JP5857811B2 - Secondary battery recycling equipment - Google Patents

Secondary battery recycling equipment Download PDF

Info

Publication number
JP5857811B2
JP5857811B2 JP2012053253A JP2012053253A JP5857811B2 JP 5857811 B2 JP5857811 B2 JP 5857811B2 JP 2012053253 A JP2012053253 A JP 2012053253A JP 2012053253 A JP2012053253 A JP 2012053253A JP 5857811 B2 JP5857811 B2 JP 5857811B2
Authority
JP
Japan
Prior art keywords
secondary battery
heat treatment
treatment tank
battery
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012053253A
Other languages
Japanese (ja)
Other versions
JP2013187142A (en
Inventor
啓二 宿谷
啓二 宿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012053253A priority Critical patent/JP5857811B2/en
Publication of JP2013187142A publication Critical patent/JP2013187142A/en
Application granted granted Critical
Publication of JP5857811B2 publication Critical patent/JP5857811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は、二次電池のリサイクル処理装置の技術に関する。   The present invention relates to a technology of a secondary battery recycling apparatus.

リチウムイオン二次電池やニッケル水素二次電池等二次電池は、例えば、ハイブリッド車等の車両用部品として使用されている場合、車両が廃車等になった際には、二次電池が車両から取り外され後、解体され、有用な金属が回収される。   When a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery is used as a vehicle part such as a hybrid vehicle, for example, when the vehicle is scrapped, the secondary battery is removed from the vehicle. After removal, it is dismantled and useful metals are recovered.

一般的に、自動車用部品として使用される二次電池は、高電圧を発生(例えば、300V以上)するものであり、車両が廃車となって取り外される際にも、高電圧を保っている場合が多い。通常、二次電池を解体する作業は、作業者が絶縁手袋等の保護具を着用して、手作業で行われるため、作業の安全性確保に十分な配慮が必要である。   Generally, a secondary battery used as an automobile part generates a high voltage (for example, 300 V or more), and maintains a high voltage even when the vehicle is removed as a scrap car. There are many. Usually, the work of disassembling the secondary battery is performed manually by an operator wearing protective equipment such as an insulating glove. Therefore, sufficient consideration must be given to ensuring the safety of the work.

また、二次電池の解体作業等の安全性を高めるために、二次電池を放電させることも考えられるが、この場合、二次電池を長期間保管して自然放電させるか、または抵抗器等を用いて強制的に放電させる必要があり、二次電池のリサイクル処理の作業が長時間化するか若しくは手間を要するため、リサイクル処理の作業を効率的に行うことができない。   In order to enhance the safety of the secondary battery disassembly work, etc., it is conceivable to discharge the secondary battery. In this case, the secondary battery is stored for a long period of time and discharged naturally, or a resistor, etc. Therefore, it is necessary to forcibly discharge the battery, and the recycling process of the secondary battery takes a long time or takes time, so that the recycling process cannot be performed efficiently.

従来から、二次電池から有価物を回収する様々な方法が提案され(例えば、特許文献1〜3参照)、リサイクル処理の作業効率化が図られているが、作業効率化の観点から改善の余地がある。   Conventionally, various methods for recovering valuable materials from secondary batteries have been proposed (for example, see Patent Documents 1 to 3), and work efficiency of the recycling process has been improved. There is room.

特開2010−3512号公報JP 2010-3512 A 特開2005−26088号公報JP-A-2005-26088 特開2010−165569号公報JP 2010-165568 A

そこで、本発明は、リサイクル処理の作業安全性を確保し、リサイクル処理の作業効率化を図ることができる二次電池のリサイクル処理装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a secondary battery recycling apparatus that can ensure the safety of the recycling process and increase the efficiency of the recycling process.

本発明の二次電池のリサイクル処理装置は、二次電池を加熱する加熱処理槽と、前記加熱処理槽内に設置され、前記加熱処理槽内の気体が循環する循環経路を形成する隔壁と、前記加熱処理槽内に設けられ、前記加熱処理槽内の気体を前記循環経路に循環させる循環器と、前記二次電池を加熱する際に、前記二次電池を充電する充電器と、を備える。 The secondary battery recycling apparatus of the present invention includes a heat treatment tank that heats the secondary battery, a partition that is installed in the heat treatment tank and that forms a circulation path through which the gas in the heat treatment tank circulates, A circulator that is provided in the heat treatment tank and circulates the gas in the heat treatment tank to the circulation path; and a charger that charges the secondary battery when the secondary battery is heated. .

また、前記二次電池のリサイクル処理装置において、前記二次電池に冷却液を供給する冷却液供給手段を備えることが好ましい。   Moreover, it is preferable that the secondary battery recycling apparatus includes a coolant supply means for supplying a coolant to the secondary battery.

本発明によれば、リサイクル処理の作業安全性を確保し、リサイクル処理の作業効率化を図ることができる。   According to the present invention, it is possible to secure the work safety of the recycling process and increase the efficiency of the recycling process.

本実施形態に係る二次電池のリサイクル処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the recycling processing apparatus of the secondary battery which concerns on this embodiment. 本実施形態に係る二次電池のリサイクル処理装置の他の一例を示す模式図である。It is a schematic diagram which shows another example of the recycling processing apparatus of the secondary battery which concerns on this embodiment. 処理経過時間と二次電池温度の推移の一例を示す図である。It is a figure which shows an example of transition of process elapsed time and a secondary battery temperature. 本実施形態に係る二次電池のリサイクル処理装置の他の一例を示す模式図である。It is a schematic diagram which shows another example of the recycling processing apparatus of the secondary battery which concerns on this embodiment. 処理経過時間と充電状態による二次電池温度の推移の一例を示す図である。It is a figure which shows an example of transition of the secondary battery temperature by process elapsed time and a charge condition. 電池パックの解体及び有価物の回収工程を説明するためのフロー図である。It is a flowchart for demonstrating the disassembly of a battery pack, and the collection process of valuables.

以下、二次電池のリサイクル処理装置の一例を図面に基づいて説明する。ここで、「二次電池」なる用語は、ニッケル水素二次電池やリチウムイオン二次電池等の電池単体として電池セルに限定されるものではなく、電池セルを複数(例えば6個か8個程度)直列に接続して1つの部品単位とした電池モジュール、又は該電池モジュールを複数直列に接続して構成された組電池、又は該組電池と、電池モジュールの充電状態を監視制御する制御装置や電気回路を切断するためのリレーや機械的に回路を切断するためのセーフティプラグや組電池を冷却する冷却ブロア等の電子部品と、各部品を接続する信号線や動力線と、これらを密閉収納するケース等から構成される電池パック等も含まれる。   An example of a secondary battery recycling apparatus will be described below with reference to the drawings. Here, the term “secondary battery” is not limited to a battery cell as a single battery such as a nickel hydride secondary battery or a lithium ion secondary battery, but a plurality of battery cells (for example, about six or eight batteries). ) A battery module connected in series as one component unit, or a battery pack configured by connecting a plurality of battery modules in series, or a control device for monitoring and controlling the battery pack and the charging state of the battery module, Electronic components such as relays for disconnecting electrical circuits, safety plugs for mechanically disconnecting circuits and cooling blowers for cooling assembled batteries, signal lines and power lines connecting each component, and airtight storage The battery pack etc. comprised from the case etc. which carry out are also included.

図1に示すリサイクル処理装置1は、加熱処理槽12、循環器14、置換ガス供給装置16、凝縮器18、を備える。   1 includes a heat treatment tank 12, a circulator 14, a replacement gas supply device 16, and a condenser 18.

加熱処理槽12は、主に、二次電池10を加熱処理するためのものであり、本実施形態の加熱処理槽内には電気ヒータ(不図示)、二次電池10を載置する載置台30、を備える。二次電池10を加熱する熱源としては電気ヒータに制限されるものではなく、ラジアントチューブ等の間接加熱型のガスヒータ等でもよい。   The heat treatment tank 12 is mainly for heat treatment of the secondary battery 10, and an electric heater (not shown) and a mounting table on which the secondary battery 10 is placed in the heat treatment tank of the present embodiment. 30. The heat source for heating the secondary battery 10 is not limited to an electric heater, and may be an indirect heating type gas heater such as a radiant tube.

本実施形態の加熱処理槽12内には、加熱処理槽12内の気体が循環する循環経路20を形成する隔壁22が設置されている。本実施形態の隔壁22は、載置台30に載置された二次電池10を囲う箱形形状であり、隔壁22の外壁と加熱処理槽12内の内壁との間の空間が循環経路20となっている。本実施形態では、二次電池10の上方の隔壁22には循環経路20の入口22aが設けられ、二次電池10の下方側は循環経路20の出口22bとなるように開放されている。本実施形態の隔壁22の形状、入口、出口の位置は一例であって、隔壁22により形成された循環経路20によって、加熱処理槽12内の気体が循環するように構成されていれば、必ずしもこれに制限されるものではない。   In the heat treatment tank 12 of this embodiment, a partition wall 22 that forms a circulation path 20 through which the gas in the heat treatment tank 12 circulates is installed. The partition wall 22 of the present embodiment has a box shape surrounding the secondary battery 10 mounted on the mounting table 30, and the space between the outer wall of the partition wall 22 and the inner wall of the heat treatment tank 12 is connected to the circulation path 20. It has become. In the present embodiment, the partition wall 22 above the secondary battery 10 is provided with an inlet 22 a of the circulation path 20, and the lower side of the secondary battery 10 is opened to become the outlet 22 b of the circulation path 20. The shape of the partition wall 22 and the positions of the inlet and the outlet of the present embodiment are merely examples. If the gas in the heat treatment tank 12 is circulated by the circulation path 20 formed by the partition wall 22, it is not always necessary. This is not a limitation.

本実施形態の循環器14は、加熱処理槽12内の気体を循環経路20に循環させるように、隔壁22に形成された入口22a付近に設置されている。循環器14は、例えば、風向、風速等を調整できるファン、ポンプ等が挙げられる。   The circulator 14 of this embodiment is installed in the vicinity of the inlet 22 a formed in the partition wall 22 so that the gas in the heat treatment tank 12 is circulated through the circulation path 20. Examples of the circulator 14 include a fan and a pump that can adjust a wind direction, a wind speed, and the like.

次に、本実施形態に係るリサイクル処理装置1の動作を説明する。   Next, the operation of the recycling processing apparatus 1 according to this embodiment will be described.

まず、加熱処理槽12の開閉扉(不図示)を開け、二次電池10を槽内の載置台30にセットし、開閉扉を閉めて密閉し、電気ヒータ(不図示)のスイッチを入れ、二次電池10を加熱する。なお、加熱処理槽12内の温度制御は、槽内に温度センサ24等を設置して、槽内の温度を検出し、検出した温度に基づいて電気ヒータの出力を調節することにより行われる。   First, the open / close door (not shown) of the heat treatment tank 12 is opened, the secondary battery 10 is set on the mounting table 30 in the tank, the open / close door is closed and sealed, and an electric heater (not shown) is switched on, The secondary battery 10 is heated. The temperature control in the heat treatment tank 12 is performed by installing a temperature sensor 24 or the like in the tank, detecting the temperature in the tank, and adjusting the output of the electric heater based on the detected temperature.

本実施形態では、二次電池10の加熱処理の際に循環器14を稼働させ、加熱処理槽12内の気体を循環経路20の入口22aから取り込み、循環経路20を通り出口22bから排出させ、また循環経路20の入口22aから取り込まれるように、加熱処理槽12内の気体を循環経路20に循環させている。本実施形態のように、加熱処理槽12内の気体を強制的に循環させながら二次電池10の加熱処理を行う方が、気体の自然対流下で二次電池10の加熱処理を行う場合より、二次電池10と加熱処理槽12内の気体との熱交換が促進され、加熱処理時間を短縮すること、ひいてはリサイクル処理に掛かる時間を短縮することができ、リサイクル処理の作業効率化を図ることができる。   In the present embodiment, the circulator 14 is operated during the heat treatment of the secondary battery 10, the gas in the heat treatment tank 12 is taken in from the inlet 22 a of the circulation path 20, passed through the circulation path 20 and discharged from the outlet 22 b, Further, the gas in the heat treatment tank 12 is circulated through the circulation path 20 so as to be taken in from the inlet 22 a of the circulation path 20. As in the present embodiment, the heat treatment of the secondary battery 10 while forcibly circulating the gas in the heat treatment tank 12 is more than the case where the heat treatment of the secondary battery 10 is performed under natural convection of gas. The heat exchange between the secondary battery 10 and the gas in the heat treatment tank 12 is promoted, the heat treatment time can be shortened, and thus the time required for the recycle process can be shortened, and the work efficiency of the recycle process is improved. be able to.

槽内に設置した温度センサ24により、二次電池10の温度を推定する場合、温度センサ24で測定された温度と実際の二次電池10の温度との相関を予め把握しておき、その相関と加熱処理中に温度センサ24で測定した温度とに基づいて、加熱処理中の二次電池10の温度が推定される。本実施形態のように、加熱処理槽12内の気体を強制的に循環させる方が、自然対流の場合より、温度センサ24の温度と二次電池10自身の温度との乖離が抑制され、二次電池10の温度推定の精度を向上させることが可能となる。そして、二次電池10の温度推定の精度が向上すれば、適切な加熱処理時間を設定することも可能となる。   When estimating the temperature of the secondary battery 10 by the temperature sensor 24 installed in the tank, the correlation between the temperature measured by the temperature sensor 24 and the actual temperature of the secondary battery 10 is grasped in advance, and the correlation And the temperature measured by the temperature sensor 24 during the heat treatment, the temperature of the secondary battery 10 during the heat treatment is estimated. As in this embodiment, forcibly circulating the gas in the heat treatment tank 12 suppresses the difference between the temperature of the temperature sensor 24 and the temperature of the secondary battery 10 itself, compared to the case of natural convection. The accuracy of temperature estimation of the secondary battery 10 can be improved. And if the precision of the temperature estimation of the secondary battery 10 improves, it will also be possible to set an appropriate heat treatment time.

加熱処理槽12内で二次電池10を加熱し、二次電池10の温度が、電池セル内の電解液の沸点以上に達すると、電池セル内部の圧力が上昇して、電池セルに設けられる安全弁等から電解液が放出され、電圧が変動し始める。そして、さらに加熱を続けると、電圧がゼロになり電池機能が破壊される。例えば、有機系電解液を使用するリチウムイオン二次電池及び水系電解液を使用するニッケル水素二次電池では、150℃以上で加熱することにより、二次電池10の電池機能を破壊し電圧をゼロにすることが可能となる。このような加熱処理後の二次電池10は電圧ゼロのスクラップとして安全に取り扱うことができるため、後工程である二次電池10の解体等を安全に容易に実施することも可能となる。したがって、本実施形態のように加熱処理槽12内の気体を強制的に循環させながら二次電池10の加熱処理を行うことによって、従来の自然対流下での加熱処理より短時間で電池機能を破壊すること、すなわち、加熱処理時間を短縮しリサイクル処理の作業効率化を図ることができると共に、二次電池10は電圧ゼロのスクラップとして安全に取り扱うことができるため、後工程である二次電池10の解体等を安全に容易に実施することも可能となる。   When the secondary battery 10 is heated in the heat treatment tank 12 and the temperature of the secondary battery 10 reaches or exceeds the boiling point of the electrolyte in the battery cell, the pressure inside the battery cell rises and is provided in the battery cell. Electrolyte is discharged from the safety valve and the voltage starts to fluctuate. If the heating is further continued, the voltage becomes zero and the battery function is destroyed. For example, in a lithium ion secondary battery using an organic electrolyte and a nickel metal hydride secondary battery using an aqueous electrolyte, the battery function of the secondary battery 10 is destroyed and the voltage is reduced to zero by heating at 150 ° C. or higher. It becomes possible to. Since the secondary battery 10 after such a heat treatment can be safely handled as zero-voltage scrap, it is possible to safely and easily perform disassembly of the secondary battery 10 as a post-process. Therefore, by performing the heat treatment of the secondary battery 10 while forcibly circulating the gas in the heat treatment tank 12 as in the present embodiment, the battery function can be achieved in a shorter time than the heat treatment under conventional natural convection. The secondary battery 10 can be destroyed, that is, the heat treatment time can be shortened to increase the work efficiency of the recycling process, and the secondary battery 10 can be handled safely as zero-voltage scrap. It is also possible to safely and easily carry out 10 dismantling and the like.

本実施形態の加熱処理においては、図1に示すように、水蒸気又は不活性ガス等の置換ガスを加熱処理槽12内に供給する置換ガス供給装置16を設置して、置換ガス供給装置16により、加熱処理槽12内空間を水蒸気又は不活性ガス等の置換ガスにより置換し、無酸素状態にすることが好ましい。置換ガス供給装置16としては、水蒸気を発生する貫流ボイラー等の蒸気ボイラー、不活性ガスを充填したガスボンベ等が挙げられる。例えば、リチウムイオン二次電池に使用される電解液のうち、炭酸ジメチル等の有機電解質は可燃性材料であるが、加熱処理槽12内を置換ガスにより置換し、無酸素状態にすることにより、加熱処理によって有機電解質が二次電池10外へ放出されたとしても、加熱処理槽12内で燃焼することが抑制される。   In the heat treatment of the present embodiment, as shown in FIG. 1, a replacement gas supply device 16 that supplies a replacement gas such as water vapor or an inert gas into the heat treatment tank 12 is installed. The space in the heat treatment tank 12 is preferably replaced with a replacement gas such as water vapor or an inert gas to make it oxygen-free. Examples of the replacement gas supply device 16 include a steam boiler such as a once-through boiler that generates water vapor, a gas cylinder filled with an inert gas, and the like. For example, among electrolytes used for lithium ion secondary batteries, an organic electrolyte such as dimethyl carbonate is a flammable material, but the inside of the heat treatment tank 12 is replaced with a replacement gas to make an oxygen-free state. Even if the organic electrolyte is released from the secondary battery 10 by the heat treatment, combustion in the heat treatment tank 12 is suppressed.

本実施形態では、図1に示すリサイクル処理装置のように、凝縮器18を設置することが好ましい。二次電池10の加熱処理の際には、二次電池10で使用される電解液等が、加熱分解生成物(ガス)となって、加熱処理槽12内に滞留する。このような加熱分解生成物等のガスを加熱処理槽12内から引き抜いて、凝縮器18に供給すれば、加熱分解生成物が冷却され、液化するため、廃液として回収することができる。凝縮器18は、主に二次電池10から放出された加熱分解生成物等を凝縮するためのものであり、例えば、シェルアンドチューブタイプ等の間接式水冷型熱交換器、プレートフィンタイプ等の表面式熱交換器等が挙げられる。   In this embodiment, it is preferable to install the condenser 18 like the recycling processing apparatus shown in FIG. During the heat treatment of the secondary battery 10, the electrolytic solution used in the secondary battery 10 becomes a thermal decomposition product (gas) and stays in the heat treatment tank 12. When such a gas such as a thermal decomposition product is extracted from the heat treatment tank 12 and supplied to the condenser 18, the thermal decomposition product is cooled and liquefied, so that it can be recovered as a waste liquid. The condenser 18 is mainly for condensing the thermal decomposition products and the like released from the secondary battery 10. For example, an indirect water-cooled heat exchanger such as a shell and tube type, a plate fin type, or the like is used. A surface heat exchanger and the like can be mentioned.

図2は、本実施形態に係る二次電池のリサイクル処理装置の他の一例を示す模式図である。図2に示すリサイクル処理装置2において、図1に示すリサイクル処理装置1と同様の構成については同一の符号を付しその説明を省略する。なお、図2のリサイクル処理装置2では、図1で示した置換ガス供給装置16及び凝縮器18を省略する。図2に示す加熱処理槽12内には、冷却液供給手段の一例としての噴霧用ノズル26が設置され、加熱処理後に、噴霧用ノズル26から二次電池10に冷却液(例えば、水等)が供給され、二次電池10が冷却される。なお、加熱処理槽12外には、配管等を介して噴霧用ノズル26に接続される冷却液タンク(不図示)を設けることが好ましい。また、噴霧用ノズル26は一例であって、二次電池10に冷却液を供給することができるものであれば、これに制限されるものではない。   FIG. 2 is a schematic diagram illustrating another example of the secondary battery recycling apparatus according to the present embodiment. In the recycle processing device 2 shown in FIG. 2, the same components as those in the recycle processing device 1 shown in FIG. Note that the replacement gas supply device 16 and the condenser 18 shown in FIG. A spray nozzle 26 as an example of a coolant supply means is installed in the heat treatment tank 12 shown in FIG. 2, and after the heat treatment, a coolant (for example, water) is supplied from the spray nozzle 26 to the secondary battery 10. Is supplied, and the secondary battery 10 is cooled. In addition, it is preferable to provide the cooling liquid tank (not shown) connected to the nozzle 26 for spraying via piping etc. out of the heat processing tank 12. FIG. Further, the spray nozzle 26 is an example, and is not limited to this as long as the coolant can be supplied to the secondary battery 10.

図3は、処理経過時間と二次電池温度の推移の一例を示す図である。図3に示すように、加熱処理の時間経過と共に、二次電池の温度が上昇し、二次電池は高温となる。加熱処理後には、加熱処理槽内から二次電池を取り出してその後の処理を行うために、二次電池を冷却する必要があるが、図3に示すように、自然冷却では二次電池を冷却する時間が長くなり、リサイクル処理の作業効率が低下する。しかし、本実施形態のように加熱処理後に、噴霧用ノズルから二次電池に冷却液を供給することにより、図3に示すように、自然冷却より二次電池を冷却する時間を短縮することができるため(Δt)、その後の処理へ移行し易くなり、リサイクル処理の作業効率化を図ることが可能となる。   FIG. 3 is a diagram illustrating an example of the transition of the processing elapsed time and the secondary battery temperature. As shown in FIG. 3, the temperature of the secondary battery rises with the lapse of time of the heat treatment, and the secondary battery becomes high temperature. After the heat treatment, it is necessary to cool the secondary battery in order to take out the secondary battery from the heat treatment tank and perform the subsequent treatment. However, as shown in FIG. The time required for recycling increases, and the work efficiency of the recycling process decreases. However, after the heat treatment as in the present embodiment, by supplying the coolant from the spray nozzle to the secondary battery, the time for cooling the secondary battery can be shortened from the natural cooling as shown in FIG. Therefore (Δt), it becomes easy to shift to the subsequent process, and the work efficiency of the recycling process can be improved.

図4は、本実施形態に係る二次電池のリサイクル処理装置の他の一例を示す模式図である。図4に示すリサイクル処理装置3において、図2に示すリサイクル処理装置2の同様の構成については同一の符号を付し、その説明を省略する。なお、図4のリサイクル処理装置3では、図1で示した置換ガス供給装置16及び凝縮器18を省略する。図4に示すリサイクル処理装置3には、加熱処理する際に二次電池10を充電する充電器28を備えている。ここで、加熱処理する際の二次電池10の充電とは、加熱処理中に二次電池10を充電する場合だけでなく、加熱処理する前に二次電池10を充電する場合も含むものである。例えば、加熱処理槽12内の載置台30に二次電池10をセットした後に(加熱処理槽12内に二次電池10を投入する前でもよい)、充電器28に二次電池10を接続し、電気ヒータのスイッチを入れる前又は入れた後に充電器28による二次電池10の充電を開始する。   FIG. 4 is a schematic diagram illustrating another example of the secondary battery recycling apparatus according to the present embodiment. In the recycling processing apparatus 3 shown in FIG. 4, the same reference numerals are given to the same configurations of the recycling processing apparatus 2 shown in FIG. 2, and description thereof is omitted. In addition, in the recycling processing apparatus 3 of FIG. 4, the replacement gas supply apparatus 16 and the condenser 18 which were shown in FIG. 1 are abbreviate | omitted. The recycle processing apparatus 3 shown in FIG. 4 includes a charger 28 that charges the secondary battery 10 during the heat treatment. Here, the charging of the secondary battery 10 at the time of heat treatment includes not only the case of charging the secondary battery 10 during the heat treatment but also the case of charging the secondary battery 10 before the heat treatment. For example, after the secondary battery 10 is set on the mounting table 30 in the heat treatment tank 12 (or before the secondary battery 10 is put into the heat treatment tank 12), the secondary battery 10 is connected to the charger 28. The charging of the secondary battery 10 by the charger 28 is started before or after the electric heater is turned on.

図5は、処理経過時間と充電状態による二次電池温度の推移の一例を示す図である。図5のAは二次電池の充電状態が高い状態で加熱処理を行った場合、図5のBは二次電池の充電状態が中間の状態で加熱処理を行った場合、図5のCは二次電池の充電状態が低い状態で加熱処理を行った場合の二次電池の温度推移である。なお、図5のA,B,Cの曲線の頂点を境に加熱から加熱停止に切り替わっている。図5に示すように、二次電池の充電状態が高いほど、加熱処理による二次電池の温度上昇が早く、二次電池の電池機能を破壊する規定温度に早く達するため、二次電池の冷却を含めた加熱処理時間を短縮すること、ひいてはリサイクル処理に掛かる時間を短縮することができ、リサイクル処理の作業効率化を図ることができる。   FIG. 5 is a diagram illustrating an example of transition of the secondary battery temperature depending on the processing elapsed time and the state of charge. FIG. 5A shows a case where the heat treatment is performed in a state where the secondary battery is charged, FIG. 5B shows a case where the heat treatment is performed in a state where the secondary battery is in an intermediate state, and FIG. It is a temperature transition of a secondary battery at the time of performing heat processing in the state with a low charge state of a secondary battery. In addition, it switches from heating to a heating stop on the boundary of the vertex of the curve of A, B, C of FIG. As shown in FIG. 5, the higher the state of charge of the secondary battery, the faster the temperature of the secondary battery rises due to the heat treatment, and the temperature reaches the specified temperature that destroys the battery function of the secondary battery. Thus, it is possible to shorten the heat treatment time including the above, and to reduce the time required for the recycle process, and to improve the work efficiency of the recycle process.

以上のような加熱処理によって、電池機能が破壊され、電解液が放出された二次電池は、二次電池の解体及び有価物の回収工程に搬送される。特に、電池セルと共に電子部品、信号線、動力線、ケース等から構成されている電池パックの場合でも、電池機能は破壊され、また電解液が放出されるため、後述するように、電池パックの解体から有価物の回収までの全行程を、作業者による危険な手作業(電池パックの解体作業)を不要とし、自動化することができる。その結果、安全で安価な二次電池のリサイクルが可能となる。   The secondary battery in which the battery function is destroyed and the electrolytic solution is released by the heat treatment as described above is transported to the secondary battery disassembly and valuable material recovery process. In particular, even in the case of a battery pack composed of electronic parts, signal lines, power lines, cases, etc. together with battery cells, the battery function is destroyed and the electrolyte solution is released. The entire process from dismantling to collection of valuable materials can be automated without requiring dangerous manual work (battery pack dismantling work) by the operator. As a result, a safe and inexpensive secondary battery can be recycled.

図6は、電池パックの解体及び有価物の回収工程を説明するためのフロー図である。ここでは、リチウムイオン二次電池の電池パックを例に説明するが、ニッケル水素二次電池の電池パック等でも同様に適用することが可能である。また、以下に説明する有価物の回収工程は、主に、リチウムイオン二次電池の集電体として使用される電極箔(Al,Cu)、正極材料として使用される遷移金属(Ni,Mn,Co等)、正極材料中及び負極材料中に存在するリチウムを回収するものである。また、図6に示すフローは電池パックの買いたい及び有価物の回収工程の一例であって、これに制限されるものではない。   FIG. 6 is a flowchart for explaining the dismantling of the battery pack and the recovery process of the valuables. Here, a battery pack of a lithium ion secondary battery will be described as an example, but the same can be applied to a battery pack of a nickel hydride secondary battery. In addition, the recovery process of valuable materials described below mainly includes an electrode foil (Al, Cu) used as a current collector of a lithium ion secondary battery, and a transition metal (Ni, Mn, used as a positive electrode material). Co, etc.), and recovers lithium present in the positive electrode material and the negative electrode material. Moreover, the flow shown in FIG. 6 is an example of a process for collecting battery packs and valuables, and is not limited thereto.

図6に示すように、ステップS10では、前述した加熱処理を実施した電池パックを破砕処理する。なお、電池パックを加熱処理すると、電池パックの構成材料である熱可塑性樹脂が熱分解して、原型とは大きく異なった状態となるが、電池セル内の電解液等は外部に放出され電池機能は破壊された安全な状態であるため、破砕処理においては、作業者による手解体より、シュレッダーマシン(大型ハンマーミル等)に電池パックを直接投入して破砕処理する方が、処理時間、安全性の点で好ましい。また、シュレッダーマシン等で電池パックを破砕する前に、電池パックを水中に浸漬させ、電池セルを放電させる等の処理を行ってもよい。なお、このシュレッダーマシン等は廃自動車や廃家電製品の処理において一般的に使用されるものを用いることができる。   As shown in FIG. 6, in step S <b> 10, the battery pack that has been subjected to the heat treatment described above is crushed. When the battery pack is heat-treated, the thermoplastic resin, which is the constituent material of the battery pack, is thermally decomposed to a state that is greatly different from the original, but the electrolyte in the battery cell is discharged to the outside and the battery function Is a safe and destroyed state. Therefore, in the crushing process, it is more time-consuming and safer to crush the battery pack directly into a shredder machine (such as a large hammer mill) than to dismantle it manually. This is preferable. Moreover, before crushing a battery pack with a shredder machine etc., you may perform the process of immersing a battery pack in water and discharging a battery cell. In addition, this shredder machine etc. can use what is generally used in a process of a scrap car and a waste home appliance.

シュレッダーマシンを用いて電池パックを破砕処理することにより、樹脂等の無価物はシュレッダーダストとして排出される。一方、電池パック内の電池セルのうち、電池セルの外装であるアルミケース等は、比重の大きな金属片となり、電極箔(正極材料及び負極材料も含む)等は、比重の小さな金属屑となる。シュレッダーダストは廃棄法にしたがって管理型埋め立て処分する。また、埋め立てる条件としては、管理型埋め立て基準を満たす必要がある。   By crushing the battery pack using a shredder machine, non-priced materials such as resin are discharged as shredder dust. On the other hand, among the battery cells in the battery pack, an aluminum case or the like that is an exterior of the battery cell becomes a metal piece with a large specific gravity, and an electrode foil (including a positive electrode material and a negative electrode material) becomes a metal scrap with a small specific gravity. . Shredder dust is disposed of in a landfill according to the disposal law. Moreover, as a condition for landfill, it is necessary to satisfy the management-type landfill standard.

次に、ステップS12では、前述した比重の大きな金属片と比重の小さな金属屑とを、風力選別し、比重の大きな金属片を回収する。なお、風力選別に代えて、磁力選別により比重の大きな金属片を回収してもよい。   Next, in step S12, the above-described metal piece having a large specific gravity and metal scrap having a low specific gravity are subjected to wind sorting to collect the metal piece having a large specific gravity. Instead of wind sorting, metal pieces having a large specific gravity may be recovered by magnetic sorting.

次に、ステップS14では、電極箔(正極材料及び負極材料も含む)等の比重の小さな金属屑を水で洗浄して、負極材料中のリチウムや正極材料中のリチウムを水酸化リチウムに、正極材料中の遷移金属を水酸化物に変化させる。以下に、正極材料としてニッケル酸リチウムを用いた場合の反応を示す。
3LiNiO+4.5HO→3LiOH+3Ni(OH)+4/3O
Next, in step S14, metal waste having a small specific gravity such as an electrode foil (including a positive electrode material and a negative electrode material) is washed with water to convert lithium in the negative electrode material and lithium in the positive electrode material into lithium hydroxide. The transition metal in the material is changed to a hydroxide. The reaction when lithium nickelate is used as the positive electrode material is shown below.
3LiNiO 2 + 4.5H 2 O → 3LiOH + 3Ni (OH) 2 + 4 / 3O 2

水酸化リチウムは水に容易に溶解するため水溶液となり、水酸化ニッケル等の遷移金属の水酸化物は水への溶解度が非常に低いためほとんど溶解せず、固形分となる。なお、水酸化ニッケルの溶解度は0.0013g/100cmである。 Lithium hydroxide easily dissolves in water to form an aqueous solution, and transition metal hydroxides such as nickel hydroxide have very low solubility in water, and thus hardly dissolve and become solids. The solubility of nickel hydroxide is 0.0013 g / 100 cm 3 .

次に、ステップS16では、振動篩装置等によって、前述した水酸化リチウム等の水溶液と水酸化ニッケル等の固形分とに篩い分けられる。そして、ステップS18では、水酸化リチウム水溶液に炭酸ガスを導入して中和し、炭酸リチウムとし、この炭酸リチウムを沈殿ろ過して回収する。   Next, in step S16, the aqueous solution such as lithium hydroxide and the solid content such as nickel hydroxide are sieved by the vibration sieve device or the like. In step S18, carbon dioxide gas is introduced into the aqueous lithium hydroxide solution to neutralize it to obtain lithium carbonate, which is recovered by precipitation filtration.

ステップS20では、水酸化ニッケル等の遷移金属の水酸化物等の固形分を浸出槽に投入し、塩酸等の酸を添加して、遷移金属の水酸化物を水溶性の金属塩化物に変化させる。ニッケル塩化物等の金属塩化物溶液を抽出し、後述するステップS30に進み、既存の製錬工程によって、例えば、ニッケル原料として、金属や硫酸ニッケル等の製品にリサイクルされる。   In step S20, solid content such as transition metal hydroxide such as nickel hydroxide is put into the leaching tank, and acid such as hydrochloric acid is added to change the transition metal hydroxide into water-soluble metal chloride. Let A metal chloride solution such as nickel chloride is extracted, and the process proceeds to step S30 described later, and is recycled to a product such as metal or nickel sulfate as a nickel raw material by an existing smelting process.

また、塩酸を添加した場合(ステップS20)、浸出槽では、未反応の水酸化ニッケル等の金属水酸化物(正極材料)、セパレータ、アルミ(電極箔)は浮上し、負極材料(カーボン)及び銅(電極箔)は沈降するため、これらを分離することができる。なお、以下では、浸出槽に浮上した浮上物を浮上分電極材と称し、浸出槽に沈降した沈降物を沈降分電極材と称する。なお、ステップS20において、塩酸の代わりに硫酸を添加すると、未反応の水酸化ニッケル等の金属水酸化物、セパレータ、アルミ(電極箔)、負極材料(カーボン)及び銅(電極箔)は全て沈降してしまう。塩酸を添加することによって浮上分電極材と沈降分電極材に分離させることができる理由としては、銅とアルミの比重差に加え、塩酸を添加した場合には、アルミを腐食する過程で発生する水素ガスの発生速度が硫酸を添加した場合に比べて大きいため、アルミの見かけ上の比重が1より低くなるためであると考えられる。したがって、その後に行う銅の回収において、銅の純度を上げてリサイクル材としての付加価値を高くすることができる点で、塩酸を添加することが好ましい。なお、硫酸を添加した場合でも、その後の工程において、Ni等の有価金属の回収を行うことはできる。   When hydrochloric acid is added (step S20), in the leaching tank, unreacted metal hydroxide such as nickel hydroxide (positive electrode material), separator, and aluminum (electrode foil) are levitated, and the negative electrode material (carbon) and Since copper (electrode foil) settles, these can be separated. In the following description, the levitated material that has floated in the leaching tank is referred to as a floating electrode material, and the sediment that has settled in the leaching tank is referred to as a sediment electrode material. In step S20, when sulfuric acid is added instead of hydrochloric acid, unreacted metal hydroxide such as nickel hydroxide, separator, aluminum (electrode foil), negative electrode material (carbon) and copper (electrode foil) are all precipitated. Resulting in. The reason why it is possible to separate the floating electrode material and the sedimented electrode material by adding hydrochloric acid is that it occurs in the process of corroding aluminum when hydrochloric acid is added in addition to the difference in specific gravity between copper and aluminum. This is considered to be because the apparent specific gravity of aluminum is lower than 1 because the generation rate of hydrogen gas is higher than when sulfuric acid is added. Therefore, in the subsequent copper recovery, it is preferable to add hydrochloric acid in terms of increasing the purity of copper and increasing the added value as a recycled material. Even when sulfuric acid is added, valuable metals such as Ni can be recovered in the subsequent steps.

次に、ステップS22では、浸出槽から分離した浮上分電極材を洗浄槽に投入し、塩酸を添加して攪拌洗浄する。これにより、アルミやセパレータに付着していた水酸化ニッケル等の遷移金属の水酸化物を水溶性の金属塩化物に変化させる。そして、ステップS24では、振動篩装置等によって、アルミやセパレータ等の固形分とニッケル塩化物等の金属塩化物溶液とに篩い分けられる。篩い分けられたアルミやセパレータはリサイクル材として回収してもよいし、廃棄処分してもよい。一方、ニッケル塩化物等の金属塩化物溶液は、ステップS30に進み、既存の製錬工程により精錬され、例えば、ニッケル原料として、金属や硫酸ニッケル等の製品にリサイクルされる。   Next, in step S22, the floating electrode material separated from the leaching tank is put into the cleaning tank, and hydrochloric acid is added and stirred and washed. Thereby, the transition metal hydroxide such as nickel hydroxide attached to the aluminum or the separator is changed to a water-soluble metal chloride. And in step S24, it sifts into solid content, such as aluminum and a separator, and metal chloride solutions, such as nickel chloride, with a vibration sieve apparatus. The sieved aluminum or separator may be collected as a recycled material or discarded. On the other hand, the metal chloride solution such as nickel chloride proceeds to step S30 and is refined by an existing smelting process, and is recycled to a product such as metal or nickel sulfate as a nickel raw material, for example.

ステップS26では、浸出槽から分離した沈降分電極材を、上記同様に洗浄槽に投入し、塩酸を添加して攪拌洗浄する。これにより、銅に付着していた水酸化ニッケル等の遷移金属の水酸化物を水溶性の金属塩化物に変化させる。そして、ステップS28では、振動篩装置等によって、銅等の固形分とニッケル塩化物等の金属塩化物溶液とに篩い分けられる。篩い分けられた銅はリサイクル材として回収される。一方、ニッケル塩化物等の金属塩化物溶液は、上記同様に、ステップS30に進み、既存の製錬工程により精錬され、例えば、ニッケル原料として、金属や硫酸ニッケル等の製品にリサイクルされる。   In step S26, the sedimentation electrode material separated from the leaching tank is put into the washing tank in the same manner as described above, and hydrochloric acid is added and washed with stirring. Thereby, the hydroxide of transition metals, such as nickel hydroxide, adhering to copper is changed into a water-soluble metal chloride. And in step S28, it sifts into solid content, such as copper, and metal chloride solutions, such as nickel chloride, with a vibration sieve apparatus. The sieved copper is recovered as recycled material. On the other hand, the metal chloride solution such as nickel chloride proceeds to step S30 in the same manner as described above, and is refined by an existing smelting process, for example, recycled as a nickel raw material to a product such as metal or nickel sulfate.

1〜3 リサイクル処理装置、10 二次電池、12 加熱処理槽、14 循環器、16 置換ガス供給装置、18 凝縮器、20 循環経路、22 隔壁、22a 入口、22b 出口、24 温度センサ、26 噴霧用ノズル、28 充電器、30 載置台。   1-3 Recycling device, 10 Secondary battery, 12 Heat treatment tank, 14 Circulator, 16 Replacement gas supply device, 18 Condenser, 20 Circulation path, 22 Bulkhead, 22a Inlet, 22b Outlet, 24 Temperature sensor, 26 Spray Nozzle, 28 charger, 30 mounting table.

Claims (2)

二次電池を加熱する加熱処理槽と、
前記加熱処理槽内に設置され、前記加熱処理槽内の気体が循環する循環経路を形成する隔壁と、
前記加熱処理槽内に設けられ、前記加熱処理槽内の気体を前記循環経路に循環させる循環器と、
前記二次電池を加熱する際に、前記二次電池を充電する充電器と、を備えることを特徴とする二次電池のリサイクル処理装置。
A heat treatment tank for heating the secondary battery;
A partition that is installed in the heat treatment tank and forms a circulation path through which the gas in the heat treatment tank circulates;
A circulator provided in the heat treatment tank and circulating the gas in the heat treatment tank to the circulation path;
A rechargeable battery recycling apparatus comprising: a charger that charges the secondary battery when the secondary battery is heated .
前記加熱処理槽内に設けられ、前記二次電池に冷却液を供給する冷却液供給手段を備えることを特徴とする請求項1記載の二次電池のリサイクル処理装置。   2. The secondary battery recycling apparatus according to claim 1, further comprising a coolant supply means provided in the heat treatment tank and configured to supply a coolant to the secondary battery.
JP2012053253A 2012-03-09 2012-03-09 Secondary battery recycling equipment Active JP5857811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012053253A JP5857811B2 (en) 2012-03-09 2012-03-09 Secondary battery recycling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053253A JP5857811B2 (en) 2012-03-09 2012-03-09 Secondary battery recycling equipment

Publications (2)

Publication Number Publication Date
JP2013187142A JP2013187142A (en) 2013-09-19
JP5857811B2 true JP5857811B2 (en) 2016-02-10

Family

ID=49388393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053253A Active JP5857811B2 (en) 2012-03-09 2012-03-09 Secondary battery recycling equipment

Country Status (1)

Country Link
JP (1) JP5857811B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474207B2 (en) * 2014-07-16 2019-02-27 太平洋セメント株式会社 Waste lithium ion battery treatment method and treatment system
JP6557609B2 (en) * 2016-01-25 2019-08-07 太平洋セメント株式会社 Waste lithium ion battery treatment apparatus and treatment method
JP6336227B1 (en) * 2018-03-06 2018-06-06 株式会社メタルドゥ Secondary battery recycling method and system
JP2020049460A (en) * 2018-09-28 2020-04-02 太平洋セメント株式会社 Waste lithium ion battery processing equipment and processing method
JP7179559B2 (en) * 2018-09-28 2022-11-29 太平洋セメント株式会社 Apparatus and method for treating waste lithium-ion batteries
JP6963135B2 (en) * 2020-03-13 2021-11-05 Dowaエコシステム株式会社 Lithium recovery method and lithium ion secondary battery processing method
CN112768796B (en) * 2020-12-30 2023-04-11 中科南京绿色制造产业创新研究院 Method for treating waste lithium battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924707A1 (en) * 1999-05-28 2000-11-30 Merck Patent Gmbh Process for recycling cathode masses of used lithium batteries
US6228143B1 (en) * 2000-01-18 2001-05-08 The International Metals Reclamation Company, Inc. Rotary thermal oxidizer for battery recycling and process
JP4442129B2 (en) * 2003-07-02 2010-03-31 トヨタ自動車株式会社 Lithium battery, manufacturing method and processing method thereof
JP5487930B2 (en) * 2009-12-11 2014-05-14 トヨタ自動車株式会社 Battery pack recycling method and battery pack recycling apparatus

Also Published As

Publication number Publication date
JP2013187142A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5703884B2 (en) Battery pack recycling method and processing apparatus
JP5857811B2 (en) Secondary battery recycling equipment
Sonoc et al. Opportunities to improve recycling of automotive lithium ion batteries
JP5790553B2 (en) Secondary battery recycling equipment
Mossali et al. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments
Hua et al. Sustainable value chain of retired lithium-ion batteries for electric vehicles
Harper et al. Recycling lithium-ion batteries from electric vehicles
Thompson et al. To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains
Forte et al. Lithium iron phosphate batteries recycling: An assessment of current status
Sonoc et al. A review of lithium supply and demand and a preliminary investigation of a room temperature method to recycle lithium ion batteries to recover lithium and other materials
JP5488425B2 (en) Battery crushing apparatus and crushing method
WO2011079409A1 (en) Method of recycling and reusing spent lithium iron phosphate power battery
FI3517641T4 (en) Method for the utilization of lithium batteries
KR20120126946A (en) Pretreatment method for recycling of lithium ion batteries
Jafari et al. A facile chemical-free cathode powder separation method for lithium ion battery resource recovery
CN106654431A (en) Disassembling and recycling process of power battery
Tao et al. Comparative Life Cycle Assessment of three Recycling Approaches for Electric Vehicle Lithium-ion Battery after Cascaded Use.
Hossain et al. Technological options and design evolution for recycling spent lithium‐ion batteries: impact, challenges, and opportunities
Milian et al. A comprehensive review of emerging technologies for recycling spent lithium-ion batteries
JP2012132052A (en) Rare earth magnet recovery method
KR102430803B1 (en) A treatment method of used electric vehicle battery module and a resource recycling system using therefor
Bhar et al. A review on spent lithium-ion battery recycling: from collection to black mass recovery
Horn et al. Battery recycling: focus on li-ion batteries
Karmazínová et al. Li-ion batteries recycling–processes & technologies
Al-Asheh et al. Treatment and recycling of spent lithium-based batteries: a review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R151 Written notification of patent or utility model registration

Ref document number: 5857811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151