JP6218140B2 - Magnetic iron particle supported iodine catalyst - Google Patents

Magnetic iron particle supported iodine catalyst Download PDF

Info

Publication number
JP6218140B2
JP6218140B2 JP2014061025A JP2014061025A JP6218140B2 JP 6218140 B2 JP6218140 B2 JP 6218140B2 JP 2014061025 A JP2014061025 A JP 2014061025A JP 2014061025 A JP2014061025 A JP 2014061025A JP 6218140 B2 JP6218140 B2 JP 6218140B2
Authority
JP
Japan
Prior art keywords
catalyst
magnetic iron
mmol
iodine catalyst
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014061025A
Other languages
Japanese (ja)
Other versions
JP2015171700A (en
Inventor
隆之 矢倉
隆之 矢倉
南部 寿則
寿則 南部
朋也 藤原
朋也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2014061025A priority Critical patent/JP6218140B2/en
Publication of JP2015171700A publication Critical patent/JP2015171700A/en
Application granted granted Critical
Publication of JP6218140B2 publication Critical patent/JP6218140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、アルコール類またはフェノール類の酸化反応に用いるヨウ素触媒およびそれを使用するアルコール類またはフェノール類から対応するオキソ体の製造方法に関するものである。 The present invention relates to an iodine catalyst used for an oxidation reaction of alcohols or phenols and a method for producing a corresponding oxo compound from alcohols or phenols using the same.

アルデヒド類、ケトン類、カルボン酸類およびその誘導体は多くの有機天然物や医薬品の化学構造の主要構成置換基であり、第1級アルコールあるいは第2級アルコールの酸化反応により構築されている。そのため、これらの酸化反応は有機化合物製造において最も重要な反応である。また有機合成化学的にもこれらの酸化反応は基本的な反応の1つであり、従来より多数の優れた酸化剤や酸化方法が開発されてきた。
古典的にはクロム(VI)化合物などの重金属酸化剤が用いられてきたが、ルテニウムやマンガン、バナジウムなどの遷移金属等、さらに活性化されたジメチルスルホキシドなどが開発されてきた。
しかし、金属化合物の使用は環境への悪影響や製品への微量金属の混入、ジメチルスルホキシドの使用は反応終了後の悪臭、などの問題点があり、環境調和性や安全性の向上が求められている。特に、医薬品や化粧品、農薬、食品等の工業的観点から、これらは最重要の課題となる。
Aldehydes, ketones, carboxylic acids and their derivatives are the main constituent substituents of the chemical structures of many organic natural products and pharmaceuticals, and are constructed by oxidation reactions of primary alcohols or secondary alcohols. Therefore, these oxidation reactions are the most important reactions in the production of organic compounds. Also, in organic synthetic chemistry, these oxidation reactions are one of basic reactions, and many excellent oxidizing agents and oxidation methods have been developed.
Classically, heavy metal oxidants such as chromium (VI) compounds have been used, but transition metals such as ruthenium, manganese and vanadium, and further activated dimethyl sulfoxide have been developed.
However, the use of metal compounds has problems such as adverse effects on the environment and the inclusion of trace metals in products, and the use of dimethyl sulfoxide is a foul odor after completion of the reaction, which requires improvements in environmental harmony and safety. Yes. In particular, these are the most important issues from the industrial viewpoint of pharmaceuticals, cosmetics, agricultural chemicals, foods, and the like.

近年、従来の重金属酸化剤に代えて、通常の原子価を超える5価をもつ超原子価有機ヨウ素化合物を、アルコール類の酸化剤として広く利用するようになっている。
例えば、ヨウ素触媒として2−ヨード安息香酸やその誘導体、4−アルコキシヨードベンゼンやその誘導体が用いられている。これらの触媒をオキソン(過硫酸水素イオン、硫酸イオンと硫酸水素イオンからなる複塩)や過酸の存在下でアルコール類やフェノール類と反応させると高収率で対応する酸化生成物が得られる(非特許文献1)。
In recent years, hypervalent organic iodine compounds having pentavalence exceeding the normal valence are widely used as oxidants for alcohols instead of conventional heavy metal oxidants.
For example, 2-iodobenzoic acid and its derivatives, 4-alkoxyiodobenzene and its derivatives are used as iodine catalysts. When these catalysts are reacted with oxone (hydrogen persulfate ion, double salt composed of sulfate ion and hydrogen sulfate ion) or peracid in the presence of alcohols or phenols, the corresponding oxidation products can be obtained in high yield. (Non-Patent Document 1).

Tetrahedron、 66、 5833-5840(2010)Tetrahedron, 66, 5833-5840 (2010)

上記の非特許文献1に記載のヨウ素触媒では、反応終了後の生成物と使用した触媒との分離には、分液操作やカラム操作が必要となり、煩雑である。そこで、本発明は、生成物との分離、回収が容易であるヨウ素触媒を開発することが課題である。 In the iodine catalyst described in Non-Patent Document 1, separation of the product after completion of the reaction and the catalyst used requires a liquid separation operation and a column operation, which are complicated. Therefore, an object of the present invention is to develop an iodine catalyst that can be easily separated and recovered from the product.

マグネタイトなどの磁性鉄のナノ粒子はほとんどの有機溶媒に不溶である。そのため、磁鉄ナノ粒子の表面にヨウ素触媒を結合させると不均一触媒が生成する。
一般に不均一触媒は均一触媒に比べ、反応終了後の触媒回収が容易である。すなわち反応終了後にろ過等で簡単に触媒を分離できる。その反面、不均一触媒は均一触媒に比べ反応性が低下することが知られている。しかし、磁鉄ナノ粒子は単位重量当たりの表面積がきわめて大きいため、均一触媒に匹敵する反応性を有する。さらに、磁鉄ナノ粒子は磁石にくっつく性質を持っているため、反応終了後の触媒の回収が、外部からの磁石に吸着させることで達成可能で、ろ過操作すら必要ない。このような性質を持つ磁鉄ナノ粒子表面にヨウ素触媒を組み込んだ、高い反応性を持ち、反応液からの分離回収の容易な触媒を創製した。
以下、本発明を詳細に説明する。
Magnetic iron nanoparticles such as magnetite are insoluble in most organic solvents. For this reason, when an iodine catalyst is bonded to the surface of the magnetic iron nanoparticles, a heterogeneous catalyst is generated.
In general, a heterogeneous catalyst is easier to recover after completion of the reaction than a homogeneous catalyst. That is, the catalyst can be easily separated after the reaction by filtration or the like. On the other hand, it is known that the reactivity of a heterogeneous catalyst is lower than that of a homogeneous catalyst. However, since magnetic iron nanoparticles have a very large surface area per unit weight, they have reactivity comparable to homogeneous catalysts. Furthermore, since the magnetic iron nanoparticles have a property of sticking to the magnet, the recovery of the catalyst after completion of the reaction can be achieved by adsorbing it to the magnet from the outside, and no filtration operation is required. A highly reactive catalyst that incorporates an iodine catalyst on the surface of magnetic iron nanoparticles with such properties and has been created easily from the reaction solution.
Hereinafter, the present invention will be described in detail.

本発明において、特に断らない限り、アルキル基とは、メチル、エチル、n-プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチルなど直鎖状または分岐状のC1-6アルキル基を、アルキレンとは、メチレン、エチレン、プロピレンなど直鎖状または分岐状のC1-6アルキレン基を、アルキレンオキシ基とは、メチレンオキシ、エチレンオキシ、イソプロピレンオキシなど直鎖状または分岐状のC1-6アルキレン−O−基を、アルキレンアミノカルボニル基とは、メチレンアミノカルボニル、エチレンアミノカルボニル、イソプロピレンアミノカルボニルなど直鎖状または分岐状のC1-6アルキレン−NHCO−基を、アルコキシシリル基とは、メトキシシリル、エトキシシリルなどの基を、それぞれ意味する In the present invention, unless otherwise specified, an alkyl group means a linear or branched C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl and the like. , Alkylene is a linear or branched C 1-6 alkylene group such as methylene, ethylene or propylene, and alkyleneoxy group is a linear or branched C1 such as methyleneoxy, ethyleneoxy or isopropyleneoxy. 1-6 alkylene-O— group, alkyleneaminocarbonyl group means linear or branched C 1-6 alkylene-NHCO— group such as methyleneaminocarbonyl, ethyleneaminocarbonyl, isopropyleneaminocarbonyl, alkoxysilyl The groups mean groups such as methoxysilyl and ethoxysilyl, respectively.

本発明は、以下の一般式[1]の磁性鉄ナノ粒子担持ヨウ素触媒である。
The present invention is a magnetic iron nanoparticle-supported iodine catalyst of the following general formula [1].

「式中、Mは、磁性鉄ナノ粒子を、mは、1〜6の整数を、Rは、アルコキシシリル基またはホスホニル基を、Rは、以下のいずれかの式を、それぞれ意味する。
(式中、Rbbは、アルキレンオキシ基またはアルキレンアミノカルボニル基を意味する。)
“Wherein M represents magnetic iron nanoparticles, m represents an integer of 1 to 6, R a represents an alkoxysilyl group or phosphonyl group, and R b represents any one of the following formulae: .
(In the formula, R bb means an alkyleneoxy group or an alkyleneaminocarbonyl group.)

一般式[1]におけるMの磁性鉄粒子として、マグネタイト(Fe)、マグヘマイト(γ−Fe)またはフェライトが挙げられるが、好ましいものとしてマグネタイトが挙げられる。 Examples of the magnetic iron particles of M in the general formula [1] include magnetite (Fe 3 O 4 ), maghemite (γ-Fe 2 O 3 ), and ferrite, with magnetite being preferred.

磁性鉄粒子の大きさは、ナノサイズであり、そのサイズは、5〜100nm、好ましくは、5〜20nmである。 The size of the magnetic iron particles is nano-sized, and the size is 5 to 100 nm, preferably 5 to 20 nm.

本発明のより具体的な磁性鉄ナノ粒子ヨウ素触媒として以下のものが挙げられる。
The following are mentioned as a more concrete magnetic iron nanoparticle iodine catalyst of this invention.

上記の一般式[1aa]〜[1cb]の式中、Raaは、アルキル基、Rbbは、アルキレンオキシ基またはアルキレンアミノカルボニル基、mは1〜6の整数を、それぞれ意味する。 In the general formulas [1aa] to [1cb], R aa represents an alkyl group, R bb represents an alkyleneoxy group or an alkyleneaminocarbonyl group, and m represents an integer of 1 to 6, respectively.

また、本発明は、上記の一般式[1]で表されるヨウ素触媒の存在下に、アルコール類またはフェノール類を酸化せしめて、対応するオキソ体を製造する方法である。 The present invention is also a method for producing a corresponding oxo compound by oxidizing alcohols or phenols in the presence of the iodine catalyst represented by the above general formula [1].

より具体的には、アルコール類を上記の一般式[1a]〜[1f]で表されるヨウ素触媒の存在下に、ペルオキシ一硫酸カリウムなどの無機酸化剤またはm−クロロ過安息香酸などの有機酸化剤を反応させ、対応するオキソ体を製造する方法である。 More specifically, an alcohol is an organic compound such as an inorganic oxidizing agent such as potassium peroxymonosulfate or an organic compound such as m-chloroperbenzoic acid in the presence of an iodine catalyst represented by the above general formulas [1a] to [1f]. In this method, an oxidant is reacted to produce a corresponding oxo compound.

本発明の磁性鉄ナノ粒子担持ヨウ素触媒を用い、アルコール類あるいはフェノール類の酸化反応を行うことで、高収率で対応するオキソ体を製造することができる。触媒の反応活性は、従来の均一触媒とほぼ同等であるものの、反応終了後は反応容器の外部に磁石をおくことで、触媒の分離および回収を容易に行うことができる。 By using the magnetic iron nanoparticle-supported iodine catalyst of the present invention and performing an oxidation reaction of alcohols or phenols, the corresponding oxo compound can be produced in high yield. Although the reaction activity of the catalyst is almost the same as that of a conventional homogeneous catalyst, the catalyst can be easily separated and recovered by placing a magnet outside the reaction vessel after the reaction is completed.

本発明の磁性鉄ナノ粒子担持ヨウ素触媒は、例えば、以下の方法で製造することができる。 The magnetic iron nanoparticle carrying | support iodine catalyst of this invention can be manufactured with the following method, for example.

<製造法1>
<Production method 1>

「式中、Mは、磁性鉄ナノ粒子を、mは、1〜6の整数を、Rは、アルコキシシリル基またはホスホニル基を、Rbbは、アルキレンオキシ基またはアルキレンアミノカルボニル基を、Xは、塩素原子などのハロゲン原子を、それぞれ意味する。) “In the formula, M represents magnetic iron nanoparticles, m represents an integer of 1 to 6, R a represents an alkoxysilyl group or phosphonyl group, R bb represents an alkyleneoxy group or an alkyleneaminocarbonyl group, X Represents a halogen atom such as a chlorine atom.)

一般式[2]の化合物と一般式[3]の化合物を、塩基の存在下、溶媒中で反応させることにより一般式[1a]の化合物を製造することができる。 The compound of general formula [1a] can be produced by reacting the compound of general formula [2] with the compound of general formula [3] in a solvent in the presence of a base.

この反応に用いる塩基は、通常の反応において塩基として使用されるものであれば特に限定されないが、例えば、N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1、8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1、5-ジアザビシクロ[4.3.0]ノナ-5-エン、1、4-ジアザビシクロ[5.4.0]ウンデカ -7-エン、ピリジン、4−(N、N−ジメチルアミノ)ピリジン、もしくはピコリン等の有機塩基、または炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、もしくは水素化ナトリウム等の無機塩基等が挙げられる。 Although the base used for this reaction will not be specifically limited if it is used as a base in a normal reaction, For example, N-methylmorpholine, a triethylamine, a diisopropylethylamine, a tributylamine, 1, 8- diazabicyclo [5.4. 0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine, 4- (N , N-dimethylamino) pyridine, or an organic base such as picoline, or an inorganic base such as sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, sodium hydroxide, or sodium hydride.

この反応に用いる溶媒は、反応に悪影響を及ぼさないものであれば、特に限定されないが、例えば、塩化メチレン、クロロホルムおよびジクロロエタンなどのハロゲン化炭化水素類、塩基としても利用されるピリジンが挙げられ、これらの溶媒を一種または二種以上混合して使用してもよい。
この反応は、20℃〜60℃で、30分〜12時間行えばよい。
The solvent used in this reaction is not particularly limited as long as it does not adversely affect the reaction, and examples thereof include halogenated hydrocarbons such as methylene chloride, chloroform and dichloroethane, and pyridine also used as a base. These solvents may be used alone or in combination.
This reaction may be performed at 20 ° C. to 60 ° C. for 30 minutes to 12 hours.

一般式[2]の化合物は、公知方法に準じて製造すればよいが、例えば、アミノトリアルコキシシランを活性化マグネタイトに反応させることにより製造することができる。
<製造法2>
The compound of the general formula [2] may be produced according to a known method, but for example, it can be produced by reacting aminotrialkoxysilane with activated magnetite.
<Production method 2>

「式中、Mは、磁性鉄ナノ粒子を、mは、1〜6の整数を、Rは、アルコキシシリル基またはホスホニル基を、Rbbは、アルキレンオキシ基またはアルキレンアミノカルボニル基を、それぞれ意味する。) “Wherein M represents magnetic iron nanoparticles, m represents an integer of 1 to 6, R a represents an alkoxysilyl group or phosphonyl group, and R bb represents an alkyleneoxy group or an alkyleneaminocarbonyl group, means.)

一般式[4]の化合物と一般式[5a]または一般式[5b]の化合物を、クリック反応に付すことにより一般式[1b]または一般式[1c]の化合物を製造することができる。クリック反応は、公知の方法またはそれに準じた方法を用いればよい。 A compound of general formula [1b] or general formula [1c] can be produced by subjecting a compound of general formula [4] and a compound of general formula [5a] or general formula [5b] to a click reaction. The click reaction may be performed using a known method or a method similar thereto.

以下に、実施例により本発明をさらに具体的に説明するが、本発明はそれらに限定されるものではない。 EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.

実施例1
<マグネタイトナノ粒子担持ヨウ素触媒(MC-1)の合成>
Example 1
<Synthesis of magnetite nanoparticles supported iodine catalyst (MC-1)>

(1)3−アミノプロピルトリエトキシシラン(122mg, 0.55mmol)を活性化マグネタイト(1.439g, 6.215mmol)のエタノール(30mL)懸濁液に室温(25℃)で加えた。50℃に加温し、6時間撹拌後、反応液から磁石を用いて、黒色固体のアミノシリルオキシマグネタイト(1.45g)を得た。また、母液および洗浄液を濃縮して3−アミノプロピルトリエトキシシラン(51mg, 42%)を回収した。 (1) 3-Aminopropyltriethoxysilane (122 mg, 0.55 mmol) was added to a suspension of activated magnetite (1.439 g, 6.215 mmol) in ethanol (30 mL) at room temperature (25 ° C.). After heating to 50 ° C. and stirring for 6 hours, a black solid aminosilyloxymagnetite (1.45 g) was obtained from the reaction solution using a magnet. Further, the mother liquor and the washing liquid were concentrated to recover 3-aminopropyltriethoxysilane (51 mg, 42%).

(2)アミノシリルオキシマグネタイト(1.45g)の塩化メチレン(7mL)懸濁液にトリエチルアミン(234mg, 2.31mmol)、N,N−ジメチル−4−アミノピリジン(DMAP:19mg, 0.154mmol)を0℃で加えた。4−ヨードフェノキシ酢酸(214mg, 0.77mmol)に塩化チオニル(0.96mL)を加え加熱還流して4−ヨードフェノキシアセチルクロリド(228mg, 0.77mmol)を調製し、先ほどのマグネタイトの懸濁液にゆっくり滴下した。室温(25℃)まで昇温し、4時間撹拌後,反応液から磁石を用いてマグネタイトナノ粒子担持ヨウ素触媒を分離した。得られた固体をエタノールで洗浄し、風乾して黒色固体のマグネタイトナノ粒子担持ヨウ素触媒MC−1(1.479g)を得た。 (2) Triethylamine (234 mg, 2.31 mmol) and N, N-dimethyl-4-aminopyridine (DMAP: 19 mg, 0.154 mmol) were added to a suspension of aminosilyloxymagnetite (1.45 g) in methylene chloride (7 mL) at 0 ° C. Added in. 4-Iodophenoxyacetyl chloride (228 mg, 0.77 mmol) was prepared by adding thionyl chloride (0.96 mL) to 4-iodophenoxyacetic acid (214 mg, 0.77 mmol) and heating to reflux. did. After heating up to room temperature (25 degreeC) and stirring for 4 hours, the magnetite nanoparticle carrying | support iodine catalyst was isolate | separated from the reaction liquid using the magnet. The obtained solid was washed with ethanol and air-dried to obtain a black solid magnetite nanoparticle-supported iodine catalyst MC-1 (1.479 g).

実施例2
<マグネタイトナノ粒子担持ヨウ素触媒(MC-2)の合成>
Example 2
<Synthesis of magnetite nanoparticles supported iodine catalyst (MC-2)>

(1)2−ヨードベンゾイルクロリド(799mg, 3mmol)の塩化メチレン(3mL)溶液を2−アミノ−2−メチルプロパン酸塩酸塩(553mg, 3.6mmol)とトリエチルアミン(911mg, 9mmol)の塩化メチレン(7mL)溶液に0℃で加え、その後室温で1時間撹拌した。反応液を酢酸エチル(50mL)で希釈し、10%塩酸、飽和炭酸水素ナトリウム水溶液、水および飽和食塩水で洗浄後、乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製して2-(2-ヨードベンズアミド)-2-メチルプロパン酸メチルエステル(889mg, 85%)を得た。
無色針状結晶(再結晶溶媒:酢酸エチル−ヘキサン)。
融点:125〜127℃
(1) A solution of 2-iodobenzoyl chloride (799 mg, 3 mmol) in methylene chloride (3 mL) was mixed with 2-amino-2-methylpropanoic acid hydrochloride (553 mg, 3.6 mmol) and triethylamine (911 mg, 9 mmol) in methylene chloride (7 mL). ) Added to the solution at 0 ° C. and then stirred at room temperature for 1 hour. The reaction mixture was diluted with ethyl acetate (50 mL), washed with 10% hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution, water and saturated brine, dried and concentrated. The residue was purified by silica gel column chromatography to obtain 2- (2-iodobenzamido) -2-methylpropanoic acid methyl ester (889 mg, 85%).
Colorless needle crystals (recrystallization solvent: ethyl acetate-hexane).
Melting point: 125-127 ° C

(2)2-(2-ヨードベンズアミド)-2-メチルプロパン酸メチルエステル(889mg, 2.56mmol)と水酸化リチウム1水和物(430mg, 10.24mmol)をテトラヒドロフラン・メタノール・水(25:8:8)の混合溶媒(28mL)に溶かし室温で30分間撹拌した。反応液を水(60mL)で希釈し、10%塩酸で酸性にした。酢酸エチルで抽出後、抽出液を乾燥し濃縮して2-(2-ヨードベンズアミド)-2-メチルプロパン酸(836mg, 98%)を得た。
無色針状結晶(再結晶溶媒:酢酸エチル−ヘキサン)
融点:206〜207℃。
(2) 2- (2-iodobenzamide) -2-methylpropanoic acid methyl ester (889 mg, 2.56 mmol) and lithium hydroxide monohydrate (430 mg, 10.24 mmol) were added to tetrahydrofuran, methanol, and water (25: 8: The mixture was dissolved in a mixed solvent (8) (8 mL) and stirred at room temperature for 30 minutes. The reaction was diluted with water (60 mL) and acidified with 10% hydrochloric acid. After extraction with ethyl acetate, the extract was dried and concentrated to give 2- (2-iodobenzamido) -2-methylpropanoic acid (836 mg, 98%).
Colorless needle crystal (recrystallization solvent: ethyl acetate-hexane)
Melting point: 206-207 ° C.

(3)アミノシリルオキシマグネタイト(1.796g)の塩化メチレン(8mL)懸濁液にトリエチルアミン(357mg, 3.528mmol)、N,N−ジメチル−4−アミノピリジン(DMAP:29mg, 0.235mmol)を0℃で加えた。2−(2−ヨードベンズアミド)−2−メチルプロパン酸(280mg, 0.840mmol)に塩化チオニル(1.1mL)を加え加熱還流して2−(2−ヨードベンズアミド)−2−メチルプロパノイルクロリド(295mg, 0.840mmol)を調製し、先ほどのマグネタイトの懸濁液にゆっくり滴下した。室温(25℃)まで昇温し、4時間撹拌後、反応液から磁石を用いてマグネタイトナノ粒子担持ヨウ素触媒を分離した。得られた固体をエタノールで洗浄し、風乾して黒色固体のマグネタイトナノ粒子担持ヨウ素触媒MC−2(1.549g)を得た。 (3) Triethylamine (357 mg, 3.528 mmol) and N, N-dimethyl-4-aminopyridine (DMAP: 29 mg, 0.235 mmol) were added to a suspension of aminosilyloxymagnetite (1.796 g) in methylene chloride (8 mL) at 0 ° C. Added in. To 2- (2-iodobenzamido) -2-methylpropanoic acid (280 mg, 0.840 mmol) was added thionyl chloride (1.1 mL) and heated to reflux to give 2- (2-iodobenzamido) -2-methylpropanoyl chloride (295 mg). , 0.840 mmol) was slowly added dropwise to the suspension of magnetite. After heating up to room temperature (25 degreeC) and stirring for 4 hours, the magnetite nanoparticle carrying | support iodine catalyst was isolate | separated from the reaction liquid using the magnet. The obtained solid was washed with ethanol and air-dried to obtain a black solid magnetite nanoparticle-supported iodine catalyst MC-2 (1.549 g).

実施例3
<マグネタイトナノ粒子担持ヨウ素触媒(MC-3)の合成>
Example 3
<Synthesis of magnetite nanoparticles supported iodine catalyst (MC-3)>

文献記載の方法1)に従い調製したリンカー担持したマグネタイト(300mg)のtert-ブタノール−水(1:1)の懸濁液(3mL)に、文献記載の方法2)に従い調製した1−ヨード−4−(2−プロピニロキシ)ベンゼン(199mg, 0.77mmol)、硫酸銅(II)五水和物(9mg, 0.035mmol)、アスコルビン酸ナトリウム(21mg, 0.105mmol)、トリエチルアミン(0.2mL, 1.4mmol)を加えた。室温(25℃)で24時間撹拌後、反応液から磁石を用いてマグネタイトナノ粒子担持ヨウ素触媒を分離した。得られた固体を塩化メチレン−エーテル(1:1)の混合溶媒で3回洗浄の後、さらにエーテルで3回洗浄し、風乾して黒色固体のマグネタイトナノ粒子担持ヨウ素触媒MC−3(250mg)を得た。
文献
1) Tucker-Schwartz A. K., Garrell R. L. Chem. Eur. J., 16, 12718 (2010).
2) Pal M., Parasuraman K., Yeleswarapu K. R., Org. Lett., 5, 349 (2003).
1-iodo-4 prepared according to literature method 2) was added to a suspension (3 mL) of tert-butanol-water (1: 1) of magnetite (300 mg) supported by the linker prepared according to literature method 1). Add-(2-propynyloxy) benzene (199 mg, 0.77 mmol), copper (II) sulfate pentahydrate (9 mg, 0.035 mmol), sodium ascorbate (21 mg, 0.105 mmol), triethylamine (0.2 mL, 1.4 mmol) It was. After stirring for 24 hours at room temperature (25 ° C.), the magnetite nanoparticle-supported iodine catalyst was separated from the reaction solution using a magnet. The obtained solid was washed 3 times with a mixed solvent of methylene chloride-ether (1: 1), then further washed with ether 3 times, air-dried, and dried with black solid magnetite nanoparticles supported iodine catalyst MC-3 (250 mg). Got.
Literature
1) Tucker-Schwartz AK, Garrell RL Chem. Eur. J., 16, 12718 (2010).
2) Pal M., Parasuraman K., Yeleswarapu KR, Org. Lett., 5, 349 (2003).

実施例4
<4−メトキシフェノールの酸化(1)>
Example 4
<Oxidation of 4-methoxyphenol (1)>

マグネタイトナノ粒子担持ヨウ素触媒MC−1(253mg, 0.02mmol: 計算値で0.079mmol/g)を2−ピバロイロキシメチル−4−メトキシフェノール(48mg, 0.2mmol)とオキソン(123mg, 0.2mmol)の2,2,2−トリフルオロエタノール(1.3mL)・0.1 Mリン酸緩衝液(2.6mL)に室温(25℃)で加えた。2時間撹拌後、磁石を用いてマグネタイトナノ粒子担持ヨウ素触媒(253mg, 100%)を回収した。反応液を酢酸エチル(20mL)で希釈し、水、飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーで精製して2,2-ジメチルプロパン酸 3,6-ジオキソシクロヘキサ-1,4-ジエニルメチルエステル(38mg, 86%)を得た。
実施例4
Magnetite nanoparticles supported iodine catalyst MC-1 (253 mg, 0.02 mmol: calculated 0.079 mmol / g) of 2-pivaloyloxymethyl-4-methoxyphenol (48 mg, 0.2 mmol) and oxone (123 mg, 0.2 mmol) It was added to 2,2,2-trifluoroethanol (1.3 mL) /0.1 M phosphate buffer (2.6 mL) at room temperature (25 ° C.). After stirring for 2 hours, magnetite nanoparticle-supported iodine catalyst (253 mg, 100%) was recovered using a magnet. The reaction mixture was diluted with ethyl acetate (20 mL), washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to obtain 2,2-dimethylpropanoic acid 3,6-dioxocyclohexa-1,4-dienylmethyl ester (38 mg, 86%).
Example 4

<4−メトキシフェノールの酸化(2)>
<Oxidation of 4-methoxyphenol (2)>

マグネタイトナノ粒子担持ヨウ素触媒MC−3(56mg, 0.04mmol: 計算値で0.71mmol/g)を2−ピバロイロキシメチル−4−メトキシフェノール(48mg, 0.2mmol)とオキソン(123mg, 0.2mmol)の2,2,2−トリフルオロエタノール(0.8mL)・水(0.4mL)に室温(25℃)で加えた。4時間撹拌後、磁石を用いてマグネタイトナノ粒子担持ヨウ素触媒(48mg, 86%)を回収した。反応液を酢酸エチル(20mL)で希釈し、水、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーで精製して2,2-ジメチルプロパン酸 3,6-ジオキソシクロヘキサ-1,4-ジエニルメチルエステル(40mg, 91%)を得た。 Magnetite nanoparticles supported iodine catalyst MC-3 (56 mg, 0.04 mmol: calculated 0.71 mmol / g) of 2-pivaloyloxymethyl-4-methoxyphenol (48 mg, 0.2 mmol) and oxone (123 mg, 0.2 mmol) The mixture was added to 2,2,2-trifluoroethanol (0.8 mL) / water (0.4 mL) at room temperature (25 ° C.). After stirring for 4 hours, magnetite nanoparticle-supported iodine catalyst (48 mg, 86%) was recovered using a magnet. The reaction mixture was diluted with ethyl acetate (20 mL), washed successively with water and saturated brine, and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to obtain 2,2-dimethylpropanoic acid 3,6-dioxocyclohexa-1,4-dienylmethyl ester (40 mg, 91%).

本発明の磁性鉄ナノ粒子ヨウ素触媒は、医薬品や農薬などのファインケミカル製造において、アルコール類の酸化工程に利用することができ、廃棄物の少ないグリーンな工業プラントの構築が達成できる。 The magnetic iron nanoparticle iodine catalyst of the present invention can be used in the oxidation process of alcohols in the production of fine chemicals such as pharmaceuticals and agricultural chemicals, and the construction of a green industrial plant with little waste can be achieved.

Claims (2)

以下の一般式で表されるヨウ素触媒
「式中、Mは、磁性鉄ナノ粒子を、mは、1〜6の整数を、Rは、アルコキシシリル基またはホスホニル基を、Rは、以下のいずれかの式を、それぞれ意味する。
(式中、Rbbは、アルキレンオキシ基またはアルキレンアミノカルボニル基を意味する。)
Iodine catalyst represented by the following general formula
“Wherein M represents magnetic iron nanoparticles, m represents an integer of 1 to 6, R a represents an alkoxysilyl group or phosphonyl group, and R b represents any one of the following formulae: .
(In the formula, R bb means an alkyleneoxy group or an alkyleneaminocarbonyl group.)
請求項1に記載のヨウ素触媒を用い、アルコール類またはフェノール類から対応するオキソ体を製造する方法。 A method for producing a corresponding oxo compound from alcohols or phenols using the iodine catalyst according to claim 1.
JP2014061025A 2014-02-24 2014-03-25 Magnetic iron particle supported iodine catalyst Expired - Fee Related JP6218140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061025A JP6218140B2 (en) 2014-02-24 2014-03-25 Magnetic iron particle supported iodine catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014033210 2014-02-24
JP2014033210 2014-02-24
JP2014061025A JP6218140B2 (en) 2014-02-24 2014-03-25 Magnetic iron particle supported iodine catalyst

Publications (2)

Publication Number Publication Date
JP2015171700A JP2015171700A (en) 2015-10-01
JP6218140B2 true JP6218140B2 (en) 2017-10-25

Family

ID=54259393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061025A Expired - Fee Related JP6218140B2 (en) 2014-02-24 2014-03-25 Magnetic iron particle supported iodine catalyst

Country Status (1)

Country Link
JP (1) JP6218140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512810A4 (en) * 2016-09-15 2020-06-10 Royal Melbourne Institute Of Technology A method of purifying metal oxide particles and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2403203T3 (en) * 2007-08-31 2013-05-16 National University Corporation Nagoya University Method for producing carbonyl compound and prooxidant used for the production of carbonyl compound
CN101757948B (en) * 2010-01-29 2011-12-21 黑龙江省科学院石油化学研究院 Preparation method of magnetic sulfur-containing bidentate palladium ligand catalyst
JP5704320B2 (en) * 2010-03-04 2015-04-22 独立行政法人産業技術総合研究所 Magnetic nanoparticles fixed osmium (VI) acid salt
WO2012060347A1 (en) * 2010-11-04 2012-05-10 国立大学法人 富山大学 Organic hybrid type catalyst

Also Published As

Publication number Publication date
JP2015171700A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
KR101653064B1 (en) A Method for Gadobutrol
WO2013020460A1 (en) Atazanavir preparation method
JP5013366B2 (en) Method for synthesizing bis (terpyridine) compounds
Cran et al. The intramolecular Morita–Baylis–Hillman-type alkylation reaction
JP6218140B2 (en) Magnetic iron particle supported iodine catalyst
Arisawa et al. Stereoselective Synthesis of (E)‐and (Z)‐Allylphosphonium Salts by Palladium‐Catalyzed Addition of Phosphine to Allene
US9464095B2 (en) Production method of high-purity nitrogen-containing heterocyclic compound
CN114085150B (en) Synthesis method of beta- (-) -L-menthyl-acrylic ester compound and application of beta- (-) -L-menthyl-acrylic ester compound in cigarettes
Castro et al. The reactions of octaethylporphyrin and its iron (II) and iron (III) complexes with free radicals
JP3986200B2 (en) Method for producing 3-cyanotetrahydrofuran
JP6245605B2 (en) Process for producing .ALPHA.,. BETA.-unsaturated carbonyl compounds.
CN109608413B (en) 2-perfluoroalkyl benzothiazole compound and preparation method thereof
JP2015063501A (en) NOVEL HYPERVALENT IODINE COMPOUND HAVING 5-X(X=F,Cl,Br)-1,2-BENZIODOXOL-3-(1H)-ON PART
RU2616974C1 (en) METHOD OF PRODUCTION ω-(BIS(PYRIDINE-2-ILMETHYL)AMINO)ALIPHATIC ACIDS - PRECURSORS WITH HELATERAL CENTERS FOR BINDING METALS
Pilipenko et al. Eleuthesides and their analogs: VII. Synthesis of menthane derivatives by the Diels-Alder reaction of levoglucosenone with (2 E, 4 E)-hexa-2, 4-dien-1-yl acetate
TW200837059A (en) Process for preparing substituted pyrazolecarbonyl chlorides
JP5920622B2 (en) Method for producing azodicarboxylic acid diester compound
JP7217971B2 (en) Sulfonylazidobenzoic acid derivatives and their reactive derivatives
JP2012144508A (en) Method of producing triphenylenes
JP2003192626A (en) Method for producing 2-adamantanone
JP4516831B2 (en) Method for producing cis-jasmon
JPH07206810A (en) Bis(carbamoylethyl) trisulfide derivative and its production
JP6754131B2 (en) Method for producing a coupling product of an organic compound having a leaving group and an organoboron compound
WO2020130081A1 (en) Method for producing 2-iodosobenzoic acids
JP2003321408A (en) Method for producing adamantanepolyols

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6218140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees