JP5852478B2 - Rare earth recovery method from rare earth containing scrap - Google Patents

Rare earth recovery method from rare earth containing scrap Download PDF

Info

Publication number
JP5852478B2
JP5852478B2 JP2012050067A JP2012050067A JP5852478B2 JP 5852478 B2 JP5852478 B2 JP 5852478B2 JP 2012050067 A JP2012050067 A JP 2012050067A JP 2012050067 A JP2012050067 A JP 2012050067A JP 5852478 B2 JP5852478 B2 JP 5852478B2
Authority
JP
Japan
Prior art keywords
rare earth
scrap
earth elements
electrolysis
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012050067A
Other languages
Japanese (ja)
Other versions
JP2013185187A (en
Inventor
英治 日野
英治 日野
新藤 裕一朗
裕一朗 新藤
俊彦 吉見
俊彦 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012050067A priority Critical patent/JP5852478B2/en
Publication of JP2013185187A publication Critical patent/JP2013185187A/en
Application granted granted Critical
Publication of JP5852478B2 publication Critical patent/JP5852478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、鉄を含む希土類含有スクラップからの希土類元素の回収方法に関する。   The present invention relates to a method for recovering rare earth elements from rare earth-containing scrap containing iron.

近年、永久磁石は飛躍的な進歩に端を発して様々な分野へ応用され、その性能の向上と新しい機器の開発が日々刻々となされている。特に、省エネや環境対策の観点から、IT、自動車、家電、FA分野などへの普及が急激に伸びている。
永久磁石の用途として、パソコンでは、ハードディスクドライブ用ボイスコイルモーターやDVD/CDの光ピックアップ用部品、携帯電話では、マイクロスピーカーやバイブレーションモーター、家電や産業機器関連では、サーボモーターやリニアモーターなどの各種モーターがある。また、HEVなどのハイブリッド電気自動車には、1台当たり100個以上の永久磁石が使用されている。
In recent years, permanent magnets have been applied to various fields as a result of dramatic progress, and improvements in their performance and development of new devices have been made every day. In particular, from the viewpoints of energy saving and environmental measures, the spread to IT, automobiles, home appliances, FA fields, etc. is growing rapidly.
Permanent magnet applications include voice coil motors for hard disk drives and optical pickup components for DVD / CD for personal computers, microspeakers and vibration motors for mobile phones, and servo motors and linear motors for home appliances and industrial equipment. There is a motor. Moreover, 100 or more permanent magnets are used for each hybrid electric vehicle such as HEV.

永久磁石として、アルニコ(Alnico)磁石、フェライト(Feerrite)磁石、サマコバ(SmCo)磁石、ネオジム(NdFeB)磁石などが知られている。近年は、特にネオジム磁石の研究開発が活発であり、高性能化に向けて様々な取り組みが行われている。
ネオジム磁石は、通常、強磁性のNdFe14B金属間化合物(主相)、非磁性のBリッチ相、非磁性のNdリッチ相、さらに不純物としての酸化物などから構成されている。さらに、これに種々の元素を添加するなどして、磁気特性を改善させる取り組みが行われている。
As a permanent magnet, an Alnico magnet, a ferrite magnet, a Samaco magnet, a neodymium (NdFeB) magnet, and the like are known. In recent years, research and development of neodymium magnets has been particularly active, and various efforts have been made toward higher performance.
A neodymium magnet is usually composed of a ferromagnetic Nd 2 Fe 14 B intermetallic compound (main phase), a nonmagnetic B-rich phase, a nonmagnetic Nd-rich phase, and an oxide as an impurity. Furthermore, efforts are being made to improve magnetic properties by adding various elements to this.

ネオジム磁石はその性能の高さから、その需要は今後も大幅に増大すると予想される。しかし、ネオジム磁石に含まれるNdやDy等の希土類金属は資源供給上の問題があり、希土類金属の需要が大きくなれば、それらの金属の価格が急騰することが予想される。そのため、このような希土類磁石からの希土類金属の回収方法・分離方法に関する技術開発が活発に行われている。
例えば、特許文献1には、希土類元素−鉄含有合金を加熱して空気酸化した後、強酸を用いた酸浸出法により、希土類元素塩を生成して濾液中に溶解し、これを濾別して分離して、希土類元素を回収することが記載されている。
Neodymium magnets are expected to increase in demand in the future due to their high performance. However, rare earth metals such as Nd and Dy contained in neodymium magnets have a problem in resource supply, and if the demand for rare earth metals increases, the price of those metals is expected to rise rapidly. For this reason, technological development relating to a method for recovering and separating rare earth metals from such rare earth magnets has been actively conducted.
For example, in Patent Document 1, a rare earth element-iron-containing alloy is heated and oxidized in air, and then a rare earth element salt is generated and dissolved in a filtrate by an acid leaching method using a strong acid, and this is separated by filtration. Thus, it is described that rare earth elements are recovered.

特許文献2には、希土類元素・鉄系磁石材料を鉱酸溶液中に溶解し、次いで、フッ酸イオン含有溶液を添加して希土類フッ化物を沈殿生成し、沈殿物を分離して、希土類元素を回収することが記載されている。
また、特許文献3には、希土類−遷移金属合金スクラップを、鉱酸アンモニウム塩水溶液に浸漬し、これに酸素を含む気体を流通させて、スクラップを酸化させて酸化物及び水酸化物の粉末を含む沈殿物を得て、これを鉱酸アンモニウム塩水溶液から分離して、この分離した沈殿物から希土類元素を回収する方法が記載されている。
また、特許文献4には、溶融塩電解浴に希土類酸化物スクラップを投入し、電解浴中にこのスクラップを希土類酸化物と磁石合金部に溶融分離させ、電解浴に溶解した希土類酸化物を電解により希土類金属に還元し、磁石合金部を希土類金属と合金化させ、希土類金属−遷移金属−ボロン合金として再生することが記載されている。
In Patent Document 2, a rare earth element / iron-based magnet material is dissolved in a mineral acid solution, then a hydrofluoric acid ion-containing solution is added to precipitate a rare earth fluoride, the precipitate is separated, and the rare earth element is separated. Is described.
Patent Document 3 discloses that a rare earth-transition metal alloy scrap is immersed in an aqueous mineral acid ammonium salt solution, a gas containing oxygen is circulated therein, and the scrap is oxidized to produce oxide and hydroxide powders. A method is described in which a precipitate is obtained, which is separated from an aqueous mineral acid ammonium salt solution, and the rare earth element is recovered from the separated precipitate.
In Patent Document 4, rare earth oxide scrap is put into a molten salt electrolytic bath, and the scrap is melted and separated into a rare earth oxide and a magnet alloy portion in the electrolytic bath, and the rare earth oxide dissolved in the electrolytic bath is electrolyzed. It is described that it is reduced to a rare earth metal, and the magnet alloy part is alloyed with a rare earth metal to be regenerated as a rare earth metal-transition metal-boron alloy.

特開平5−14777号公報JP-A-5-14777 特開昭62−83433号公報JP-A-62-83433 特許第4287749号明細書Japanese Patent No. 428749 特開2002−60855号公報JP 2002-60855 A

従来、鉄を含有する希土類磁石スクラップから希土類元素が回収する場合、塩酸、硝酸、硫酸などの酸を用いて、希土類を浸出させることが行われている。しかし、このような酸浸出によると、鉄が溶出しやすく、希土類の浸出率を上げると、浸出液中の鉄濃度が上昇して脱鉄がうまく行われないといった問題がある。また、沈降性及び濾過性の悪い水酸化鉄ができやすいといった問題がある。さらに、希土類磁石スクラップの全てを溶解するためには、多量の塩酸などを使用する必要あるという問題がある。   Conventionally, when a rare earth element is recovered from a rare earth magnet scrap containing iron, the rare earth is leached using an acid such as hydrochloric acid, nitric acid or sulfuric acid. However, according to such acid leaching, iron is likely to be eluted, and if the leaching rate of the rare earth is increased, there is a problem that the iron concentration in the leaching solution increases and deironing is not performed well. Further, there is a problem that iron hydroxide having poor sedimentation and filterability is easily formed. Furthermore, there is a problem that it is necessary to use a large amount of hydrochloric acid in order to dissolve all of the rare earth magnet scrap.

上記の課題を解決するために、本発明者らは鋭意研究を行った結果、希土類磁石スクラップの酸化粉を電解液に混合し、これを電解することにより、希土類元素を極めて簡便かつ効率良く回収することができることを見出した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research, and as a result, rare earth element scraps are extremely easily and efficiently recovered by mixing rare earth magnet scrap oxide powder into an electrolyte and electrolyzing it. Found that you can.

このような知見に基づき、本発明は、
1)鉄を含有する希土類含有スクラップの酸化粉を電解法により、希土類元素を溶出することを特徴とするスクラップからの希土類元素の回収方法、
2)電解液に電導塩を含有させることを特徴とする上記1記載のスクラップからの希土類元素の回収方法、
3)電解液のpHを2〜8、電解液の液温を10〜90℃とすることを特徴とする上記1又は2のいずれか一に記載のスクラップからの希土類元素の回収方法、
4)攪拌しながら電解を行うことを特徴とする上記1〜3のいずれか一に記載のスクラップからの希土類元素の回収方法、
5)電解によって酸化鉄がFe(黒色)からFe(褐色)に変化すことを特徴とする上記1〜4に記載のスクラップからの希土類元素の回収方法、
6)希土類元素が溶出した溶液から、希土類元素を回収することを特徴とする上記1〜5のいずれか一に記載のスクラップからの希土類元素の回収方法、
7)希土類元素が溶出した溶液から、溶媒抽出あるいは結晶化法により、希土類元素を回収することを特徴とする上記1〜6のいずれか一に記載のスクラップからの希土類元素の回収方法、を提供する。
Based on such knowledge, the present invention
1) A method for recovering rare earth elements from scrap, characterized by eluting rare earth elements by electrolysis of rare earth-containing scrap oxide containing iron,
2) A method for recovering rare earth elements from scrap as described in 1 above, wherein the electrolytic solution contains a conductive salt;
3) The method for recovering rare earth elements from scrap according to any one of the above 1 or 2, wherein the pH of the electrolyte is 2 to 8, and the temperature of the electrolyte is 10 to 90 ° C.
4) The method for recovering rare earth elements from scrap according to any one of 1 to 3 above, wherein electrolysis is performed with stirring,
5) a method for recovering rare earth elements from scrap according to the 1 to 4, wherein the to change the Fe 2 O 3 iron oxide is Fe 3 O 4 (black) (brown) by electrolysis,
6) The method for recovering a rare earth element from scrap according to any one of 1 to 5 above, wherein the rare earth element is recovered from a solution from which the rare earth element is eluted,
7) A method for recovering a rare earth element from scrap as described in any one of 1 to 6 above, wherein the rare earth element is recovered from a solution from which the rare earth element is eluted by solvent extraction or crystallization. To do.

本発明は、使用済みの永久磁石又は製造時に発生する端材等のスクラップから得られた酸化粉を使用し、これを電解するだけなので、希土類元素を極めて簡便かつ効率良く回収することができるという優れた方法である。   The present invention uses oxidized powder obtained from scraps such as used permanent magnets or scraps generated during production, and only electrolyzes them, so that rare earth elements can be recovered very simply and efficiently. It is an excellent method.

本発明は、鉄(鉄金属、鉄合金、鉄酸化物、鉄化合物など)を含む希土類含有スクラップの酸化粉を電解液中に混合し、これを電解により、希土類元素を溶出することを特徴とする、スクラップからの希土類元素の回収方法、を提供する。
本発明の回収方法は、鉄を主成分とする希土類永久磁石であれば、公知の希土類磁石に適用することができ、その成分組成に特に制限はない。公知の希土類磁石としては、例えば、Nd−Fe−B系希土類永久磁石などがあり、これはNd、Fe、Bを典型的な成分とし、必要に応じて、Dy、Pr、Tb、Ho、Smなどの希土類元素や、Co、Cu、Cr、Ni、Alなどの遷移金属元素を含むものである。
The present invention is characterized by mixing rare earth-containing scrap oxide powder containing iron (iron metal, iron alloy, iron oxide, iron compound, etc.) in an electrolytic solution, and eluting the rare earth element by electrolysis. And a method for recovering rare earth elements from scrap.
The recovery method of the present invention can be applied to a known rare earth magnet as long as it is a rare earth permanent magnet mainly composed of iron, and the component composition is not particularly limited. Known rare earth magnets include, for example, Nd—Fe—B rare earth permanent magnets, which have Nd, Fe, and B as typical components, and if necessary, Dy, Pr, Tb, Ho, Sm. And rare earth elements such as Co, Cu, Cr, Ni and Al.

本発明の鉄を含有する希土類含有スクラップの酸化粉は、例えば、大気中で希土類磁石スクラップを焙焼することにより得ることができる。スクラップが粉砕粉や研磨粉等の細かいものであれば、直接焙焼してもよいが、使用済みの永久磁石などの形状のある大きなものは細かく粉砕してから、焙焼するのが好ましい。また、本発明の酸化粉は、全量において酸化物となっていなくともよく、部分的に酸化物となっていれば、本発明の回収方法を適用することができる。   The rare earth-containing scrap oxide powder containing iron of the present invention can be obtained, for example, by roasting rare earth magnet scrap in the atmosphere. If the scrap is fine, such as pulverized powder or abrasive powder, it may be directly baked. However, it is preferable to pulverize a large one having a shape such as a used permanent magnet before it is baked. Further, the oxide powder of the present invention does not have to be an oxide in the whole amount, and the recovery method of the present invention can be applied if it is partially an oxide.

この酸化粉を電導塩と純水で調合した電解液に混合して電気分解する。電導塩として、例えば、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、塩化ナトリウム、硫酸ナトリウムなどを用いることができる。このとき、電解液のpHは2〜8に調整することが好ましい。pHが低い(酸性)と、Feが多く溶け出し残渣のろ過性が悪くなり、pHが高い(アルカリ性)と希土類金属の溶出率が低下するからである。
また、電解条件は材料の種類、性質、量などによって異なるため、適宜選択して実施することができる。コストなどを考慮すると、好適な条件として、電解液の液温を10〜90℃とすることができる。電解温度が10℃未満では希土類金属の溶出率が低下し、90℃超では電解液の蒸発等で電解が困難となるからである。
This oxidized powder is mixed with an electrolytic solution prepared with a conductive salt and pure water and electrolyzed. As the conductive salt, for example, ammonium sulfate, ammonium nitrate, ammonium chloride, sodium chloride, sodium sulfate and the like can be used. At this time, it is preferable to adjust pH of electrolyte solution to 2-8. This is because if the pH is low (acidic), a large amount of Fe dissolves and the filterability of the residue deteriorates, and if the pH is high (alkaline), the elution rate of rare earth metals decreases.
In addition, since the electrolysis conditions vary depending on the type, nature, amount, etc. of the material, it can be selected as appropriate. Considering the cost and the like, as a suitable condition, the liquid temperature of the electrolytic solution can be set to 10 to 90 ° C. This is because when the electrolysis temperature is less than 10 ° C., the elution rate of the rare earth metal decreases, and when it exceeds 90 ° C., electrolysis becomes difficult due to evaporation of the electrolytic solution.

本発明において、特に重要な点は、酸化粉を含む電解液を電解して、希土類元素をイオンとして溶出させることである。これは、次の電気的化学的な反応によって生じると考えられる。酸化粉は、その大部分がFeから構成されており(希土類は主として、ReFeO:Reは希土類、から構成されている)、これがアノードで電子を受け取りFeに変化する。その際に、酸化粉に含まれている希土類元素が酸化粉から分離して、希土類イオンとして電解液中に溶出するのである。これに関しては、酸化鉄を含む電解液の色が黒色(Fe由来)から赤褐色(Fe由来)へと変化していることからも、このような現象が起こっていると考えられる。 In the present invention, a particularly important point is to electrolyze an electrolytic solution containing oxide powder and to elute rare earth elements as ions. This is considered to be caused by the following electrochemical reaction. Most of the oxide powder is composed of Fe 3 O 4 (rare earth is mainly composed of ReFeO 3 : Re is a rare earth), which receives electrons at the anode and changes to Fe 2 O 3 . At that time, the rare earth element contained in the oxide powder is separated from the oxide powder and eluted into the electrolyte as rare earth ions. In this regard, it is considered that such a phenomenon occurs because the color of the electrolyte containing iron oxide has changed from black (from Fe 3 O 4 ) to reddish brown (from Fe 2 O 3 ). It is done.

また、このような電気的化学的な反応を効率的に進めるために、酸化粉がアノードとできるだけ接触するようにすることが大切である。したがって、例えば、電解液を攪拌することで接触回数を増やしたり、アノードの面積を大きくして接触面積を広げたり、することが有効である。   Further, in order to advance such an electrochemical reaction efficiently, it is important to make the oxide powder contact the anode as much as possible. Therefore, for example, it is effective to increase the number of contacts by stirring the electrolytic solution or to increase the contact area by increasing the area of the anode.

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1)
Feを含有する希土類含有スクラップ(希土類元素:Nd、Dy、Pr含有)を焙焼し、得られた酸化粉50gを、塩化ナトリウムを含有する純水1Lでスラリー化し、電解を行った。このとき、電解条件は、pH:2〜3、電解温度:20℃、電流:10A、電解時間20時間とした。この結果、Ndの溶出率は50%、Dyの溶出率は60%、Prの溶出率は50%であった。Feについては、微量溶出した程度であった。
次に、電解終了後、溶液中の残渣をろ過除去して、この濾液を抽出剤:2−エチルヘキシル−2−エチルヘキシル−ホスホン酸[2-ethylhexyl-2-ethylhexyl-phosphonic acid] (大八化学工業社製、商品名「PC88A」)を用いて、溶媒抽出法により、希土類元素分離して、Nd、Dy、Prの希土類金属を回収した。
以上より、希土類含有スクラップからNd、Dy、Prの希土類金属を、効率的に回収することができ、また、良好なろ過性を得ることができた。そして、このNd、Dy、Prは再生永久磁石の原料として使用可能であった。
なお、溶出率(%)とは、スクラップ中の金属含有重量:A、電解後の残渣中の金属含有重量:Bとし、該金属が溶液中に溶け出した割合を示すものであり、溶出率(%)=(A−B)/ A×100で計算される(以下、実施例、比較例も同様とする)。
Example 1
A rare earth-containing scrap containing Fe (rare earth elements: containing Nd, Dy, Pr) was roasted, and 50 g of the obtained oxide powder was slurried with 1 L of pure water containing sodium chloride and electrolyzed. At this time, the electrolysis conditions were pH: 2 to 3, electrolysis temperature: 20 ° C., current: 10 A, and electrolysis time 20 hours. As a result, the elution rate of Nd was 50%, the elution rate of Dy was 60%, and the elution rate of Pr was 50%. As for Fe, only a small amount was eluted.
Next, after the electrolysis is completed, the residue in the solution is removed by filtration, and the filtrate is extracted with an extractant: 2-ethylhexyl-2-ethylhexyl-phosphonic acid (Daihachi Chemical Industry). Rare earth elements such as Nd, Dy, and Pr were recovered by solvent extraction using a product name “PC88A”) manufactured by the same company.
As described above, Nd, Dy and Pr rare earth metals can be efficiently recovered from the rare earth-containing scrap, and good filterability can be obtained. And this Nd, Dy, Pr could be used as a raw material of a reproduction | regeneration permanent magnet.
The dissolution rate (%) is the metal content weight in scrap: A, the metal content weight in residue after electrolysis: B, and indicates the ratio of the metal dissolved into the solution. (%) = (A−B) / A × 100 (hereinafter, the same applies to Examples and Comparative Examples).

(実施例2)
Feを含有する希土類含有スクラップ(希土類元素:Nd、Dy、Pr含有)を焙焼し、得られた酸化粉200gを、硫酸ナトリウムを含有する純水1Lでスラリー化し、電解を行った。このとき、電解条件は、pH:4、電解温度:60℃、電流:5A、電解時間20時間とした。この結果、Ndの溶出率は70%、Dyの溶出率は72%、Prの溶出率は70%であった。Feについては、ほとんど溶出しなかった。
次に、電解終了後、溶液中の残渣をろ過除去して、この濾液をシュウ酸添加し、希土類元素を分離して、Nd、Dy、Prの希土類金属を回収した。
以上より、希土類含有スクラップからNd、Dy、Prの希土類金属を、効率的に回収することができ、また、良好なろ過性を得ることができた。そして、このNd、Dy、Prは再生永久磁石の原料として使用可能であった。
(Example 2)
A rare earth-containing scrap containing Fe (rare earth elements: containing Nd, Dy, Pr) was roasted, and 200 g of the obtained oxide powder was slurried with 1 L of pure water containing sodium sulfate, and electrolysis was performed. At this time, the electrolysis conditions were pH: 4, electrolysis temperature: 60 ° C., current: 5 A, and electrolysis time of 20 hours. As a result, the elution rate of Nd was 70%, the elution rate of Dy was 72%, and the elution rate of Pr was 70%. Fe was hardly eluted.
Next, after the electrolysis was completed, the residue in the solution was removed by filtration, the filtrate was added with oxalic acid, the rare earth elements were separated, and the rare earth metals Nd, Dy, and Pr were recovered.
As described above, Nd, Dy and Pr rare earth metals can be efficiently recovered from the rare earth-containing scrap, and good filterability can be obtained. And this Nd, Dy, Pr could be used as a raw material of a reproduction | regeneration permanent magnet.

(実施例3)
Feを含有する希土類含有スクラップ(希土類元素:Nd、Dy含有)を焙焼して、得られた酸化粉100gを、硝酸アンモニウムを含有する純水1Lでスラリー化し、電解を行った。このとき、電解条件は、pH:7.5、電解温度:90℃、電流:10A、電解時間6時間とした。この結果、Ndの溶出率は45%、Dyの溶出率は30%であった。Feについては、ほとんど溶出しなかった。
次に、電解終了後、溶液中の残渣を濾過除去して、この濾液に炭酸ナトリウムを添加して、希土類元素を分離して、Nd、Dyの希土類金属を回収した。
以上より、希土類含有スクラップからNd、Dy、Prの希土類金属を、効率的に回収することができ、また、良好なろ過性を得ることができた。そして、このNd、Dy、Prは再生永久磁石の原料として使用可能であった。
(Example 3)
A rare earth-containing scrap containing Fe (rare earth elements: containing Nd and Dy) was roasted, and 100 g of the obtained oxide powder was slurried with 1 L of pure water containing ammonium nitrate for electrolysis. At this time, the electrolysis conditions were pH: 7.5, electrolysis temperature: 90 ° C., current: 10 A, and electrolysis time 6 hours. As a result, the elution rate of Nd was 45%, and the elution rate of Dy was 30%. Fe was hardly eluted.
Next, after completion of electrolysis, the residue in the solution was removed by filtration, sodium carbonate was added to the filtrate to separate rare earth elements, and rare earth metals of Nd and Dy were recovered.
As described above, Nd, Dy and Pr rare earth metals can be efficiently recovered from the rare earth-containing scrap, and good filterability can be obtained. And this Nd, Dy, Pr could be used as a raw material of a reproduction | regeneration permanent magnet.

(実施例4)
Feを含有する希土類含有スクラップ(希土類元素:Nd、Dy、Pr含有)を焙焼し得られた酸化粉50gを、塩化ナトリウムを含有する純水1Lでスラリー化し、電解を行った。このとき、電解条件はpH:1とし、その他の条件は実施例1と同様にした。この結果、Ndの溶出率は70%、Dyの溶出率は65%、Prの溶出率は60%であったが、Feも40%程度溶出していた。
このように、希土類含有スクラップからNd、Dy、Prの希土類金属を、効率的に回収することができたが、一方で、pHが低すぎるとFeも溶出していまい、ろ過性が低下することとなった。
Example 4
50 g of oxidized powder obtained by roasting rare earth-containing scrap containing Fe (containing rare earth elements: Nd, Dy, Pr) was slurried with 1 L of pure water containing sodium chloride, and electrolysis was performed. At this time, the electrolysis conditions were pH: 1, and other conditions were the same as in Example 1. As a result, the elution rate of Nd was 70%, the elution rate of Dy was 65%, and the elution rate of Pr was 60%, but Fe was also eluted by about 40%.
Thus, Nd, Dy, and Pr rare earth metals could be efficiently recovered from the rare earth-containing scrap, but on the other hand, if the pH is too low, Fe will not be eluted and the filterability will be reduced. It became.

(実施例5)
Feを含有する希土類含有スクラップ(希土類元素:Nd、Dy、Pr含有)を焙焼し得られた酸化粉50gを、塩化ナトリウムを含有する純水1Lでスラリー化し、電解を行った。このとき、電解条件はpH:9とし、その他の条件は実施例1と同様にした。この結果、Ndの溶出率は45%、Dyの溶出率は30%、Prの溶出率は30%であった。Feについては、ほとんど溶出しなかった。
このように、希土類含有スクラップからNd、Dy、Prの希土類金属を回収することができ、また、良好なろ過性を得ることができた。そして、このNd、Dy、Prは再生永久磁石の原料として使用可能であった。一方で、pHが高すぎると希土類元素が溶出し難いこととなった。
(Example 5)
50 g of oxidized powder obtained by roasting rare earth-containing scrap containing Fe (containing rare earth elements: Nd, Dy, Pr) was slurried with 1 L of pure water containing sodium chloride, and electrolysis was performed. At this time, the electrolysis conditions were pH: 9, and the other conditions were the same as in Example 1. As a result, the elution rate of Nd was 45%, the elution rate of Dy was 30%, and the elution rate of Pr was 30%. Fe was hardly eluted.
Thus, Nd, Dy, and Pr rare earth metals could be recovered from the rare earth-containing scrap, and good filterability could be obtained. And this Nd, Dy, Pr could be used as a raw material of a reproduction | regeneration permanent magnet. On the other hand, if the pH is too high, the rare earth element is difficult to elute.

(比較例1)
Feを含有する希土類含有スクラップ(希土類元素:Nd、Dy、Pr含有)を、塩酸を用いて酸浸出を行った。その結果、Nd,Dy,Prの溶出率は70〜80%であったが、Feも80%溶出していた。このように酸浸出では残渣のろ過性が非常に悪く、また、溶け出したFeの処理も問題となった。
(Comparative Example 1)
A rare earth-containing scrap containing Fe (rare earth elements: containing Nd, Dy, Pr) was acid leached using hydrochloric acid. As a result, the elution rate of Nd, Dy, and Pr was 70 to 80%, but Fe was also eluted by 80%. Thus, in acid leaching, the filterability of the residue is very poor, and the treatment of dissolved Fe has also become a problem.

本発明は、使用済みの永久磁石又は製造時に発生する端材等のスクラップを焙焼等により作製した酸化粉使用し、これをアノードにおいて電解するだけなので、希土類元素を極めて簡便かつ効率良く回収することができる点で、大きな産業上の利点がある。   The present invention uses oxide powder produced by roasting scraps such as used permanent magnets or scraps generated during production, and this is simply electrolyzed at the anode, so that rare earth elements are recovered very simply and efficiently. There are significant industrial advantages in that it can.

Claims (7)

鉄を含有する希土類含有スクラップの酸化粉を、電解法により希土類元素を溶出することを特徴とするスクラップからの希土類元素の回収方法。 A method for recovering rare earth elements from scrap, characterized by eluting rare earth elements from electrolytic powders of rare earth-containing scrap oxide containing iron. 電解液に電導塩を含有させることを特徴とする請求項1記載のスクラップからの希土類元素の回収方法。 2. The method for recovering rare earth elements from scrap according to claim 1, wherein a conductive salt is contained in the electrolytic solution. 電解液のpHを2〜8、電解液の液温を20〜90℃とすることを特徴とする請求項1又は2のいずれか一項に記載のスクラップからの希土類元素の回収方法。 3. The method for recovering rare earth elements from scrap according to claim 1, wherein the pH of the electrolyte is 2 to 8 and the temperature of the electrolyte is 20 to 90 ° C. 4. 攪拌しながら電解を行うことを特徴とする請求項1〜3のいずれか一項に記載のスクラップからの希土類元素の回収方法。 The method for recovering rare earth elements from scrap according to any one of claims 1 to 3, wherein electrolysis is performed while stirring. 電解によって酸化鉄がFe からFe に変化することを特徴とする請求項1〜4のいずれか一項に記載のスクラップからの希土類元素の回収方法。 Method for recovering rare earth elements from scrap according to any one of claims 1 to 4, the iron oxide by electrolysis, characterized in that the change from Fe 3 O 4 to Fe 2 O 3. 希土類元素が溶出した溶液から、希土類元素を回収することを特徴とする請求項1〜5のいずれか一項に記載のスクラップからの希土類元素の回収方法。 The method for recovering rare earth elements from scrap according to any one of claims 1 to 5, wherein the rare earth elements are recovered from a solution from which the rare earth elements are eluted. 希土類元素が溶出した溶液から、溶媒抽出あるいは結晶化法により、希土類元素を回収することを特徴とする請求項1〜6のいずれか一項に記載のスクラップからの希土類元素の回収方法。 The method for recovering rare earth elements from scrap according to any one of claims 1 to 6, wherein the rare earth elements are recovered from the solution from which the rare earth elements are eluted by solvent extraction or crystallization.
JP2012050067A 2012-03-07 2012-03-07 Rare earth recovery method from rare earth containing scrap Expired - Fee Related JP5852478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050067A JP5852478B2 (en) 2012-03-07 2012-03-07 Rare earth recovery method from rare earth containing scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050067A JP5852478B2 (en) 2012-03-07 2012-03-07 Rare earth recovery method from rare earth containing scrap

Publications (2)

Publication Number Publication Date
JP2013185187A JP2013185187A (en) 2013-09-19
JP5852478B2 true JP5852478B2 (en) 2016-02-03

Family

ID=49386894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050067A Expired - Fee Related JP5852478B2 (en) 2012-03-07 2012-03-07 Rare earth recovery method from rare earth containing scrap

Country Status (1)

Country Link
JP (1) JP5852478B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108298A (en) * 2012-07-19 2014-09-05 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for recovering rare earth from rare earth element-containing alloy
AP2017009745A0 (en) * 2014-08-15 2017-02-28 Rare Earth Salts Separation And Refining Llc Method for extraction and separation of rare earth elements
CN105177324B (en) * 2015-10-21 2017-05-10 江西理工大学 Method for recovering rare earths from vacuum-calcium-thermic-reduction rare-earth slag
CN113957250B (en) * 2021-09-18 2023-05-30 内蒙古大学 Environment-friendly recycling method for rare earth permanent magnet alloy waste
CN115354159B (en) * 2022-08-24 2023-09-26 遂川和创金属新材料有限公司 Rare earth oxide recovery rare earth dissolution oxidation equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198104A (en) * 2000-12-27 2002-07-12 Toshiba Corp Recycling method of hydrogen storage alloy
KR20140108298A (en) * 2012-07-19 2014-09-05 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for recovering rare earth from rare earth element-containing alloy

Also Published As

Publication number Publication date
JP2013185187A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5647750B2 (en) Rare earth recovery method from rare earth element containing alloys
JP5852478B2 (en) Rare earth recovery method from rare earth containing scrap
KR101427158B1 (en) Leaching method of neodymium from permanent magnet containing neodymium
CN110607537B (en) Method for synchronously and efficiently extracting rare earth and iron from high-value recycled neodymium iron boron waste
EP3795704B1 (en) A method for selective recovery of rare earth elements from nd-fe-b magnet scraps based on electrolysis
CN103540756B (en) A kind of method processing waste and old neodymium iron boron material dissolution rare earth
CN103509952B (en) The technique of recovering rare earth in a kind of electron wastes permanent magnet spent material
US10648063B2 (en) Dissolution and separation of rare earth metals
JP2015089970A (en) Method for recovering rare-earth elements from waste permanent magnet oxidation scrap
Tunsu Hydrometallurgy in the recycling of spent NdFeB permanent magnets
KR20140133552A (en) Neodymium-based rare-earth permanent magnet and process for producing same
JP2002060855A (en) METHOD FOR RECYCLING Nd-BASED RARE EARTH METAL MAGNET SCRAP
JP6216206B2 (en) Rare earth element recovery method and rare earth element recovery device
JP2018098430A (en) Method for producing r-t-b-based sintered magnet
KR20130024485A (en) Magnesium alloy using rare earth magnet scraps and manufacturing method of the same
JP6647060B2 (en) Method for separating and recovering Nd and Dy
KR102149210B1 (en) Recovery method of high purity neodymium using electrolytic refining
JP6668021B2 (en) Rare metal recovery method
JP7205275B2 (en) Gallium recovery method
JP2018073929A (en) Manufacturing method of r-t-b based sintered magnet
JP6502182B2 (en) Method of recovering rare earth element and recovery device of rare earth element
JP7196669B2 (en) Gallium recovery method
JP2012224938A (en) Method for recovering neodymium
US11232902B2 (en) Method for recovery of Nd2Fe14B grains from bulk sintered Nd—Fe—B magnets and/or magnet scraps by electrochemical etching
Fu et al. Recent advances in electrochemical recovery of rare earth elements from NdFeB magnets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5852478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees