JP5856956B2 - Blood test method - Google Patents

Blood test method Download PDF

Info

Publication number
JP5856956B2
JP5856956B2 JP2012522624A JP2012522624A JP5856956B2 JP 5856956 B2 JP5856956 B2 JP 5856956B2 JP 2012522624 A JP2012522624 A JP 2012522624A JP 2012522624 A JP2012522624 A JP 2012522624A JP 5856956 B2 JP5856956 B2 JP 5856956B2
Authority
JP
Japan
Prior art keywords
pivka
antibody
monoclonal antibody
vitamin
prothrombin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012522624A
Other languages
Japanese (ja)
Other versions
JPWO2012002345A1 (en
Inventor
吉康 狩野
吉康 狩野
卓味 大村
卓味 大村
紀光 荒井
紀光 荒井
順 西村
順 西村
宮崎 修
修 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Medical Co Ltd
Eidia Co Ltd
Original Assignee
Sekisui Medical Co Ltd
Eidia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Medical Co Ltd, Eidia Co Ltd filed Critical Sekisui Medical Co Ltd
Priority to JP2012522624A priority Critical patent/JP5856956B2/en
Publication of JPWO2012002345A1 publication Critical patent/JPWO2012002345A1/en
Application granted granted Critical
Publication of JP5856956B2 publication Critical patent/JP5856956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/974Thrombin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis

Description

本発明は、PIVKA−IIの測定方法、PIVKA−IIの測定試薬及び抗体に関し、特に、検体中のビタミンK欠乏に起因するPIVKA−IIを測定することによる肝がんにおける肝障害度の判定及び特異性を上げることが可能なPIVKA−IIの測定方法、PIVKA−IIの測定試薬及びモノクローナル抗体に関する。   The present invention relates to a method for measuring PIVKA-II, a reagent for measuring PIVKA-II, and an antibody, and in particular, determination of the degree of liver damage in liver cancer by measuring PIVKA-II resulting from vitamin K deficiency in a specimen, and The present invention relates to a method for measuring PIVKA-II capable of increasing specificity, a reagent for measuring PIVKA-II, and a monoclonal antibody.

PIVKA−II(Protein Induced by Vitamin K Absence or Antagonist-II)は、AFP(α−フェトプロテイン)と並んで肝がんを診断するマーカーとして広く臨床検査室で測定されている。
PIVKA−IIはビタミンK依存性血漿タンパク質の一つであるプロトロンビンの前駆物質である。プロトロンビン(血液凝固第II因子)は、分子量71,600のタンパクで、フラグメント1、2及びトロンビンの3領域から構成されており、アミノ酸配列も明らかにされている(非特許文献1)。フラグメント1は、N末端から41個のアミノ酸によって構成されるGlaドメインを含む156個のアミノ酸からなる。このGlaドメイン中の10個のγ−カルボキシグルタミン酸(Gla)残基が正常に合成されたものが正常プロトロンビン、正常に合成されず、その全てあるいは一部がグルタミン酸(Glu)残基のままのものがPIVKA−IIである。従って、PIVKA−IIとは正常プロトロンビンのγ−カルボキシグルタミン酸残基についての脱カルボキシル化体であるということもでき、異常プロトロンビンと呼ばれることもある。10個のグルタミン酸残基中いくつがγ−カルボキシル化を受けるかにより数種類のPIVKA−IIが混在した状態で存在している(非特許文献2)。
PIVKA-II (Protein Induced by Vitamin K Absence or Antagonist-II) is widely measured in clinical laboratories as a marker for diagnosing liver cancer along with AFP (α-fetoprotein).
PIVKA-II is a precursor of prothrombin, which is one of vitamin K-dependent plasma proteins. Prothrombin (blood coagulation factor II) is a protein having a molecular weight of 71,600 and is composed of three regions of fragments 1 and 2 and thrombin, and its amino acid sequence has also been clarified (Non-patent Document 1). Fragment 1 consists of 156 amino acids including a Gla domain composed of 41 amino acids from the N-terminus. Those in which 10 γ-carboxyglutamic acid (Gla) residues in this Gla domain are normally synthesized are normal prothrombin, those that are not normally synthesized, and all or part of them remain as glutamic acid (Glu) residues Is PIVKA-II. Therefore, PIVKA-II can be said to be a decarboxylated form of the γ-carboxyglutamic acid residue of normal prothrombin, and is sometimes called abnormal prothrombin. Depending on how many of the 10 glutamic acid residues are subjected to γ-carboxylation, several types of PIVKA-II exist in a mixed state (Non-patent Document 2).

肝がん細胞が産出するPIVKA−IIは、ほとんどがGlu残基のままであり、セルラインMU−3より得たモノクローナル抗体(特許文献1)を使用した従来のPIVKA−II測定試薬は、正常プロトロンビンの10個のGla残基のうち、10〜9個がGlu残基であるPIVKA−IIと強い反応性を示すことが知られている(非特許文献2)。   Most PIVKA-II produced by hepatoma cells remain Glu residues, and the conventional PIVKA-II measuring reagent using a monoclonal antibody (Patent Document 1) obtained from the cell line MU-3 is normal. It is known that 10 to 9 of the 10 Gla residues of prothrombin show strong reactivity with PIVKA-II, which is a Glu residue (Non-patent Document 2).

一般的には、PIVKA−IIは次のようにして測定されている。まず、PIVKA−IIに特異的なモノクローナル抗体やポリクローナル抗体を吸着させた磁気ビーズやガラスビーズ、プラスチックプレート、ラテックス等を血清や血漿と第一反応させたのち、BF洗浄を行い、続いて酵素、蛍光物質、放射性同位元素やRu錯体等で標識した、ヒトプロトロンビンに特異的なポリクローナル抗体又はモノクローナル抗体を加えて第二反応をさせてBF洗浄した後、抗原抗体反応によって形成された免疫複合体に結合している酵素、蛍光物質、放射性同位元素、Ru錯体の吸光度又は発光量を測定する(特許文献2)。
また、プロトロンビンとは反応せず且つPIVKA−IIとのみ反応するモノクローナル抗体と、プロトロンビンと反応し且つPIVKA−IIとも反応するモノクローナル抗体を組み合わせた測定方法も知られている(特許文献3)。
また、Gla残基はカルシウム結合能を持っているため、カルシウム存在下で立体構造が変化することがわかっており、カルシウム存在下でのみPIVKA−IIに特異的に結合する抗体を用いた測定方法も知られている(非特許文献3)。
Generally, PIVKA-II is measured as follows. First, magnetic beads, glass beads, plastic plates, latex, etc. adsorbed with a PIVKA-II specific monoclonal or polyclonal antibody are first reacted with serum or plasma, followed by BF washing, followed by enzyme, After adding a polyclonal antibody or monoclonal antibody specific to human prothrombin labeled with a fluorescent substance, radioisotope, Ru complex, etc., followed by BF washing, the immune complex formed by the antigen-antibody reaction The absorbance or luminescence amount of the bound enzyme, fluorescent substance, radioisotope, or Ru complex is measured (Patent Document 2).
A measurement method is also known in which a monoclonal antibody that does not react with prothrombin and reacts only with PIVKA-II and a monoclonal antibody that reacts with prothrombin and also reacts with PIVKA-II are combined (Patent Document 3).
In addition, since the Gla residue has a calcium binding ability, it is known that the three-dimensional structure changes in the presence of calcium, and a measurement method using an antibody that specifically binds to PIVKA-II only in the presence of calcium Is also known (Non-patent Document 3).

肝がんは他臓器の悪性腫瘍と異なり、もともと慢性肝炎や肝硬変であったところに肝がんが合併するため、肝がん症例の治療にあたっては腫瘍側因子だけではなく、肝障害度を考量した上で治療方針を決定する必要がある。腫瘍マーカー検査としては、PIVKA−IIやAFPが用いられているが、治療方針の決定に必要となる肝障害度や予後を必ずしも反映していない。こうした中、肝障害度や予後予測を反映する血液検査が望まれていた。
肝障害度とは、「原発性肝癌取扱い規約」に記載されている肝予備能を評価する指標である。腹水、血清ビリルビン値、血清アルブミン値、ICG R15、プロトロンビン活性値を3度に分類し、各項目別重症度を求め、2項目以上が該当した肝障害度を取る。またはChild−Pugh分類を用いて評価することもできる。Child−Pugh分類は、脳症、腹水、血清ビリルビン値、血清アルブミン値、プロトロンビン活性値について、1〜3点のポイントを付け、その合計点の低い方からA〜Cまで分類する肝障害度を示す指標である。
Liver cancer is different from malignant tumors of other organs, and liver cancer is complicated by chronic hepatitis or cirrhosis. Therefore, in treating patients with liver cancer, not only the tumor side factors but also the degree of liver damage is considered. Therefore, it is necessary to decide the treatment policy. PIVKA-II and AFP are used as tumor marker tests, but they do not necessarily reflect the degree of liver damage and prognosis required for the determination of a treatment policy. Under these circumstances, blood tests that reflect the degree of liver damage and prognosis have been desired.
The degree of liver injury is an index for evaluating the liver reserve capacity described in the “Primary Liver Cancer Handling Regulations”. Ascites, serum bilirubin level, serum albumin level, ICG R 15 , and prothrombin activity level are classified into 3 degrees, the severity for each item is obtained, and the liver damage degree corresponding to 2 or more items is taken. Or it can also be evaluated using the Child-Pugh classification. The Child-Pugh classification shows the degree of liver damage that classifies from 1 to 3 points for the encephalopathy, ascites, serum bilirubin level, serum albumin level, and prothrombin activity level, and classifies from the lowest of the total points to AC. It is an indicator.

またPIVKA−IIは、肝がんでない場合でも、ビタミンK不足、ビタミンK拮抗剤投与症例においても上昇することがわかっている。試薬の高感度化に伴いアルコール性肝炎等における偽陽性が散見され、さらにPIVKA−IIが陽性にもかかわらず画像診断では肝がんが見つからない症例も報告されている。こうした中、より肝がんに特異性の高い測定方法の開発が望まれていた。   PIVKA-II has also been found to be elevated in vitamin K deficient and vitamin K antagonist administered cases even when liver cancer is not present. As the sensitivity of the reagent is increased, false positives in alcoholic hepatitis and the like are occasionally observed, and there are cases where liver cancer is not found by image diagnosis even though PIVKA-II is positive. Under these circumstances, development of a measurement method with higher specificity for liver cancer has been desired.

特公平5−43357Japanese Patent Publication 5-43357 特開平5−249108JP-A-5-249108 特開平9−43237JP 9-43237 A

Biochemistry. 1987 Sep 22;26(19):6165-77Biochemistry. 1987 Sep 22; 26 (19): 6165-77 Biochem Biophys Acta. 2002 Apr 24;1586(3):287-98 2002Biochem Biophys Acta. 2002 Apr 24; 1586 (3): 287-98 2002 J Immunoassay. 1995 May;16(2):213-29.J Immunoassay. 1995 May; 16 (2): 213-29.

前述のごとくPIVKA−IIには、肝臓において肝がん細胞が産出するPIVKA−IIと、ビタミンK欠乏に起因するPIVKA−II(以下、肝がん細胞が産出するPIVKA−II以外のPIVKA−IIを「ビタミンK欠乏に起因するPIVKA−II」とする。)があるが、従来の測定試薬ではそれらの区別が難しく、偽陽性が散見されるため、より偽陽性の少ない測定方法の開発が望まれていた。
本発明は、肝がんにおける肝障害度の判定及び予後予測を可能とし、肝がんを感度良く検出することができるPIVKA−IIの測定方法、PIVKA−IIの測定試薬、肝障害度の判定方法及び肝がんの判定方法を提供することを目的とする。
As described above, PIVKA-II includes PIVKA-II produced by liver cancer cells in the liver and PIVKA-II caused by vitamin K deficiency (hereinafter referred to as PIVKA-II other than PIVKA-II produced by liver cancer cells). Is called “PIVKA-II caused by vitamin K deficiency”), but it is difficult to distinguish them with conventional measurement reagents, and false positives are sometimes seen. Therefore, the development of a measurement method with fewer false positives is desired. It was rare.
The present invention makes it possible to determine the degree of liver injury and predict the prognosis in liver cancer, and to detect liver cancer with high sensitivity, a method for measuring PIVKA-II, a reagent for measuring PIVKA-II, and a method for determining the degree of liver injury The object is to provide a method and a method for determining liver cancer.

本発明者らは、鋭意検討を行い、ビタミンK欠乏に起因するPIVKA−IIと反応する2種の抗体を用いた二抗体サンドイッチ法によりPIVKA−IIを測定することで、肝がんにおける肝障害度の判定及び予後予測が可能となることを見出した。また、この抗体を用いて得られる測定値と従来の方法で行ったPIVKA−II測定値を比較することにより、アルコール性肝炎や肝硬変と肝がんを区別することが可能であり、肝がんの予後予測と、特異性の高い肝がんの検出が可能となることを見出し、本発明を完成した。   The present inventors have conducted intensive studies and measured PIVKA-II by a two-antibody sandwich method using two types of antibodies that react with PIVKA-II caused by vitamin K deficiency, thereby causing liver damage in liver cancer. It was found that it was possible to judge the degree and predict the prognosis. Moreover, it is possible to distinguish alcoholic hepatitis or cirrhosis from liver cancer by comparing the measured value obtained using this antibody with the measured value of PIVKA-II performed by a conventional method. The present invention has been completed by finding that it is possible to predict the prognosis of liver cancer and to detect liver cancer with high specificity.

すなわち、本発明のPIVKA−IIの測定方法は、(a)二抗体サンドイッチ法を利用する免疫学的測定法によってビタミンK欠乏に起因するPIVKA−IIを測定し、測定値Aを得る工程、を含むPIVKA−IIの測定方法であって、前記(a)工程の二抗体サンドイッチ法で用いられる抗体として、ビタミンK欠乏に起因するPIVKA−IIに特異的な抗体を使用することを特徴とする。   That is, the method for measuring PIVKA-II of the present invention comprises (a) measuring PIVKA-II caused by vitamin K deficiency by an immunological measurement method using a two-antibody sandwich method, and obtaining a measurement value A. A method for measuring PIVKA-II, comprising using an antibody specific for PIVKA-II caused by vitamin K deficiency as the antibody used in the two-antibody sandwich method of step (a).

本発明のPIVKA−IIの測定方法は、(b)二抗体サンドイッチ法を利用する免疫学的測定法によってPIVKA−IIを測定し、測定値Bを得る工程、及び(c)前記測定値A及び前記測定値Bを比較する工程、をさらに含み、前記(b)工程の二抗体サンドイッチ法で用いられる一方の抗体として人肝がん細胞培養細胞株より精製したPIVKA−IIと反応する抗PIVKA−IIモノクローナル抗体を使用し、前記(b)工程の二抗体サンドイッチ法で用いられる他方の抗体としてヒトトロンビンと反応する抗体を含まない抗ヒトプロトロンビン抗体を使用することが好適である。   The method for measuring PIVKA-II of the present invention comprises (b) a step of measuring PIVKA-II by an immunoassay utilizing a two-antibody sandwich method to obtain a measurement value B, and (c) the measurement value A and A step of comparing the measured value B, and anti-PIVKA-reactive with PIVKA-II purified from a human hepatoma cell culture cell line as one of the antibodies used in the two-antibody sandwich method of step (b) It is preferable to use an anti-human prothrombin antibody that does not contain an antibody that reacts with human thrombin as the other antibody used in the two-antibody sandwich method of step (b), using a II monoclonal antibody.

前記(a)工程の二抗体サンドイッチ法で用いられる抗体が、人肝がん細胞培養細胞株より精製したPIVKA−IIと反応しないことが好ましい。   It is preferable that the antibody used in the two-antibody sandwich method in the step (a) does not react with PIVKA-II purified from a human hepatoma cell culture cell line.

前記(a)工程の二抗体サンドイッチ法で用いられる抗体が、ヒトトロンビンと反応しないことが好適である。   It is preferable that the antibody used in the two-antibody sandwich method in the step (a) does not react with human thrombin.

前記(a)工程の二抗体サンドイッチ法で用いられる抗体がモノクローナル抗体であることが好適である。   It is preferable that the antibody used in the two-antibody sandwich method in the step (a) is a monoclonal antibody.

前記(a)工程の二抗体サンドイッチ法で用いられる抗体がいずれも、Ca2+イオンの共存下における抗原固相ELISAにおいて、i)プロトロンビンとは反応せず、且つii)プロトロンビンの脱炭酸処理を6時間したものに比べ、脱炭酸処理を30分したものに対する反応性が高い、ものの組み合わせであることが好適である。None of the antibodies used in the two-antibody sandwich method of step (a) is i) reacting with prothrombin in the antigen solid phase ELISA in the presence of Ca 2+ ions, and ii) decarboxylation of prothrombin. It is preferable to be a combination of things that are more reactive than those obtained after 30 minutes of decarboxylation compared to those obtained after 6 hours.

本発明のPIVKA−IIの測定試薬は、二抗体サンドイッチ法を利用する免疫学的測定法によってビタミンK欠乏に起因するPIVKA−IIを測定するに当り、抗体として、ビタミンK欠乏に起因するPIVKA−IIに特異的な抗体を使用することを特徴とする。   The measurement reagent for PIVKA-II of the present invention can be used as an antibody when PIVKA-II caused by vitamin K deficiency is measured by an immunological assay using a two-antibody sandwich method. It is characterized by using an antibody specific for II.

本発明のビタミンK欠乏に起因するPIVKA−IIの測定試薬において、前記二抗体サンドイッチ法で用いられる抗体がいずれも、Ca2+イオンの共存下における抗原固相ELISAにおいて、i)プロトロンビンとは反応せず、且つii)プロトロンビンの脱炭酸処理を6時間したものに比べ、脱炭酸処理を30分したものに対する反応性が高い、ものの組み合わせであることが好適である。In the measurement reagent for PIVKA-II caused by vitamin K deficiency according to the present invention, any of the antibodies used in the two-antibody sandwich method is reacted with i) prothrombin in an antigen solid-phase ELISA in the presence of Ca 2+ ions. And ii) a combination of those having a higher reactivity to 30 minutes of decarboxylation compared to 6 hours of prothrombin decarboxylation.

本発明のモノクローナル抗体の第一の態様は、受託番号FERM BP−11258で特定されるハイブリドーマにより産生されることを特徴とする。   A first aspect of the monoclonal antibody of the present invention is characterized by being produced by a hybridoma specified by accession number FERM BP-11258.

本発明のモノクローナル抗体の第二の態様は、受託番号FERM BP−11259で特定されるハイブリドーマにより産生されることを特徴とする。   A second aspect of the monoclonal antibody of the present invention is characterized by being produced by a hybridoma specified by accession number FERM BP-11259.

本発明のハイブリドーマの第一の態様は、受託番号FERM BP−11258で特定されることを特徴とする。   The first aspect of the hybridoma of the present invention is characterized by being identified by accession number FERM BP-11258.

本発明のハイブリドーマの第二の態様は、受託番号FERM BP−11259で特定されることを特徴とする。   The second aspect of the hybridoma of the present invention is characterized by being identified by accession number FERM BP-11259.

本発明のPIVKA−IIの測定方法及び測定試薬において、前記ビタミンK欠乏に起因するPIVKA−IIに特異的な抗体が、受託番号FERM BP−11258で特定されるハイブリドーマにより産生されるモノクローナル抗体及び受託番号FERM BP−11259で特定されるハイブリドーマにより産生されるモノクローナル抗体であることが好適である。   In the method and reagent for measuring PIVKA-II of the present invention, the antibody specific to PIVKA-II resulting from vitamin K deficiency is a monoclonal antibody produced by a hybridoma identified by the accession number FERM BP-11258 and the accession It is preferably a monoclonal antibody produced by a hybridoma identified by the number FERM BP-11259.

本発明の肝障害度の判定方法は、本発明のPIVKA−IIの測定方法によって得られた値により、肝障害度を判定することを特徴とする。   The method for determining the degree of liver damage according to the present invention is characterized in that the degree of liver damage is determined based on the value obtained by the method for measuring PIVKA-II according to the present invention.

本発明の肝がんの判定方法は、本発明のPIVKA−IIの測定方法によって得られた値により、肝がんを判定することを特徴とする。   The method for determining liver cancer of the present invention is characterized by determining liver cancer based on the value obtained by the method for measuring PIVKA-II of the present invention.

本発明により、血液検査では従来は困難であった、肝がんにおける肝障害度の判定及び予後予測を的確に判定することができ、肝がんを感度良く検出することができる。さらに、本発明により、肝がんを発症していないアルコール性肝炎や肝硬変と肝がんを区別することが可能であり、肝がんの予後予測と、特異性の高い肝がんの検出が可能である。   According to the present invention, it is possible to accurately determine the determination of the degree of liver damage and prediction of prognosis in liver cancer, which has heretofore been difficult with blood tests, and to detect liver cancer with high sensitivity. Furthermore, according to the present invention, it is possible to distinguish hepatic cancer from alcoholic hepatitis or cirrhosis that does not develop liver cancer, and it is possible to predict the prognosis of liver cancer and to detect highly specific liver cancer. Is possible.

抗体の反応性とプロトロンビンの脱炭酸処理時間の関係を示したグラフである。It is the graph which showed the relationship between the reactivity of an antibody, and the decarboxylation time of prothrombin. 実施例2及び比較例1〜3の測定値のChild−Pugh分類別平均値を示したグラフであり、(a)は実施例2の結果、(b)は比較例1の結果、(c)は比較例2の結果、及び(d)は比較例3の結果をそれぞれ示す。It is the graph which showed the Child-Pugh classification | category average value of the measured value of Example 2 and Comparative Examples 1-3, (a) is the result of Example 2, (b) is the result of Comparative Example 1, (c). Shows the results of Comparative Example 2, and (d) shows the results of Comparative Example 3, respectively. 実施例2及び比較例1〜3のROC分析の結果を示したグラフである。It is the graph which showed the result of the ROC analysis of Example 2 and Comparative Examples 1-3. 実施例3のPIVKA−IIの測定結果を示すグラフである。It is a graph which shows the measurement result of PIVKA-II of Example 3. 実施例3のレシオ値を示したグラフである。10 is a graph showing a ratio value of Example 3. 実施例4(1)のGla残基含有ペプチドに対する抗体の反応性を示すグラフである。It is a graph which shows the reactivity of the antibody with respect to the Gla residue containing peptide of Example 4 (1). 実施例4(1)のペプチドの共通部位を示した図である。It is the figure which showed the common site | part of the peptide of Example 4 (1). 実施例4(2)の変性プロトロンビン及び変性PIVKA−IIに対する反応性を示す図である。It is a figure which shows the reactivity with respect to the modified | denatured prothrombin and modified | denatured PIVKA-II of Example 4 (2). 実施例4(3)のフラグメント1及びフラグメント2に対する反応性を示す図である。It is a figure which shows the reactivity with respect to the fragment 1 and the fragment 2 of Example 4 (3).

以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the illustrated examples are illustrative only, and various modifications can be made without departing from the technical idea of the present invention. .

本発明のPIVKA−IIの測定方法は、(a)二抗体サンドイッチ法を利用する免疫学的測定法によってビタミンK欠乏に起因するPIVKA−IIを測定し、測定値Aを得る工程、を含むPIVKA−IIの測定方法であって、前記(a)工程の二抗体サンドイッチ法で用いられる抗体として、ビタミンK欠乏に起因するPIVKA−IIに特異的な抗体を使用するものである。本願明細書において、前記(a)工程で測定されたビタミンK欠乏に起因するPIVKA−IIをNX−PVKAと称することがある。   The method for measuring PIVKA-II of the present invention comprises the step of (a) measuring PIVKA-II caused by vitamin K deficiency by an immunological assay utilizing a two-antibody sandwich method and obtaining a measurement value A. -II measurement method, wherein an antibody specific for PIVKA-II caused by vitamin K deficiency is used as the antibody used in the two-antibody sandwich method of step (a). In the present specification, PIVKA-II resulting from vitamin K deficiency measured in the step (a) may be referred to as NX-PVKA.

前記(a)工程の二抗体サンドイッチ法で用いられる抗体は、それぞれ、ビタミンK欠乏に起因するPIVKA−IIを抗原として作製されるビタミンK欠乏に起因するPIVKA−IIと反応する抗体であり、例えば、下記方法により製造される。   The antibodies used in the two-antibody sandwich method of step (a) are each an antibody that reacts with PIVKA-II caused by vitamin K deficiency produced using PIVKA-II caused by vitamin K deficiency as an antigen. It is manufactured by the following method.

非肝がん症例のクマジン血漿(ビタミンK拮抗物質投与患者の血漿)より精製したPIVKA−II、すなわち、ビタミンK欠乏に起因するPIVKA−IIを免疫原にして、公知の方法によりハイブリドーマを作製し、ビタミンK欠乏に起因するPIVKA−IIと反応するハイブリドーマ株を選択する。該ハイブリドーマ株選択時に、人肝がん細胞培養細胞株より精製したPIVKA−IIやヒトトロンビンと反応しないハイブリドーマ株を選択することが好ましい。特に、プロトロンビンの10個のグルタミン酸残基についてのγ−カルボキシル化の割合が高いPIVKA−IIに反応性が高いハイブリドーマを選択することが好適であり、具体的には、正常プロトロンビンの脱炭酸処理時間が短いPIVKA−IIに対して高い反応性を示すハイブリドーマを選択することが好適である。例えば、プロトロンビンより脱炭酸処理時間30分及び6時間で調製したPIVKA−IIに対する反応性を比較する場合、30分で調製したPIVKA−IIに対する反応性を6時間で調製したPIVKA−IIに対する反応性で割った場合に1より大きくなるハイブリドーマを選択することが好ましい。前記ハイブリドーマとしては、受託番号FERM BP−11258で特定されるハイブリドーマ及び受託番号FERM BP−11259で特定されるハイブリドーマが好ましい。   A hybridoma was prepared by a known method using PIVKA-II purified from coumadin plasma of a non-hepatoma case (plasma of a vitamin K antagonist administered patient), that is, PIVKA-II resulting from vitamin K deficiency as an immunogen. A hybridoma strain that reacts with PIVKA-II due to vitamin K deficiency is selected. When selecting the hybridoma strain, it is preferable to select a hybridoma strain that does not react with PIVKA-II or human thrombin purified from a human hepatoma cell culture cell line. In particular, it is preferable to select a hybridoma that is highly reactive to PIVKA-II with a high γ-carboxylation rate for 10 glutamic acid residues of prothrombin, and specifically, a decarboxylation time of normal prothrombin It is preferable to select a hybridoma that shows a high reactivity with PIVKA-II, which is short. For example, when comparing the reactivity to PIVKA-II prepared from prothrombin at 30 minutes and 6 hours of decarboxylation, the reactivity to PIVKA-II prepared at 30 minutes is the reactivity to PIVKA-II prepared at 6 hours. It is preferred to select a hybridoma that is greater than 1 when divided by. As the hybridoma, a hybridoma specified by the accession number FERM BP-11258 and a hybridoma specified by the accession number FERM BP-11259 are preferable.

前記選択したハイブリドーマを用いてモノクローナル抗体産生ハイブリドーマを作製し、該モノクローナル抗体産生ハイブリドーマを用いて公知の方法によりビタミンK欠乏に起因するPIVKA−IIと反応するモノクローナル抗体を得ることが好ましい。   It is preferable to produce a monoclonal antibody-producing hybridoma using the selected hybridoma and obtain a monoclonal antibody that reacts with PIVKA-II caused by vitamin K deficiency by a known method using the monoclonal antibody-producing hybridoma.

前記(a)工程における二抗体サンドイッチ法を利用する免疫学的測定法は、例えば、下記方法により実施される。
前記方法により、ビタミンK欠乏に起因するPIVKA−IIを抗原として2種のモノクローナル抗体を調製し、一方を固相化して用い、他方を標識して用いる。該2種の抗体は、互いに交差反応しない抗体である。
抗体を固相化する方法は特に制限はないが、例えば、磁気ビーズやマイクロプレート等の固相に固相化することが好適である。
抗体を標識する方法は特に制限はないが、Ru等の標識物質により標識することが好ましい。
The immunoassay method using the two-antibody sandwich method in the step (a) is performed, for example, by the following method.
According to the above method, two kinds of monoclonal antibodies are prepared using PIVKA-II caused by vitamin K deficiency as an antigen, one of which is used in a solid phase, and the other is used after being labeled. The two types of antibodies are antibodies that do not cross-react with each other.
The method for immobilizing the antibody is not particularly limited, but for example, it is preferable to immobilize the antibody on a solid phase such as a magnetic bead or a microplate.
The method for labeling the antibody is not particularly limited, but labeling with a labeling substance such as Ru is preferable.

前記固相化抗体及び標識抗体を用いて、検体中のビタミンK欠乏に起因するPIVKA−IIを測定する。測定は、二抗体サンドイッチ法を利用する免疫学的測定法における通常の手順に従って行えばよい。なお、後述する実施例では、電気化学発光免疫測定法を用いた例を示したが、本発明はこれに限定されるものではなく、例えば、化学発光法や放射性同位元素法等の公知の測定法を広く使用可能である。   PIVKA-II caused by vitamin K deficiency in the sample is measured using the solid-phased antibody and the labeled antibody. The measurement may be performed according to a normal procedure in an immunological measurement method using a two-antibody sandwich method. In the examples to be described later, an example using an electrochemiluminescence immunoassay was shown, but the present invention is not limited to this, for example, a known measurement such as a chemiluminescence method or a radioisotope method. The law can be widely used.

本発明において、前記(a)工程で測定されたNX−PVKAの測定値Aを得ることにより、肝がんにおける肝障害度を判定することができる。また、測定値Aを、従来の方法により測定されるPIVKA−IIの測定値と比較することにより、肝がんを発症していないアルコール性肝炎や肝硬変と肝がんを区別することができる。
従来の肝がんで上昇するPIVKA−IIの測定方法としては特に制限はないが、例えば、(b)二抗体サンドイッチ法を利用する免疫学的測定法によってPIVKA−IIを測定し、測定値Bを得る工程を含み、前記(b)工程の二抗体サンドイッチ法で用いられる一方の抗体として人肝がん細胞培養細胞株より精製したPIVKA−IIと反応する抗PIVKA−IIモノクローナル抗体を使用し、前記(b)工程の二抗体サンドイッチ法で用いられる他方の抗体としてヒトトロンビンと反応する抗体を含まない抗ヒトプロトロンビン抗体を使用する方法が挙げられる。
In the present invention, the degree of liver injury in liver cancer can be determined by obtaining the measurement value A of NX-PVKA measured in the step (a). Moreover, by comparing the measured value A with the measured value of PIVKA-II measured by a conventional method, alcoholic hepatitis or cirrhosis that does not develop liver cancer can be distinguished from liver cancer.
The conventional method for measuring PIVKA-II that rises in liver cancer is not particularly limited. For example, (b) PIVKA-II is measured by an immunological measurement method using a two-antibody sandwich method, and the measured value B is calculated. An anti-PIVKA-II monoclonal antibody that reacts with PIVKA-II purified from a human hepatoma cell culture cell line as one of the antibodies used in the two-antibody sandwich method of step (b), Examples of the other antibody used in the two-antibody sandwich method in step (b) include a method of using an anti-human prothrombin antibody that does not contain an antibody that reacts with human thrombin.

前記測定値Aと前記測定値Bを比較する手段は特に制限はなく、例えば、比や差を算出する方法が挙げられるが、測定値Bを測定値Aで除算してレシオ値を求めることが好適である。   The means for comparing the measured value A and the measured value B is not particularly limited. For example, a method of calculating a ratio or a difference can be used. The ratio value can be obtained by dividing the measured value B by the measured value A. Is preferred.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらは本発明の範囲を限定するものではない。   The present invention will be described more specifically with reference to the following examples. However, these examples do not limit the scope of the present invention.

(実施例1)モノクローナル抗体の調製
(1)ハイブリドーマの調製
クマジン血漿(UNIGLOBE RESEARCH CORPORATION社製)より精製したPIVKA−II(1mg/mL)とフロイドの完全アジュバント(GIBCO社製)とを1対1で混和乳化し、50μg/100μmL(エマルジョン)で8週齢の雌BALB/Cマウス(日本チャールズリバー(株)製)の皮下に2週間間隔で4回投与後、最終免疫の3日後に脾臓を摘出した。摘出した脾臓から得られた脾臓細胞と骨髄腫細胞SP2/O−Ag14とを10対1の割合で混合し、50%ポリエチレングリコール1540(和光純薬工業(株)製)存在下にて細胞融合させた。融合細胞は脾臓細胞として2.5x10/mLになるようにHAT培地に懸濁し、96穴培養プレート(CORNING社製)に0.2mLずつ分注した。これを5%COインキュベーター中で37℃にて培養し、おおよそ2週間後に、ハイブリドーマの生育してきたウェルの培養上清を、次に示すELISA法にしたがって評価し、PIVKA−IIに反応する抗体を産生するハイブリドーマを選択した。
Example 1 Preparation of Monoclonal Antibody (1) Preparation of Hybridoma 1: 1 PIVKA-II (1 mg / mL) purified from coumadin plasma (UNIGLOBE RESEARCH CORPORATION) and Floyd's complete adjuvant (GIBCO) After mixing and emulsifying in 50 μg / 100 μmL (emulsion) subcutaneously in 8-week-old female BALB / C mice (Nihon Charles River Co., Ltd.) 4 times at intervals of 2 weeks, the spleen 3 days after the final immunization Extracted. Spleen cells obtained from the removed spleen and myeloma cells SP2 / O-Ag14 are mixed at a ratio of 10 to 1, and cell fusion is performed in the presence of 50% polyethylene glycol 1540 (manufactured by Wako Pure Chemical Industries, Ltd.). I let you. The fused cells were suspended as spleen cells in HAT medium so as to be 2.5 × 10 6 / mL, and 0.2 mL was dispensed into 96-well culture plates (CORNING). This was cultured in a 5% CO 2 incubator at 37 ° C., and after approximately 2 weeks, the culture supernatant of the well in which the hybridoma had grown was evaluated according to the ELISA method shown below, and the antibody reacting with PIVKA-II Were selected.

具体的には、まず、マイクロプレート(NUNC社製)に前記のPIVKA−IIを0.1μg/mL固相化した。これに、各培養上清を反応させた後、ペルオキシダーゼ標識した抗マウスIgGヤギ抗体を反応させ、次いでオルトフェニレンジアミン(東京化成工業(株)製)を含むペルオキシダーゼ基質溶液を加え発色させ、1.5N硫酸を加えて発色を停止させた後、マイクロプレートリーダー(Abs.492nm)で測定し、PIVKA−IIと反応するハイブリドーマ株を選択した。このハイブリドーマを限界希釈法によりクローン化を行った後、その培養上清から、プロテインAカラム(ファルマシア)を用いIgGを精製した。   Specifically, first, the PIVKA-II was immobilized on a microplate (manufactured by NUNC) at 0.1 μg / mL. After each culture supernatant was reacted with this, a peroxidase-labeled anti-mouse IgG goat antibody was reacted, and then a peroxidase substrate solution containing orthophenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to cause color development. After stopping color development by adding 5N sulfuric acid, a hybridoma strain that reacts with PIVKA-II was selected by measurement with a microplate reader (Abs. 492 nm). After this hybridoma was cloned by the limiting dilution method, IgG was purified from the culture supernatant using a protein A column (Pharmacia).

獲得したモノクローナル抗体の特異性を調べるため、プロトロンビン(Enzyme Research Laboratories社)からBajahらの方法(S. Paul Bajah, Paul A. Price, and William A. Russell, Decarboxylation of γ-Carboxyglutamic Acid Residues in Human Prothrombin, Journal of Biological Chemistry 257(7):3726,1982に記載の方法)に従い、脱炭酸時間の異なる各種PIVKA−IIを調製した。具体的には、4.6mg/mLのプロトロンビン溶液0.22mLに0.78mLの重炭酸アンモニウム溶液(0.1mol/L、pH8.0)を添加し、これを更に重炭酸アンモニウム溶液で4℃において一夜透析した。透析後の溶液に終濃度が10mmol/Lになるように0.1mol/L EDTA・2Naを添加し、室温で30分間静置した。この溶液を再び重炭酸アンモニウム溶液で4℃において2時間透析した。透析後の溶液をスクリューキャップ付きの耐熱性バイアル6本に等量ずつ分注し、凍結乾燥した。次にバイアル内を窒素ガスで充満させ、110℃で各時間(0分、30分、1時間、2時間、6時間、23時間)加熱した。各バイアルに1mLの生理食塩水を加え、内容物を溶解させ、使用するまで−80℃で凍結保存した。   In order to investigate the specificity of the obtained monoclonal antibody, the method of Bajah et al. (S. Paul Bajah, Paul A. Price, and William A. Russell, Decarboxylation of γ-Carboxyglutamic Acid Residues in Human Prothrombin) , Journal of Biological Chemistry 257 (7): 3726, 1982), various PIVKA-II having different decarboxylation times were prepared. Specifically, 0.78 mL of ammonium bicarbonate solution (0.1 mol / L, pH 8.0) was added to 0.22 mL of the 4.6 mg / mL prothrombin solution, and this was further added to the ammonium bicarbonate solution at 4 ° C. Dialyzed overnight. 0.1 mol / L EDTA · 2Na was added to the solution after dialysis so that the final concentration was 10 mmol / L, and the solution was allowed to stand at room temperature for 30 minutes. This solution was again dialyzed against ammonium bicarbonate solution at 4 ° C. for 2 hours. The dialyzed solution was dispensed into 6 heat-resistant vials with screw caps in equal amounts and lyophilized. The vial was then filled with nitrogen gas and heated at 110 ° C. for each time (0 minutes, 30 minutes, 1 hour, 2 hours, 6 hours, 23 hours). 1 mL of saline was added to each vial to dissolve the contents and stored frozen at −80 ° C. until use.

前記の各種PIVKA−IIのうち、脱炭酸処理時間30分及び6時間のPIVKA−II、及びプロトロンビンを0.1μg/mL固相化したマイクロプレートを用いて、塩化カルシウムを4mmol/Lの濃度で共存させた条件で、選択したハイブリドーマの精製IgGの反応性を測定した。この条件でプロトロンビンに反応せず、且つ脱炭酸処理時間6時間のPIVKA‐IIに比べて脱炭酸処理時間30分のPIVKA‐IIに対して高い反応性を示すハイブリドーマを選択し、2種類のモノクローナル抗体産生ハイブリドーマ24211と24216(以下、それぞれ「ハイブリドーマ11」及び「ハイブリドーマ16」と表記することがある)を獲得した。前記得られたハイブリドーマ11及び16は、独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6)に寄託され(受領日:2010年5月28日)、ハイブリドーマ11の受託番号はFERM BP−11258であり、ハイブリドーマ16の受託番号はFERM BP−11259である。   Of the various PIVKA-II, PIVKA-II having a decarboxylation time of 30 minutes and 6 hours, and a microplate on which 0.1 μg / mL of solid thrombin was immobilized, calcium chloride at a concentration of 4 mmol / L. The reactivity of the purified IgG of the selected hybridoma was measured under the coexisting conditions. Under these conditions, a hybridoma that does not react with prothrombin and shows high reactivity to PIVKA-II with a decarboxylation treatment time of 30 minutes compared to PIVKA-II with a decarboxylation treatment time of 6 hours was selected. Antibody-producing hybridomas 24211 and 24216 (hereinafter sometimes referred to as “hybridoma 11” and “hybridoma 16”, respectively) were obtained. The obtained hybridomas 11 and 16 were deposited at the Patent Organism Depositary Center of the National Institute of Advanced Industrial Science and Technology (1st, 1st East, 1-chome, Tsukuba City, Ibaraki, Japan) (Reception date: May 28, 2010) ), The accession number of hybridoma 11 is FERM BP-11258, and the accession number of hybridoma 16 is FERM BP-11259.

脱炭酸処理時間を表1及び図1に示した如く変更した以外は上記と同様の方法でプロトロンビンの脱炭酸処理を行い、5種類のPIVKA−IIを調製した。ハイブリドーマ11から調製したP−11モノクローナル抗体、ハイブリドーマ16から調製したP−16モノクローナル抗体、及び従来試薬(ピコルミPIVKA−II(エーディア(株)製))の抗PIVKA−IIモノクローナル抗体の前記5種類のPIVKA−II及びプロトロンビン(脱炭酸処理時間0分)に対する反応性を上記と同様の方法で測定した。結果を表1及び図1に示す。表1及び図1において、(1)はP−11モノクローナル抗体、(2)はP−16モノクローナル抗体、(3)は従来試薬の抗PIVKA−IIモノクローナル抗体(MU−3)である。なお、P−11モノクローナル抗体及びP−16モノクローナル抗体の調製は後述する方法により行った。   Prothrombin was decarboxylated in the same manner as described above except that the decarboxylation time was changed as shown in Table 1 and FIG. 1, and five types of PIVKA-II were prepared. The P-11 monoclonal antibody prepared from the hybridoma 11, the P-16 monoclonal antibody prepared from the hybridoma 16, and the anti-PIVKA-II monoclonal antibody of the conventional reagent (Picolmi PIVKA-II (manufactured by Adia Co., Ltd.)). Reactivity with PIVKA-II and prothrombin (decarboxylation time 0 minutes) was measured by the same method as described above. The results are shown in Table 1 and FIG. In Table 1 and FIG. 1, (1) is a P-11 monoclonal antibody, (2) is a P-16 monoclonal antibody, and (3) is a conventional anti-PIVKA-II monoclonal antibody (MU-3). The P-11 monoclonal antibody and the P-16 monoclonal antibody were prepared by the method described later.

(2)モノクローナル抗体の調製
ハイブリドーマ11及びハイブリドーマ16からそれぞれ下記方法によりP−11モノクローナル抗体及びP−16モノクローナル抗体を調製した。
あらかじめ2週間前にプリスタン0.5mLを腹腔内に注射しておいた12週齢の雌BALB/Cマウスに、ハイブリドーマを細胞数0.5x10個の量で腹腔内に投与した。約14日後に腹水を採取し、遠心処理して上清を得た。上清を等量の吸着用緩衝液(3mol/L NaCl−1.5mol/L Glycine−NaOH,pH8.5)と混和後、濾過した。このろ液を吸着用緩衝液で平衡化したプロテインAカラム(ファルマシア社製)に通して抗体をカラムに吸着させた後、0.1mol/Lクエン酸緩衝液(pH3.0)で溶出させてモノクローナル抗体を精製した。
(2) Preparation of monoclonal antibody P-11 monoclonal antibody and P-16 monoclonal antibody were prepared from the hybridoma 11 and the hybridoma 16, respectively, by the following method.
The hybridoma was intraperitoneally administered to a 12-week-old female BALB / C mouse that had been injected intraperitoneally with 0.5 mL of pristane two weeks ago in advance in an amount of 0.5 × 10 6 cells. About 14 days later, ascites was collected and centrifuged to obtain a supernatant. The supernatant was mixed with an equal amount of buffer for adsorption (3 mol / L NaCl-1.5 mol / L Glycine-NaOH, pH 8.5) and then filtered. The filtrate was passed through a protein A column (manufactured by Pharmacia) equilibrated with an adsorption buffer solution, and the antibody was adsorbed onto the column, followed by elution with a 0.1 mol / L citrate buffer solution (pH 3.0). Monoclonal antibody was purified.

(実施例2)
実施例1で得たP−16モノクローナル抗体及びP−11モノクローナル抗体を用い、下記方法により、ビタミンK欠乏に起因するPIVKA−IIの測定を行った。
(1)P−16モノクローナル抗体固相磁気ビーズの調製
磁気ビーズ(4.5ミクロン)30mg/mLの1mLを試験管にとり、磁石でトラップし、上清液を捨てたあと、磁気ビーズにP−16モノクローナル抗体0.5mg/mL(150mMリン酸緩衝液、pH7.8)を1mL加え、室温で一昼夜撹拌しながら反応させた。磁気ビーズを洗浄したあと、1%BSA・リン酸緩衝液を2mL加え、室温で1昼夜撹拌しながらブロッキングし、P−16モノクローナル抗体固相磁気ビーズを調製した。使用時、ビーズ希釈液で磁気ビーズ量1mg/mLに希釈して用いた。ビーズ希釈液の組成を下記に示す。
ビーズ希釈液の組成:0.05mol/Lトリス緩衝液(pH7.5)、0.150mol/L NaCl、0.01%Tween20、0.1%NaN、10%ウサギ血清(加熱)、0.1%マウス血清(清澄化)
(Example 2)
Using the P-16 monoclonal antibody and P-11 monoclonal antibody obtained in Example 1, PIVKA-II caused by vitamin K deficiency was measured by the following method.
(1) Preparation of P-16 monoclonal antibody solid phase magnetic beads Take 1 mL of magnetic beads (4.5 micron) 30 mg / mL in a test tube, trap with a magnet, discard the supernatant, and then add P- 1 mL of 16 monoclonal antibody 0.5 mg / mL (150 mM phosphate buffer, pH 7.8) was added and allowed to react at room temperature with stirring overnight. After washing the magnetic beads, 2 mL of 1% BSA / phosphate buffer was added and blocked with stirring overnight at room temperature to prepare P-16 monoclonal antibody solid phase magnetic beads. At the time of use, it was diluted with a bead diluent to a magnetic bead amount of 1 mg / mL. The composition of the bead dilution is shown below.
Composition of bead diluent: 0.05 mol / L Tris buffer (pH 7.5), 0.150 mol / L NaCl, 0.01% Tween 20, 0.1% NaN 3 , 10% rabbit serum (heated), 0. 1% mouse serum (clarified)

(2)Ru標識P−11モノクローナル抗体の調製
P−11モノクローナル抗体1mg/mLに調製した1mLに、サクシニミド基修飾ルテニウム・トリ・ジピリジルのRu錯体化合物を68μL加え、室温で30分撹拌しながら反応させたのち、2mol/Lグリシンを50μL加え、反応を停止し、さらに室温で10分間撹拌しながら反応させた。最後に試料をセファデックスG−25(10mmol/Lリン酸緩衝液で平衡化)に流し、Ru結合の蛋白分画を集め、Ru標識P−11モノクローナル抗体を調製した。得られたRu標識P−11モノクローナル抗体は、使用時、Ru希釈溶液で1μg/mLに希釈して用いた。Ru希釈液の組成を下記に示す。
Ru希釈液の組成:0.015mol/Lヘペス緩衝液(pH7.8)、0.150mol/L NaCl、0.013mol/L CaCl、0.1%界面活性剤,0.1%NaN、0.1%ベンザミジン、1μg/mL、5%ウサギ血清(加熱)、0.01%マウスIgG
(2) Preparation of Ru-labeled P-11 monoclonal antibody To 1 mL of the prepared P-11 monoclonal antibody 1 mg / mL, 68 μL of succinimide group-modified ruthenium tri-dipyridyl Ru complex compound was added and reacted at room temperature for 30 minutes with stirring. After the reaction, 50 μL of 2 mol / L glycine was added to stop the reaction, and the reaction was further continued with stirring at room temperature for 10 minutes. Finally, the sample was passed through Sephadex G-25 (equilibrated with 10 mmol / L phosphate buffer), and Ru-bound protein fractions were collected to prepare Ru-labeled P-11 monoclonal antibody. The obtained Ru-labeled P-11 monoclonal antibody was used after diluting to 1 μg / mL with Ru diluted solution. The composition of the diluted Ru solution is shown below.
Composition of Ru dilution: 0.015 mol / L Hepes buffer (pH 7.8), 0.150 mol / L NaCl, 0.013 mol / L CaCl 2 , 0.1% surfactant, 0.1% NaN 3 , 0.1% benzamidine, 1 μg / mL, 5% rabbit serum (heated), 0.01% mouse IgG

(3)ビタミンK欠乏に起因するPIVKA−IIの測定
前記調製したP−16モノクローナル抗体固相磁気ビーズ及びRu標識P−11モノクローナル抗体を用い、電気化学発光免疫測定法により検体中のビタミンK欠乏に起因するPIVKA−II(NX−PVKA)の測定値Aを求めた。
検体として、手術を行っておらず、5年後の予後が判明している肝細胞癌患者63名の血清試料を用い、下記方法に従いNX−PVKA量を測定した。
(3) Measurement of PIVKA-II caused by vitamin K deficiency Vitamin K deficiency in a sample by electrochemiluminescence immunoassay using the prepared P-16 monoclonal antibody solid phase magnetic beads and Ru-labeled P-11 monoclonal antibody The measured value A of PIVKA-II (NX-PVKA) resulting from the above was determined.
The amount of NX-PVKA was measured according to the following method using serum samples of 63 patients with hepatocellular carcinoma who had not been operated on and had a known prognosis after 5 years.

各検体50μLにP−16モノクローナル抗体固相磁気ビーズを25μLと1μg/mLのRu標識P−11モノクローナル抗体を含むRu標識抗体液150μLを加え、30℃で9分間反応させた。反応後、磁気ビーズを磁石でトラップしながらピコルミBF洗浄液(エーディア(株)製)で3回洗浄した。0.1mol/Lトリプロピルアミンを含むピコルミ発光電解液(エーディア(株)製)を300μL加えて、電極表面に送り、磁気ビーズに結合したRuの発光量を自動分析装置ピコルミIII(エーディア(株)製)で測定し、検体中のNX−PVKA量を求めた。   To 50 μL of each specimen, 25 μL of P-16 monoclonal antibody solid phase magnetic beads and 150 μL of Ru-labeled antibody solution containing 1 μg / mL Ru-labeled P-11 monoclonal antibody were added and reacted at 30 ° C. for 9 minutes. After the reaction, the magnetic beads were washed three times with a Picormi BF washing solution (manufactured by Adia Co., Ltd.) while trapping with a magnet. Add 300 μL of Picolmi Luminescent Electrolyte containing 0.1 mol / L Tripropylamine (manufactured by Adia Co., Ltd.), send it to the electrode surface, and measure the amount of light emitted from Ru bound to the magnetic beads. )), And the amount of NX-PVKA in the specimen was determined.

実施例2の測定値をChild−Pugh分類別に平均値を算出した結果を表2及び図2(a)に示した。測定値について判別群を死亡例、対照群を生存例としてROC分析を行った。得られたROC曲線を図3に示す。ROC分析における曲線下面積は、0.710であった。   Table 2 and FIG. 2 (a) show the results of calculating the average values of the measured values of Example 2 for each of the Child-Pug classifications. Regarding the measured values, ROC analysis was performed with the discriminating group as the death example and the control group as the survival example. The obtained ROC curve is shown in FIG. The area under the curve in the ROC analysis was 0.710.

(比較例1)
ピコルミPIVKA−II測定キット(エーディア(株)製)を用いて、PIVKA−IIの測定を行った。結果を表2、図2(b)及び図3に示した。ROC分析における曲線下面積は、0.653であった。
(Comparative Example 1)
PIVKA-II was measured using a Picolmi PIVKA-II measurement kit (manufactured by Eadia Co., Ltd.). The results are shown in Table 2, FIG. 2 (b) and FIG. The area under the curve in the ROC analysis was 0.653.

(比較例2)
レーザー誘起蛍光検出法(LAB法)による、ミュータスワコーAFP−L3測定キット(和光純薬工業(株)製)を用いて,AFPの測定を行った。結果を表2、図2(c)及び図3に示した。ROC分析における曲線下面積は、0.651であった。
(Comparative Example 2)
AFP was measured using a Mutus Wako AFP-L3 measurement kit (manufactured by Wako Pure Chemical Industries, Ltd.) by a laser-induced fluorescence detection method (LAB method). The results are shown in Table 2, FIG. 2 (c) and FIG. The area under the curve in the ROC analysis was 0.651.

(比較例3)
比較例2と同様の方法により、AFP−L3(AFPのレクチン反応性による分画比)の測定を行った。結果を表2、図2(d)及び図3に示した。ROC分析における曲線下面積は、0.665であった。
(Comparative Example 3)
AFP-L3 (fractional ratio based on lectin reactivity of AFP) was measured by the same method as in Comparative Example 2. The results are shown in Table 2, FIG. 2 (d) and FIG. The area under the curve in the ROC analysis was 0.665.

表2及び図2に示した結果から明らかなように、実施例2のNX−PVKAのみがChild−Pugh分類(肝機能を評価するための分類)を反映していた。また、図3の結果から明らかなように、実施例2のNX−PVKAが最も予後予測を反映していた。   As is clear from the results shown in Table 2 and FIG. 2, only NX-PVKA of Example 2 reflected the Child-Pugh classification (classification for evaluating liver function). Moreover, as is clear from the results of FIG. 3, NX-PVKA of Example 2 reflected the prognosis prediction most.

(実施例3)
検体として肝細胞癌患者28人、肝硬変患者20人、慢性肝炎患者9人の血清試料を用い、PIVKA−IIとNX−PVKA量を測定した。PIVKA−II測定値をNX−PVKA測定値で割ったレシオ値(NX−PVKA−R)を算出した。NX−PVKA量の測定は実施例2と同様の方法で行った。PIVKA−IIの測定は、ピコルミPIVKA−II測定キット(エーディア(株)製)を用いて行った。測定値を表3に示す。
(Example 3)
Serum samples of 28 hepatocellular carcinoma patients, 20 cirrhosis patients and 9 chronic hepatitis patients were used as specimens, and the amounts of PIVKA-II and NX-PVKA were measured. A ratio value (NX-PVKA-R) obtained by dividing the PIVKA-II measured value by the NX-PVKA measured value was calculated. The amount of NX-PVKA was measured in the same manner as in Example 2. PIVKA-II was measured using a Picolmi PIVKA-II measurement kit (manufactured by Adia Corporation). The measured values are shown in Table 3.

PIVKA−II測定値をグラフにしたものを図4に示した。PIVKA−II測定値をNX−PVKA測定値で割ったレシオ値の結果をグラフにしたものを図5に示した。表3、図4及び図5において、HCCは肝細胞癌、CHは慢性肝炎、LCは肝硬変、BはB型肝炎、CはC型肝炎、NBNCは非B型非C型肝炎、NASHは非アルコール性肝障害、AIHは自己免疫性肝炎、ALDはアルコール性肝障害である。
表3、図4、図5に示した結果から明らかなように、従来の測定方法で得たPIVKA−II測定値をNX−PVKA測定値で割ったレシオ値(図5のNX−PVKA−R)により、従来の測定方法では偽陽性となっていた検体を区別することができ、肝がんに高い特異性を示した。
A graph showing the measured values of PIVKA-II is shown in FIG. FIG. 5 shows a graph of the ratio value obtained by dividing the PIVKA-II measurement value by the NX-PVKA measurement value. In Table 3, FIG. 4 and FIG. 5, HCC is hepatocellular carcinoma, CH is chronic hepatitis, LC is cirrhosis, B is hepatitis B, C is hepatitis C, NBNC is non-B non-C hepatitis, NASH is non Alcoholic liver disorder, AIH is autoimmune hepatitis, and ALD is alcoholic liver disorder.
As is clear from the results shown in Table 3, FIG. 4, and FIG. 5, the ratio value (NX-PVKA-R in FIG. 5) was obtained by dividing the PIVKA-II measurement value obtained by the conventional measurement method by the NX-PVKA measurement value. ), It was possible to distinguish samples that were false positives in the conventional measurement method, and showed high specificity for liver cancer.

(実施例4)
実施例1で得たP−16モノクローナル抗体及びP−11モノクローナル抗体のエピトープを下記方法により調べた。
Example 4
The epitopes of the P-16 monoclonal antibody and P-11 monoclonal antibody obtained in Example 1 were examined by the following method.

(1)Gla残基含有ペプチドに対する反応性
PIVKA−IIのN末端16残基に存在すると考えられるGla残基(γと表示)を含む下記配列番号1〜3で表わす3種のペプチド(PV002、PV003、PV00(4)を合成した。
PV002: ANTFLEγVRKGNLγRγ
PV003: ANTFLEEVRKGNLγRγ
PV004: ANTFLEEVRKGNLERγ
PV002のアミノ酸配列
Ala Asn Thr Phe Leu Glu Gla Val Arg Lys Gly Asn Leu Gla Arg Gla(配列番号1)
PV003のアミノ酸配列
Ala Asn Thr Phe Leu Glu Glu Val Arg Lys Gly Asn Leu Gla Arg Gla(配列番号2)
PV004のアミノ酸配列
Ala Asn Thr Phe Leu Glu Glu Val Arg Lys Gly Asn Leu Glu Arg Gla(配列番号3)
(1) Reactivity to Gla residue-containing peptides Three peptides represented by the following SEQ ID NOs: 1 to 3 (PV002, including Gla residues (denoted as γ) considered to exist at the N-terminal 16 residues of PIVKA-II PV003 and PV00 (4) were synthesized.
PV002: ANTFLEγVRKGNLγRγ
PV003: ANTREEEVRKGNLγRγ
PV004: ANTREEEVRKGNLERγ
Amino acid sequence of PV002
Ala Asn Thr Phe Leu Glu Gla Val Arg Lys Gly Asn Leu Gla Arg Gla (SEQ ID NO: 1)
Amino acid sequence of PV003
Ala Asn Thr Phe Leu Glu Glu Val Arg Lys Gly Asn Leu Gla Arg Gla (SEQ ID NO: 2)
Amino acid sequence of PV004
Ala Asn Thr Phe Leu Glu Glu Val Arg Lys Gly Asn Leu Glu Arg Gla (SEQ ID NO: 3)

この3種のペプチドに対する反応性を調べるため次の方法で競合ELISAを行った。
脱炭酸処理時間1時間のPIVKA−IIをPBSで0.1μg/mLの濃度に希釈した後、ELISA用96穴プレートに50μL/wellずつ分注し、4℃で一夜静置した。各wellを0.05%Tween20含有PBS(以下、「PBST」という)で3回洗浄後(400μL/well)、1%BSA含有PBST(以下、「BSA−PBST」という)を100μL/wellずつ分注し、室温で1時間静置してブロッキングを行った。PBSTで3回洗浄後、各wellにBSA−PBSTで希釈した各濃度(20、4、0.8、0.16、0.032μmol/L)のペプチド溶液を25μL/wellずつ分注し、続いてBSA−PBSTで200ng/mLの濃度に希釈した各モノクローナル抗体(P−16、P−11)溶液を25μL/wellずつ分注し、室温で1時間静置した。PBSTで3回洗浄後、BSA−PBSTで3000倍希釈したHRP標識ヤギ抗マウスIgG抗体(DAKO社製)溶液を50μL/wellずつ分注し、室温で1時間静置した。PBSTで3回洗浄後、オルトフェニレンジアミン(東京化成工業社製)を含む基質溶液を50μL/wellずつ分注し、室温で10分間静置した。これに1.5N硫酸を50μL/wellずつ分注して反応を停止後、マイクロプレートリーダー492nmにおける吸光度を測定した。その結果を図6に示す。
In order to examine the reactivity to these three peptides, competitive ELISA was performed by the following method.
PIVKA-II with a decarboxylation treatment time of 1 hour was diluted with PBS to a concentration of 0.1 μg / mL, then dispensed into a 96-well plate for ELISA, 50 μL / well, and allowed to stand at 4 ° C. overnight. Each well was washed three times with PBS containing 0.05% Tween 20 (hereinafter referred to as “PBST”) (400 μL / well), and PBST containing 1% BSA (hereinafter referred to as “BSA-PBST”) was divided into 100 μL / well. Then, blocking was performed by allowing to stand at room temperature for 1 hour. After washing 3 times with PBST, each well was dispensed with 25 μL / well of peptide solutions of each concentration (20, 4, 0.8, 0.16, 0.032 μmol / L) diluted with BSA-PBST. Then, each monoclonal antibody (P-16, P-11) solution diluted with BSA-PBST to a concentration of 200 ng / mL was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour. After washing 3 times with PBST, a solution of HRP-labeled goat anti-mouse IgG antibody (manufactured by DAKO) diluted 3000 times with BSA-PBST was dispensed at 50 μL / well and allowed to stand at room temperature for 1 hour. After washing three times with PBST, a substrate solution containing orthophenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was dispensed at 50 μL / well and allowed to stand at room temperature for 10 minutes. To this, 1.5 N sulfuric acid was dispensed at 50 μL / well to stop the reaction, and then the absorbance at 492 nm of the microplate reader was measured. The result is shown in FIG.

まず、P−16モノクローナル抗体は3種のペプチド全てに同等の反応性を示した。このことから、P−16モノクローナル抗体のエピトープは3種のペプチドの共通部位であるPIVKA−IIのN末端の1〜6残基(図7に示すaa1−6)、又はPIVKA−IIのアミノ酸配列のN末端から8〜13残基(図7に示すaa8−13)であることが示唆された。一方、P−11モノクローナル抗体は何れのペプチドとも反応しないことが判明した。本願明細書において、PIVKA−IIのN末端からX〜Y残基のものをaaX−Yと称する。   First, the P-16 monoclonal antibody showed equivalent reactivity to all three peptides. From this, the epitope of P-16 monoclonal antibody is 1-6 residues (aa1-6 shown in FIG. 7) at the N-terminal of PIVKA-II which is a common site of three kinds of peptides, or the amino acid sequence of PIVKA-II It was suggested that there are 8 to 13 residues (aa8-13 shown in FIG. 7) from the N-terminus of. On the other hand, it was found that the P-11 monoclonal antibody did not react with any peptide. In the present specification, the X to Y residues from the N-terminus of PIVKA-II are referred to as aaX-Y.

(2)変性PIVKA−II、変性プロトロンビン、及び変性トロンビンに対する反応性
変性状態のPIVKA−II、プロトロンビン、及びトロンビンに対する各モノクローナル抗体の反応性をウエスタンブロット法により調べた。具体的には、脱炭酸処理時間2時間のPIVKA−II、0分のプロトロンビン、及び市販精製トロンビン(ベネシス社製)に対する反応性を次の方法で調べた。0.1mg/mLPIVKA−II、0.1mg/mLプロトロンビン、及び10U/mLトロンビンを、それぞれメルカプトエタノール含有のSDS処理液(コスモバイオ社製)と1対1で混和後、10分間煮沸処理した。各サンプルをコスモバイオ社製のポリアクリルアミドゲル(マルチゲルIIミニ4/20)に5μL/wellずつ添加し、30mAで1時間電気泳動(SDS−PAGE)を行った。泳動後のゲルをセミドライブロッタ−(コスモバイオ社製)を用いPVDF膜に転写を行った(100mA、45分間)。該PVDF膜をレーン毎に切り分けた後、BSA−PBSTに浸し、4℃で一夜ブロッキングを行った。PBSTで1回洗浄後、5μg/mLの濃度の各モノクローナル抗体液をPVDF膜と接触させ、室温で1時間静置した。PBSTで3回洗浄後、BSA−PBSTで2000倍希釈したHRP標識ヤギ抗マウスIgG抗体(DAKO社製)溶液入りの容器に移し、室温で1時間緩やかに振とうさせた。各PVDF膜をPBSTで3回、更にPBSで1回洗浄後、ジアミノベンチジン(同仁化学研究所社製)を含む基質溶液に浸して3分間反応させた後、精製水に移し反応を停止した。得られた染色像の結果を図8に示す。
(2) Reactivity to denatured PIVKA-II, denatured prothrombin, and denatured thrombin The reactivity of each monoclonal antibody to denatured PIVKA-II, prothrombin, and thrombin was examined by Western blotting. Specifically, reactivity to PIVKA-II having a decarboxylation treatment time of 2 hours, 0 minute prothrombin, and commercially available purified thrombin (manufactured by Benesis) was examined by the following method. 0.1 mg / mL PIVKA-II, 0.1 mg / mL prothrombin, and 10 U / mL thrombin were each mixed 1: 1 with a mercaptoethanol-containing SDS treatment solution (manufactured by Cosmo Bio) and boiled for 10 minutes. 5 μL / well of each sample was added to a polyacrylamide gel (Multigel II Mini 4/20) manufactured by Cosmo Bio, and electrophoresis (SDS-PAGE) was performed at 30 mA for 1 hour. The gel after electrophoresis was transferred to a PVDF membrane using a semi-drive lotter (manufactured by Cosmo Bio) (100 mA, 45 minutes). The PVDF membrane was cut into lanes, immersed in BSA-PBST, and blocked overnight at 4 ° C. After washing once with PBST, each monoclonal antibody solution having a concentration of 5 μg / mL was brought into contact with the PVDF membrane and allowed to stand at room temperature for 1 hour. After washing 3 times with PBST, it was transferred to a container containing an HRP-labeled goat anti-mouse IgG antibody solution (manufactured by DAKO) diluted 2000 times with BSA-PBST, and gently shaken at room temperature for 1 hour. Each PVDF membrane was washed 3 times with PBST and once with PBS, then immersed in a substrate solution containing diaminobenzidine (manufactured by Dojindo Laboratories), reacted for 3 minutes, then transferred to purified water to stop the reaction. . The result of the obtained stained image is shown in FIG.

まず、従来試薬の抗体はPIVKA−IIのみに反応しプロトロンビンには反応しなかったのに対し、P−11及びP−16モノクローナル抗体は何れもPIVKA−IIとプロトロンビンに対し同等に反応した。一方、トロンビンに対しては、何れの抗体も反応しなかった。このことから、P−11及びP−16モノクローナル抗体はPIVKA−IIとプロトロンビンの一次アミノ酸配列の共通部位即ちGla残基を含まない部位を認識していることが示唆された。   First, the antibody of the conventional reagent reacted only to PIVKA-II and not to prothrombin, whereas both the P-11 and P-16 monoclonal antibodies reacted equally to PIVKA-II and prothrombin. On the other hand, none of the antibodies reacted with thrombin. This suggests that the P-11 and P-16 monoclonal antibodies recognize the common site of the primary amino acid sequences of PIVKA-II and prothrombin, that is, the site not containing the Gla residue.

(3)フラグメント1及びフラグメント2に対する反応性
プロトロンビンのフラグメント1及び2に対する各モノクローナル抗体の反応性をウエスタンブロット法により調べた。フラグメント1及び2(Enzyme Research Laboratories社製)をPBSでそれぞれ0.05mg/mLの濃度に調製し、メルカプトエタノール含有のSDS処理液(コスモバイオ社製)とそれぞれ1対1で混和後、10分間煮沸処理した。
調製したフラグメント1及び2を用い、上記(2)のウエスタンブロット法と同様の方法で各モノクローナル抗体のフラグメント1及び2に対する反応性を調べた。得られた染色像の結果を図9に示す。
(3) Reactivity to fragment 1 and fragment 2 The reactivity of each monoclonal antibody to fragments 1 and 2 of prothrombin was examined by Western blotting. Fragments 1 and 2 (manufactured by Enzyme Research Laboratories) were each adjusted to a concentration of 0.05 mg / mL with PBS, mixed one-on-one with a mercaptoethanol-containing SDS treatment solution (manufactured by Cosmo Bio) for 10 minutes. Boiled.
Using the prepared fragments 1 and 2, the reactivity of each monoclonal antibody to fragments 1 and 2 was examined in the same manner as the Western blot method of (2) above. The result of the obtained stained image is shown in FIG.

従来試薬の抗体(MU−3)はプロトロンビン由来のフラグメント1及び2のどちらにも反応しなかった。フラグメント1に対し、P−16モノクローナル抗体は強い反応性が、P−11モノクローナル抗体は弱いながらも反応性が認められた。一方、フラグメント2に対しては、P−11及びP−16モノクローナル抗体のどちらも反応性が認められなかった。このことから、P−11及びP−16モノクローナル抗体のエピトープは、フラグメント1即ちプロトロンビンのN末端から156残基(aa1−156)の中に存在することが示唆された。   The conventional reagent antibody (MU-3) did not react with either fragment 1 or 2 derived from prothrombin. The P-16 monoclonal antibody was highly reactive against the fragment 1, while the P-11 monoclonal antibody was weak but reactive. On the other hand, neither P-11 nor P-16 monoclonal antibody was reactive with fragment 2. This suggested that the epitopes of the P-11 and P-16 monoclonal antibodies exist within 156 residues (aa1-156) from the N-terminus of fragment 1, ie prothrombin.

(4)Gla残基非含有ペプチドに対する反応性
プロトロンビンのN末端から70番目まででGla残基を含まない(10個のGla残基全てがGul残基のままのPIVKA−II)配列番号4〜13で表わされる部分ペプチド10本を合成した。
aa1−16のアミノ酸配列
Ala Asn Thr Phe Leu Glu Glu Val Arg Lys Gly Asn Leu Glu Arg Glu (配列番号4)
aa7−22のアミノ酸配列
Glu Val Arg Lys Gly Asn Leu Glu Arg Glu Cys Val Glu Glu Thr Cys (配列番号5)
aa13−28のアミノ酸配列
Leu Glu Arg Glu Cys Val Glu Glu Thr Cys Ser Tyr Glu Glu Ala Phe (配列番号6)
aa19−34のアミノ酸配列
Glu Glu Thr Cys Ser Tyr Glu Glu Ala Phe Glu Ala Leu Glu Ser Ser (配列番号7)
aa25−40のアミノ酸配列
Glu Glu Ala Phe Glu Ala Leu Glu Ser Ser Thr Ala Thr Asp Val Phe (配列番号8)
aa31−46のアミノ酸配列
Leu Glu Ser Ser Thr Ala Thr Asp Val Phe Trp Ala Lys Tyr Thr Ala (配列番号9)
aa37−52のアミノ酸配列
Thr Asp Val Phe Trp Ala Lys Tyr Thr Ala Cys Glu Thr Ala Arg Thr (配列番号10)
aa43−58のアミノ酸配列
Lys Tyr Thr Ala Cys Glu Thr Ala Arg Thr Pro Arg Asp Lys Leu Ala (配列番号11)
aa49−64のアミノ酸配列
Thr Ala Arg Thr Pro Arg Asp Lys Leu Ala Ala Cys Leu Glu Gly Asn (配列番号12)
aa55−70のアミノ酸配列
Asp Lys Leu Ala Ala Cys Leu Glu Gly Asn Cys Ala Glu Gly Leu Gly (配列番号13)
(4) Reactivity to a Gla residue-free peptide From the N-terminal of prothrombin to the 70th position and not containing a Gla residue (PIVKA-II in which all 10 Gla residues remain Gul residues) Ten partial peptides represented by 13 were synthesized.
The amino acid sequence of aa1-16
Ala Asn Thr Phe Leu Glu Glu Val Arg Lys Gly Asn Leu Glu Arg Glu (SEQ ID NO: 4)
amino acid sequence of aa7-22
Glu Val Arg Lys Gly Asn Leu Glu Arg Glu Cys Val Glu Glu Thr Cys (SEQ ID NO: 5)
amino acid sequence of aa13-28
Leu Glu Arg Glu Cys Val Glu Glu Thr Cys Ser Tyr Glu Glu Ala Phe (SEQ ID NO: 6)
Aa19-34 amino acid sequence
Glu Glu Thr Cys Ser Tyr Glu Glu Ala Phe Glu Ala Leu Glu Ser Ser (SEQ ID NO: 7)
amino acid sequence of aa25-40
Glu Glu Ala Phe Glu Ala Leu Glu Ser Ser Thr Ala Thr Asp Val Phe (SEQ ID NO: 8)
amino acid sequence of aa31-46
Leu Glu Ser Ser Thr Ala Thr Asp Val Phe Trp Ala Lys Tyr Thr Ala (SEQ ID NO: 9)
amino acid sequence of aa37-52
Thr Asp Val Phe Trp Ala Lys Tyr Thr Ala Cys Glu Thr Ala Arg Thr (SEQ ID NO: 10)
Aa43-58 amino acid sequence
Lys Tyr Thr Ala Cys Glu Thr Ala Arg Thr Pro Arg Asp Lys Leu Ala (SEQ ID NO: 11)
amino acid sequence of aa49-64
Thr Ala Arg Thr Pro Arg Asp Lys Leu Ala Ala Cys Leu Glu Gly Asn (SEQ ID NO: 12)
Aa55-70 amino acid sequence
Asp Lys Leu Ala Ala Cys Leu Glu Gly Asn Cys Ala Glu Gly Leu Gly (SEQ ID NO: 13)

上記(1)と同様の競合ELISAで各モノクローナル抗体と各ペプチドの反応性を調べた。その結果を表4に示す。まず、P−16モノクローナル抗体はaa1−16のペプチドに反応性を示し、aa7−22及び他のペプチドに対しては反応性を示さなかった。一方、P−11モノクローナル抗体は何れのペプチドとも反応しないことが判明した。   The reactivity of each monoclonal antibody and each peptide was examined by competitive ELISA similar to (1) above. The results are shown in Table 4. First, the P-16 monoclonal antibody showed reactivity to the aa1-16 peptide, but not to aa7-22 and other peptides. On the other hand, it was found that the P-11 monoclonal antibody did not react with any peptide.

以上の結果をまとめると、次の通りである。
P−16モノクローナル抗体のエピトープは、該抗体の上記(1)と(4)に記載のペプチドに対する反応性、及び上記(2)に記載したPIVKA−IIとプロトロンビンに対する反応性から、プロトロンビンフラグメント1のN末端から5残基(配列番号14で表わすaa1−5)の範囲であることが判明した。
aa1−5のアミノ酸配列
Ala Asn Thr Phe Leu (配列番号14)
The above results are summarized as follows.
The epitope of P-16 monoclonal antibody is determined from the reactivity of the antibody to the peptides described in (1) and (4) above and the reactivity of PIVKA-II and prothrombin described in (2) above. It was found to be in the range of 5 residues from the N-terminus (aa1-5 represented by SEQ ID NO: 14).
amino acid sequence of aa1-5
Ala Asn Thr Phe Leu (SEQ ID NO: 14)

また、P−11モノクローナル抗体のエピトープは、上記(3)でフラグメント1(aa1−156)に反応すること、及び上記(4)でaa1−70に含まれる各ペプチドに反応しないことから、プロトロンビンフラグメント1のaa60−156の範囲に存在することが考えられた。   Moreover, since the epitope of P-11 monoclonal antibody reacts with fragment 1 (aa1-156) in (3) above and does not react with each peptide contained in aa1-70 in (4) above, the prothrombin fragment It was thought that it exists in the range of 1 aa60-156.

本発明のPIVKA−II測定方法及び測定試薬は、肝障害度の判定及び予後予測、肝がんの予後予測と、特異性の高い肝がんの検出に利用できる。   The PIVKA-II measurement method and measurement reagent of the present invention can be used for determination of the degree of liver injury and prediction of prognosis, prediction of liver cancer prognosis, and detection of highly specific liver cancer.

Claims (5)

(a)二抗体サンドイッチ法を利用する免疫学的測定法によってビタミンK欠乏に起因するPIVKA−IIを測定し、測定値Aを得る工程、
(b)二抗体サンドイッチ法を利用する免疫学的測定法によってPIVKA−IIを測定し、測定値Bを得る工程、及び
(c)前記測定値A及び前記測定値Bを比較する工程、
を含むPIVKA−IIの測定方法によって得られた値により、肝がんにおける肝障害度を判定するための血液検査方法であって、
前記(a)工程の二抗体サンドイッチ法で用いられる抗体として、人肝がん細胞培養細胞株より精製したPIVKA−IIと反応せず、ビタミンK欠乏に起因するPIVKA−IIに特異的な抗体を使用し、
前記(b)工程の二抗体サンドイッチ法で用いられる一方の抗体として人肝がん細胞培養細胞株より精製したPIVKA−IIと反応する抗PIVKA−IIモノクローナル抗体を使用し、
前記(b)工程の二抗体サンドイッチ法で用いられる他方の抗体としてヒトトロンビンと反応する抗体を含まない抗ヒトプロトロンビン抗体を使用することを特徴とする方法。
(A) a step of measuring PIVKA-II caused by vitamin K deficiency by an immunoassay using a two-antibody sandwich method and obtaining a measurement value A;
(B) measuring PIVKA-II by an immunoassay using a two-antibody sandwich method to obtain a measurement value B; and (c) comparing the measurement value A and the measurement value B.
A blood test method for determining the degree of liver damage in liver cancer based on the value obtained by the measurement method of PIVKA-II including
As an antibody used in the two-antibody sandwich method of the step (a), an antibody specific to PIVKA-II caused by vitamin K deficiency does not react with PIVKA-II purified from a human hepatoma cell culture cell line. use,
Using one anti-PIVKA-II monoclonal antibody that reacts with PIVKA-II purified from a human hepatoma cell culture cell line as one of the antibodies used in the two-antibody sandwich method of step (b),
Characterized by using the anti-human prothrombin antibody that does not contain antibodies that react with human thrombin as the other antibody used in the double antibody sandwich method of the step (b), method.
前記(a)工程の二抗体サンドイッチ法で用いられる抗体がモノクローナル抗体であることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the antibody used in the two-antibody sandwich method in the step (a) is a monoclonal antibody. 前記(a)工程の二抗体サンドイッチ法で用いられる抗体のエピトープが、プロトロンビンのN末端から156残基の中に存在することを特徴とする請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the epitope of the antibody used in the two-antibody sandwich method of step (a) is present in 156 residues from the N-terminus of prothrombin. 前記ビタミンK欠乏に起因するPIVKA−IIに特異的な抗体が、受託番号FERM BP−11258で特定されるハイブリドーマにより産生されるモノクローナル抗体及び受託番号FERM BP−11259で特定されるハイブリドーマにより産生されるモノクローナル抗体であることを特徴とする請求項1〜3のいずれか1項記載の方法。   An antibody specific for PIVKA-II resulting from the vitamin K deficiency is produced by a monoclonal antibody produced by the hybridoma identified by accession number FERM BP-11258 and a hybridoma identified by accession number FERM BP-11259 The method according to any one of claims 1 to 3, wherein the method is a monoclonal antibody. (a)二抗体サンドイッチ法を利用する免疫学的測定法によってビタミンK欠乏に起因するPIVKA−IIを測定し、測定値Aを得る工程、
(b)二抗体サンドイッチ法を利用する免疫学的測定法によってPIVKA−IIを測定し、測定値Bを得る工程、及び
(c)前記測定値A及び前記測定値Bを比較する工程、
を含むPIVKA−IIの測定方法によって得られた値により、肝がんを判定するための血液検査方法であって、
前記(a)工程の二抗体サンドイッチ法で用いられる抗体として、人肝がん細胞培養細胞株より精製したPIVKA−IIと反応せず、ビタミンK欠乏に起因するPIVKA−IIに特異的な抗体を使用し、
前記(b)工程の二抗体サンドイッチ法で用いられる一方の抗体として人肝がん細胞培養細胞株より精製したPIVKA−IIと反応する抗PIVKA−IIモノクローナル抗体を使用し、
前記(b)工程の二抗体サンドイッチ法で用いられる他方の抗体としてヒトトロンビンと反応する抗体を含まない抗ヒトプロトロンビン抗体を使用することを特徴とする方法。
(A) a step of measuring PIVKA-II caused by vitamin K deficiency by an immunoassay using a two-antibody sandwich method and obtaining a measurement value A;
(B) measuring PIVKA-II by an immunoassay using a two-antibody sandwich method to obtain a measurement value B; and (c) comparing the measurement value A and the measurement value B.
A blood test method for determining liver cancer based on a value obtained by a measurement method of PIVKA-II including
As an antibody used in the two-antibody sandwich method of the step (a), an antibody specific to PIVKA-II caused by vitamin K deficiency does not react with PIVKA-II purified from a human hepatoma cell culture cell line. use,
Using one anti-PIVKA-II monoclonal antibody that reacts with PIVKA-II purified from a human hepatoma cell culture cell line as one of the antibodies used in the two-antibody sandwich method of step (b),
Characterized by using the anti-human prothrombin antibody that does not contain antibodies that react with human thrombin as the other antibody used in the double antibody sandwich method of the step (b), method.
JP2012522624A 2010-06-29 2011-06-28 Blood test method Active JP5856956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522624A JP5856956B2 (en) 2010-06-29 2011-06-28 Blood test method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010147784 2010-06-29
JP2010147784 2010-06-29
JP2012522624A JP5856956B2 (en) 2010-06-29 2011-06-28 Blood test method
PCT/JP2011/064724 WO2012002345A1 (en) 2010-06-29 2011-06-28 Pivka-ii measurement method, pivka-ii measurement reagent, and antibody

Publications (2)

Publication Number Publication Date
JPWO2012002345A1 JPWO2012002345A1 (en) 2013-08-22
JP5856956B2 true JP5856956B2 (en) 2016-02-10

Family

ID=45402053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012522624A Active JP5856956B2 (en) 2010-06-29 2011-06-28 Blood test method

Country Status (2)

Country Link
JP (1) JP5856956B2 (en)
WO (1) WO2012002345A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20130513A1 (en) * 2013-04-05 2014-10-06 Euroclone S P A DIAGNOSTIC METHOD FOR AUTOIMMUNE PATHOLOGIES OF THE LIVER
JP7267253B2 (en) 2017-07-13 2023-05-01 エフ. ホフマン-ラ ロシュ アーゲー Novel binders and assays for PIVKA
CN113372447A (en) * 2021-05-26 2021-09-10 重庆中元汇吉生物技术有限公司 anti-PIVKA-II monoclonal antibody and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284994A (en) * 1992-04-10 1993-11-02 Iatron Lab Inc Anti-human pivka-ii antibody, hybridoma and method for immunological measurement
JP2009106191A (en) * 2007-10-30 2009-05-21 Univ Of Tokyo Gene associated with liver cancer, and method for determination of risk of acquiring liver cancer
JP2010243406A (en) * 2009-04-08 2010-10-28 F Hoffmann La Roche Ag Method for detecting extent of clinical condition of liver cancer and chronic liver disease, using discriminant function taking measurement values of afp and pivka-ii as characteristic values

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284994A (en) * 1992-04-10 1993-11-02 Iatron Lab Inc Anti-human pivka-ii antibody, hybridoma and method for immunological measurement
JP2009106191A (en) * 2007-10-30 2009-05-21 Univ Of Tokyo Gene associated with liver cancer, and method for determination of risk of acquiring liver cancer
JP2010243406A (en) * 2009-04-08 2010-10-28 F Hoffmann La Roche Ag Method for detecting extent of clinical condition of liver cancer and chronic liver disease, using discriminant function taking measurement values of afp and pivka-ii as characteristic values

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6011043220; 本原邦彦等: '乳児ビタミンK欠乏性出血症 II 抗PIVKA-IIモノクローナル抗体を用いたELISA(2抗体サンドイッチ法)による血' 日本小児科学会雑誌 Vol.88, No.7, Page.1508-1514, 1984 *
JPN6011043222; 酒井寛等: '肝細胞癌の予測マーカーとしてのPIVKA-II MU-3/19B7比の臨床的意義' 月刊臨床と研究 Vol.79, No.7, Page.1259-1264, 2002 *
JPN6011043224; 森田隆司: 'PIVKA-IIの新しい展開 PIVKA-IIの基礎' 肝胆膵 Vol.54, No.4, Page.459-463, 2007 *
JPN6011043227; 吉川雄二等: 'プロテインCモノクローナル抗体を用いた肝疾患における血中プロテインCの評価 特に肝細胞癌におけるPIVKAの' 日本臨床化学会年会記録 Vol.27, Page.22-25, 1987 *
JPN6011043230; 本原邦彦等: '乳児ビタミンK欠乏性出血症 III 乾燥ろ紙血によるスクリーニング法の検討' 日本小児科学会雑誌 Vol.88, No.9, Page.1972-1976, 1984 *

Also Published As

Publication number Publication date
JPWO2012002345A1 (en) 2013-08-22
WO2012002345A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP6713478B2 (en) Method for measuring PIVKA-II, and method for producing PIVKA-II immunoassay reagent or kit
EP3027652A1 (en) Anti-pla2r antibody and uses thereof
Ofuji et al. Perioperative plasma glypican-3 level may enable prediction of the risk of recurrence after surgery in patients with stage I hepatocellular carcinoma
EP2900265A1 (en) Anti-uroplakin ii antibodies systems and methods
KR102100152B1 (en) Pivka-ⅱ measurement method, measurement reagent, and measurement kit
JP5856956B2 (en) Blood test method
JP5252339B2 (en) Method for measuring PAD4 and anti-PAD4 antibody and method for detecting rheumatoid arthritis
CN112740037A (en) Method for measuring glycated hemoglobin [ (% ])
WO2013000568A1 (en) Method of obtaining a binder to prepro-vasopressin or fragments thereof
JP6037043B2 (en) Protein quantification method specific to TRACP-5b (tartrate-resistant acid phosphatase 5b)
CN111303289A (en) Anti-human Tn-type glycosylated MUC1 antibody and application thereof
WO2021246153A1 (en) Method and reagent for detecting pancreatic cancers
US9127054B2 (en) Immunoassay of cofilin 1 protein
WO2021172000A1 (en) Method and reagent for detecting malignant ovarian tumors
WO2023127881A1 (en) Detection method and detection reagent
JP6729917B2 (en) EphA2 N-terminal fragment antibody
CN114729935A (en) Method and reagent for measuring analyte using immune reaction
JP5585587B2 (en) Method for immunological measurement of 5.9 kDa peptide
JP2021156648A (en) Method for screening subject and method for distinguishing
Yoon et al. Synthetic Peptide-Based Enzyme-Linked Immunosorbent Assay for Human $\alpha $-Fetoprotein
Komoriya et al. Development of an ultrasensitive CRP latex agglutination reagent by using amino acid spacers
TW201928351A (en) Antibody assay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5856956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250