JP5857472B2 - Electric motor control method - Google Patents

Electric motor control method Download PDF

Info

Publication number
JP5857472B2
JP5857472B2 JP2011142906A JP2011142906A JP5857472B2 JP 5857472 B2 JP5857472 B2 JP 5857472B2 JP 2011142906 A JP2011142906 A JP 2011142906A JP 2011142906 A JP2011142906 A JP 2011142906A JP 5857472 B2 JP5857472 B2 JP 5857472B2
Authority
JP
Japan
Prior art keywords
torque
time
electric motor
unit time
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011142906A
Other languages
Japanese (ja)
Other versions
JP2013013181A (en
Inventor
佐久間 昌史
昌史 佐久間
智宏 福島
智宏 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2011142906A priority Critical patent/JP5857472B2/en
Publication of JP2013013181A publication Critical patent/JP2013013181A/en
Application granted granted Critical
Publication of JP5857472B2 publication Critical patent/JP5857472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は電動機の制御方法に関し、より詳細には、要求動作点となる要求回転数および要求トルクに実際の出力回転数および出力トルクを一致させるように電気入力を制御する電動機の制御方法に関する。   The present invention relates to an electric motor control method, and more particularly to an electric motor control method for controlling an electric input so that an actual output rotational speed and an output torque coincide with a required rotational speed and a required torque that are required operating points.

ハイブリッド車両では、走行駆動源としてエンジンおよび電動機を搭載し、エンジンによる駆動を電動機でアシストしたり、電動機単独で駆動したりできるようになっている。電動機には三相交流電動機を用い、電気入力を制御することにより出力回転数および出力トルクを可変に制御するのが一般的である。電気入力の制御には、インバータ装置によりキャリア周波数の1周期内で矩形波電圧のデューティ比を制御して、実効値を可変に制御する電圧型パルス幅変調制御方式を用いる場合が多い。   In hybrid vehicles, an engine and an electric motor are mounted as driving sources, and driving by the engine can be assisted by the electric motor or can be driven by the electric motor alone. In general, a three-phase AC motor is used as the motor, and the output rotational speed and the output torque are variably controlled by controlling the electric input. The electric input is often controlled by a voltage type pulse width modulation control method in which the effective value is variably controlled by controlling the duty ratio of the rectangular wave voltage within one cycle of the carrier frequency by an inverter device.

例えば、非特許文献1には、エンジンを主動力、モータを補助動力とするハイブリッド車用モータの技術例が開示されている。このモータは、DCブラシレスモータであり、補助動力源の機能に加え、エンジンからの駆動による発電機能、および車両制動時のエネルギ回生機能を有している。そして、車両駆動システムとしての機能を実現するために、システム制御部から要求される回転数およびトルクに合致する動作点で駆動制御されるようになっている。このモータの高効率領域は、実際に動作する機会の多い実使用領域より若干高回転側に設定されている。   For example, Non-Patent Document 1 discloses a technical example of a hybrid vehicle motor using an engine as a main power and a motor as an auxiliary power. This motor is a DC brushless motor and has a function of generating power by driving from the engine and an energy regeneration function during vehicle braking in addition to the function of an auxiliary power source. And in order to implement | achieve the function as a vehicle drive system, drive control is carried out at the operating point which corresponds to the rotation speed and torque which are requested | required from a system control part. The high efficiency region of the motor is set slightly higher than the actual use region where there are many opportunities for actual operation.

また、特許文献1には、ドライバーが要求したトルクを正確に発生できる車両用のモーター制御システムが開示されている。このモーター制御システムは、交流形電気モーター、直流形電源、および制御部を含み、トルク命令に基づきトルク電流と磁束電流を発生するのに有効なトルク制御部と、トルク命令を正確に満たすように複相電圧信号をモーターに供給する空間ベクトル・パルス幅変調部とを有している。さらに、従属請求項および実施形態では、交流形電気モーターとして三相誘導モーターが例示され、空間ベクトル・パルス幅変調部としてIGBT装置(電圧型パルス幅変調制御を行うインバータ装置の一種と解釈できる)が例示されている。   Patent Document 1 discloses a motor control system for a vehicle that can accurately generate torque requested by a driver. This motor control system includes an AC electric motor, a DC power supply, and a control unit, and is effective to generate a torque current and a magnetic flux current based on the torque command, and to accurately satisfy the torque command. A space vector pulse width modulation unit for supplying a multiphase voltage signal to the motor. Further, in the dependent claims and the embodiments, a three-phase induction motor is exemplified as an AC electric motor, and an IGBT device (which can be interpreted as a kind of inverter device that performs voltage-type pulse width modulation control) is used as a space vector pulse width modulation unit. Is illustrated.

特開2002−142500号公報JP 2002-142500 A

嶋田明吉「ホンダにおけるハイブリッド車・燃料電池車用モータの開発について」、第22次モータ技術フォーラム第7回配布資料、2003年、日本能率協会主催Akiyoshi Shimada “Honda's development of hybrid and fuel cell motors”, 22nd Motor Technology Forum 7th handout, 2003, organized by Japan Management Association

ところで、非特許文献1や特許文献1の技術では、車載の電動機(モータ)はシステム制御部やドライバーなど外部から要求される要求動作点、すなわち要求回転数および要求トルクに合致した出力動作点で動作する。一般的に、車両が発進するときや急坂路を登坂するときに必要とされる最大トルクを考慮して電動機の出力範囲が設定されるが、通常の平地走行で必要とされるトルクは最大トルクよりもかなり小さい。このため、電動機の高効率領域は最大トルクに依存して比較的大きなトルクの側に偏移しがちになり、平地走行時の動作点は高効率領域よりも小さなトルク側に外れる。つまり、効率が低い領域で動作する場合が多くなり、多くの損失が発生して車両の燃費が低下する。したがって、燃費の向上には、動作時間の多くを占め比較的小さなトルクが要求される低負荷時の効率を向上することが重要である。   By the way, in the techniques of Non-Patent Document 1 and Patent Document 1, an on-vehicle electric motor (motor) has a required operating point required from the outside such as a system control unit or a driver, that is, an output operating point that matches the required rotational speed and required torque. Operate. In general, the output range of an electric motor is set in consideration of the maximum torque required when starting a vehicle or climbing a steep slope, but the torque required for normal flat land travel is the maximum torque. Considerably smaller than. For this reason, the high efficiency region of the electric motor tends to shift to a relatively large torque side depending on the maximum torque, and the operating point at the time of traveling on flat ground deviates to a smaller torque side than the high efficiency region. That is, there are many cases where the operation is performed in a region where the efficiency is low, and a lot of loss is generated, so that the fuel consumption of the vehicle is lowered. Therefore, in order to improve fuel efficiency, it is important to improve efficiency at low loads that occupy much of the operating time and require a relatively small torque.

なお、上述の問題点は、車載の走行駆動用の電動機に限定されるものではなく、用途は異なっても出力範囲の設定に対して通常時に低負荷で動作する電動機に共通している。また、上述の問題点は.電動機の電源の種類すなわち直流か単相交流か三相交流かに限定されず、同期形や誘導形などの形式にも限定されず、さらには制御方式や内部構造などの差異にも限定されず共通している。   The above-mentioned problems are not limited to in-vehicle driving motors, and are common to electric motors that operate at a low load during normal operation with respect to setting of an output range, even if they are used for different purposes. The above-mentioned problems are as follows. It is not limited to the type of power source of the motor, that is, direct current, single-phase alternating current or three-phase alternating current, nor is it limited to a synchronous type or induction type, nor is it limited to differences in control method or internal structure. It is common.

本発明は、上記背景技術の問題点に鑑みてなされたもので、低負荷時の効率を従来よりも向上できる電動機の制御方法を提供することを解決すべき課題とする。   The present invention has been made in view of the above-mentioned problems of the background art, and an object to be solved is to provide a method for controlling an electric motor that can improve efficiency at a low load as compared with the prior art.

上記課題を解決する請求項1に係る電動機の制御方法の発明は、要求動作点となる可変の要求回転数および要求トルクに基づき、実際の出力動作点である出力回転数および出力トルクを前記要求動作点に一致させるように電気入力を制御する電動機の制御方法であって、所定の単位時間を通して、前記要求回転数に前記出力回転数を継続的に一致させるとともに、前記要求回転数の条件下で最も高い効率が得られるトルク値である最高効率トルク値と、前記電気入力をなくしたときのゼロトルク値とを前記単位時間内の時間比率で組み合わせて前記電動機が実際に出力する瞬時トルクを変遷させ、前記瞬時トルクの前記単位時間を通した時間平均値で求められる前記出力トルクが前記要求トルクに一致するように前記電気入力を制御し、前記要求回転数および前記要求トルクが一定である間、前記単位時間を略一定に維持しつつ、時間経過に伴い前記単位時間ごとに前記時間比率および前記最高効率トルク値および前記ゼロトルク値の少なくともひとつをわずかに変化させ、あるいは揺動させる。 The invention of the electric motor control method according to claim 1 for solving the above-described problem is based on the variable required rotational speed and the required torque that are the required operating points, and the required output rotational speed and output torque that are the actual output operating points. An electric motor control method for controlling an electric input so as to coincide with an operating point, wherein the output rotation speed is continuously matched with the requested rotation speed over a predetermined unit time, and the condition of the requested rotation speed is satisfied. The instantaneous torque that is actually output by the motor is changed by combining the maximum efficiency torque value, which is the torque value at which the highest efficiency is obtained, and the zero torque value when the electrical input is lost at the time ratio within the unit time. is allowed to control the electrical input to the output torque required by the unit time average value through the time of the instantaneous torque coincides with the required torque, the While the rotational speed and the required torque are constant, the unit time is maintained substantially constant, and at least one of the time ratio, the maximum efficiency torque value, and the zero torque value for each unit time as time elapses. Slightly change or swing.

請求項2に係る発明は、請求項1において、時間経過に伴い前記単位時間をわずかに変化させ、あるいは揺動させる。 According to a second aspect of the present invention, in the first aspect, the unit time is slightly changed or oscillated with time.

請求項3に係る発明は、要求動作点となる可変の要求回転数および要求トルクに基づき、実際の出力動作点である出力回転数および出力トルクを前記要求動作点に一致させるように電気入力を制御する電動機の制御方法であって、所定の単位時間を通して、前記要求回転数に前記出力回転数を継続的に一致させるとともに、前記要求回転数の条件下で最も高い効率が得られるトルク値である最高効率トルク値と、前記電気入力をなくしたときのゼロトルク値とを前記単位時間内の時間比率で組み合わせて前記電動機が実際に出力する瞬時トルクを変遷させ、前記瞬時トルクの前記単位時間を通した時間平均値で求められる前記出力トルクが前記要求トルクに一致するように前記電気入力を制御し、前記要求回転数および前記要求トルクが一定である間、前記単位時間を略一定に維持しつつ、時間経過に伴い前記単位時間をわずかに変化させ、あるいは揺動させる。 According to a third aspect of the present invention , the electric input is set so that the output rotational speed and the output torque, which are the actual output operating points, coincide with the required operating point based on the variable required rotational speed and the required torque that are the required operating points. A control method for an electric motor to be controlled, wherein the output rotational speed is made to coincide with the required rotational speed continuously over a predetermined unit time, and at the torque value at which the highest efficiency is obtained under the required rotational speed conditions. The instantaneous torque actually output by the motor is changed by combining a certain maximum efficiency torque value and the zero torque value when the electric input is lost at a time ratio within the unit time, and the unit time of the instantaneous torque is changed. The electrical input is controlled so that the output torque obtained by the time average value passed through matches the required torque, and the required rotational speed and the required torque are constant. There between, while maintaining the unit time a substantially constant, slightly changing the unit time with time, or to swing.

請求項4に係る発明は、請求項1〜3のいずれか一項において、前記電気入力の制御方式は、繰り返すキャリア周期内で矩形波電圧のデューティ比を可変に制御する電圧型パルス幅変調制御方式であり、前記単位時間は、前記キャリア周期の2倍以上であり、前記要求回転数および前記要求トルクに応じて設定される。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the electric input control method is a voltage type pulse width modulation control that variably controls the duty ratio of the rectangular wave voltage within a repeated carrier cycle. The unit time is two times or more of the carrier cycle, and is set according to the required rotation speed and the required torque.

請求項5に係る発明は、請求項1〜4のいずれか一項において、前記電動機の出力側に前記瞬時トルクの変遷を吸収して瞬時変化を抑制するトルク変遷吸収装置を設けた。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, a torque transition absorption device that absorbs the transition of the instantaneous torque and suppresses the instantaneous change is provided on the output side of the electric motor.

請求項6に係る発明は、請求項1〜5のいずれか一項において、前記要求回転数および前記要求トルクが所定の条件を満たすときに、前記単位時間を通して前記要求回転数に前記出力回転数を継続的に一致させるとともに前記高効率トルク値を含んで前記瞬時トルクを変遷させ、前記所定の条件を満たさないときに、前記単位時間を通して前記要求回転数に前記出力回転数を継続的に一致させるとともに前記要求トルクに前記瞬時トルクを継続的に一致させる。 Invention, in any one of claims 1 to 5, when the required rotational speed and the requested torque satisfies a predetermined condition, the output rotation speed to the required rotational speed through the unit time according to claim 6 Continuously changing the instantaneous torque including the high-efficiency torque value, and when the predetermined condition is not satisfied, the output rotational speed continuously matches the requested rotational speed throughout the unit time. And the instantaneous torque is continuously matched with the required torque.

請求項7に係る発明は、請求項6において、前記所定の条件は、前記要求回転数および前記要求トルクの時間変化率が所定の閾値以下となる条件である。 According to a seventh aspect of the present invention, in the sixth aspect , the predetermined condition is a condition in which a time change rate of the required rotational speed and the required torque is equal to or less than a predetermined threshold value.

請求項8に係る発明は、請求項1〜7のいずれか一項において、前記電動機はハイブリッド車両または電気自動車に搭載されて走行駆動源に用いられる。 The invention according to claim 8, in any one of claims 1 to 7, wherein the electric motor is used to drive source is mounted on a hybrid vehicle or an electric vehicle.

請求項1および請求項3に係る電動機の制御方法の発明では、単位時間を通して要求回転数に出力回転数を継続的に一致させて一定とし、出力トルクは一定とせずに最高効率トルク値とゼロトルク値とを単位時間内の時間比率で組み合わせて瞬時トルクを変遷させる。このとき、瞬時トルクが最高効率トルク値となっている時間帯の効率は文字通り最高効率となり、瞬時トルクがゼロトルク値となっている時間帯では損失が少ない。そして、瞬時トルクの時間平均値で求められる出力トルクが要求トルクに一致するように電気入力を制御する。一方、従来の制御技術では、単位時間を通して要求トルクに瞬時トルクを継続的に一致させて一定に保っていた。したがって、本発明における単位時間を通した平均効率は、従来の制御技術の効率と比較して格段に向上し、この効果は動作時間の多くを占める低負荷時に発生する。また、この効果は、電動機の電源の種類すなわち直流か単相交流か三相交流かに限定されず、同期形や誘導形などの形式にも限定されず、さらには制御方式や内部構造などの差異にも限定されずに発生する。 In the invention of the electric motor control method according to claim 1 and claim 3 , the output rotational speed is made to coincide with the required rotational speed continuously throughout the unit time to be constant, the output torque is not constant, and the maximum efficiency torque value and zero torque are set constant . The instantaneous torque is changed by combining the value with the time ratio within the unit time. At this time, the efficiency in the time zone in which the instantaneous torque is the maximum efficiency torque value is literally the maximum efficiency, and the loss is small in the time zone in which the instantaneous torque is the zero torque value. Then, the electric input is controlled so that the output torque obtained by the time average value of the instantaneous torque matches the required torque. On the other hand, in the conventional control technique, the instantaneous torque is continuously matched with the required torque throughout the unit time and kept constant. Therefore, the average efficiency over the unit time in the present invention is remarkably improved as compared with the efficiency of the conventional control technique, and this effect occurs at a low load that occupies much of the operation time. In addition, this effect is not limited to the type of power source of the motor, that is, DC, single-phase AC or three-phase AC, and is not limited to a synchronous type or an induction type. It occurs without being limited to the difference.

さらに、請求項1および請求項3に係る発明では、要求回転数および要求トルクが一定である間、単位時間を略一定に維持するので、制御が簡素化される。 Further, in the inventions according to claims 1 and 3 , since the unit time is maintained substantially constant while the required rotational speed and the required torque are constant, the control is simplified.

さらに、請求項1に係る発明では、時間経過に伴い単位時間ごとに時間比率および最高効率トルク値およびゼロトルク値の少なくともひとつをわずかに変化させ、あるいは揺動させる。また、請求項2および請求項3に係る発明では、時間経過に伴い単位時間をわずかに変化させ、あるいは揺動させる。ここで、「揺動」とは、所定の目標値を中心として各回の制御値を適宜上下にばらつかせ、長い時間が経過すると毎回の制御値を平均した平均制御値が目標値に収束するように制御することを意味する。また、「揺動」以外の制御が「変化」であり、例えば、各回の制御値を徐々に増加させる制御が該当する。このように、時間比率、最高効率トルク値、ゼロトルク値、単位時間の少なくともひとつをわずかに変化させ、あるいは揺動させることで、有害な共振現象や振動および騒音などの発生を防止できる。仮に、これらの制御量を完全に一定に保つと、単位時間の逆数で求められる周波数と電動機の特定部位の固有振動数とが近似して有害な現象の発生するおそれがある。 Further, according to the first aspect of the invention, at least one of the time ratio, the maximum efficiency torque value, and the zero torque value is slightly changed or oscillated for each unit time as time elapses. In the inventions according to claims 2 and 3 , the unit time is slightly changed or oscillated with the passage of time. Here, “oscillation” means that the control value of each time is appropriately varied up and down around a predetermined target value, and the average control value obtained by averaging the control values of each time converges to the target value when a long time has elapsed. Means to control. Further, the control other than “oscillation” is “change”, and for example, the control gradually increases the control value of each time. As described above, by slightly changing or swinging at least one of the time ratio, the maximum efficiency torque value, the zero torque value, and the unit time, it is possible to prevent generation of harmful resonance phenomenon, vibration, noise, and the like. If these control amounts are kept completely constant, a harmful phenomenon may occur due to the approximation of the frequency obtained by the reciprocal of unit time and the natural frequency of a specific part of the motor.

請求項4に係る発明では、電気入力の制御方式は電圧型パルス幅変調制御方式とされ、単位時間はキャリア周期の2倍以上とされ、要求回転数および要求トルクに応じて設定される。本発明は、例えばインバータ装置を用いて電圧型パルス幅変調制御方式により電気入力を制御する構成で実施でき、電動機に入力する矩形波電圧のデューティ比を可変に制御することで容易に瞬時トルクを変遷させることができる。
請求項5に係る発明では、電動機の出力側に瞬時トルクの変遷を吸収して瞬時変化を抑制するトルク変遷吸収装置が設けられる。これにより、有害な共振現象や振動および騒音などの発生を防止できる。また、トルク変遷吸収装置を設けない場合と比較して、出力トルクが円滑化される。
In the invention according to claim 4, the electric input control method is a voltage type pulse width modulation control method, the unit time is set to be twice or more the carrier cycle, and is set according to the required rotation speed and the required torque. The present invention can be implemented with a configuration in which an electric input is controlled by a voltage type pulse width modulation control system using an inverter device, for example, and an instantaneous torque can be easily generated by variably controlling a duty ratio of a rectangular wave voltage input to an electric motor. It can be changed.
In the invention which concerns on Claim 5 , the torque transition absorption apparatus which absorbs the transition of an instantaneous torque and suppresses an instantaneous change is provided in the output side of an electric motor. Thereby, generation | occurrence | production of a harmful resonance phenomenon, a vibration, a noise, etc. can be prevented. Also, the output torque is smoothed compared to the case where no torque transition absorber is provided.

請求項6に係る発明では、要求回転数および要求トルクの条件に応じて、高効率トルク値を含んで瞬時トルクを変遷させる制御と、要求トルクに瞬時トルクを継続的に一致させる従来の制御とを取捨選択する。さらに、請求項7に係る発明では、要求回転数および要求トルクの時間変化率が所定の閾値以下となる条件が成立しているときに、高効率トルク値を含んで瞬時トルクを変遷させる制御を実施する。つまり、要求回転数および要求トルクが比較的緩やかに変化する場合に瞬時トルクを変遷させる制御を実施し、少なくとも一方が急激に変化する過渡期に瞬時トルクを変遷させる制御を中断する。これにより、過渡期に適正な単位時間を確保できなくなるおそれを回避でき、電動機の動作を安定して制御できる。 In the invention according to claim 6 , the control for changing the instantaneous torque including the high-efficiency torque value according to the conditions of the required rotational speed and the required torque, and the conventional control for continuously matching the instantaneous torque with the required torque, Select. Further, in the invention according to claim 7 , when the condition that the time change rate of the required rotational speed and the required torque is equal to or less than a predetermined threshold is satisfied, the control for changing the instantaneous torque including the high efficiency torque value is performed. carry out. That is, the control for changing the instantaneous torque is performed when the required rotation speed and the required torque change relatively slowly, and the control for changing the instantaneous torque is interrupted in a transition period in which at least one of them changes rapidly. As a result, it is possible to avoid the possibility that an appropriate unit time cannot be secured during the transition period, and it is possible to stably control the operation of the electric motor.

請求項8に係る発明では、電動機はハイブリッド車両または電気自動車に搭載されて走行駆動源に用いられるので、平地走行などの低負荷時の効率を向上できる。これにより、車両の燃費が向上する。

In the invention according to claim 8 , since the electric motor is mounted on a hybrid vehicle or an electric vehicle and used as a travel drive source, the efficiency at the time of low load such as traveling on flat ground can be improved. Thereby, the fuel consumption of the vehicle is improved.

実施形態の電動機の制御方法を行う装置構成の例を説明する図である。It is a figure explaining the example of the apparatus structure which performs the control method of the electric motor of embodiment. (1)は電動機の出力特性および車両の走行性能線図を示し、(2)は電動機の効率マップおよび車両の走行重心点を示している。(1) shows the output characteristics of the motor and the running performance diagram of the vehicle, and (2) shows the efficiency map of the motor and the running center of gravity of the vehicle. 車両の走行パターンと電動機の出力動作点との関係を例示した図であり、(1)は車両の車速および電動機から出力されるトルクの時間的変化を示し、(2)は電動機の出力特性上の出力動作点の位置の変化を示している。It is the figure which illustrated the relationship between the running pattern of a vehicle, and the output operation point of an electric motor, (1) shows the temporal change of the torque output from the vehicle speed and electric motor of a vehicle, (2) is on the output characteristic of an electric motor. The change of the position of the output operation point is shown. 実施形態の電動機の制御方法を説明する図であり、(1)は電動機の出力特性上で本制御方法を説明する図、(2)は本制御方法を実施したときの瞬時トルクの時間波形である。It is a figure explaining the control method of the electric motor of embodiment, (1) is a figure explaining this control method on the output characteristic of an electric motor, (2) is a time waveform of instantaneous torque when this control method is implemented. is there. 実施形態の電動機の制御方法で、インバータ装置による電動機の矩形波電圧制御の方法を説明する図であり、(1)は瞬時トルクの時間波形、(2)は矩形波電圧の時間波形、(3)は電流の時間波形を示している。It is a figure explaining the method of the rectangular wave voltage control of the electric motor by an inverter apparatus with the electric motor control method of embodiment, (1) is the time waveform of instantaneous torque, (2) is the time waveform of rectangular wave voltage, (3 ) Shows a time waveform of current. 実施形態の電動機の制御方法で、所定の条件を満たさないときに要求トルクに出力トルクを継続的に一致させる制御方法を説明する図であり、(1)は瞬時トルクの時間波形、(2)は矩形波電圧の時間波形、(3)は電流の時間波形を示している。It is a figure explaining the control method which makes an output torque correspond to a required torque continuously when a predetermined condition is not satisfy | filled with the control method of the electric motor of embodiment, (1) is a time waveform of an instantaneous torque, (2) Represents a time waveform of a rectangular wave voltage, and (3) represents a time waveform of a current. 実施形態の電動機の制御方法を行う際の制御処理フローを説明する図である。It is a figure explaining the control processing flow at the time of performing the control method of the electric motor of embodiment. 電動機に有害な共振現象や振動および騒音などが発生することを防止する装置構成を原理的に説明する図である。It is a figure explaining the principle of the apparatus structure which prevents that a harmful resonance phenomenon, a vibration, noise, etc. which are harmful to an electric motor generate | occur | produce.

本発明の実施形態の電動機の制御方法について、図1〜図8を参考にして説明する。図1は、実施形態の電動機の制御方法を行う装置構成の例を説明する図である。図中の矢印は、電力および情報の流れを示している。電動機1は、副走行駆動源として車両9に搭載されている。車両9は、主走行駆動源として図略のエンジンも搭載されたハイブリッド車両である。ただし、車両9はこれに限定されず、電動機1のみを走行駆動源とする電気自動車や燃料電池車などのいずれであってもよい。電動機1は、三相同期電動機や三相誘導電動機が好適であり、これに限定されない。   A method for controlling an electric motor according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating an example of a device configuration that performs a method for controlling an electric motor according to an embodiment. The arrows in the figure indicate the flow of power and information. The electric motor 1 is mounted on the vehicle 9 as an auxiliary travel drive source. The vehicle 9 is a hybrid vehicle on which an engine (not shown) is also mounted as a main driving source. However, the vehicle 9 is not limited to this, and may be any of an electric vehicle and a fuel cell vehicle that use only the electric motor 1 as a travel drive source. The motor 1 is preferably a three-phase synchronous motor or a three-phase induction motor, and is not limited to this.

電動機1の電源として、直流電源2およびインバータ装置3が用いられる。直流電源2には、バッテリや燃料電池などを用いることができる。インバータ装置3は、パワー素子を内蔵しており、後述する電動機ECU4からの制御信号Ctに基づいて、キャリア周波数の1周期内でのデューティ比を制御する。これにより、直流電源2の直流電圧Vdcをオン/オフ制御した後の矩形波電圧Vを電動機1に印加する。インバータ装置3には、周知の電圧型パルス幅変調制御方式の装置を用いることができる。   As a power source for the electric motor 1, a DC power source 2 and an inverter device 3 are used. As the DC power source 2, a battery, a fuel cell, or the like can be used. The inverter device 3 has a built-in power element, and controls the duty ratio within one cycle of the carrier frequency based on a control signal Ct from an electric motor ECU 4 described later. As a result, the rectangular wave voltage V after the on / off control of the DC voltage Vdc of the DC power supply 2 is applied to the electric motor 1. As the inverter device 3, a known voltage-type pulse width modulation control system device can be used.

電動機1の制御装置として電動機ECU4が用いられる。電動機ECU4は、マイコンを内蔵してソフトウェアで動作する電子制御装置である。電動機ECU4は、図1に示されるように、車両ECU5からアクセル情報Ac、ブレーキ情報Br、舵角情報St、車速vなどの車両状態に関する情報を取得する。電動機ECU4は、これらの情報に基づいて要求動作点となる要求回転数Nrおよび要求トルクTrを決定する。要求動作点は、例えば、各種情報をパラメータとするデータマップとして電動機ECU4の記憶部内に保持することができる。この場合に電動機ECU4は、取得した情報に該当する要求動作点をデータマップ上で求めて読み込むことにより、前述の要求回転数Nrおよび要求トルクTrを決定できる。   An electric motor ECU 4 is used as a control device for the electric motor 1. The electric motor ECU 4 is an electronic control device that incorporates a microcomputer and operates by software. As shown in FIG. 1, the electric motor ECU 4 acquires information on the vehicle state such as accelerator information Ac, brake information Br, rudder angle information St, and vehicle speed v from the vehicle ECU 5. The electric motor ECU 4 determines the required rotational speed Nr and the required torque Tr that are required operating points based on these pieces of information. The requested operation point can be held in the storage unit of the electric motor ECU 4 as a data map having various information as parameters, for example. In this case, the electric motor ECU 4 can determine the required rotational speed Nr and the required torque Tr described above by obtaining and reading the required operating point corresponding to the acquired information on the data map.

さらに、電動機ECU4は、要求動作点を実現するようにインバータ装置3に制御信号Ctを送出し、インバータ装置3を介して電動機1の動作を制御する。制御信号Ctは、要求回転数Nrを実現するための電流通電タイミングの情報と、要求トルクTrを発生するために必要な電流値の情報もしくは電流値から導かれる電圧値の情報とを含んでいる。   Furthermore, the motor ECU 4 sends a control signal Ct to the inverter device 3 so as to realize the required operating point, and controls the operation of the motor 1 via the inverter device 3. The control signal Ct includes information on the current application timing for realizing the required rotational speed Nr and information on the current value necessary for generating the required torque Tr or information on the voltage value derived from the current value. .

車両ECU5も電子制御装置であり、電動機ECU4の上位装置として車両9の走行全般を制御する。車両ECU5は、前述のアクセル情報Ac、ブレーキ情報Br、舵角情報St、車速vなどの情報を図略のセンサ類から取得する。また、車両ECU5は、図略のエンジンECUと情報を交換してエンジンECUによるエンジン制御を支援し、さらに図略の変速機ECUやブレーキECUなどとも連携して走行全般を制御する。   The vehicle ECU 5 is also an electronic control device, and controls the overall traveling of the vehicle 9 as a host device of the electric motor ECU 4. The vehicle ECU 5 acquires information such as the accelerator information Ac, the brake information Br, the steering angle information St, and the vehicle speed v described above from sensors (not shown). The vehicle ECU 5 also exchanges information with an unillustrated engine ECU to support engine control by the engine ECU, and further controls the overall traveling in cooperation with an unillustrated transmission ECU, brake ECU, and the like.

電動機ECU4からの制御でインバータ装置3が矩形波電圧Vを印加することにより電動機1は動作し、車両9が走行する。電動機1の回転子の回転角度情報θや内部温度tmp1の情報は、電動機ECU4にフィードバックされる。また、インバータ装置3から、装置内部温度tmp2および電動機1に流れる電流Iの情報が、電動機ECU4にフィードバックされる。   When the inverter device 3 applies the rectangular wave voltage V under the control of the electric motor ECU 4, the electric motor 1 operates and the vehicle 9 travels. Information on the rotation angle information θ of the rotor of the electric motor 1 and information on the internal temperature tmp1 is fed back to the electric motor ECU 4. Further, the information about the internal temperature tmp2 of the device and the current I flowing through the electric motor 1 is fed back from the inverter device 3 to the electric motor ECU 4.

次に、電動機1の出力特性および効率マップと車両9の走行性能線図および走行重心点について説明する。図2の(1)は電動機1の出力特性および車両9の走行性能線図を示し、(2)は電動機1の効率マップおよび車両9の走行重心点を示している。(1)(2)ともに、横軸は電動機1の回転数N、縦軸は出力されるトルクTである。図示されるように、電動機1は、回転数N=0〜最大回転数Nmax、トルクT=0〜最大トルクTmaxの間で、中太線で示される範囲を出力範囲としている。なお、図示されていないが、電動機1は、車両9が制動されるときのエネルギ回生機能を有しており、制動トルクTx(以降は便宜上負値で記載する)が入力されて発電を行う場合も生じ得る。   Next, the output characteristics and efficiency map of the electric motor 1, the travel performance diagram of the vehicle 9, and the travel center of gravity will be described. 2 shows an output characteristic of the electric motor 1 and a travel performance diagram of the vehicle 9, and (2) shows an efficiency map of the electric motor 1 and a travel center of gravity of the vehicle 9. FIG. In both (1) and (2), the horizontal axis represents the rotational speed N of the electric motor 1, and the vertical axis represents the output torque T. As shown in the figure, the electric motor 1 has a range indicated by a medium thick line between the rotational speed N = 0 to the maximum rotational speed Nmax and the torque T = 0 to the maximum torque Tmax as an output range. Although not shown, the electric motor 1 has an energy regeneration function when the vehicle 9 is braked, and generates electric power by inputting a braking torque Tx (hereinafter, described as a negative value for convenience). Can also occur.

図2の(1)で、車両9の路面走行負荷として路面勾配Kがパラメータとされ、路面勾配K=0%、5%、10%、および30%における各走行性能線が細線で示されている。走行性能線は、路面勾配Kが一定であると回転数Nの増加につれてトルクTが増加する右上がりの特性を有している。また、路面勾配Kが大きくなるにつれて、走行性能線全体が大きなトルクT側(図の上方)にシフトし、図の例では路面勾配K=30%で走行性能線は最大トルクTmaxに近づく。   In (1) of FIG. 2, the road gradient K is used as a parameter as the road running load of the vehicle 9, and each running performance line at the road gradient K = 0%, 5%, 10%, and 30% is indicated by a thin line. Yes. The running performance line has a characteristic of increasing to the right where the torque T increases as the rotational speed N increases when the road surface gradient K is constant. Further, as the road surface gradient K increases, the entire travel performance line shifts to the large torque T side (upward in the figure), and in the example in the figure, the travel performance line approaches the maximum torque Tmax when the road surface gradient K = 30%.

図2の(2)で、電動機1の効率ηがパラメータとされ、効率η=85%、90%、および95%における等効率線が細線で示されている。また、各回転数Nにおける効率ηが最高となる動作点を結んだ最高効率線Emaxが太線で示されている。図示されるように、最高効率線Emaxは、中庸の回転数Nで最もトルクTが大きくなる山状カーブの特性を有している。ここで、最高効率線Emaxよりも下側の領域は、最高効率を発生するトルクよりも実際に出力されるトルクTが小さくなる領域であり、便宜的に低負荷領域ALと名付ける。   In (2) of FIG. 2, the efficiency η of the electric motor 1 is used as a parameter, and the isoefficiency lines at the efficiency η = 85%, 90%, and 95% are indicated by thin lines. Further, the maximum efficiency line Emax connecting the operating points at which the efficiency η at each rotation speed N is maximum is indicated by a bold line. As shown in the figure, the maximum efficiency line Emax has a mountain-shaped curve characteristic in which the torque T is the largest at the center rotational speed N. Here, the region below the maximum efficiency line Emax is a region where the torque T actually output is smaller than the torque that generates the maximum efficiency, and is referred to as a low load region AL for convenience.

また、図2の(2)の効率η=85%の等効率線の概ね線上の高回転数側に高速巡航重心点GH、低回転数側に市街地走行重心点GLが位置している。高速巡航重心点GHは、車両9が高速道路などを走行する際の電動機1の平均的な動作点を示している。市街地走行重心点GLは、車両9が市街地の一般道を走行する際の電動機1の平均的な動作点を示している。高速巡航重心点GHおよび市街地走行重心点GLはともに、低負荷領域AL内にある。つまり、車両9に搭載された電動機1では、低負荷領域ALで動作する場合が動作時間の多くを占める。   In addition, the high-speed cruise center of gravity point GH is located on the high speed side of the equi-efficiency line of efficiency η = 85% in FIG. 2 (2), and the city center gravity center point GL is located on the low speed side. The high-speed cruise center-of-gravity point GH indicates an average operating point of the electric motor 1 when the vehicle 9 travels on a highway or the like. A city center of gravity point GL indicates an average operating point of the electric motor 1 when the vehicle 9 travels on a general road in the city area. Both the high-speed cruise center-of-gravity point GH and the city-running center-of-gravity point GL are in the low load area AL. That is, in the electric motor 1 mounted on the vehicle 9, the operation time occupies most of the operation time in the low load area AL.

次に、車両9の走行パターンと電動機1の実際の出力動作点との関係について例示説明する。出力動作点は、電動機1から実際に出力される回転数NおよびトルクTを意味し、図2に示される出力特性の図に一点で示される。図3は、車両9の走行パターンと電動機1の出力動作点との関係を例示した図であり、(1)は車両9の車速vおよび電動機1から出力されるトルクTの時間的変化を示し、(2)は電動機1の出力特性上の出力動作点の位置の変化を示している。なお、図3は一例であって、実際の走行パターンは当然ながら毎回の走行に依存して変化する。   Next, the relationship between the traveling pattern of the vehicle 9 and the actual output operating point of the electric motor 1 will be described by way of example. The output operating point means the rotational speed N and torque T actually output from the electric motor 1, and is indicated by one point in the output characteristic diagram shown in FIG. FIG. 3 is a diagram illustrating the relationship between the travel pattern of the vehicle 9 and the output operation point of the electric motor 1, and (1) shows the temporal change in the vehicle speed v of the vehicle 9 and the torque T output from the electric motor 1. , (2) shows the change in the position of the output operating point on the output characteristics of the electric motor 1. Note that FIG. 3 is an example, and an actual traveling pattern naturally changes depending on each traveling.

図3の(1)において、時刻t1で電動機1が始動されてトルクTが発生し車両9が発進する。トルクTは、時刻t1から時刻t2を経て時刻t3まで漸増し、これに伴い車速vが増加してゆく。時刻t3から時刻t4の間でトルクTは最大となり、車速vは急加速される。時刻t4以降は時刻t5を経て時刻t6までトルクTが漸減されると、車速vは増加が緩み、時刻t6で図示される範囲内の最大車速に達する。時刻t6から時刻t7までの間は、わずかなトルクTによって最大車速が維持されている。時刻t7でトルクTがなくなると車両9は慣性走行となり、車速vはわずかに減少傾向を示す。   In FIG. 3 (1), the electric motor 1 is started at time t1, torque T is generated, and the vehicle 9 starts. The torque T gradually increases from time t1 through time t2 to time t3, and the vehicle speed v increases accordingly. Between time t3 and time t4, the torque T becomes maximum and the vehicle speed v is accelerated rapidly. After the time t4, when the torque T is gradually decreased through the time t5 and until the time t6, the vehicle speed v gradually decreases and reaches the maximum vehicle speed within the range illustrated at the time t6. From time t6 to time t7, the maximum vehicle speed is maintained by a slight torque T. When the torque T disappears at time t7, the vehicle 9 becomes inertial running, and the vehicle speed v shows a slightly decreasing tendency.

時刻t8で、ブレーキペダルが踏み込み操作されると、制動トルクTが油圧ブレーキと電動機1の回生機能とに配分される。これにより、電動機1は回生トルクTxが入力されて発電機として動作する。時刻t8から時刻t9までの間、制動トルクTは図示される範囲内の最大値とされ、時刻t9以降は車速vが減少し、時刻t10から時刻t11にかけて制動トルクTも漸減される。時刻t11で車速vが0になって、車両9が停止する。   When the brake pedal is depressed at time t8, the braking torque T is distributed to the hydraulic brake and the regeneration function of the electric motor 1. Thereby, the electric motor 1 operates as a generator when the regenerative torque Tx is input. From time t8 to time t9, the braking torque T is set to the maximum value in the range shown in the figure, the vehicle speed v decreases after time t9, and the braking torque T gradually decreases from time t10 to time t11. At time t11, the vehicle speed v becomes 0 and the vehicle 9 stops.

上記の走行パターンにおける電動機1の出力動作点の変化は、図3の(2)に太線で示され、時刻t1〜t11が併記されている。図3の(2)でトルクTが正値の領域は、電動機1がトルクTを出力する力行域であり、トルクTが負値(回生トルクTx)の領域は電動機1に回生トルクTxが入力されて発電を行う回生域である。図示されるように、時刻t1〜t2の間および時刻t4〜t8の間、出力動作点は力行域内でかつ最高効率線EmaxよりもトルクTの小さい低負荷領域AL内を移動している。また、時刻t2〜t4の間、出力動作点は力行域内でかつ最高効率線EmaxよりもトルクTの大きい領域内を移動している。時刻t8〜t11の間、出力動作点は回生域内を移動している。   The change of the output operating point of the electric motor 1 in the above traveling pattern is indicated by a thick line in (2) of FIG. 3 and the times t1 to t11 are also shown. In (2) of FIG. 3, the region where the torque T is positive is a power running region where the motor 1 outputs the torque T, and the region where the torque T is negative (regenerative torque Tx) is input to the motor 1 with the regenerative torque Tx. It is a regenerative area where electricity is generated. As shown in the figure, the output operating point moves in the power running region and in the low load region AL where the torque T is smaller than the maximum efficiency line Emax during the time t1 to t2 and the time t4 to t8. Further, during the time t2 to t4, the output operating point moves in the power running region and in a region where the torque T is larger than the maximum efficiency line Emax. Between time t8 and t11, the output operating point is moving within the regeneration zone.

次に、実施形態の電動機の制御方法について説明する。実施形態の電動機の制御方法は、電動機1に要求される要求動作点が低負荷領域AL内にある場合に実施可能となる。したがって、図3の例では、時刻t1〜t2の間および時刻t4〜t8の間で実施可能となる。図4は、実施形態の電動機の制御方法を説明する図であり、(1)は電動機1の出力特性上で本制御方法を説明する図、(2)は本制御方法を実施したときの瞬時トルクT(t)の時間波形である(なお、力行域での制御方法の説明となるが、回生域でも同様である)。   Next, a method for controlling the electric motor according to the embodiment will be described. The method for controlling the electric motor according to the embodiment can be performed when the required operation point required for the electric motor 1 is in the low load region AL. Therefore, in the example of FIG. 3, it can be performed between time t1 and t2 and between time t4 and t8. 4A and 4B are diagrams for explaining the control method for the electric motor according to the embodiment. FIG. 4A is a diagram for explaining the control method on the output characteristics of the electric motor 1, and FIG. 4B is an instantaneous view when the control method is executed. It is a time waveform of torque T (t) (note that the control method in the power running region is explained, but the same applies to the regeneration region).

図4の(1)で、要求動作点Dは低負荷領域AL内にあり、要求回転数Nr=n1および要求トルクTr=Tn1である。このとき、要求回転数Nr=n1の条件下で最も高い効率が得られるトルク値である最高効率トルク値Tn1e−maxは、最高効率線Emax上で回転数n1となっている最高効率点Dmaxから求められる。また、最高効率トルク値Tn1e−maxは、要求トルクTr=Tn1よりも大きくなっている。   In (1) of FIG. 4, the required operating point D is in the low load region AL, and the required rotational speed Nr = n1 and the required torque Tr = Tn1. At this time, the maximum efficiency torque value Tn1e-max, which is the torque value at which the highest efficiency is obtained under the condition of the required rotation speed Nr = n1, is from the maximum efficiency point Dmax that is the rotation speed n1 on the maximum efficiency line Emax. Desired. Further, the maximum efficiency torque value Tn1e-max is larger than the required torque Tr = Tn1.

実施形態の電動機の制御方法では、単位時間tAを通して要求回転数Nr=n1に出力回転数を継続的に一致させるとともに、最高効率トルク値Tn1e−maxと電気入力をなくしたときのゼロトルク値とを単位時間tA内の時間比率Rtで組み合わせて瞬時トルクT(t)を図4の(2)に示されるように変遷させる。詳述すると、時刻t21〜t23までの単位時間tA中で、時刻t21〜t22までの通電時間tBに電動機1に電圧を印加して通電することで最高効率トルク値Tn1e−maxを発生させ、時刻t22〜t23までの間は電圧を印加せずにゼロトルク値とする。   In the motor control method of the embodiment, the output speed is continuously matched with the required speed Nr = n1 through the unit time tA, and the maximum efficiency torque value Tn1e-max and the zero torque value when the electric input is lost are obtained. In combination with the time ratio Rt within the unit time tA, the instantaneous torque T (t) is changed as shown in (2) of FIG. More specifically, the maximum efficiency torque value Tn1e-max is generated by applying a voltage to the motor 1 during the energization time tB from the time t21 to t22 during the unit time tA from the time t21 to t23. A voltage is not applied between t22 and t23, and a zero torque value is set.

さらに、瞬時トルクT(t)の単位時間tAを通した時間平均値で求められる実効的な出力トルクTが要求トルクTr=Tn1に一致する条件を満足するように電圧を制御する。この条件を満たす時間比率Rtは、時間比率Rt=(tB/tA)=(Tn1/Tn1e−max)で求められる。電圧の制御による瞬時トルクT(t)の変化は急峻であるので、立ち上がりおよび立ち下がりの時間遅れは無視して考えることができる。   Further, the voltage is controlled so that the effective output torque T obtained by the time average value of the instantaneous torque T (t) through the unit time tA satisfies the condition that the required torque Tr = Tn1. The time ratio Rt that satisfies this condition is obtained by the time ratio Rt = (tB / tA) = (Tn1 / Tn1e−max). Since the change in the instantaneous torque T (t) due to the voltage control is steep, it is possible to ignore the rise and fall time delays.

なお、要求トルクTrが最高効率線Emaxよりも大きい側の領域にある場合、最高効率トルク値Tn1e−maxとゼロトルク値とを時間比率で組み合わせて瞬時トルクT(t)を変遷させても、時間平均値で求められる出力トルクを要求トルクTrに一致させることはできない。   In the case where the required torque Tr is in a region on the side larger than the maximum efficiency line Emax, even if the instantaneous torque T (t) is changed by combining the maximum efficiency torque value Tn1e-max and the zero torque value in a time ratio, the time The output torque obtained by the average value cannot be matched with the required torque Tr.

次に、電圧型パルス幅変調制御方式のインバータ装置3による電動機1の矩形波電圧V制御の方法について説明する。図5は、実施形態の電動機の制御方法で、インバータ装置3による電動機1の矩形波電圧V制御の方法を説明する図であり、(1)は瞬時トルクT(t)の時間波形、(2)は矩形波電圧Vの時間波形、(3)は電流Iの時間波形を示している。(1)〜(3)の各横軸は、共通の時間tである。なお、図5の(1)は、図4の(2)の時刻t21〜t23までの範囲を拡大した波形である。   Next, a method of controlling the rectangular wave voltage V of the electric motor 1 by the voltage type pulse width modulation control type inverter device 3 will be described. FIG. 5 is a diagram for explaining a method of controlling the rectangular wave voltage V of the electric motor 1 by the inverter device 3 in the electric motor control method of the embodiment. (1) is a time waveform of the instantaneous torque T (t); ) Shows the time waveform of the rectangular wave voltage V, and (3) shows the time waveform of the current I. Each horizontal axis of (1) to (3) is a common time t. In addition, (1) of FIG. 5 is a waveform which expanded the range from the time t21 to t23 of (2) of FIG.

本実施形態では、インバータ装置3は、繰り返すキャリア周期tC内で矩形波電圧Vのデューティ比Rdを可変に制御する。具体的にインバータ装置3は、図5の(2)に示される単位時間tA内の前側の時刻t21〜t22までの通電時間tBの間では或るデューティ比Rdで矩形波電圧Vを発生し、後側の時刻t22〜t23の間では矩形波電圧Vを発生させない。ここで、矩形波電圧Vの波高値は、直流電源4の直流電圧Vdcである。また、矩形波電圧Vの直流電圧Vdcが発生している時間幅すなわちオンデューティ時間tdとすると、通電時間tB中のデューティ比Rd=(td/tC)で求められる。通電時間tBを通した矩形波電圧Vの実効値V2であり、単位時間tAを通した矩形波電圧Vの実効値V1(V1<V2)となる。   In the present embodiment, the inverter device 3 variably controls the duty ratio Rd of the rectangular wave voltage V within the repeated carrier cycle tC. Specifically, the inverter device 3 generates the rectangular wave voltage V at a certain duty ratio Rd during the energization time tB from the time t21 to t22 on the front side within the unit time tA shown in (2) of FIG. The rectangular wave voltage V is not generated between the rear times t22 to t23. Here, the peak value of the rectangular wave voltage V is the DC voltage Vdc of the DC power supply 4. Further, when the time width during which the DC voltage Vdc of the rectangular wave voltage V is generated, that is, the on-duty time td, the duty ratio Rd = (td / tC) during the energization time tB is obtained. It is the effective value V2 of the rectangular wave voltage V through the energization time tB, and becomes the effective value V1 (V1 <V2) of the rectangular wave voltage V through the unit time tA.

図5の(2)に示される矩形波電圧Vが印加されると、電動機1には図5の(3)に示される電流Iが流れる。電流Iの波形は、通電時間tB中でリップル分を含む直流波形となり、矩形波電圧Vが印加されない時刻t22〜t23の間では概ねゼロとなる。通電時間tBを通した電流Iの実効値I2であり、単位時間tAを通した電流Iの実効値I1(I1<I2)となる。そして、電流Iの実効値I1で得られる平均的な出力トルクTが、要求トルクTr=Tn1に一致する。   When the rectangular wave voltage V shown in (2) of FIG. 5 is applied, the electric current I shown in (3) of FIG. The waveform of the current I is a direct current waveform including a ripple during the energization time tB, and is substantially zero between the times t22 and t23 when the rectangular wave voltage V is not applied. The effective value I2 of the current I through the energization time tB is the effective value I1 (I1 <I2) of the current I through the unit time tA. The average output torque T obtained with the effective value I1 of the current I matches the required torque Tr = Tn1.

なお、電圧型パルス幅変調制御方式のインバータ装置3では、通電時間tBおよび通電しない時間帯を区分して設けるために、単位時間tAは最短でもキャリア周期tCの2倍以上にする必要がある。図5の例では、単位時間tAはキャリア周期tCの9倍とされている。また、単位時間tAを長く設定すると、車両9の乗員が不快を感じたり、車両9の走行がスムーズでなくなったりするおそれが生じるので、最長値にも限度がある。単位時間tAは、要求回転数Nrおよび要求トルクTrに応じて設定され、かつ要求回転数Nrおよび要求トルクTrが一定である間は略一定に維持されることが好ましい。単位時間tAは、例えば、要求回転数Nrおよび要求トルクTrをパラメータとするデータマップもしくは計算式を電動機ECU5内に保持し、これを用いて決定することができる。   In the voltage-type pulse width modulation control type inverter device 3, the unit time tA needs to be at least twice the carrier cycle tC at the shortest in order to separately provide the energization time tB and the non-energization time zone. In the example of FIG. 5, the unit time tA is nine times the carrier period tC. Further, if the unit time tA is set long, there is a possibility that the passenger of the vehicle 9 may feel uncomfortable or the vehicle 9 may not run smoothly, so the maximum value is limited. The unit time tA is preferably set according to the required rotational speed Nr and the required torque Tr, and is preferably maintained substantially constant while the required rotational speed Nr and the required torque Tr are constant. The unit time tA can be determined using, for example, a data map or a calculation formula that uses the required rotational speed Nr and the required torque Tr as parameters in the electric motor ECU 5.

次に、所定の条件を満たさないときに最高効率トルク値Tn1e−maxを含んで瞬時トルクT(t)を変遷させる制御を中断し代替して行う制御方法について、図5と対比して説明する。図6は、実施形態の電動機の制御方法で、所定の条件を満たさないときに要求トルクに瞬時トルクを継続的に一致させる制御方法を説明する図である。図6の(1)は瞬時トルクT(t)の時間波形、(2)は矩形波電圧Vの時間波形、(3)は電流Iの時間波形を示し、図5と同一の時刻t21〜t23までの時間範囲が例示されている。所定の条件とは、要求回転数Nrおよび要求トルクTrの時間変化率が所定の閾値以下である条件であり、これを満たさないときに要求動作点が急激に変化する過渡期であると判断できる。   Next, a control method for interrupting and replacing the control for changing the instantaneous torque T (t) including the maximum efficiency torque value Tn1e-max when the predetermined condition is not satisfied will be described in comparison with FIG. . FIG. 6 is a diagram for explaining a control method for continuously matching the instantaneous torque with the required torque when the predetermined condition is not satisfied in the motor control method according to the embodiment. 6A shows a time waveform of the instantaneous torque T (t), FIG. 6B shows a time waveform of the rectangular wave voltage V, and FIG. 6C shows a time waveform of the current I. The same times t21 to t23 as in FIG. The time range up to is illustrated. The predetermined condition is a condition in which the time change rate of the required rotational speed Nr and the required torque Tr is equal to or less than a predetermined threshold, and it can be determined that the required operating point is in a transitional period in which the required operating point rapidly changes when this is not satisfied. .

過渡期に代替して行う制御方法では、単位時間tAを通して要求回転数Nr=n1に出力回転数を継続的に一致させるとともに、図6の(1)に示されるように、要求トルクTr=Tn1に瞬時トルクT(t)を継続的に一致させて一定に保つ。インバータ装置3は、図6の(2)に示されるように単位時間tA内で一定のデューティ比で継続的に矩形波電圧Vを発生する。この矩形波電圧Vが印加されると、電動機1には図6の(3)に示される電流Iが流れる。電流Iの波形は、単位時間tAを通してリップル分を含む直流波形となる。単位時間tAを通した電圧Vの実効値V1となり、電流Iの実効値I1となって、図5の場合と一致する。図6に示される制御方法は、従来から行われている制御方法と概ね同様である。   In the control method performed in place of the transition period, the output rotational speed is made to coincide with the required rotational speed Nr = n1 continuously throughout the unit time tA, and the required torque Tr = Tn1 as shown in (1) of FIG. The instantaneous torque T (t) is continuously made constant to keep constant. The inverter device 3 continuously generates the rectangular wave voltage V at a constant duty ratio within the unit time tA as shown in (2) of FIG. When this rectangular wave voltage V is applied, a current I shown in (3) of FIG. The waveform of the current I becomes a direct current waveform including a ripple through the unit time tA. The effective value V1 of the voltage V through the unit time tA becomes the effective value I1 of the current I, which matches the case of FIG. The control method shown in FIG. 6 is almost the same as the control method conventionally performed.

次に、実施形態の電動機の制御方法を行う際の制御処理フローについて、図7を参考にして説明する。図7に示される制御処理フローは、電動機ECU4によって実行制御される。   Next, a control processing flow when performing the motor control method of the embodiment will be described with reference to FIG. The control process flow shown in FIG. 7 is executed and controlled by the electric motor ECU 4.

図7のステップS1で、電動機ECU4は、まず要求動作点となる要求回転数Nrおよび要求トルクTrを読み込む。次にステップS2で、要求動作点が低負荷領域AL内にあるか否かを判定し、否のときステップS6に進む。要求動作点が低負荷領域AL内にあるときステップS3に進み、タイマが経過時間tの計時を実施していなければ、作動させて経過時間tの計時を開始する。続くステップS4で、経過時間tが所定時間t0に達したか否か判定し、否のときステップS6に進む。   In step S1 of FIG. 7, the electric motor ECU 4 first reads the required rotational speed Nr and the required torque Tr that are the required operating points. Next, in step S2, it is determined whether or not the requested operating point is within the low load area AL. If not, the process proceeds to step S6. When the requested operating point is within the low load area AL, the process proceeds to step S3. If the timer has not timed the elapsed time t, the timer is activated to start the elapsed time t. In a succeeding step S4, it is determined whether or not the elapsed time t has reached a predetermined time t0. If not, the process proceeds to step S6.

経過時間tが所定時間t0に達しているとステップS5に進み、要求回転数Nrおよび要求トルクTrの所定時間t0以前からの変化量が閾値以下であるか否かを判定する。変化量が閾値よりも大きいとき、要求動作点が急激に変化している過渡期と判定でき、ステップS6に進む。変化量が閾値以下のとき、要求動作点が一定あるいは緩やかに変化していると判定でき、ステップS7に進む。なお、閾値は、ステップS7の制御の実施および中断を切り替え制御することにより車両9の挙動がスムーズに保たれるか否か、ステップS7の制御の効果が期待できるか否か、トルク制御による応答遅れ時間などを適宜考慮して定めることができる。   If the elapsed time t has reached the predetermined time t0, the process proceeds to step S5, and it is determined whether or not the amount of change of the required rotation speed Nr and the required torque Tr from the time before the predetermined time t0 is equal to or less than a threshold value. When the amount of change is larger than the threshold value, it can be determined that the requested operating point is in a transition period in which the change is abrupt, and the process proceeds to step S6. When the amount of change is less than or equal to the threshold value, it can be determined that the requested operating point is changing constantly or gently, and the process proceeds to step S7. It should be noted that the threshold value indicates whether the behavior of the vehicle 9 can be maintained smoothly by switching the execution and interruption of the control in step S7, whether the effect of the control in step S7 can be expected, and the response by torque control. The delay time can be determined appropriately.

ステップS6は、ステップS2で要求動作点が低負荷領域AL内にない高負荷のとき、ステップS4で所定時間t0が経過せず要求動作点の変化の緩急を判定できないとき、およびステップS6で要求動作点が急激に変化している過渡期のときに実行される。ステップS6では、図6で説明した瞬時トルクT(t)を一定に保つ制御の演算が行われる。一方、ステップS7は、S6で要求動作点が一定または緩慢に変化しているときに実行される。ステップS7では、図5で説明した瞬時トルクT(t)を遷移させる制御の演算が行われる。ステップS6およびステップS7はステップS8で合流し、電動機ECU4は、演算結果に基づいてインバータ装置3に制御信号Ctを送出する。インバータ装置3は、制御信号Ctに基づき、図5または図6に示された矩形波電圧Vを電動機1に印加する。ステップS8によって電動機1制御の1サイクルが終了し、ステップS1に戻り、以降繰り返される。   Step S6 is the step S2 when the requested operating point is a high load that is not in the low load region AL, the step S4 is the time when the predetermined time t0 does not elapse and the change of the requested operating point cannot be determined, and the step S6 It is executed during the transition period when the operating point is changing rapidly. In step S6, the control calculation for keeping the instantaneous torque T (t) described in FIG. 6 constant is performed. On the other hand, step S7 is executed when the required operating point changes at S6 in a constant or slow manner. In step S7, calculation of control for changing the instantaneous torque T (t) described in FIG. 5 is performed. Step S6 and step S7 merge at step S8, and the motor ECU 4 sends a control signal Ct to the inverter device 3 based on the calculation result. The inverter device 3 applies the rectangular wave voltage V shown in FIG. 5 or 6 to the electric motor 1 based on the control signal Ct. In step S8, one cycle of the motor 1 control is completed, the process returns to step S1, and is repeated thereafter.

実施形態の電動機の制御方法によれば、要求トルクTr=Tn1が比較的小さい低負荷時に高効率トルク値が存在し、高効率トルク値を含んで瞬時トルクT(t)を適正に変遷させると、高効率トルク値における高い効率の効果によって単位時間tAを通した平均効率が従来よりも向上する。特に、図5に示されるように最高効率トルク値Tn1e−maxとゼロトルク値とを単位時間tA内の時間比率で組み合わせて瞬時トルクT(t)を変遷させている。このとき、瞬時トルクT(t)が最高効率トルク値Tn1e−maxとなっている時間帯の効率は文字通り最高効率となり、瞬時トルクT(t)がゼロトルク値となっている時間帯では損失が少ない。したがって、単位時間tAを通した平均効率は、単位時間tAを通して要求トルクTrに瞬時トルクT(t)を継続的に一致させる従来の制御技術(図6)の効率と比較して格段に向上し、この効果は動作時間の多くを占める低負荷時に発生する。   According to the motor control method of the embodiment, when the required torque Tr = Tn1 is relatively small, a high efficiency torque value exists at low load, and the instantaneous torque T (t) is appropriately changed including the high efficiency torque value. The average efficiency over the unit time tA is improved as compared with the conventional case due to the effect of high efficiency in the high efficiency torque value. In particular, as shown in FIG. 5, the instantaneous torque T (t) is changed by combining the maximum efficiency torque value Tn1e-max and the zero torque value at a time ratio within the unit time tA. At this time, the efficiency in the time zone in which the instantaneous torque T (t) is the maximum efficiency torque value Tn1e-max is literally the maximum efficiency, and the loss is small in the time zone in which the instantaneous torque T (t) is the zero torque value. . Therefore, the average efficiency over the unit time tA is markedly improved compared to the efficiency of the conventional control technique (FIG. 6) that continuously matches the instantaneous torque T (t) with the required torque Tr over the unit time tA. This effect occurs at low load, which occupies most of the operating time.

また、電気入力の制御方式は、インバータ装置3による電圧型パルス幅変調制御方式とされており、矩形波電圧Vのデューティ比Rdを可変に制御することで、容易に瞬時トルクT(t)を変遷させることができる。さらに、要求回転数Nrおよび要求トルクTrが一定である間、単位時間tAを略一定に維持するので、制御が簡素化される。また、要求回転数Nrおよび要求トルクTrの時間変化率が所定の閾値よりも大きいときに、高効率トルク値を含んで瞬時トルクを変遷させる制御を中断する。これにより、過渡期に適正な単位時間tAを確保できなくなるおそれを回避でき、電動機1の動作を安定して制御できる。   Further, the electric input control method is a voltage type pulse width modulation control method by the inverter device 3, and the instantaneous torque T (t) can be easily controlled by variably controlling the duty ratio Rd of the rectangular wave voltage V. It can be changed. Furthermore, since the unit time tA is maintained substantially constant while the required rotational speed Nr and the required torque Tr are constant, the control is simplified. Further, when the time change rate of the required rotational speed Nr and the required torque Tr is larger than a predetermined threshold, the control for changing the instantaneous torque including the high efficiency torque value is interrupted. As a result, it is possible to avoid the possibility that an appropriate unit time tA cannot be secured during the transition period, and the operation of the electric motor 1 can be stably controlled.

さらに、電動機1は車両9に搭載されて走行駆動源に用いられるので、平地走行などの低負荷時の効率を向上できる。これにより、車両9の燃費が向上する。   Furthermore, since the electric motor 1 is mounted on the vehicle 9 and used as a travel drive source, it is possible to improve the efficiency during low loads such as traveling on flat ground. Thereby, the fuel consumption of the vehicle 9 is improved.

次に、有害な共振現象や振動および騒音などの発生を防止する方法について説明する。図8は、電動機1に有害な共振現象や振動および騒音などが発生することを防止する装置構成を原理的に説明する図である。図8の電動機1は、図1と同じ構成を用いて図2〜図7で説明した同じ制御が行われる。車両9内で、電動機1の出力軸11は減速機6に直結されており、かつ出力軸11にはトルク変遷吸収装置7が設けられている。トルク変遷吸収装置7には、例えば、車載エンジンの出力軸に設けられ、慣性質量と緩衝スプリングからなる従来のダンパ装置を用いることができる。   Next, a method for preventing the occurrence of harmful resonance phenomenon, vibration and noise will be described. FIG. 8 is a diagram for explaining in principle a device configuration that prevents the generation of harmful resonance phenomena, vibrations, noises, and the like that are harmful to the electric motor 1. The same control described in FIGS. 2 to 7 is performed on the electric motor 1 of FIG. 8 using the same configuration as that of FIG. In the vehicle 9, the output shaft 11 of the electric motor 1 is directly connected to the speed reducer 6, and the torque transition absorbing device 7 is provided on the output shaft 11. As the torque transition absorber 7, for example, a conventional damper device provided on an output shaft of an in-vehicle engine and including an inertia mass and a buffer spring can be used.

図8の構成では、電動機1の出力側に瞬時トルクT(t)の変遷を吸収して瞬時変化を抑制するトルク変遷吸収装置7が設けられている。したがって、単位時間tAの逆数で求められる周波数と電動機1の特定部位、例えば出力軸11の固有振動数とが近似しても、トルク変遷吸収装置7により有害な共振現象や振動および騒音などの発生を防止できる。また、トルク変遷吸収装置7を設けない場合と比較して、減速機6に入力されるトルクTが円滑化される。   In the configuration of FIG. 8, a torque transition absorption device 7 that absorbs the transition of the instantaneous torque T (t) and suppresses the instantaneous change is provided on the output side of the electric motor 1. Therefore, even if the frequency obtained by the reciprocal of the unit time tA approximates a specific part of the electric motor 1, for example, the natural frequency of the output shaft 11, a harmful resonance phenomenon, vibration and noise are generated by the torque transition absorber 7. Can be prevented. Further, the torque T input to the speed reducer 6 is smoothed as compared with the case where the torque transition absorber 7 is not provided.

さらに、トルク変遷吸収装置7に代えて、あるいはトルク変遷吸収装置7に併用して、有害な共振現象や振動および騒音などの発生を防止する電動機ECU4からの制御方法がある。すなわち、電動機ECU4からの制御により、時間比率Rt(=tB/tA)、最高効率トルク値Tn1e−max、ゼロトルク値、単位時間tAの少なくともひとつをわずかに変化させ、あるいは揺動させることで、有害な共振現象や振動および騒音などの発生を防止できる。つまり、これらを変化させあるいは揺動させることで起振力特性の尖鋭度を鈍らせることができるので、共振現象が生じにくくなる。仮に、これらの制御量を完全に一定に保つと、単位時間tAの逆数で求められる周波数と電動機1の特定部位の固有振動数とが近似して有害な現象の発生するおそれがある。   Further, there is a control method from the electric motor ECU 4 that prevents the occurrence of harmful resonance phenomena, vibrations and noises in place of the torque transition absorber 7 or in combination with the torque transition absorber 7. That is, by controlling from the electric motor ECU 4, at least one of the time ratio Rt (= tB / tA), the maximum efficiency torque value Tn1e-max, the zero torque value, and the unit time tA is slightly changed or oscillated. Can prevent the occurrence of unusual resonance phenomenon, vibration and noise. That is, by changing or swinging them, the sharpness of the excitation force characteristics can be dulled, so that the resonance phenomenon is less likely to occur. If these control amounts are kept completely constant, a harmful phenomenon may occur due to the approximation of the frequency obtained by the reciprocal of the unit time tA and the natural frequency of a specific part of the electric motor 1.

なお、実施形態で最高効率トルク値Tn1e−maxとゼロトルク値とを時間比率で組み合わせ、二段階で瞬時トルクT(t)を変遷させているが、これに限定されない。すなわち、必ずしも最高効率トルク値Tn1e−maxでなくとも、要求回転数Nrの条件下で要求トルクTrを継続的に出力することによって得られる効率よりも高い効率が得られる高効率トルク値を含んで変遷させれば、効果は発生する。また、高効率トルク値を含む三段階以上の変遷や、高効率トルク値を含む連続的な変化による変遷を行うようにしてもよい。さらに、車両9に搭載された電動機1では、運転者の運転癖を学習することによりアクセルやブレーキなどの操作に基づいて運転者の意思を推定し、瞬時トルクT(t)の変遷を実施するか否かを判断し、あるいは単位時間tAの設定を考慮するようにしてもよい。   In the embodiment, the maximum efficiency torque value Tn1e-max and the zero torque value are combined at a time ratio and the instantaneous torque T (t) is changed in two stages. However, the present invention is not limited to this. That is, even if it is not necessarily the maximum efficiency torque value Tn1e-max, it includes a high efficiency torque value that can obtain higher efficiency than that obtained by continuously outputting the required torque Tr under the condition of the required rotational speed Nr. If changed, the effect will occur. Moreover, you may make it perform the transition by three or more steps including a highly efficient torque value, and the transition by the continuous change including a highly efficient torque value. Furthermore, in the electric motor 1 mounted on the vehicle 9, the driver's intention is estimated based on the operation of the accelerator, the brake, etc. by learning the driver's driving rod, and the transition of the instantaneous torque T (t) is performed. Or setting of unit time tA may be considered.

本発明は、電動機1の電源の種類や、同期形や誘導形などの形式、および制御方式や内部構造などの差異に限定されずに実施でき、車載の走行駆動用以外の用途の電動機でも実施できる。本発明は、その他さまざまな変形や応用が可能である。   The present invention can be implemented without being limited to differences in the type of power source of the motor 1, the type such as the synchronous type and the induction type, the control method and the internal structure, etc. it can. Various other modifications and applications of the present invention are possible.

1:電動機 11:出力軸
2:直流電源 3:インバータ装置 4:電動機ECU
5:車両ECU 6:減速機 7:トルク変遷吸収装置 9:車両
N:回転数 Nmax:最大回転数
T:トルク、制動トルク Tmax:最大トルク Tx:回生トルク
K:路面勾配 η:効率 Emax:最高効率線 AL:低負荷領域
GH:高速巡航重心点 GL:市街地走行重心点 v:車速
D:要求動作点 n1:要求回転数 Tn1:要求トルク
Dmax:最高効率点 Tn1e−max:最高効率トルク値
tA:単位時間 tB:通電時間 tC:キャリア周期
Vdc:直流電圧 V:矩形波電圧 I:電流
1: Electric motor 11: Output shaft 2: DC power supply 3: Inverter device 4: Electric motor ECU
5: Vehicle ECU 6: Reducer 7: Torque transition absorber 9: Vehicle N: Number of revolutions Nmax: Maximum number of revolutions T: Torque, braking torque Tmax: Maximum torque Tx: Regenerative torque K: Road gradient η: Efficiency Emax: Maximum Efficiency line AL: Low load region GH: High-speed cruise center of gravity GL: City center of gravity center v: Vehicle speed D: Required operating point n1: Required speed Tn1: Required torque Dmax: Maximum efficiency point Tn1e-max: Maximum efficiency torque value tA : Unit time tB: Energizing time tC: Carrier cycle Vdc: DC voltage V: Rectangular wave voltage I: Current

Claims (8)

要求動作点となる可変の要求回転数および要求トルクに基づき、実際の出力動作点である出力回転数および出力トルクを前記要求動作点に一致させるように電気入力を制御する電動機の制御方法であって、
所定の単位時間を通して、前記要求回転数に前記出力回転数を継続的に一致させるとともに、前記要求回転数の条件下で最も高い効率が得られるトルク値である最高効率トルク値と、前記電気入力をなくしたときのゼロトルク値とを前記単位時間内の時間比率で組み合わせて前記電動機が実際に出力する瞬時トルクを変遷させ、
前記瞬時トルクの前記単位時間を通した時間平均値で求められる前記出力トルクが前記要求トルクに一致するように前記電気入力を制御し、
前記要求回転数および前記要求トルクが一定である間、前記単位時間を略一定に維持しつつ、
時間経過に伴い前記単位時間ごとに前記時間比率および前記最高効率トルク値および前記ゼロトルク値の少なくともひとつをわずかに変化させ、あるいは揺動させる電動機の制御方法。
A control method for an electric motor that controls an electric input so that an actual output operation point and output torque coincide with the required operation point based on a variable request rotation number and a required torque that are required operation points. And
Through a predetermined unit time, the output rotational speed is made to coincide with the required rotational speed continuously, and a maximum efficiency torque value that is a torque value at which the highest efficiency is obtained under the conditions of the required rotational speed, and the electric input The instantaneous torque that the motor actually outputs is changed by combining the zero torque value at the time of erasing with the time ratio within the unit time ,
Controlling the electrical input so that the output torque determined by the time average value of the instantaneous torque through the unit time matches the required torque ;
While the required rotational speed and the required torque are constant, while maintaining the unit time substantially constant,
A method for controlling an electric motor in which at least one of the time ratio, the maximum efficiency torque value, and the zero torque value is slightly changed or oscillated for each unit time as time passes .
請求項1において、時間経過に伴い前記単位時間をわずかに変化させ、あるいは揺動させる電動機の制御方法。 The method for controlling an electric motor according to claim 1 , wherein the unit time is slightly changed or oscillated with time. 要求動作点となる可変の要求回転数および要求トルクに基づき、実際の出力動作点である出力回転数および出力トルクを前記要求動作点に一致させるように電気入力を制御する電動機の制御方法であって、
所定の単位時間を通して、前記要求回転数に前記出力回転数を継続的に一致させるとともに、前記要求回転数の条件下で最も高い効率が得られるトルク値である最高効率トルク値と、前記電気入力をなくしたときのゼロトルク値とを前記単位時間内の時間比率で組み合わせて前記電動機が実際に出力する瞬時トルクを変遷させ、
前記瞬時トルクの前記単位時間を通した時間平均値で求められる前記出力トルクが前記要求トルクに一致するように前記電気入力を制御し、
前記要求回転数および前記要求トルクが一定である間、前記単位時間を略一定に維持しつつ、
時間経過に伴い前記単位時間をわずかに変化させ、あるいは揺動させる電動機の制御方法。
A control method for an electric motor that controls an electric input so that an actual output operation point and output torque coincide with the required operation point based on a variable request rotation number and a required torque that are required operation points. And
Through a predetermined unit time, the output rotational speed is made to coincide with the required rotational speed continuously, and a maximum efficiency torque value that is a torque value at which the highest efficiency is obtained under the conditions of the required rotational speed, and the electric input The instantaneous torque that the motor actually outputs is changed by combining the zero torque value at the time of erasing with the time ratio within the unit time,
Controlling the electrical input so that the output torque determined by the time average value of the instantaneous torque through the unit time matches the required torque;
While the required rotational speed and the required torque are constant, while maintaining the unit time substantially constant,
An electric motor control method in which the unit time is slightly changed or oscillated with time .
請求項1〜3のいずれか一項において、
前記電気入力の制御方式は、繰り返すキャリア周期内で矩形波電圧のデューティ比を可変に制御する電圧型パルス幅変調制御方式であり、
前記単位時間は、前記キャリア周期の2倍以上であり、前記要求回転数および前記要求トルクに応じて設定される電動機の制御方法。
In any one of Claims 1-3 ,
The electric input control method is a voltage-type pulse width modulation control method for variably controlling the duty ratio of the rectangular wave voltage within a repeated carrier cycle.
The electric motor control method, wherein the unit time is at least twice the carrier cycle and is set according to the required rotational speed and the required torque.
請求項1〜4のいずれか一項において、前記電動機の出力側に前記瞬時トルクの変遷を吸収して瞬時変化を抑制するトルク変遷吸収装置を設けた電動機の制御方法。 5. The motor control method according to claim 1 , further comprising: a torque transition absorption device that absorbs the transition of the instantaneous torque and suppresses the instantaneous change on the output side of the motor. 6. 請求項1〜5のいずれか一項において、前記要求回転数および前記要求トルクが所定の条件を満たすときに、前記単位時間を通して前記要求回転数に前記出力回転数を継続的に一致させるとともに前記高効率トルク値を含んで前記瞬時トルクを変遷させ、前記所定の条件を満たさないときに、前記単位時間を通して前記要求回転数に前記出力回転数を継続的に一致させるとともに前記要求トルクに前記瞬時トルクを継続的に一致させる電動機の制御方法。 In any one of Claims 1-5 , when the said request | requirement rotation speed and the said request | requirement torque satisfy | fill predetermined conditions, while making the said output rotation speed correspond to the said request | requirement rotation speed continuously through the said unit time, the said When the instantaneous torque is changed including a high-efficiency torque value and the predetermined condition is not satisfied, the output rotational speed is continuously matched with the required rotational speed through the unit time and the instantaneous torque is matched with the required torque. An electric motor control method for continuously matching torques. 請求項6において、前記所定の条件は、前記要求回転数および前記要求トルクの時間変化率が所定の閾値以下となる条件である電動機の制御方法。 7. The motor control method according to claim 6 , wherein the predetermined condition is a condition in which a time change rate of the required rotational speed and the required torque is equal to or less than a predetermined threshold value. 請求項1〜7のいずれか一項において、前記電動機はハイブリッド車両または電気自動車に搭載されて走行駆動源に用いられる電動機の制御方法。 The method for controlling an electric motor according to any one of claims 1 to 7 , wherein the electric motor is mounted on a hybrid vehicle or an electric vehicle and used as a travel drive source.
JP2011142906A 2011-06-28 2011-06-28 Electric motor control method Expired - Fee Related JP5857472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142906A JP5857472B2 (en) 2011-06-28 2011-06-28 Electric motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142906A JP5857472B2 (en) 2011-06-28 2011-06-28 Electric motor control method

Publications (2)

Publication Number Publication Date
JP2013013181A JP2013013181A (en) 2013-01-17
JP5857472B2 true JP5857472B2 (en) 2016-02-10

Family

ID=47686562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142906A Expired - Fee Related JP5857472B2 (en) 2011-06-28 2011-06-28 Electric motor control method

Country Status (1)

Country Link
JP (1) JP5857472B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165530B2 (en) 2018-07-27 2022-11-04 コマニー株式会社 Orito
US11973447B2 (en) 2021-06-28 2024-04-30 Tula eTechnology, Inc. Selective phase control of an electric machine
US12003202B2 (en) 2018-03-19 2024-06-04 Tula eTechnology, Inc. Pulsed electric machine control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119752A (en) * 2021-05-21 2021-07-16 重庆军工产业集团有限公司 Pure electric vehicle hill start control strategy considering driving style

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153705A (en) * 1991-11-28 1993-06-18 Hitachi Ltd Electric automobile
JP3716534B2 (en) * 1997-02-27 2005-11-16 日産自動車株式会社 Motor control device and electric vehicle
JP3932705B2 (en) * 1998-12-08 2007-06-20 トヨタ自動車株式会社 Control device for electric motor for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12003202B2 (en) 2018-03-19 2024-06-04 Tula eTechnology, Inc. Pulsed electric machine control
JP7165530B2 (en) 2018-07-27 2022-11-04 コマニー株式会社 Orito
US11973447B2 (en) 2021-06-28 2024-04-30 Tula eTechnology, Inc. Selective phase control of an electric machine

Also Published As

Publication number Publication date
JP2013013181A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP4513907B2 (en) Hybrid vehicle
JP5751240B2 (en) AC motor control system
JP4835171B2 (en) Motor drive device
JP4991555B2 (en) Hybrid vehicle and operation control method of hybrid vehicle
JP5682515B2 (en) Control device for hybrid electric vehicle
JP5447346B2 (en) Control device for hybrid electric vehicle
JP5924367B2 (en) Electric vehicle
WO2022227422A1 (en) Electric drive system control method, electric drive system, and vehicle
JP6617727B2 (en) Hybrid vehicle
JP5857472B2 (en) Electric motor control method
JP2018133935A (en) Inverter device and electric vehicle
JP2018098857A (en) Drive assembly and automobile
WO2010140212A1 (en) Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device
JP5926172B2 (en) AC motor control system
JP4842011B2 (en) Electric motor control device
JP2009196415A (en) Control device and control method for hybrid vehicle
JP5994231B2 (en) Control device for driving device
JP5459036B2 (en) Vehicle and vehicle control method
JP6543745B2 (en) Control device for hybrid vehicle
JP2014181001A (en) Drive control unit of hybrid vehicle and booming noise avoidance method
JP2012182912A (en) Electric vehicle and control method therefor
JP2008125225A (en) Motor driving device
JP7139977B2 (en) Driving force control device for hybrid vehicle
JP2021166461A (en) Inverter control device and electric vehicle system
JP2017085847A (en) Rotary electric machine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R151 Written notification of patent or utility model registration

Ref document number: 5857472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees