords
formula
oxygen atom
group
ethyl acetate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012541861A
Other languages
Japanese (ja)
Other versions
JPWO2012060347A1 (en
Inventor
隆之 矢倉
隆之 矢倉
綾香 大園
綾香 大園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2012541861A priority Critical patent/JP5858386B2/en
Publication of JPWO2012060347A1 publication Critical patent/JPWO2012060347A1/en
Application granted granted Critical
Publication of JP5858386B2 publication Critical patent/JP5858386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/92Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
    • C07D211/94Oxygen atom, e.g. piperidine N-oxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds

Description

本発明は、有機ハイブリッド型触媒、特に環境調和性に優れたアルコール類の酸化反応を達成するための有機ハイブリッド触媒に関する。   The present invention relates to an organic hybrid catalyst, and more particularly to an organic hybrid catalyst for achieving an oxidation reaction of alcohols excellent in environmental harmony.

アルデヒド類、ケトン類、カルボン酸類およびその誘導体は、多くの有機天然物や医薬品の化学構造の主要構成置換基であり、第1級アルコールあるいは第2級アルコールの酸化反応により構築されている。
そのため、これらの酸化反応は有機化合物製造において最も重要な反応である。
また、有機合成化学的にもこれらの酸化反応は基本的な反応の1つであり、古典的にはクロム(VI)化合物などの重金属酸化剤が用いられてきた。
さらに、ルテニウム、マンガン、バナジウムなどの遷移金属を使用した化合物が開発されてきた。
しかし、金属化合物の使用は、環境への悪影響や製品への微量金属の混入などの問題点がある。
特に、医薬品、化粧品、農薬、食品などの製造において、環境調和性の向上とともに、安全性の向上が工業的観点から最重要の課題となっている。
Aldehydes, ketones, carboxylic acids and their derivatives are the main constituent substituents of the chemical structures of many organic natural products and pharmaceuticals, and are constructed by oxidation reactions of primary alcohols or secondary alcohols.
Therefore, these oxidation reactions are the most important reactions in the production of organic compounds.
Further, these oxidation reactions are one of basic reactions in organic synthetic chemistry, and classically, heavy metal oxidizing agents such as chromium (VI) compounds have been used.
In addition, compounds using transition metals such as ruthenium, manganese and vanadium have been developed.
However, the use of metal compounds has problems such as adverse environmental effects and the incorporation of trace metals into products.
In particular, in the manufacture of pharmaceuticals, cosmetics, agricultural chemicals, foods and the like, improvement of environmental harmony and improvement of safety are the most important issues from an industrial viewpoint.

近年、従来の重金属を用いた酸化剤に代えて、2,2,6,6−テトラメチルピペリジン−1−オキシル(2,2,6,6-tetramethylpiperidine-1-oxyl、以下、TEMPOと称する)を、アルコール類の酸化触媒として広く利用するようになっている。
TEMPOは、重金属に比べ、低環境負荷型の有機酸化剤であるが、高価であるため、酸化反応終了後に発生する還元体を共存する他の酸化剤で酸化型へと再酸化して用いられており、さまざまな共存酸化剤との組み合わせが試行されている。
In recent years, 2,2,6,6-tetramethylpiperidine-1-oxyl (hereinafter referred to as TEMPO) instead of conventional oxidizing agents using heavy metals Is widely used as an oxidation catalyst for alcohols.
TEMPO is a low environmental impact organic oxidizer compared to heavy metals, but it is expensive, so it is used after being reoxidized to the oxidized form with another oxidant that coexists with the reductant generated after the end of the oxidation reaction. Combinations with various coexisting oxidants have been tried.

一方、TEMPOと共に用いられる共存酸化剤についても、安価で低環境負荷であることが望まれる。
これまでに用いられてきた共存酸化剤は、m-クロロ過安息香酸(mCPBA)、トリクロロイソシアヌル酸、ヨードベンゼンジアセタート、N−クロロコハク酸イミドなどの有機系酸化剤、次亜塩素酸ナトリウムや亜塩素酸ナトリウムなどの無機塩素系酸化剤などである。
究極の環境調和型酸化剤である分子状酸素の利用も検討されたが、触媒量のマンガンやコバルトなどの遷移金属化合物が必要とされた。
On the other hand, the coexisting oxidant used with TEMPO is also desired to be inexpensive and have a low environmental load.
Coexisting oxidants that have been used so far include organic oxidants such as m-chloroperbenzoic acid (mCPBA), trichloroisocyanuric acid, iodobenzene diacetate, N-chlorosuccinimide, sodium hypochlorite, Inorganic chlorine-based oxidizing agents such as sodium chlorite.
The use of molecular oxygen, the ultimate environmentally friendly oxidant, was also considered, but catalytic amounts of transition metal compounds such as manganese and cobalt were required.

共存酸化剤として、超原子価ヨウ素化合物を用いる方法が知られているが、この方法は、反応の官能基選択性が高く、実験室レベルでは、複雑な構造の天然物合成に汎用されているものの、経済性や廃棄物の点から工業的には好ましくない。
そこで、この方法の特性を残し、触媒量のヨウ素化合物を使用した方法が提案されている(非特許文献1)。
Although a method using a hypervalent iodine compound as a coexisting oxidant is known, this method has a high functional group selectivity in the reaction, and is widely used for synthesizing natural products having a complicated structure at the laboratory level. However, it is not industrially preferable from the viewpoint of economy and waste.
Therefore, a method using a catalytic amount of an iodine compound while retaining the characteristics of this method has been proposed (Non-Patent Document 1).

Tetrahedron Lett., 47, 13 (2006)Tetrahedron Lett., 47, 13 (2006)

過酢酸は、安価で大量に入手可能であり、かつ酸化剤としての反応性を持ち、酸化反応終了後は酢酸となるため、分子状酸素に匹敵する環境調和型酸化剤である。
しかし、TEMPO酸化における共存酸化剤としての適用はこれまで成功していない。
Peracetic acid is an environmentally friendly oxidant comparable to molecular oxygen because it is inexpensive and available in large quantities, has reactivity as an oxidant, and becomes acetic acid after completion of the oxidation reaction.
However, application as a coexisting oxidant in TEMPO oxidation has not been successful so far.

過酢酸がヨードベンゼンを酢酸中でヨードベンゼンジアセタートへと酸化すること、さらに、ヨードベンゼンジアセタートがTEMPO酸化の共存酸化剤として天然物合成に用いられていることから、TEMPOとヨードベンゼンを共にハイブリッド型触媒として、過酢酸を共存酸化剤と用いる新酸化反応を考案した。
本発明の反応では、過酢酸がヨードベンゼンをヨードベンゼンジアセタートへ酸化し、ヨードベンゼンジアセタートがTEMPOをその酸化型へと酸化し、それがアルコール類を酸化する。
さらに、TEMPO部とヨードベンゼン部を共有結合で結合して1分子に集約させることで、触媒作用の効率化並びに触媒の回収および再利用の簡便化を図ることができる。
以下、本発明を詳細に説明する。
Since peracetic acid oxidizes iodobenzene to iodobenzene diacetate in acetic acid, and since iodobenzene diacetate is used in natural product synthesis as a coexisting oxidant for TEMPO oxidation, TEMPO and iodobenzene As a hybrid catalyst, we devised a new oxidation reaction using peracetic acid as a coexisting oxidant.
In the reaction of the present invention, peracetic acid oxidizes iodobenzene to iodobenzene diacetate, which oxidizes TEMPO to its oxidized form, which oxidizes alcohols.
Furthermore, by combining the TEMPO part and the iodobenzene part with a covalent bond and consolidating them into one molecule, it is possible to improve the efficiency of the catalytic action and simplify the recovery and reuse of the catalyst.
Hereinafter, the present invention will be described in detail.

本発明において、特に断らない限り、アルキレンとは、メチレン、エチレン、プロピレンなど直鎖状または分岐状のC1-6アルキレン基を、アルケニレンとは、ビニレン、1−プロピニレン、イソプロペニレンなど直鎖状または分岐状のC2-6アルケニレン基を、飽和の5〜6員の炭素環基とは、シクロペンタン、シクロヘキサン、シクロへプタンから誘導される基を;不飽和の5〜6員の炭素環基とは、シクロペンテン、シクロヘキセン、シクロヘプテンから誘導される基を、アミノ酸残基とは、アミノ酸からアミノ基とカルボキシル基が除かれた基を、エステル残基とは、−CO(O)−を、それぞれ意味する。In the present invention, unless otherwise specified, alkylene is a linear or branched C 1-6 alkylene group such as methylene, ethylene and propylene, and alkenylene is a linear chain such as vinylene, 1-propynylene and isopropenylene. A branched or branched C 2-6 alkenylene group, a saturated 5- to 6-membered carbocyclic group is a group derived from cyclopentane, cyclohexane or cycloheptane; an unsaturated 5- to 6-membered carbon The cyclic group is a group derived from cyclopentene, cyclohexene, or cycloheptene, the amino acid residue is a group obtained by removing an amino group and a carboxyl group from an amino acid, and the ester residue is -CO (O)-. , Meaning each.

本発明は、一般式[1]

Figure 0005858386
The present invention relates to a general formula [1]
Figure 0005858386

「式[1]中、Xは、式[11]

Figure 0005858386
(式[11]中、Xは、酸素原子またはイミノ基、mは0,1,2のいずれかである。)
または、式[12]であり;
Figure 0005858386
(式[12]中、Xaは、酸素原子またはイミノ基、Wはアルキレン基、mは0,1,2のいずれかである。)
Yは、酸素原子、イミノ基または式[13]のいずれかであり;
Figure 0005858386
(式[13]中、Wはアルキレン基、Yは酸素原子またはイミノ基である。)
Zはアルキレン、アルケニレン、フェニレンまたは飽和もしくは不飽和の5〜7員の炭素環基のいずれかであり;nは0または1である。」で表される、2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体である。“In the formula [1], X represents the formula [11]
Figure 0005858386
(In Formula [11], Xa is an oxygen atom or an imino group, and m is 0, 1, or 2.)
Or Formula [12];
Figure 0005858386
(In the formula [12], X a is an oxygen atom or an imino group, W is an alkylene group, and m is 0, 1, or 2.)
Y is any of an oxygen atom, an imino group, or a formula [13];
Figure 0005858386
(Wherein [13], W is an alkylene group, Y a is oxygen atom or imino group.)
Z is any one of alkylene, alkenylene, phenylene or a saturated or unsaturated 5- to 7-membered carbocyclic group; n is 0 or 1. 2,2,6,6-tetramethylpiperidine-1-oxyl derivative represented by

本発明は、上記の一般式[1]で表される2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体を含有することを特徴とする有機化合物の酸化触媒である。   The present invention is an organic compound oxidation catalyst comprising the 2,2,6,6-tetramethylpiperidine-1-oxyl derivative represented by the above general formula [1].

本発明は、上記の一般式[1]で表される2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体および共酸化剤の存在下に、アルコール類を酸化せしめて、対応するオキソ体を合成することを特徴とするアルコール類の酸化方法である。   In the present invention, an alcohol is oxidized in the presence of the 2,2,6,6-tetramethylpiperidine-1-oxyl derivative represented by the above general formula [1] and a co-oxidant, and the corresponding oxo It is an oxidation method of alcohols characterized by synthesizing a body.

本発明のTEMPO部とヨードベンゼン部を合わせ持つ新しいハイブリッド型触媒を用いると、従来のTEMPO酸化では共存酸化剤として効果の無かった過酢酸を用いてアルコール類の酸化することができる。
また、触媒自体を回収することもできる。
また、第1級アルコール類の酸化では、カルボン酸類への直接酸化することができる。
また、第2級アルコール類の酸化ではケトン類を得ることができる。
また、本発明に係るハイブリッド型触媒は使用後に回収及び再利用される。
When a new hybrid catalyst having both a TEMPO part and an iodobenzene part of the present invention is used, alcohols can be oxidized using peracetic acid, which is not effective as a coexisting oxidant in the conventional TEMPO oxidation.
Further, the catalyst itself can be recovered.
In the oxidation of primary alcohols, direct oxidation to carboxylic acids can be performed.
In addition, ketones can be obtained by oxidation of secondary alcohols.
The hybrid catalyst according to the present invention is recovered and reused after use.

本発明の2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体は、以下の方法で製造することができる。   The 2,2,6,6-tetramethylpiperidine-1-oxyl derivative of the present invention can be produced by the following method.

<製造法1>

Figure 0005858386
<Production method 1>
Figure 0005858386

「式[1a]中、Xは、式[11]

Figure 0005858386
(式[11]中、Xは、酸素原子、イミノ基、mは0,1,2のいずれかである。)または、式[12]であり;
Figure 0005858386
(式[12]中、Xaは、酸素原子またはイミノ基、Wはアルキレン基、mは0,1,2のいずれかである。)
式[2]中、Yaは酸素原子またはイミノ基;nは0または1である。」
また、式[3]中、Zはアルキレン、アルケニレン、フェニレンまたは飽和もしくは不飽和の5〜7員の炭素環基をのいずれかである。“In the formula [1a], X represents the formula [11]
Figure 0005858386
(. Wherein [11], X a is an oxygen atom, an imino group, m is 0, 1, or 2), or is Formula [12];
Figure 0005858386
(In the formula [12], X a is an oxygen atom or an imino group, W is an alkylene group, and m is 0, 1, or 2.)
In the formula [2], Y a is an oxygen atom or an imino group; n is 0 or 1. "
In the formula [3], Z is any one of alkylene, alkenylene, phenylene, or a saturated or unsaturated 5- to 7-membered carbocyclic group.

一般式[2]の化合物と一般式[3]の化合物を、塩基の存在下、溶媒中で反応させることにより一般式[4a]の化合物を製造することができる。
この反応に用いる塩基は、通常の反応において塩基として使用されるものであれば特に限定されないが、例えば、N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン,1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ -7-エン、ピリジン、4−(N,N−ジメチルアミノ)ピリジン、もしくはピコリン等の有機塩基、または炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、もしくは水素化ナトリウム等の無機塩基等が挙げられる。
この反応に用いる溶媒は、反応に悪影響を及ぼさないものであれば、特に限定されないが、例えば、塩化メチレン、クロロホルムおよびジクロロエタンなどのハロゲン化炭化水素類、塩基としても利用されるピリジンが挙げられ、これらの溶媒を一種または二種以上混合して使用してもよい。
この反応は、20℃〜60℃で、30分〜20時間行えばよい。
The compound of general formula [4a] can be produced by reacting the compound of general formula [2] with the compound of general formula [3] in a solvent in the presence of a base.
Although the base used for this reaction will not be specifically limited if it is used as a base in a normal reaction, For example, N-methylmorpholine, a triethylamine, a diisopropylethylamine, a tributylamine, 1,8- diazabicyclo [5.4. 0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine, 4- (N , N-dimethylamino) pyridine, or an organic base such as picoline, or an inorganic base such as sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, sodium hydroxide, or sodium hydride.
The solvent used in this reaction is not particularly limited as long as it does not adversely affect the reaction, and examples thereof include halogenated hydrocarbons such as methylene chloride, chloroform and dichloroethane, and pyridine also used as a base. These solvents may be used alone or in combination.
This reaction may be performed at 20 ° C. to 60 ° C. for 30 minutes to 20 hours.

一般式[4a]の化合物に一般式[5a]または[5b]の化合物を反応させることにより一般式[1a]の化合物を製造することができる。
この反応は、例えば、ベンゼンなどの溶媒中、ジメチルアミノピリジンなどの塩基、カンファースルホン酸などの酸触媒、N,N−ジシクロヘキシルカルボジイミドなどの脱水剤の存在下に行えばよい。
この反応は、20℃〜40℃で、30分〜2時間行えばよい。
The compound of general formula [1a] can be produced by reacting the compound of general formula [4a] with the compound of general formula [5a] or [5b].
This reaction may be carried out in a solvent such as benzene in the presence of a base such as dimethylaminopyridine, an acid catalyst such as camphorsulfonic acid, and a dehydrating agent such as N, N-dicyclohexylcarbodiimide.
This reaction may be performed at 20 ° C. to 40 ° C. for 30 minutes to 2 hours.

<製造法2>

Figure 0005858386
<Production method 2>
Figure 0005858386

「式[1b]中、Xは、[11]

Figure 0005858386
(式[11]中、Xは酸素原子またはイミノ基、mは0,1,2のいずれかである。)または、式[12]である。
Figure 0005858386
(式[12]中、Xは、酸素原子またはイミノ基、Wはアルキレン基、mは0,1,2のいずれかである。);Yは酸素原子またはイミノ基;
nは0または1である。」“In the formula [1b], X represents [11]
Figure 0005858386
(Wherein [11], X a is an oxygen atom or an imino group, m is 0, 1 or 2..) Or a formula [12].
Figure 0005858386
(Wherein [12], X a is an oxygen atom or an imino group, W is an alkylene group, m is either 0, 1, 2.); Y a represents an oxygen atom or an imino group;
n is 0 or 1. "

一般式[5a]または一般式[5b]の化合物と一般式[3]の化合物とを、エステル化反応またはアミド化反応に付すことにより一般式[6]の化合物を製造することができる。
エステル化反応およびアミド化反応は、公知の反応または上記の製造法1で述べた方法を用いればよい。
A compound of the general formula [6] can be produced by subjecting the compound of the general formula [5a] or the general formula [5b] and the compound of the general formula [3] to an esterification reaction or an amidation reaction.
For the esterification reaction and the amidation reaction, a known reaction or the method described in the above production method 1 may be used.

一般式[6]の化合物と一般式[7]の化合物を、アミド化反応に付すことにより一般式[8]の化合物を製造することができる。
公知の反応または上記の製造法1で述べた方法を用いればよい。
The compound of the general formula [8] can be produced by subjecting the compound of the general formula [6] and the compound of the general formula [7] to an amidation reaction.
A known reaction or the method described in the above production method 1 may be used.

一般式[8]の化合物と一般式[2]の化合物を、エステル化反応に付すことにより一般式[1b]の化合物を製造することができる。
エステル化反応は、公知の反応を用いればよい。
A compound of the general formula [1b] can be produced by subjecting the compound of the general formula [8] and the compound of the general formula [2] to an esterification reaction.
For the esterification reaction, a known reaction may be used.

上記した一般式[4a]、[6]、[8]の化合物は、単離せずにそのまま次の反応に用いてもよい。
このようにして得られた一般式[1a]および[1b]の化合物は、抽出、晶出、蒸留およびカラムクロマトグラフィーなどの通常の方法によって単離精製することができる。
The compounds of the above general formulas [4a], [6] and [8] may be used as they are in the next reaction without isolation.
The compounds of the general formulas [1a] and [1b] thus obtained can be isolated and purified by ordinary methods such as extraction, crystallization, distillation and column chromatography.

本発明の有機ハイブリッド触媒として好ましいものは、以下の一般式[1c]の化合物が挙げられる。

Figure 0005858386
Preferred examples of the organic hybrid catalyst of the present invention include compounds of the following general formula [1c].
Figure 0005858386

「式[1c]中、mは0,1,2のいずれかであり、nは0又は1であり、Zはアルキレン、アルケニレン、フェニレンまたは飽和もしくは不飽和の5〜7員の炭素環基をのいずれかである。」   "In the formula [1c], m is 0, 1, or 2, n is 0 or 1, Z is alkylene, alkenylene, phenylene, or a saturated or unsaturated 5- to 7-membered carbocyclic group. Either. "

さらに好ましい有機ハイブリッド触媒として、一般式[1c]において、Zがフェニレンまたはアルキレン、mが0または1、nが0の2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体が挙げられる。   More preferable organic hybrid catalysts include 2,2,6,6-tetramethylpiperidine-1-oxyl derivatives in which, in the general formula [1c], Z is phenylene or alkylene, m is 0 or 1, and n is 0.

以下に、実施例により本発明をさらに具体的に説明するが、本発明はそれらに限定されるものではない。   EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.

<ハイブリッド触媒の合成>

Figure 0005858386
<Synthesis of hybrid catalyst>
Figure 0005858386

(1)4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル517mg(3mmol)のピリジン10mL溶液に、無水フタル酸2.132g(15mmol)、4−(N,N−ジメチルアミノ)ピリジン183mg(1.5mmol)を加え、室温で1時間撹拌した。
反応液を減圧濃縮し、残渣をシリカゲルろ過して、粗モノエステル「4−(2−carboxybenzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」982mgをオレンジ色結晶物質として得た。
(1) To a solution of 517 mg (3 mmol) of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl in 10 mL of pyridine, 2.132 g (15 mmol) of phthalic anhydride, 4- (N, N-dimethyl) Amino) pyridine (183 mg, 1.5 mmol) was added, and the mixture was stirred at room temperature for 1 hour.
The reaction mixture was concentrated under reduced pressure, and the residue was filtered through silica gel to obtain 982 mg of crude monoester “4- (2-carbobenzoyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” as an orange crystalline substance.

(2a)窒素雰囲気下、5℃で粗モノエステル982mg、4−ヨードベンジルアルコール772mg(3.3mmol)、4−(N,N−ジメチルアミノ)ピリジン73mg(0.6mmol)、カンファースルホン酸70mg(0.3mmol)のベンゼン70mL溶液に、N,N−ジシクロヘキシルカルボジイミド1.237g(6mmol)を加え、室温で30分撹拌した。
反応液にジエチルエーテルを加え、セライトろ過をし、ろ液を減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィー(溶離液:50%酢酸エチル含有ヘキサン)で精製し、生成物[1e]「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」1.216gをオレンジ色結晶物質として得た。
融点:127〜129℃(再結晶溶媒:20%酢酸エチル含有ヘキサン)
(2a) Under nitrogen atmosphere at 5 ° C., crude monoester 982 mg, 4-iodobenzyl alcohol 772 mg (3.3 mmol), 4- (N, N-dimethylamino) pyridine 73 mg (0.6 mmol), camphorsulfonic acid 70 mg ( 0.3 mmol) in 70 mL of benzene was added 1.237 g (6 mmol) of N, N-dicyclohexylcarbodiimide, and the mixture was stirred at room temperature for 30 minutes.
Diethyl ether was added to the reaction solution, filtered through celite, and the filtrate was concentrated under reduced pressure.
The residue was purified by silica gel column chromatography (eluent: hexane containing 50% ethyl acetate), and the product [1e] “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6 -Tetramethylpiperidin-1-oxyl "1.216 g was obtained as an orange crystalline material.
Melting point: 127-129 ° C. (recrystallization solvent: hexane containing 20% ethyl acetate)

(2b)窒素雰囲気下、5℃で粗モノエステル160mg、4−ヨードフェノール140mg、4−(N,N−ジメチルアミノ)ピリジン12mg、カンファースルホン酸12mgのベンゼン20mL溶液に、N,N−ジシクロヘキシルカルボジイミド206mgを加え、室温で30分撹拌した。
反応液にジエチルエーテルを加え、セライトろ過をし、ろ液を減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィー(溶離液:20%酢酸エチル含有ヘキサン)で精製し、生成物[1f]「4−(2−((4−iodophenoxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」182mgをオレンジ色結晶物質として得た。
融点:142〜144℃(再結晶溶媒:20%酢酸エチル含有ヘキサン)
(2b) N, N-dicyclohexylcarbodiimide in a 20 mL benzene solution of 160 mg of crude monoester, 140 mg of 4-iodophenol, 12 mg of 4- (N, N-dimethylamino) pyridine and 12 mg of camphorsulfonic acid at 5 ° C. in a nitrogen atmosphere 206 mg was added and stirred at room temperature for 30 minutes.
Diethyl ether was added to the reaction solution, filtered through celite, and the filtrate was concentrated under reduced pressure.
The residue was purified by silica gel column chromatography (eluent: hexane containing 20% ethyl acetate), and the product [1f] “4- (2-((4-iodophenoxy) carbonyl) benzoyloxy) -2,2,6,6 182 mg of “-tetramethylpiperidin-1-oxyl” was obtained as an orange crystalline material.
Melting point: 142-144 ° C. (recrystallization solvent: hexane containing 20% ethyl acetate)

<ハイブリッド触媒の合成2>

Figure 0005858386
<Synthesis of hybrid catalyst 2>
Figure 0005858386

(1)4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル517mg(3mmol)のピリジン10mL溶液に、無水コハク酸1.501g(15mmol)、4−(N,N−ジメチルアミノ)ピリジン183mg(1.5mmol)を加え、室温で3時間撹拌した後、反応液を減圧留去した。
残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル)で精製し、粗モノエステル「4−(2−carboxypropionyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」854mgをオレンジ色結晶物質として得た。
(1) To a solution of 517 mg (3 mmol) of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl in 10 mL of pyridine, 1.501 g (15 mmol) of succinic anhydride, 4- (N, N-dimethyl) After adding 183 mg (1.5 mmol) of amino) pyridine and stirring at room temperature for 3 hours, the reaction solution was distilled off under reduced pressure.
The residue was purified by silica gel column chromatography (eluent: ethyl acetate), and 854 mg of crude monoester “4- (2-carbopropypropyoxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” as an orange crystalline substance Obtained.

(2a)窒素雰囲気下、5℃で粗モノエステル「4−(2−carboxypropionyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」278mg、4−ヨードベンジルアルコール280mg(1.2mmol)、4−(N,N−ジメチルアミノ)ピリジン24mg(0.2mmol)、カンファースルホン酸23mg(0.1mmol)のベンゼン溶液40mLに、N,N−ジシクロヘキシルカルボジイミド412mg(2.0mmol)を加え、室温で45分撹拌した。
反応液にジエチルエーテルを加え、セライトろ過を行い、ろ液を減圧留去した。
残渣をシリカゲルカラムクロマトグラフィー(溶離液:20%酢酸エチル含有ヘキサン)で精製し、生成物[1g]「4−(2−((4−iodobenzyloxy)carbonyl)propionyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」を426mgをオレンジ色結晶物質として得た。
融点:95〜97℃(再結晶溶媒:10%酢酸エチル含有ヘキサン)
(2a) 278 mg of crude monoester “4- (2-carboxypropionyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” at 5 ° C. in a nitrogen atmosphere, 280 mg (1.2 mmol) of 4-iodobenzyl alcohol, To 40 mL of a benzene solution of 24 mg (0.2 mmol) of 4- (N, N-dimethylamino) pyridine and 23 mg (0.1 mmol) of camphorsulfonic acid, 412 mg (2.0 mmol) of N, N-dicyclohexylcarbodiimide was added at room temperature. Stir for 45 minutes.
Diethyl ether was added to the reaction solution, filtered through Celite, and the filtrate was distilled off under reduced pressure.
The residue was purified by silica gel column chromatography (eluent: 20% ethyl acetate-containing hexane), and the product [1 g] “4- (2-((4-iodobenzyloxy) carbonyl) propionyloxy) -2,2,6,6 426 mg of “tetramethylpiperidin-1-oxyl” was obtained as an orange crystalline substance.
Melting point: 95-97 ° C. (recrystallization solvent: 10% ethyl acetate-containing hexane)

(2b)素雰囲気下、5℃で粗モノエステル「4−(2−carboxypropionyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」278mg、4−ヨードフェノール264mg(1.2mmol)、4−(N,N−ジメチルアミノ)ピリジン24mg(0.2mmol)、カンファースルホン酸23mg(0.1mmol)のベンゼン溶液40mLに、N,N−ジシクロヘキシルカルボジイミド412mg(2.0mmol)を加え、室温30分撹拌した。
反応液にジエチルエーテルを加え、セライトろ過を行い、ろ液を減圧留去した。
残渣をシリカゲルカラムクロマトグラフィー(溶離液:10%酢酸エチル含有ヘキサン)で精製し、生成物[1h]「4−(2−((4−iodophenoxy)carbonyl)propionyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」413mgをオレンジ色結晶物質として得た。
融点:69〜71℃(再結晶溶媒:20%酢酸エチル含有ヘキサン)
(2b) 278 mg of crude monoester “4- (2-carbopropypropyoxy) -2,2,6,6-tetramethylperperdin-1-oxyl” at 5 ° C. under an atmosphere of atmosphere, 264 mg (1.2 mmol) of 4-iodophenol, 4 -412 mg (2.0 mmol) of N, N-dicyclohexylcarbodiimide was added to 40 mL of a benzene solution of 24 mg (0.2 mmol) of (N, N-dimethylamino) pyridine and 23 mg (0.1 mmol) of camphorsulfonic acid, and 30 minutes at room temperature. Stir.
Diethyl ether was added to the reaction solution, filtered through Celite, and the filtrate was distilled off under reduced pressure.
The residue was purified by silica gel column chromatography (eluent: hexane containing 10% ethyl acetate), and the product [1h] “4- (2-((4-iodophenoxy) carbonyl) propionyloxy) -2,2,6,6 -Tetramethylperidin-1-oxyl "413 mg was obtained as an orange crystalline material.
Melting point: 69-71 ° C. (recrystallization solvent: hexane containing 20% ethyl acetate)

<第1級アルコールの酸化>

Figure 0005858386
<Oxidation of primary alcohol>
Figure 0005858386

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液4232mg)溶液に4−ニトロベンジルアルコール77mg(0.5mmol)を加え、室温で24時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると触媒19mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、4−ニトロ安息香酸82mg(収率99%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzoyl) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl” in 27 mg of peracetic acid (9232% acetic acid solution 4232 mg) in 4-nitrobenzyl 77 mg (0.5 mmol) of alcohol was added and stirred at room temperature for 24 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 19 mg of catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 82 mg of 4-nitrobenzoic acid (yield 99%). It was.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液4232mg)溶液にベンジルアルコール54mg(0.5mmol)を加え、室温で24時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製するとベンズアルデヒド15mg(収率28%)が得られ、触媒15mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、安息香酸36mg(収率59%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” 27 mg of peracetic acid (9232% acetic acid solution 4232 mg) in benzyl alcohol 54 mg ( 0.5 mmol) was added and stirred at room temperature for 24 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 15 mg (28% yield) of benzaldehyde and recover 15 mg of the catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 36 mg of benzoic acid (yield 59%).

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液、4232mg)溶液に4−メチルベンジルアルコール61mg(0.5mmol)を加え、室温で24時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製するとp−トルアルデヒド33mg(収率55%)が得られ、触媒21mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、p−トルイル酸25mg(収率37%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl” 27 mg of peracetic acid (9% acetic acid solution, 4232 mg) in 4-methyl 61 mg (0.5 mmol) of benzyl alcohol was added and stirred at room temperature for 24 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 33 mg (yield 55%) of p-tolualdehyde, and 21 mg of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 25 mg (yield 37%) of p-toluic acid. It was.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液6348mg)溶液に2−ニトロベンジルアルコール77mg(0.5mmol)を加え、室温で48時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると2−ニトロベンズアルデヒド4mg(収率5%)が得られ、触媒20mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、2−ニトロ安息香酸76mg(収率92%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl” in 27 mg of peracetic acid (9% acetic acid solution 6348 mg) in 2-nitrobenzyl 77 mg (0.5 mmol) of alcohol was added and stirred at room temperature for 48 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 4 mg of 2-nitrobenzaldehyde (yield 5%), and 20 mg of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 76 mg of 2-nitrobenzoic acid (yield 92%). It was.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液6348mg)溶液に3−ニトロベンジルアルコール77mg(0.5mmol)を加え、室温で48時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると触媒18mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、3−ニトロ安息香酸78mg(収率94%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzoyl) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl” in 27 mg of peracetic acid (9% acetic acid solution 6348 mg) in 3-nitrobenzyl 77 mg (0.5 mmol) of alcohol was added and stirred at room temperature for 48 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 18 mg of catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 78 mg of 3-nitrobenzoic acid (yield 94%). It was.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液6348mg)溶液に4−クロロベンジルアルコール71mg(0.5mmol)を加え、室温で48時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると4−クロロベンズアルデヒド14mg(収率20%)が得られ、触媒22mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、4−クロロ安息香酸44mg(収率56%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperidin-1-oxyl” in 27 mg of peracetic acid (9% acetic acid solution 6348 mg) in 4-chlorobenzyl 71 mg (0.5 mmol) of alcohol was added and stirred at room temperature for 48 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 14 mg of 4-chlorobenzaldehyde (yield 20%), and 22 mg of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 44 mg of 4-chlorobenzoic acid (yield 56%). It was.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液6348mg)溶液に4−フルオロベンジルアルコール65mg(0.5mmol)を加え、室温で48時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると4−フルオロベンズアルデヒド12mg(収率19%)が得られ、触媒16mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、4−フルオロ安息香酸47mg(収率67%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” 27 mg of peracetic acid (9% acetic acid solution 6348 mg) in 4-fluorobenzyl 65 mg (0.5 mmol) of alcohol was added and stirred at room temperature for 48 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 12 mg (yield 19%) of 4-fluorobenzaldehyde, and 16 mg of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 47 mg of 4-fluorobenzoic acid (yield 67%). It was.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液6348mg)溶液に2,4−ジクロロベンジルアルコール88mg(0.5mmol)を加え、室温で48時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると2,4−ジクロロベンズアルデヒド11mg(収率13%)が得られ、触媒19mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、2,4−ジクロロ安息香酸74mg(収率78%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” in a solution of 27 mg peracetic acid (9348% acetic acid solution 6348 mg) in 2,4- Dichlorobenzyl alcohol 88 mg (0.5 mmol) was added, and the mixture was stirred at room temperature for 48 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 11 mg (yield 13%) of 2,4-dichlorobenzaldehyde, and 19 mg of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to yield 74 mg of 2,4-dichlorobenzoic acid (yield 78%). was gotten.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液6348mg)溶液に3,4−ジフルオロベンジルアルコール72mg(0.5mmol)を加え、室温で48時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると、3,4−ジフルオロベンズアルデヒド13mg(収率18%)が得られ、触媒15mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、3,4−ジフルオロ安息香酸49mg(収率62%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzoyl) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperidin-1-oxyl” in 27 mg of peracetic acid (9% acetic acid solution 6348 mg) in 3,4- Difluorobenzyl alcohol 72 mg (0.5 mmol) was added, and the mixture was stirred at room temperature for 48 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 13 mg of 3,4-difluorobenzaldehyde (yield 18%), and 15 mg of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 49 mg of 3,4-difluorobenzoic acid (yield 62%). was gotten.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」80mgの過酢酸(9%酢酸溶液、4232mg)溶液に3−フェニル−1−プロパノール68mg(0.5mmol)を加え、室温で17時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると触媒61mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、3−フェニルプロパン酸72mg(収率96%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” in 80 mg of peracetic acid (9% acetic acid solution, 4232 mg) in 3-phenyl 68 mg (0.5 mmol) of -1-propanol was added, and the mixture was stirred at room temperature for 17 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 61 mg of catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 72 mg of 3-phenylpropanoic acid (yield 96%). It was.

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」80mgの過酢酸(9%酢酸溶液4232mg)溶液にシクロヘキシルメタノール57mg(0.5mmol)を加え、室温で24時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると、触媒60mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、シクロヘキシルカルボン酸64mg(収率100%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl” in a solution of 80 mg of peracetic acid (9232% acetic acid solution 4232 mg) with 57 mg of cyclohexyl methanol ( 0.5 mmol) was added and stirred at room temperature for 24 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 60 mg of the catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 64 mg of cyclohexylcarboxylic acid (yield 100%). .

Figure 0005858386
Figure 0005858386

4−(2−((4−iodophenoxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl26mg(0.05mmol)の過酢酸(9%酢酸溶液4232mg)溶液に、4−ニトロベンジルアルコール77mg(0.5mmol)を加え、室温で24時間撹拌した。
酢酸エチルを加え、50%炭酸カリウム水溶液で洗浄し、酢酸エチルで抽出した。
抽出液をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると、4−ニトロベンズアルデヒド3mg(収率4%)が得られ、触媒20mg(77%)が回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、4−ニトロ安息香酸78mg(収率94%)が得られた。
4- (2-((4-iodophenoxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl in 26 mg (0.05 mmol) of peracetic acid (9232% acetic acid solution 4232 mg) in 4-nitro 77 mg (0.5 mmol) of benzyl alcohol was added and stirred at room temperature for 24 hours.
Ethyl acetate was added, washed with 50% aqueous potassium carbonate solution, and extracted with ethyl acetate.
The extract was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 3 mg (yield 4%) of 4-nitrobenzaldehyde and 20 mg (77%) of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 78 mg (yield 94%) of 4-nitrobenzoic acid.

4−(2−((4−iodophenoxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl26mg(0.05mmol)の過酢酸(9%酢酸溶液6348mg)溶液に、2−ニトロベンジルアルコール77mg(0.5mmol)を加え、室温で48時間撹拌した。
酢酸エチルを加え、50%炭酸カリウム水溶液で洗浄し、酢酸エチルで抽出した。
抽出液をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると、4−ニトロベンズアルデヒド6mg(収率8%)が得られ、触媒16mg(62%)が回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、2−ニトロ安息香酸71mg(収率86%)が得られた。
4- (2-((4-iodophenoxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl in 26 mg (0.05 mmol) of peracetic acid (9% acetic acid solution 6348 mg) in 2-nitro 77 mg (0.5 mmol) of benzyl alcohol was added and stirred at room temperature for 48 hours.
Ethyl acetate was added, washed with 50% aqueous potassium carbonate solution, and extracted with ethyl acetate.
The extract was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to obtain 6 mg (yield 8%) of 4-nitrobenzaldehyde and 16 mg (62%) of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 71 mg (yield 86%) of 2-nitrobenzoic acid.

4−(2−((4−iodophenoxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl26mg(0.05mmol)の過酢酸(9%酢酸溶液6348mg)溶液に、3−ニトロベンジルアルコール77mg(0.5mmol)を加え、室温で48時間撹拌した。
酢酸エチルを加え、50%炭酸カリウム水溶液で洗浄し、酢酸エチルで抽出した。
抽出液をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると、触媒15mg(58%)が回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、3−ニトロ安息香酸83mg(収率100%)が得られた。
4- (2-((4-iodophenoxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl in 26 mg (0.05 mmol) of peracetic acid (9% acetic acid solution 6348 mg) was added to 3-nitro 77 mg (0.5 mmol) of benzyl alcohol was added and stirred at room temperature for 48 hours.
Ethyl acetate was added, washed with 50% aqueous potassium carbonate solution, and extracted with ethyl acetate.
The extract was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 15 mg (58%) of the catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 83 mg of 3-nitrobenzoic acid (yield 100%).

4−(2−((4−iodophenoxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl78mg(0.15mmol)の過酢酸(9%酢酸溶液4232mg)溶液に、3−フェニル−1−プロパノール68mg(0.5mmol)を加え、室温で20時間撹拌した。
酢酸エチルを加え、50%炭酸カリウム水溶液で洗浄し、酢酸エチルで抽出した。
抽出液をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると、触媒57mg(73%)が回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、3−フェニルプロパン酸72mg(収率96%)が得られた。
4- (2-((4-iodophenoxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl 78 mg (0.15 mmol) in peracetic acid (9% acetic acid solution 4232 mg) was added to 3-phenyl -1-Propanol 68 mg (0.5 mmol) was added, and the mixture was stirred at room temperature for 20 hours.
Ethyl acetate was added, washed with 50% aqueous potassium carbonate solution, and extracted with ethyl acetate.
The extract was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography, and 57 mg (73%) of the catalyst was recovered.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 72 mg (yield 96%) of 3-phenylpropanoic acid.

4−(2−((4−iodophenoxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl78mg(0.15mmol)の過酢酸(9%酢酸溶液4232mg)溶液に、シクロヘキシルメタノール57mg(0.5mmol)を加え、室温で26時間撹拌した。
酢酸エチルを加え、50%炭酸カリウム水溶液で洗浄し、酢酸エチルで抽出した。
抽出液をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると、触媒を59mg(76%)が回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、シクロヘキシルカルボン酸62mg(収率97%)が得られた。
4- (2-((4-iodophenoxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl 78 mg (0.15 mmol) in peracetic acid (9% acetic acid solution 4232 mg) in cyclohexyl methanol 57 mg (0.5 mmol) was added and stirred at room temperature for 26 hours.
Ethyl acetate was added, washed with 50% aqueous potassium carbonate solution, and extracted with ethyl acetate.
The extract was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 59 mg (76%) of the catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 62 mg (97% yield) of cyclohexylcarboxylic acid.

Figure 0005858386
Figure 0005858386

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液4232mg)溶液に1−フェニル−1−エタノール61mg(0.5mmol)を加え、室温で19時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると触媒23mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、アセトフェノン55mg(収率92%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzyloxy) carbonyl) benzoyloxy) -2,2,6,6-tetramethylpiperidin-1-oxyl” in a solution of 27 mg of peracetic acid (9232% acetic acid solution 4232 mg) with 1-phenyl- 1-ethanol 61 mg (0.5 mmol) was added, and the mixture was stirred at room temperature for 19 hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 23 mg of catalyst.
The aqueous layer was acidified with a 10% aqueous hydrochloric acid solution, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 55 mg of acetophenone (yield 92%).

ハイブリッド触媒「4−(2−((4−iodobenzyloxy)carbonyl)benzoyloxy)−2,2,6,6−tetramethylpiperidin−1−oxyl」27mgの過酢酸(9%酢酸溶液、4232mg)溶液にジフェニルメタノール92mg(0.5mmol)を加え、室温で28時間撹拌した
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると触媒24mgが回収された。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、ベンゾフェノン86mg(収率95%)が得られた。
Hybrid catalyst “4- (2-((4-iodobenzoyl) carbonyl) benzoyloxy) -2,2,6,6-tetramethylperperdin-1-oxyl” in a solution of 27 mg of peracetic acid (9% acetic acid solution, 4232 mg) in 92 mg of diphenylmethanol (0.5 mmol) was added, and the mixture was stirred at room temperature for 28 hours, diluted with 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 24 mg of catalyst.
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 86 mg of benzophenone (yield 95%).

(参考例)
4−ベンゾイロキシヨードベンゼン16mg(0.05mmol)およびTEMPO8mg(0.05mmol)の過酢酸(9%酢酸溶液4232mg)溶液に、4−ニトロベンジルアルコール77mg(0.5mmol)を加え、室温で24時間撹拌した。
反応液に酢酸エチル20mLを加えて希釈し、50%炭酸カリウム水溶液10mLを加えて分配した。
有機層をチオ硫酸ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。
残渣をシリカゲルカラムクロマトグラフィーで分離精製すると原料の4−ニトロベンジルアルコール26mg(回収率34%)が回収され,4−ニトロベンズアルデヒド6mg(収率8%)が得られた。
また、水層を10%塩酸水溶液で酸性にし、酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、4−ニトロ安息香酸40mg(収率48%)が得られた。
(Reference example)
To a solution of 16 mg (0.05 mmol) of 4-benzoyloxyiodobenzene and 8 mg (0.05 mmol) of TEMPO in peracetic acid (4232 mg of 9% acetic acid solution), 77 mg (0.5 mmol) of 4-nitrobenzyl alcohol was added. Stir for hours.
The reaction solution was diluted by adding 20 mL of ethyl acetate, and partitioned by adding 10 mL of 50% aqueous potassium carbonate solution.
The organic layer was washed with a saturated aqueous solution of sodium thiosulfate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography to recover 26 mg of raw 4-nitrobenzyl alcohol (recovery rate 34%) and 6 mg of 4-nitrobenzaldehyde (yield 8%).
The aqueous layer was acidified with 10% aqueous hydrochloric acid, extracted with ethyl acetate, the extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 40 mg of 4-nitrobenzoic acid (yield 48%). It was.

本発明の有機ハイブリッド触媒は、医薬品や農薬などのファインケミカル製造において、アルコール類の酸化工程に利用することができ、廃棄物の少ないグリーンな工業プラントの構築が達成できる。   The organic hybrid catalyst of the present invention can be used in the oxidation process of alcohols in the production of fine chemicals such as pharmaceuticals and agricultural chemicals, and can achieve the construction of a green industrial plant with little waste.

Claims (7)

下記、一般式[1]で表されるものであって、
Figure 0005858386
「式[1]中、Xは、式[11]
Figure 0005858386
(式[11]中、Xは、酸素原子またはイミノ基、mは0,1,2のいずれかである。)
または、式[12]であり;
Figure 0005858386
(式[12]中、Xaは、酸素原子またはイミノ基、Wはアルキレン基、mは0,1,2のいずれかである。)
Yは、酸素原子、イミノ基または式[13]のいずれかであり;
Figure 0005858386
(式[13]中、Wはアルキレン基、Yは酸素原子またはイミノ基である。)
Zはアルキレン、アルケニレン、フェニレンまたは飽和もしくは不飽和の5〜7員の炭素環基のいずれかであり;nは0または1である。」で表される、2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体。
Represented by the following general formula [1],
Figure 0005858386
“In the formula [1], X represents the formula [11]
Figure 0005858386
(In Formula [11], Xa is an oxygen atom or an imino group, and m is 0, 1, or 2.)
Or Formula [12];
Figure 0005858386
(In the formula [12], X a is an oxygen atom or an imino group, W is an alkylene group, and m is 0, 1, or 2.)
Y is any of an oxygen atom, an imino group, or a formula [13];
Figure 0005858386
(Wherein [13], W is an alkylene group, Y a is oxygen atom or imino group.)
Z is any one of alkylene, alkenylene, phenylene or a saturated or unsaturated 5- to 7-membered carbocyclic group; n is 0 or 1. 2,2,6,6-tetramethylpiperidine-1-oxyl derivative represented by
前記、XおよびYが酸素原子、mが1、nが0である請求項1記載の2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体。The 2,2,6,6-tetramethylpiperidine-1-oxyl derivative according to claim 1, wherein X a and Y is an oxygen atom, m is the 1, n is 0. 前記、Zがフェニレンである請求項1または2記載の2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体。   The 2,2,6,6-tetramethylpiperidine-1-oxyl derivative according to claim 1 or 2, wherein Z is phenylene. 下記、一般式[1]で表されるものであって、
Figure 0005858386
「式[1]中、Xは、式[11]
Figure 0005858386
(式[11]中、Xは、酸素原子またはイミノ基、mは0,1,2のいずれかである。)
または、式[12]であり;
Figure 0005858386
(式[12]中、Xaは、酸素原子またはイミノ基、Wはアルキレン基、mは0,1,2のいずれかである。)
Yは、酸素原子、イミノ基または式[13]のいずれかであり;
Figure 0005858386
(式[13]中、Wはアルキレン基、Yは酸素原子またはイミノ基である。)
Zはアルキレン、アルケニレン、フェニレンまたは飽和もしくは不飽和の5〜7員の炭素環基のいずれかであり;nは0または1である。」で表される、2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体を含有することを特徴とする有機化合物の酸化触媒。
Represented by the following general formula [1],
Figure 0005858386
“In the formula [1], X represents the formula [11]
Figure 0005858386
(In Formula [11], Xa is an oxygen atom or an imino group, and m is 0, 1, or 2.)
Or Formula [12];
Figure 0005858386
(In the formula [12], X a is an oxygen atom or an imino group, W is an alkylene group, and m is 0, 1, or 2.)
Y is any of an oxygen atom, an imino group, or a formula [13];
Figure 0005858386
(Wherein [13], W is an alkylene group, Y a is oxygen atom or imino group.)
Z is any one of alkylene, alkenylene, phenylene or a saturated or unsaturated 5- to 7-membered carbocyclic group; n is 0 or 1. And a 2,2,6,6-tetramethylpiperidine-1-oxyl derivative represented by the formula:
前記、有機化合物がアルコールである請求項4記載の酸化触媒。   The oxidation catalyst according to claim 4, wherein the organic compound is an alcohol. 下記、一般式[1]で表されるものであって、
Figure 0005858386
「式[1]中、Xは、式[11]
Figure 0005858386
(式[11]中、Xは、酸素原子またはイミノ基、mは0,1,2のいずれかである。)
または、式[12]であり;
Figure 0005858386
(式[12]中、Xaは、酸素原子またはイミノ基、Wはアルキレン基、mは0,1,2のいずれかである。)
Yは、酸素原子、イミノ基または式[13]のいずれかであり;
Figure 0005858386
(式[13]中、Wはアルキレン基、Yは酸素原子またはイミノ基である。)
Zはアルキレン、アルケニレン、フェニレンまたは飽和もしくは不飽和の5〜7員の炭素環基のいずれかであり;
nは0または1である。」で表される、2,2,6,6−テトラメチルピペリジン−1−オキシル誘導体および共存酸化剤の存在下に、アルコール類を酸化せしめて、対応するオキソ体を合成することを特徴とするアルコール類の酸化方法。
Represented by the following general formula [1],
Figure 0005858386
“In the formula [1], X represents the formula [11]
Figure 0005858386
(In Formula [11], Xa is an oxygen atom or an imino group, and m is 0, 1, or 2.)
Or Formula [12];
Figure 0005858386
(In the formula [12], X a is an oxygen atom or an imino group, W is an alkylene group, and m is 0, 1, or 2.)
Y is any of an oxygen atom, an imino group, or a formula [13];
Figure 0005858386
(Wherein [13], W is an alkylene group, Y a is oxygen atom or imino group.)
Z is either alkylene, alkenylene, phenylene or a saturated or unsaturated 5- to 7-membered carbocyclic group;
n is 0 or 1. In the presence of a 2,2,6,6-tetramethylpiperidine-1-oxyl derivative and a coexisting oxidant, and the corresponding oxo form is synthesized. Method for oxidizing alcohols.
前記、共存酸化剤が過酢酸である請求項6記載のアルコール類の酸化方法。   The method for oxidizing alcohols according to claim 6, wherein the coexisting oxidizing agent is peracetic acid.
JP2012541861A 2010-11-04 2011-11-01 Organic hybrid catalyst Expired - Fee Related JP5858386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012541861A JP5858386B2 (en) 2010-11-04 2011-11-01 Organic hybrid catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010247803 2010-11-04
JP2010247803 2010-11-04
PCT/JP2011/075133 WO2012060347A1 (en) 2010-11-04 2011-11-01 Organic hybrid type catalyst
JP2012541861A JP5858386B2 (en) 2010-11-04 2011-11-01 Organic hybrid catalyst

Publications (2)

Publication Number Publication Date
JPWO2012060347A1 JPWO2012060347A1 (en) 2014-05-12
JP5858386B2 true JP5858386B2 (en) 2016-02-10

Family

ID=46024461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012541861A Expired - Fee Related JP5858386B2 (en) 2010-11-04 2011-11-01 Organic hybrid catalyst

Country Status (2)

Country Link
JP (1) JP5858386B2 (en)
WO (1) WO2012060347A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6218140B2 (en) * 2014-02-24 2017-10-25 国立大学法人富山大学 Magnetic iron particle supported iodine catalyst

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015044380; FALL, A. et al.: 'Ionic liquid-supported TEMPO as catalyst in the oxidation of alcohols to aldehydes and ketones' Tetrahedron Letters 51(34), 2010, pp. 4501-4504 *
JPN6015044382; HERRERIAS, C. I. et al.: 'Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-m' Tetrahedron Letters 47(1), 2006, pp. 13-17 *
JPN7015003071; ROEBEN, C. et al.: 'Immobilization of TEMPO Derivatives in Saponite and Use of These Novel Hybrid Materials as Reusable' SYNLETT (7), 2010, pp. 1110-1114 *

Also Published As

Publication number Publication date
JPWO2012060347A1 (en) 2014-05-12
WO2012060347A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4920024B2 (en) Cyclic acylurea compounds
JP2006176527A (en) Process for transition metal free catalytic aerobic oxidation of alcohols under mild conditions using stable free nitroxyl radicals
JP4079773B2 (en) Catalyst composed of N-substituted cyclic imide compound and method for producing organic compound using the catalyst
JP4231408B2 (en) Catalyst composed of N-substituted cyclic imide compound and method for producing organic compound using the catalyst
JP5858386B2 (en) Organic hybrid catalyst
US20100029956A1 (en) Method for producing ester or lactone
JP4112877B2 (en) Catalyst composed of cyclic imide compound and method for producing organic compound using the catalyst
JP4095281B2 (en) Catalyst for producing organic compound, and method for producing organic compound using the catalyst
WO2008069127A1 (en) Method for producing oxidation product of cycloalkane
JP2007238517A (en) Method for producing disulfide compound
JP4306430B2 (en) Method for producing adipic acid
JP4039730B2 (en) Oxidation catalyst system and oxidation method using the same
JP2006273793A (en) Method for producing organic compound by using cyclic acylurea-based catalyst
JP4885468B2 (en) Method for producing organic compound
JP2005306837A (en) Method for producing adamantanols
KR101642960B1 (en) Preparation method of benzoic acid
JP2013119518A (en) Method for producing (s)-2-benzyl-3-(cis-hexahydro-2-isoindonilylcarbonyl)benzyl propionate
JP2001354596A (en) Production of organic compound by using imide as catalyst
JP4841468B2 (en) Catalyst composed of nitrogen atom-containing cyclic compound and method for oxidizing organic compound using the same
JP5797539B2 (en) Method for producing three-coordinate hypervalent iodine compound
JP2001286765A (en) Regeneration method of imide based catalyst and production process using imide based catalyst
JP2775319B2 (en) Method for producing diarylethylene glycol
JP4759177B2 (en) Method for producing mevalolactone
KR101671429B1 (en) Preparation method of benzoic acid
JP2003261547A (en) Method of producing 4-alkyl-5-formylthiazole derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R150 Certificate of patent or registration of utility model

Ref document number: 5858386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees