JP5848693B2 - Ground fault disaster prevention department and ground fault disaster prevention method - Google Patents

Ground fault disaster prevention department and ground fault disaster prevention method Download PDF

Info

Publication number
JP5848693B2
JP5848693B2 JP2012278003A JP2012278003A JP5848693B2 JP 5848693 B2 JP5848693 B2 JP 5848693B2 JP 2012278003 A JP2012278003 A JP 2012278003A JP 2012278003 A JP2012278003 A JP 2012278003A JP 5848693 B2 JP5848693 B2 JP 5848693B2
Authority
JP
Japan
Prior art keywords
ground fault
gantry
oil
disaster prevention
tear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012278003A
Other languages
Japanese (ja)
Other versions
JP2014124015A (en
Inventor
信一 土屋
信一 土屋
西川 毅
毅 西川
鴨志田 博史
博史 鴨志田
阿部 和俊
和俊 阿部
貴 五十嵐
貴 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viscas Corp
J Power Systems Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Viscas Corp
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Viscas Corp, J Power Systems Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2012278003A priority Critical patent/JP5848693B2/en
Publication of JP2014124015A publication Critical patent/JP2014124015A/en
Application granted granted Critical
Publication of JP5848693B2 publication Critical patent/JP5848693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Cable Installation (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Description

本発明は、OFケーブルの地絡防災部および地絡防災方法に関し、特に、OFケーブルの終端部に対して適用される地絡防災部および地絡防災方法に関する。   The present invention relates to a ground fault disaster prevention unit and a ground fault disaster prevention method for an OF cable, and more particularly, to a ground fault disaster prevention unit and a ground fault disaster prevention method applied to a terminal portion of an OF cable.

導電芯線と、その導電芯線の外周に被覆され絶縁性の油が含浸された絶縁材と、を備える油入り電力ケーブル(OFケーブル:Oil Filled Cable)は、例えば高圧電力の地中送電線等に用いられている。OFケーブルの導体部分と大地間の絶縁破壊による地絡事故がひとたび起こると、地絡に伴うアーク放電によりOFケーブル内の油が爆発し、火災等の二次災害を引き起こすおそれがある。地絡による二次災害を抑止するため、OFケーブルに対しては様々な防災対策がとられてきた。   An oil-filled power cable (OF cable: Oil Filled Cable) including a conductive core wire and an insulating material coated on the outer periphery of the conductive core wire and impregnated with insulating oil is used for, for example, underground transmission lines of high-voltage power It is used. Once a ground fault occurs due to a dielectric breakdown between the conductor portion of the OF cable and the ground, the oil in the OF cable may explode due to arc discharge accompanying the ground fault, causing a secondary disaster such as a fire. In order to suppress secondary disasters caused by ground faults, various disaster prevention measures have been taken for OF cables.

例えば特許文献1には、OFケーブル同士を接続する接続部やその近傍に設けられたオフセット部に対し、その複雑な構造を追従性の良いアラミド繊維シートで直接包み込む地絡防災方法が開示されている。これにより、地絡時に発生する爆圧に耐え、空気を遮断してその後の火災の発生を抑止することができる。   For example, Patent Literature 1 discloses a ground fault prevention method for directly wrapping a complicated structure with an aramid fiber sheet having good followability with respect to a connecting portion for connecting OF cables and an offset portion provided in the vicinity thereof. Yes. Thus, it is possible to withstand the explosion pressure generated at the time of ground fault, shut off the air, and suppress the subsequent fire.

また、例えば特許文献2には、アラミド繊維シートを重ね合わせてOFケーブルの接続部等を包む際に、充分な強度を得るのに必要な重ね合わせの枚数を求める方法が開示されている。特許文献2によれば、係る枚数は、アーク放電によりOFケーブル内の油に与えられるガス化膨張のエネルギーKW(MJ)に基づいて算出することができる。   Further, for example, Patent Document 2 discloses a method for obtaining the number of overlapping sheets required to obtain sufficient strength when overlapping aramid fiber sheets and wrapping a connection portion of an OF cable. According to Patent Document 2, the number of sheets can be calculated based on the gasification expansion energy KW (MJ) given to the oil in the OF cable by arc discharge.

特許第3663103号公報Japanese Patent No. 3663103 特許第4575895号公報Japanese Patent No. 4575895

OFケーブルについては、上記接続部等と同様、終端部に対しても防災対策がとられることが望ましい。しかしながら、OFケーブルの終端部の周辺構造は更に複雑である。例えば、OFケーブルの終端部は、架台の内部の空間に収容され、OFケーブルを各種電気機器類等に接続する終端接続部に接続される。このような終端部の接続形態、架台の形状や大きさ等は多岐に亘り、その設置場所や設置環境も様々に異なる。   As for the OF cable, it is desirable to take a disaster prevention measure for the terminal portion as well as the connecting portion. However, the peripheral structure of the end portion of the OF cable is more complicated. For example, the end portion of the OF cable is accommodated in the space inside the gantry, and is connected to the end connection portion that connects the OF cable to various electric devices and the like. There are a wide variety of connection forms of the terminal portions, the shape and size of the gantry, and the installation locations and installation environments are also different.

このように複雑な周辺構造をとるOFケーブルの終端部に対し、例えば上記特許文献1のように、アラミド繊維シート等で直接包み込むような方法を適用することは困難であった。   It has been difficult to apply a method of directly wrapping an end portion of an OF cable having such a complicated peripheral structure with an aramid fiber sheet or the like as in Patent Document 1, for example.

また、例えば架台を含む周辺構造全体をアラミド繊維シート等で包むことにも難点が認められる。地絡を模擬的に発生させた試験では、上記特許文献2の算出方法に基づき充分な強度が得られるはずの枚数のアラミド繊維シートを重ねても、地絡による爆圧に耐えられないという結果となってしまった。   In addition, for example, a difficulty is also recognized in wrapping the entire peripheral structure including the gantry with an aramid fiber sheet or the like. In a test in which a ground fault is generated in a simulated manner, even if a number of sheets of aramid fiber sheets that should have sufficient strength based on the calculation method of Patent Document 2 are stacked, they cannot withstand the explosion pressure caused by the ground fault. It has become.

本発明の目的は、複雑な周辺構造をとるOFケーブルの終端部に適用可能な地絡防災部および地絡防災方法を提供することである。   The objective of this invention is providing the ground fault disaster prevention part and ground fault disaster prevention method which can be applied to the termination | terminus part of OF cable which takes a complicated periphery structure.

本発明の第1の態様によれば、
導電芯線と前記導電芯線の外周に被覆され絶縁性の油が含浸された絶縁材とを備えるOFケーブルの終端部を内部に収容する架台と、
前記架台の外面を囲うように設けられる耐裂性シートと、を備え、
前記耐裂性シートの材質、厚さ、枚数は、
前記OFケーブルの絶縁材中に含浸されていた油をアーク放電によりガス化膨張させる地絡エネルギーKWと、
前記OFケーブルの絶縁材中に含浸されていた油が前記架台内の酸素と反応することにより爆発的に燃焼するときの燃焼エネルギーBと、に基づいて決定される
地絡防災部が提供される。
According to a first aspect of the invention,
A pedestal for accommodating the terminal portion of the OF cable, which includes a conductive core wire and an insulating material coated on the outer periphery of the conductive core wire and impregnated with insulating oil;
A tear-resistant sheet provided so as to surround the outer surface of the gantry,
The material, thickness and number of tear resistant sheets are:
A ground fault energy KW for gasifying and expanding the oil impregnated in the insulating material of the OF cable by arc discharge;
Provided is a ground fault prevention unit determined based on combustion energy B when oil impregnated in the insulation material of the OF cable reacts with oxygen in the gantry and burns explosively. .

本発明の第2の態様によれば、
前記地絡エネルギーKW(MJ)は、
前記アーク放電の電力の平均値W(MW)と、
前記アーク放電の電力のうち前記OFケーブルの絶縁材中に含浸される油のガス化膨張に関与する電力の比率βと、
前記油のガス化膨張に関わる定数kと、により規定される次式(1)、
KW=k×β×W×4.19・・・(1)
により求められ、
前記油のガス化膨張に関わる定数kは、
前記油の比重C(kg/m)と、
前記油のガス定数G(m/k)と、
前記油のガス温度Gt(℃)と、
前記油のガス化に必要なエネルギーGq(kcal/kg)と、により規定される次式(2)、
k=(C×G/9.8)×{Gt/(4.186×Gq)}・・・(2)
により諸定数を複合させた定数であり、
前記燃焼エネルギーB(MJ)は、
前記架台の内部の体積V(m)と、
前記油の最大発熱量Q(MJ/mol)と、により規定される次式(3)、
B=0.407×V×Q・・・(3)
により求められる
第1の態様に記載の地絡防災部が提供される。
According to a second aspect of the invention,
The ground fault energy KW (MJ) is
An average value W (MW) of the electric power of the arc discharge;
Of the electric power of the arc discharge, the ratio β of the electric power involved in the gasification expansion of the oil impregnated in the insulating material of the OF cable,
The following equation (1) defined by the constant k related to the gasification expansion of the oil:
KW = k × β × W × 4.19 (1)
Sought by
The constant k related to the gasification expansion of the oil is
Specific gravity C 0 (kg / m 3 ) of the oil;
Gas constant G (m / k) of the oil;
A gas temperature Gt (° C.) of the oil;
The following formula (2) defined by the energy Gq (kcal / kg) required for gasification of the oil:
k = (C 0 × G / 9.8) × {Gt / (4.186 × Gq)} (2)
Is a constant that combines various constants by
The combustion energy B (MJ) is
A volume V (m 3 ) inside the frame;
The following formula (3) defined by the maximum calorific value Q (MJ / mol) of the oil,
B = 0.407 × V × Q (3)
The ground fault disaster prevention part as described in the 1st aspect calculated | required by is provided.

本発明の第3の態様によれば、
前記耐裂性シートはアラミド繊維からなる
第1又は第2の態様に記載の地絡防災部が提供される。
According to a third aspect of the invention,
The tear-resistant sheet is provided with the ground fault disaster prevention unit according to the first or second aspect made of an aramid fiber.

本発明の第4の態様によれば、
前記耐裂性シートは、耐候性樹脂を含む層が形成されたアラミド繊維からなる
第1〜第3の態様のいずれかに記載の地絡防災部が提供される。
According to a fourth aspect of the invention,
The tear-resistant sheet is provided with a ground fault disaster prevention unit according to any one of the first to third aspects, which is made of an aramid fiber in which a layer containing a weather-resistant resin is formed.

本発明の第5の態様によれば、
前記耐裂性シートの表面に当接される固定板と、
前記固定板を当接させた前記耐裂性シートを、前記固定板と前記架台との間に挟み込み、前記固定板と共に前記架台に固定する固定ネジと、を備える
第1〜第4の態様のいずれかに記載の地絡防災部が提供される。
According to a fifth aspect of the present invention,
A fixing plate abutted against the surface of the tear resistant sheet;
Any of the first to fourth aspects, comprising: a fixing screw that sandwiches the tear-resistant sheet with which the fixing plate is brought into contact between the fixing plate and the gantry and is fixed to the gantry together with the fixing plate. The ground fault disaster prevention department of crab is provided.

本発明の第6の態様によれば、
前記架台の内部の圧力が所定値を超えると、前記架台の内部の雰囲気を放出する逆止弁を備える
第1〜第5の態様のいずれかに記載の地絡防災部が提供される。
According to a sixth aspect of the present invention,
The ground fault disaster prevention part in any one of the 1st-5th aspect provided with the non-return valve which discharge | releases the atmosphere inside the said base will be provided when the pressure inside the said base exceeds a predetermined value.

本発明の第7の態様によれば、
前記架台が設置される床面に設置され、前記地絡エネルギーKWと前記燃焼エネルギーBとに耐える強度を有する強化プラスチック板を備える
第1〜第6の態様のいずれかに記載の地絡防災部が提供される。
According to a seventh aspect of the present invention,
The ground fault disaster prevention unit according to any one of the first to sixth aspects, comprising a reinforced plastic plate that is installed on the floor on which the gantry is installed and has strength to withstand the ground fault energy KW and the combustion energy B. Is provided.

本発明の第8の態様によれば、
架台の内部に収容され、導電芯線と前記導電芯線の外周に被覆され絶縁性の油が含浸された絶縁材とを備えるOFケーブルの終端部に対して行われる地絡防災方法であって、
前記架台の外面を囲うように耐裂性シートを設け、
前記架台に前記耐裂性シートを設けるときは、
前記OFケーブルの絶縁材中に含浸されていた油をアーク放電によりガス化膨張させる地絡エネルギーKWと、
前記OFケーブルの絶縁材中に含浸されていた油が前記架台内の酸素と反応することにより爆発的に燃焼するときの燃焼エネルギーBと、に基づいて前記耐裂性シートの材質、厚さ、枚数を決定する
地絡防災方法が提供される。
According to an eighth aspect of the present invention,
A ground fault disaster prevention method that is performed on a terminal portion of an OF cable that is housed in a gantry and includes a conductive core wire and an insulating material that is coated on an outer periphery of the conductive core wire and impregnated with insulating oil,
A tear-resistant sheet is provided so as to surround the outer surface of the gantry,
When providing the tear-resistant sheet on the mount,
A ground fault energy KW for gasifying and expanding the oil impregnated in the insulating material of the OF cable by arc discharge;
Based on the combustion energy B when the oil impregnated in the insulating material of the OF cable reacts with oxygen in the gantry and burns explosively, the material, thickness, number of sheets of the tear resistant sheet A ground fault disaster prevention method is determined.

本発明によれば、複雑な周辺構造をとるOFケーブルの終端部に適用可能な地絡防災部および地絡防災方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the ground fault disaster prevention part and ground fault disaster prevention method which can be applied to the termination | terminus part of OF cable which takes a complicated periphery structure are provided.

本発明の一実施形態に係る地絡防災部および地絡防災方法の説明図であって、(a)は地絡防災方法が適用される前のOFケーブルの終端部の周辺構造を例示する模式図であり、(b)は(a)の構造に地絡防災方法が適用された後の地絡防災部の構造を例示する模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the ground fault disaster prevention part which concerns on one Embodiment of this invention, and a ground fault disaster prevention method, Comprising: (a) is a model which illustrates the periphery structure of the termination | terminus part of OF cable before a ground fault disaster prevention method is applied. It is a figure and (b) is a schematic diagram which illustrates the structure of the ground fault disaster prevention part after the ground fault disaster prevention method is applied to the structure of (a). 本発明の一実施形態に係る地絡防災部の耐裂性シートが架台に固定される様子を示す図であって、(a)が断面斜視図であり、(b)が断面図である。It is a figure which shows a mode that the tear-resistant sheet | seat of the ground fault disaster prevention part which concerns on one Embodiment of this invention is fixed to a mount frame, Comprising: (a) is a cross-sectional perspective view, (b) is sectional drawing. 本発明の一実施形態に係るOFケーブルを例示する模式図である。It is a mimetic diagram illustrating the OF cable concerning one embodiment of the present invention.

<本発明の一実施形態>
本発明の一実施形態に係る地絡防災方法は、油入り電力ケーブル(OFケーブル:Oil Filled Cable)の終端部に対して適用される。また、本実施形態においては、本実施形態に係る地絡防災方法が適用されたOFケーブルの終端部を含む周辺部を地絡防災部と呼ぶ。
<One Embodiment of the Present Invention>
The ground fault disaster prevention method according to an embodiment of the present invention is applied to a terminal portion of an oil-filled power cable (OF cable: Oil Filled Cable). Moreover, in this embodiment, the peripheral part including the terminal part of the OF cable to which the ground fault disaster prevention method according to this embodiment is applied is referred to as a ground fault disaster prevention unit.

(1)OFケーブルの終端部の周辺構造
まずは、本実施形態に係る地絡防災方法が適用される前のOFケーブルの終端部の周辺構造の一例を、図1(a)を用いて説明する。図1は本発明の一実施形態に係る地絡防災部1および地絡防災方法の説明図であって、(a)は地絡防災方法が適用される前のOFケーブル100の終端部100cの周辺構造を例示する模式図である。
(1) Peripheral structure of terminal part of OF cable First, an example of the peripheral structure of the terminal part of the OF cable before the ground fault disaster prevention method according to the present embodiment is applied will be described with reference to FIG. . FIG. 1 is an explanatory diagram of a ground fault disaster prevention unit 1 and a ground fault disaster prevention method according to an embodiment of the present invention, in which (a) shows an end portion 100c of an OF cable 100 before the ground fault disaster prevention method is applied. It is a schematic diagram which illustrates a surrounding structure.

OFケーブル100は、図3に例示するように、例えば、導電芯線101と、導電芯線101の外周に被覆され絶縁性の油102が含浸された(つまり、油102をしみ込ませた)絶縁材103と、を備える。絶縁材103は更に、絶縁性の被覆材(シース)104で覆われている。絶縁材103としては、例えばクラフト紙等の絶縁紙が用いられる。絶縁性の油102は、例えばアルキルベンゼン系合成油や鉱油等であり、大気圧以上の圧力に常時加圧された状態でOFケーブル100の絶縁材103中に含浸されている。OFケーブル100は、例えば高圧電力の地中送電線等に用いられる。   As illustrated in FIG. 3, the OF cable 100 includes, for example, a conductive core wire 101 and an insulating material 103 that is coated on the outer periphery of the conductive core wire 101 and impregnated with an insulating oil 102 (that is, impregnated with the oil 102). And comprising. The insulating material 103 is further covered with an insulating covering material (sheath) 104. As the insulating material 103, for example, insulating paper such as kraft paper is used. The insulating oil 102 is, for example, an alkylbenzene-based synthetic oil or mineral oil, and is impregnated in the insulating material 103 of the OF cable 100 while being constantly pressurized to a pressure equal to or higher than atmospheric pressure. The OF cable 100 is used, for example, for an underground transmission line of high-voltage power.

図1(a)に、係るOFケーブル100の終端部100cが、終端接続部200に接続される場合の周辺構造を例示する。   FIG. 1A illustrates a peripheral structure in the case where the termination portion 100 c of the OF cable 100 is connected to the termination connection portion 200.

図1(a)に例示するように、OFケーブル100の終端部100cの周辺構造には、鋼材等からなる架台10が含まれる。架台10は、例えば矩形状の上板10uと、架台10が設置される床面Fを土台として上板10uの4辺をそれぞれ支える4枚の側壁10sと、を備える概略直方体形状の数メートル立方の箱型に形成されている。架台10の外面にあたる4枚の側壁10sには、例えば架台10の内部10hと外部とを連通させる矩形状の窓部10wがそれぞれ設けられている。箱型をなす架台10の内部10hには、OFケーブル100の終端部100cを各種電気機器類等に接続する終端接続部200が収容されている。   As illustrated in FIG. 1A, the peripheral structure of the terminal portion 100c of the OF cable 100 includes a gantry 10 made of steel or the like. The gantry 10 has, for example, a rectangular upper plate 10 u and a substantially rectangular parallelepiped-shaped several meter cubic including four side walls 10 s each supporting four sides of the upper plate 10 u with the floor surface F on which the gantry 10 is installed as a base. It is formed in a box shape. On the four side walls 10 s corresponding to the outer surface of the gantry 10, for example, rectangular window portions 10 w that communicate the inside 10 h and the outside of the gantry 10 are provided. A terminal connection part 200 for connecting the terminal part 100c of the OF cable 100 to various electric devices and the like is accommodated in the interior 10h of the box-shaped gantry 10.

終端接続部200の下端には、保護管100pで周囲を覆われたOFケーブル100の終端部100cが接続されている。つまり、OFケーブル100は、例えば架台10の下方から、架台10が設置される床面Fを突き抜けるように架台10の内部10hに挿入され、終端部100cが終端接続部200に接続されている。   The end portion 100c of the OF cable 100 whose periphery is covered with the protective tube 100p is connected to the lower end of the end connection portion 200. That is, the OF cable 100 is inserted into the interior 10h of the gantry 10 so as to penetrate the floor surface F on which the gantry 10 is installed, for example, from below the gantry 10, and the terminal portion 100c is connected to the terminal connector 200.

終端接続部200の上端は、例えば架台10の上板10uの下面に取り付けられている。終端接続部200の上端からは、OFケーブル100が備える導電芯線と電気的に接続された図示しない導体引出棒が突出し、更に架台の上板10uを突き抜けた状態となって、上方の図示しない電気機器類等に接続されている。上板10uから突出する導体引出棒には、絶縁性の碍子300が被せられ、周囲は六フッ化硫黄(SF)ガス等の絶縁性ガスで満たされている。 The upper end of the terminal connection part 200 is attached to the lower surface of the upper plate 10u of the gantry 10, for example. A conductor lead bar (not shown) that is electrically connected to the conductive core wire provided in the OF cable 100 protrudes from the upper end of the terminal connection part 200, and further passes through the upper plate 10u of the gantry, so It is connected to equipment. A conductor lead bar protruding from the upper plate 10 u is covered with an insulating insulator 300, and the periphery is filled with an insulating gas such as sulfur hexafluoride (SF 6 ) gas.

上述のように、OFケーブルは、絶縁性の油や絶縁紙等をその構造に含み、例えば高圧電力の送電に用いられる。このため、OFケーブルの導体部分と大地間の絶縁破壊により地絡事故がひとたび起こると、アーク放電によってOFケーブル内の油が爆発し、アーク放電の火花が引火した油や絶縁紙が周囲に散って、火災等の二次災害を引き起こすおそれがある。そこで、上述の特許文献1,2のように、OFケーブル同士を接続する接続部等に対しては様々な防災対策がとられてきた。   As described above, the OF cable includes insulating oil, insulating paper, or the like in its structure, and is used, for example, for transmitting high-voltage power. For this reason, once a ground fault occurs due to insulation breakdown between the conductor portion of the OF cable and the ground, the oil in the OF cable explodes due to arc discharge, and the sparks of the arc discharge ignited and the insulating paper are scattered around. May cause a secondary disaster such as a fire. Accordingly, various disaster prevention measures have been taken for connection portions and the like for connecting OF cables as in Patent Documents 1 and 2 described above.

しかしながら、OFケーブルの終端部は、例えば架台等の内部に収容されるなど、非常に複雑な周辺構造となっている。また、上記の図1(a)に示すOFケーブル100の終端部100cの周辺構造はあくまでも一例であって、終端部の接続形態、架台の形状や大きさ等は多岐に亘り、その設置場所や設置環境も、作業空間のあまり取れない屋内や、あるいは屋外等、様々に異なる。よって、特許文献1,2のような方法をそのまま適用することは困難であった。   However, the end portion of the OF cable has a very complicated peripheral structure such as being housed inside a frame or the like. Further, the peripheral structure of the end portion 100c of the OF cable 100 shown in FIG. 1 (a) is merely an example, and the connection form of the end portion, the shape and size of the pedestal, etc. vary widely, The installation environment also varies widely, such as indoors or outdoors where the work space is not so large. Therefore, it has been difficult to apply the methods as disclosed in Patent Documents 1 and 2 as they are.

そこで、本実施形態においては、以下に示す地絡防災部及び地絡防災方法により、複雑な周辺構造をとるOFケーブルの終端部に適用可能とする。   Therefore, in the present embodiment, the ground fault disaster prevention unit and the ground fault disaster prevention method described below can be applied to a terminal part of an OF cable having a complicated peripheral structure.

(2)地絡防災部
まずは、本実施形態に係る地絡防災部1について、図1(b)および図2を用いて説明する。図1(b)は、上述の図1(a)の構造に地絡防災方法が適用された後の地絡防災部1の構造を例示する模式図である。図2は、本実施形態に係る地絡防災部1の耐裂性シート20が架台10に固定される様子を示す図であって、(a)が断面斜視図であり、(b)が断面図である。
(2) Ground fault disaster prevention part First, the ground fault disaster prevention part 1 which concerns on this embodiment is demonstrated using FIG.1 (b) and FIG. FIG. 1B is a schematic diagram illustrating the structure of the ground fault disaster prevention unit 1 after the ground fault disaster prevention method is applied to the structure of FIG. Drawing 2 is a figure showing signs that tear resistant sheet 20 of ground fault disaster prevention part 1 concerning this embodiment is fixed to mount 10, and (a) is a section perspective view and (b) is a section view. It is.

(地絡防災部の概要)
本実施形態に係る地絡防災部1は、例えば、図1(b)に例示するように、OFケーブル100の終端部100cを内部10hに収容する架台10と、架台10の外面を囲うように設けられる耐裂性シート20と、を備える。
(Outline of the Earth Fault Disaster Prevention Department)
For example, as illustrated in FIG. 1B, the ground fault disaster prevention unit 1 according to the present embodiment surrounds the gantry 10 that houses the terminal portion 100 c of the OF cable 100 in the interior 10 h and the outer surface of the gantry 10. A tear resistant sheet 20 provided.

つまり、架台10の4枚の側壁10sにそれぞれ設けられた窓部10wを塞ぐよう、例えば窓部10wより充分に大きな矩形状の耐裂性シート20が張り合わされている。具体的には、窓部10wを縁取る側壁10sの窓枠にあたる部分に、ある程度の密閉性をもって、耐裂性シート20の4辺が固定部材30で固定されている。固定部材30の詳細については後述する。   That is, for example, a rectangular tear-resistant sheet 20 that is sufficiently larger than the window portion 10w is bonded to the window portion 10w provided on each of the four side walls 10s of the gantry 10. Specifically, the four sides of the tear-resistant sheet 20 are fixed by the fixing member 30 to a portion corresponding to the window frame of the side wall 10 s that borders the window portion 10 w with a certain degree of hermeticity. Details of the fixing member 30 will be described later.

耐裂性シート20は、地絡時に発生する爆圧に耐えるよう、耐裂性の素材、つまり、裂け難い(破れ難い)素材からなり、高い引張強度や耐圧性、耐衝撃性を備えている。また、地絡時に発生する燃焼や熱に耐えるよう、高い難燃性や耐熱性を備えている。このような特性を備える素材として、耐裂性シート20は例えばアラミド繊維からなる。アラミド繊維とは、全芳香族ポリアミド繊維のことであり、軽量で柔軟な非導電性有機繊維である。   The tear-resistant sheet 20 is made of a tear-resistant material, that is, a material that is difficult to tear (not easily torn) so as to withstand the explosion pressure generated at the time of ground fault, and has high tensile strength, pressure resistance, and impact resistance. In addition, it has high flame resistance and heat resistance to withstand the combustion and heat generated at the time of ground fault. As a material having such characteristics, the tear resistant sheet 20 is made of, for example, an aramid fiber. An aramid fiber is a wholly aromatic polyamide fiber, and is a lightweight and flexible non-conductive organic fiber.

但し、ここで挙げたアラミド繊維はあくまでも一例であって、耐裂性シート20の材質等は、耐裂性シート20が地絡の爆圧によって受けるエネルギーに基づいて決定される。係るエネルギーの詳細については後述する。   However, the aramid fiber mentioned here is merely an example, and the material and the like of the tear resistant sheet 20 are determined based on the energy that the tear resistant sheet 20 receives due to the ground fault explosion pressure. Details of such energy will be described later.

また、耐裂性シート20には、耐候性樹脂を含む層が形成されている。耐候性樹脂を含む層は、例えばポリ塩化ビニル(PVC:Poly-Vinyl Chloride)等の耐候性樹脂を耐裂性シート20に含浸或いは塗布して形成される層である。あるいは、耐候性樹脂がシート状又はフィルム状に形成され、耐裂性シート20の表面に貼り付けられた層である。その他、耐候性樹脂を含む層は、その材料に適する方法で種々に形成される。また、耐候性樹脂を含む層は、耐裂性シート20の架台10の外側に向いた面や、耐裂性シート20を複数枚重ねて用いる場合には最表層の耐裂性シート20の表面に、少なくとも設けられていればよい。   Further, the tear resistant sheet 20 is formed with a layer containing a weather resistant resin. The layer containing a weather resistant resin is a layer formed by impregnating or coating the tear resistant sheet 20 with a weather resistant resin such as polyvinyl chloride (PVC). Alternatively, the weather resistant resin is a layer formed in a sheet shape or a film shape and attached to the surface of the tear resistant sheet 20. In addition, the layer containing a weather resistant resin can be variously formed by a method suitable for the material. Further, the layer containing the weather resistant resin is at least on the surface of the tear resistant sheet 20 facing the outside of the mount 10 or on the surface of the outermost tear resistant sheet 20 in the case where a plurality of tear resistant sheets 20 are used. What is necessary is just to be provided.

また、地絡防災部1は、架台10の内部の圧力が所定値を超えると、架台10の内部10hの雰囲気を放出する逆止弁40を、例えば架台10の外面に備えている。逆止弁40は、例えば、平常時にはバネの荷重により弁が閉止されたバネ式の放圧弁として構成される。地絡の爆圧等による架台10内の圧力の急激な高まりが生じると、係る圧力によりバネ荷重が取り除かれて弁が開放され、架台10内を放圧して架台10内の圧力上昇を緩和するよう構成される。   Moreover, the ground fault disaster prevention part 1 is equipped with the non-return valve 40 which discharge | releases the atmosphere of the inside 10h of the mount 10, for example in the outer surface of the mount 10, when the pressure inside the mount 10 exceeds a predetermined value. The check valve 40 is configured as, for example, a spring-type pressure release valve that is normally closed by a spring load. When the pressure in the gantry 10 suddenly increases due to a ground fault explosion pressure or the like, the spring load is removed by the pressure and the valve is opened, and the pressure in the gantry 10 is released to alleviate the pressure increase in the gantry 10. It is configured as follows.

逆止弁40としては、例えばリフト方式、スイング方式、ボール方式、バタフライ方式、ウエハ方式等、様々な方式の逆止弁、放圧弁等を用いることができる。また、設置位置も、図1(b)に示すように、いずれかの側壁10sの外面とすることができるほか、上板10uの上面等に設置することとしてもよい。   As the check valve 40, various types of check valves, pressure release valves, etc., such as a lift method, a swing method, a ball method, a butterfly method, and a wafer method, can be used. Further, as shown in FIG. 1B, the installation position can be the outer surface of any one of the side walls 10s, or can be installed on the upper surface of the upper plate 10u.

また、地絡防災部1は、架台10が設置される床面Fに設置され、地絡時に発生する爆圧のエネルギー、つまり、後述の地絡エネルギーKWと燃焼エネルギーBとに耐える強度を有する強化プラスチック板50を備える。強化プラスチック板50には、例えばレジンコンクリート(ポリマーコンクリート)と繊維強化プラスチックとを複合したPFRP(Polymer-concrete Fiber Reinforced Plastic)板等を用いることができる。   Moreover, the ground fault disaster prevention unit 1 is installed on the floor surface F on which the gantry 10 is installed, and has the strength to withstand the energy of the explosion pressure generated at the time of the ground fault, that is, the ground fault energy KW and the combustion energy B described later. A reinforced plastic plate 50 is provided. As the reinforced plastic plate 50, for example, a polymer-concrete fiber reinforced plastic (PFRP) plate in which resin concrete (polymer concrete) and fiber reinforced plastic are combined can be used.

以上のように、本実施形態に係る地絡防災部1が構成される。   As described above, the ground fault disaster prevention unit 1 according to the present embodiment is configured.

(固定部材)
図2に、耐裂性シート20を架台10に固定する固定部材30の詳細を示す。
(Fixing member)
In FIG. 2, the detail of the fixing member 30 which fixes the tear-resistant sheet | seat 20 to the mount frame 10 is shown.

図2に示すように、耐裂性シート20を架台10に固定する固定部材30は、例えば、耐裂性シート20の表面に当接される固定板としての金属プレート31と、金属プレート31を当接させた耐裂性シート20を金属プレート31と共に架台10に固定する固定ネジとしてのボルト32b及びナット32nと、耐裂性シート20の端部を折り返した折り返し部20rに通す芯部としてのワイヤ33と、を備える。   As shown in FIG. 2, the fixing member 30 that fixes the tear-resistant sheet 20 to the gantry 10, for example, abuts the metal plate 31 as a fixing plate that comes into contact with the surface of the tear-resistant sheet 20 and the metal plate 31. Bolts 32b and nuts 32n as fixing screws for fixing the tear resistant sheet 20 to the gantry 10 together with the metal plate 31, and a wire 33 as a core part passing through the folded part 20r where the end of the tear resistant sheet 20 is folded; Is provided.

これらの固定部材30のうち金属プレート31が表面に当接された耐裂性シート20は、4辺の端部がそれぞれ折り返された状態で、金属プレート31と、架台10の窓部10wを縁取る側壁10sの窓枠にあたる部分と、に挟み込まれている。耐裂性シート20の折り返し線の内側にあたる折り返し部20rにはワイヤ33が通されている。なお、図2では、耐裂性シート20の折り返した側が架台10側に向いているが、逆に向いていてもよい。   Among the fixing members 30, the tear-resistant sheet 20 with the metal plate 31 in contact with the surface borders the metal plate 31 and the window portion 10 w of the gantry 10 with the end portions of the four sides folded back. It is sandwiched between a portion corresponding to the window frame of the side wall 10s. A wire 33 is passed through a folded portion 20r that is inside the folded line of the tear resistant sheet 20. In FIG. 2, the folded back side of the tear-resistant sheet 20 faces toward the gantry 10 side, but it may face in the opposite direction.

金属プレート31、耐裂性シート20、架台10の側壁10sのそれぞれが重なり合う部分には、互いに対応する位置に、複数個の図示しない貫通孔が等間隔で設けられている。すなわち、複数個の貫通孔は、長尺状の金属プレート31の長軸方向に沿って設けられている。また、耐裂性シート20の折り返された4辺の端部に沿って設けられ、また、架台10の側壁10sの窓枠部分に沿って設けられている。   In portions where the metal plate 31, the tear resistant sheet 20, and the side wall 10s of the gantry 10 overlap, a plurality of through holes (not shown) are provided at equal intervals at positions corresponding to each other. That is, the plurality of through holes are provided along the long axis direction of the long metal plate 31. Further, the tear-resistant sheet 20 is provided along the end portions of the folded four sides, and is provided along the window frame portion of the side wall 10 s of the gantry 10.

これら複数個の貫通孔には、例えば架台10の内側から、架台10、耐裂性シート20、金属プレート31を貫くように、ボルト32bが挿入されている。また、架台10の外側、つまり、金属プレート31の上からは、ナット32nがボルト32bに嵌め込まれている。以上のように、ボルト32bとナット32nとにより、耐裂性シート20が金属プレート31と共に架台10に固定されている。   Bolts 32 b are inserted into the plurality of through holes so as to penetrate the gantry 10, the tear resistant sheet 20, and the metal plate 31 from the inside of the gantry 10, for example. Further, from the outside of the gantry 10, that is, from above the metal plate 31, a nut 32n is fitted into the bolt 32b. As described above, the tear-resistant sheet 20 is fixed to the gantry 10 together with the metal plate 31 by the bolts 32b and the nuts 32n.

ここで、用いられるボルト32bに関する具体的な数値を例示する。ボルト32bには、例えばJIS規格による強度区分が4.8以上、ネジ太さが12mm(呼び径:M12)のものを用いることができる。また、各ボルト32b間のピッチ(間隔)を、例えば100mm以下とすることができる。各ボルト32b間のピッチは、架台10の側壁10s、耐裂性シート20、金属プレート31にそれぞれ設けられた貫通孔の間隔により規定することができる。   Here, specific numerical values relating to the bolts 32b used are exemplified. As the bolt 32b, for example, a bolt having a strength classification of 4.8 or more and a screw thickness of 12 mm (nominal diameter: M12) according to JIS standards can be used. Moreover, the pitch (interval) between each volt | bolt 32b can be 100 mm or less, for example. The pitch between the bolts 32 b can be defined by the distance between the through holes provided in the side wall 10 s of the gantry 10, the tear resistant sheet 20, and the metal plate 31.

なお、図2には、1枚の側壁10sに対して1枚の耐裂性シート20が張り合わされる場合を示したが、必要に応じて1枚の側壁10sに対し複数枚重ね合わせた耐裂性シート20が張り合わされる場合もある。   FIG. 2 shows a case where one tear-resistant sheet 20 is bonded to one side wall 10s. However, if necessary, a plurality of tear-resistant sheets are stacked on one side wall 10s. In some cases, the sheet 20 is laminated.

すなわち、上記構成においては、地絡時の爆圧に耐え得る強度が得られるよう、耐裂性シート20の材質、厚さのほか、必要に応じて重ね合わせの枚数が決定されている。地絡時の爆圧のエネルギーは、後述の地絡エネルギーKWと燃焼エネルギーBとに基づいて算出される。複数枚の重ね合わせが必要と算出された場合には、例えば金属プレート31と架台10との間に、重ね合わせの枚数だけ耐裂性シート20が挟み込まれるよう構成される。   That is, in the above configuration, in addition to the material and thickness of the tear-resistant sheet 20, the number of sheets to be superimposed is determined as necessary so as to obtain a strength that can withstand the explosion pressure during a ground fault. The energy of the explosion pressure at the time of the ground fault is calculated based on the ground fault energy KW and the combustion energy B described later. When it is calculated that a plurality of sheets need to be overlapped, for example, the tear-resistant sheet 20 is sandwiched between the metal plate 31 and the gantry 10 by the number of sheets to be overlapped.

以上のように、OFケーブル100の終端部100cにおいて、本実施形態に係る地絡防災部1が構成される。   As described above, the ground fault prevention unit 1 according to the present embodiment is configured in the terminal end portion 100c of the OF cable 100.

(3)耐裂性シートの材質、厚さ、枚数の根拠
次に、耐裂性シート20の材質、厚さ、重ね合わせの枚数を決定する際の根拠となる地絡エネルギーKW及び燃焼エネルギーBについて説明する。
(3) Grounds for material, thickness, and number of tear-resistant sheets Next, ground fault energy KW and combustion energy B, which are grounds for determining the material, thickness, and number of sheets to be stacked, will be described. To do.

上述の特許文献2には、OFケーブルの接続部等を覆う箱形のトラフごとアラミド繊維シートで包む構成や、このとき充分な強度を得るのに必要なアラミド繊維シートの重ね合わせの枚数をアークにより与えられるエネルギーKW(MJ)に基づいて算出する方法について記載されている。   In the above-mentioned Patent Document 2, the configuration in which the box-shaped trough covering the connection portion of the OF cable is wrapped with an aramid fiber sheet, and the number of aramid fiber sheets necessary to obtain sufficient strength at this time are arced. Describes a method of calculating based on the energy KW (MJ) given by.

しかしながら、架台の外面に耐裂性シートを設ける上記構成に、特許文献2による算出方法を適用し、耐裂性シートにアラミド繊維シートを用いて重ね合わせの枚数を決定したところ、地絡を模擬的に発生させた試験では、地絡による爆圧に耐えられず、アラミド繊維シートが破断するという結果となってしまった。   However, when the calculation method according to Patent Document 2 is applied to the above-described configuration in which a tear-resistant sheet is provided on the outer surface of the gantry and an aramid fiber sheet is used as the tear-resistant sheet, the number of sheets to be superimposed is simulated. In the generated test, the aramid fiber sheet was not able to withstand the explosion pressure caused by the ground fault, and the aramid fiber sheet was broken.

本発明者等は、鋭意研究の結果、本実施形態に係る耐裂性シート20が地絡による爆圧によって受けるエネルギーを、以下に示す爆圧エネルギーE(MJ)という概念で捉えることに想到した。この爆圧エネルギーE(MJ)に基づいて、耐裂性シート20の材質、厚さ、重ね合わせの枚数を決定することにより、地絡による爆圧に充分に耐える構成とする。   As a result of intensive studies, the present inventors have conceived that the energy received by the tear-resistant sheet 20 according to the present embodiment due to the explosion pressure due to the ground fault is captured by the concept of the following explosion energy E (MJ). Based on this explosive pressure energy E (MJ), the material, thickness, and number of overlapping sheets of the tear-resistant sheet 20 are determined so that the explosive pressure due to the ground fault can be sufficiently resisted.

すなわち、爆圧エネルギーEは、OFケーブル100の絶縁材103中に含浸されていた油102をアーク放電によりガス化膨張させる地絡エネルギーKWと、OFケーブル100の絶縁材103中に含浸されていた油102が架台10内の酸素と反応することにより爆発的に燃焼するときの燃焼エネルギーBと、に基づいて算出される。   That is, the explosive pressure energy E was impregnated in the ground fault energy KW that gasifies and expands the oil 102 impregnated in the insulating material 103 of the OF cable 100 by arc discharge and in the insulating material 103 of the OF cable 100. It is calculated based on the combustion energy B when the oil 102 is explosively burned by reacting with oxygen in the gantry 10.

例えばOFケーブル100の終端部100cが収容される架台10の内部10hで地絡が発生すると、アーク放電の電力の一部を受けて、OFケーブル100の絶縁材103中に含浸されていた油102が急激にガス化膨張する(1次爆発)。また、これと略同時に、油102の瞬間的かつ爆発的な燃焼が起こる(2次爆発)。このような、油102の急激なガス化膨張および瞬間的かつ爆発的な燃焼が、地絡時に耐裂性シート20が受ける爆圧となる。本実施形態では、油102をガス化膨張させる地絡エネルギーKWと共に、油102が爆発的に燃焼するときの燃焼エネルギーBをも考慮に入れた爆圧エネルギーEに基づき、耐裂性シート20の材質、厚さ、重ね合わせの枚数を決定する。   For example, when a ground fault occurs in the interior 10h of the gantry 10 in which the terminal portion 100c of the OF cable 100 is accommodated, the oil 102 that has been impregnated in the insulating material 103 of the OF cable 100 by receiving a part of the electric power of the arc discharge. Suddenly gasifies and expands (primary explosion). At the same time, instantaneous and explosive combustion of the oil 102 occurs (secondary explosion). Such a rapid gasification expansion and instantaneous and explosive combustion of the oil 102 become an explosion pressure that the tear resistant sheet 20 receives during a ground fault. In the present embodiment, the material of the tear resistant sheet 20 is based on the explosion energy E taking into account the combustion energy B when the oil 102 is explosively burned together with the ground fault energy KW that gasifies and expands the oil 102. Determine thickness, number of overlays.

上述のように、特許文献2においては、アラミド繊維シートの必要枚数はアーク放電によりOFケーブル内の油に与えられるガス化膨張のエネルギーKW(MJ)に基づいて算出するとあり、上記のような燃焼エネルギーBは考慮にいれられていなかった。とはいえ、上述の特許文献1や2では、アラミド繊維シートで気密に保たれたトラフ内には、ごく小さな隙間しかない。したがって、たとえトラフ内でOFケーブルの油が瞬間的に燃焼したとしても、トラフ内の空気及びその空気中に含まれる酸素量はごく限られており、アラミド繊維シートによる窒息効果によって直ちに消火される。よって、地絡時の爆圧への寄与分が小さいと考えられる燃焼エネルギーBを考慮に入れずとも、地絡時の爆圧に耐える充分な強度が得られていた。   As described above, in Patent Document 2, the required number of aramid fiber sheets is calculated based on the gasification expansion energy KW (MJ) given to the oil in the OF cable by arc discharge. Energy B was not taken into account. However, in the above-mentioned Patent Documents 1 and 2, there is only a very small gap in the trough kept airtight with the aramid fiber sheet. Therefore, even if the oil of the OF cable burns instantaneously in the trough, the air in the trough and the amount of oxygen contained in the air are extremely limited and are immediately extinguished by the suffocation effect by the aramid fiber sheet. . Therefore, sufficient strength to withstand the explosion pressure at the time of the ground fault has been obtained without taking into consideration the combustion energy B considered to have a small contribution to the explosion pressure at the time of the ground fault.

しかしながら、本実施形態に係る地絡防災部1では、架台10は例えば数メートル立方の概略直方体形状を有する。このように、架台10の内部10hの体積はトラフとは比べものにならないほど大きく、架台10内の空気及びその空気中に含まれる酸素量は膨大となる。よって、架台10内の酸素を消費して油102が燃焼する際には、爆発的な燃焼による膨大な燃焼エネルギーBが生じることとなる。したがって、地絡時の爆圧に充分耐える構造とするには、上述のように、燃焼エネルギーBを考慮にいれる必要がある。   However, in the ground fault disaster prevention unit 1 according to the present embodiment, the gantry 10 has a substantially rectangular parallelepiped shape of, for example, several meters cubic. Thus, the volume of the interior 10h of the gantry 10 is so large that it cannot be compared with the trough, and the air in the gantry 10 and the amount of oxygen contained in the air become enormous. Therefore, when the oil 102 burns by consuming oxygen in the gantry 10, a huge amount of combustion energy B is generated by explosive combustion. Therefore, as described above, the combustion energy B needs to be taken into consideration in order to obtain a structure that can sufficiently withstand the explosion pressure during a ground fault.

(地絡エネルギーの計算式)
以下に、地絡エネルギーKWの計算式を示す。
(Equation for calculating ground fault energy)
The calculation formula of the ground fault energy KW is shown below.

地絡エネルギーKW(MJ)は、
アーク放電の電力の平均値W(MW)と、
アーク放電の電力のうちOFケーブルの絶縁材中に含浸される油のガス化膨張に関与する電力の比率βと、
上記油のガス化膨張に関わる定数kと、により規定される次式(1)、
KW=k×β×W×4.19・・・(1)
により求められる。
Ground fault energy KW (MJ) is
An average value W (MW) of arc discharge power,
The ratio β of the electric power involved in the gasification expansion of the oil impregnated in the insulation material of the OF cable out of the electric power of the arc discharge,
The following formula (1) defined by the constant k related to the gasification expansion of the oil:
KW = k × β × W × 4.19 (1)
Is required.

ここで、アーク放電の電力の平均値Wは、例えばOFケーブル100の導体部分と大地間の絶縁破壊により大地へとアーク放電して地絡に至る、いわゆる地絡第1波のアーク放電の電力の平均値であり、地絡の大きさによって変動する。この地絡第1波により、例えばOFケーブル100の終端部100cを覆う保護管100pが破壊される。   Here, the average value W of arc discharge power is, for example, the power of arc discharge of the so-called ground fault first wave, which arcs to the ground due to dielectric breakdown between the conductor portion of the OF cable 100 and the ground and reaches the ground fault. It is an average value of and fluctuates depending on the size of the ground fault. Due to the first ground fault wave, for example, the protective tube 100p covering the end portion 100c of the OF cable 100 is broken.

また、この地絡第1波により、OFケーブル100の絶縁材103中の油102が急激にガス化膨張する。つまり、アーク放電の電力の一部がガス化膨張のエネルギーとして使われる。上記比率βは、ガス化膨張に使われる(関与する)電力の比率である。   Moreover, the oil 102 in the insulating material 103 of the OF cable 100 is rapidly gasified and expanded by the first ground fault wave. That is, a part of electric power of arc discharge is used as energy for gasification expansion. The ratio β is a ratio of electric power used (participated) in gasification expansion.

また、
上記油のガス化膨張に関わる定数kは、
上記油の比重C(kg/m)と、
上記油のガス定数G(m/k)と、
上記油のガス温度Gt(℃)と、
上記油のガス化に必要なエネルギーGq(kcal/kg)と、により規定される次式(2)、
k=(C×G/9.8)×{Gt/(4.186×Gq)}・・・(2)
により諸定数を複合させた定数である。
Also,
The constant k related to the gasification expansion of the oil is
Specific gravity C 0 (kg / m 3 ) of the oil,
The gas constant G (m / k) of the oil,
The gas temperature Gt (° C.) of the oil,
The following formula (2) defined by the energy Gq (kcal / kg) necessary for the gasification of the oil:
k = (C 0 × G / 9.8) × {Gt / (4.186 × Gq)} (2)
Is a constant obtained by combining various constants.

(燃焼エネルギーの計算式)
以下に、燃焼エネルギーBの計算式を示す。
(Calculation formula of combustion energy)
The calculation formula of the combustion energy B is shown below.

燃焼エネルギーB(MJ)は、
架台の内部の体積V(m)と、
上記油の最大発熱量Q(MJ/mol)と、により規定される次式(3)、
B=0.407×V×Q・・・(3)
により求められる。
Combustion energy B (MJ) is
Volume V (m 3 ) inside the gantry,
The following formula (3) defined by the maximum calorific value Q (MJ / mol) of the oil,
B = 0.407 × V × Q (3)
Is required.

ここで、燃焼エネルギーBは、例えば架台10内の酸素を全て消費してOFケーブル100内の油102が燃焼した場合を想定している。したがって、OFケーブル100内の油102の最大発熱量Qであるモルあたり(/mol)の発熱量に、消費される酸素量を掛け合わせている。消費される酸素量としては、単位体積あたり(/m)の空気中に含まれる酸素の体積%をモル数に換算して得られる9.35(mol)を、更にモルあたり(/mol)の油102の燃焼に必要な酸素のモル数である23(mol)で割った係数0.407を掛け合わせた値としている。 Here, the combustion energy B assumes, for example, that all the oxygen in the gantry 10 is consumed and the oil 102 in the OF cable 100 is combusted. Therefore, the calorific value per mol (/ mol), which is the maximum calorific value Q of the oil 102 in the OF cable 100, is multiplied by the consumed oxygen amount. As the amount of oxygen consumed, 9.35 (mol) obtained by converting the volume% of oxygen contained in the air per unit volume (/ m 3 ) into the number of moles, and further per mole (/ mol) The coefficient is 0.407 divided by 23 (mol) which is the number of moles of oxygen necessary for the combustion of the oil 102.

なお、上記において、架台10の内部10hの体積Vが大きくなるほど、架台10内の酸素量が多くなり瞬間的かつ爆発的な燃焼は促進される。しかし、空間が広がる分、耐裂性シート20に到達する燃焼圧は減少する。逆に体積Vが小さくなるほど、架台10内の酸素量が減って燃焼は抑制されるが、燃焼圧は耐裂性シート20に到達し易くなる。このことから、架台10の内部10hの体積Vには、燃焼エネルギーEが最大となる体積が存在する。   In the above description, as the volume V of the interior 10h of the gantry 10 increases, the amount of oxygen in the gantry 10 increases and instantaneous and explosive combustion is promoted. However, the combustion pressure that reaches the tear-resistant sheet 20 decreases as the space increases. Conversely, as the volume V decreases, the amount of oxygen in the gantry 10 decreases and combustion is suppressed, but the combustion pressure easily reaches the tear resistant sheet 20. Therefore, the volume V of the interior 10h of the gantry 10 has a volume where the combustion energy E is maximum.

また、架台10の外面にはある程度の密閉性をもって耐裂性シート20が設けられている。よって、上記において、架台10内の酸素が消費された後は、架台10の外部からの新たな酸素の流入が抑制されて架台10内が消化され、架台10の外部に燃焼が広がる(延焼する)ことが抑制される。   Further, a tear resistant sheet 20 is provided on the outer surface of the gantry 10 with a certain degree of hermeticity. Therefore, in the above, after the oxygen in the gantry 10 is consumed, the inflow of new oxygen from the outside of the gantry 10 is suppressed, the inside of the gantry 10 is digested, and combustion spreads outside the gantry 10 (fire spreads). ) Is suppressed.

(爆圧エネルギーの計算式)
以下に、爆圧エネルギーEの計算式を示す。
(Calculation formula of explosive pressure energy)
The calculation formula of the explosion energy E is shown below.

爆圧エネルギーE(MJ)は、
それぞれのエネルギーの寄与分k1,k2を加味したうえで、上記の式(1)により求められる地絡エネルギーKWと、上記の式(3)により求められる燃焼エネルギーBと、を足し合わせた次式(4)、
E=k1×KW+k2×B・・・(4)
により求められる。
Explosive pressure energy E (MJ) is
Taking into account the contributions k1 and k2 of the respective energies, the following equation is obtained by adding the ground fault energy KW obtained by the above equation (1) and the combustion energy B obtained by the above equation (3). (4),
E = k1 × KW + k2 × B (4)
Is required.

以上のように規定される上記の式(1)〜(4)を基に、耐裂性シート20の材質、厚さ、重ね合わせの枚数が決定される。   Based on the above formulas (1) to (4) defined as described above, the material, thickness, and number of overlapping sheets of the tear resistant sheet 20 are determined.

なお、以上にみてきたように、爆圧エネルギーEは、地絡の大きさや、OFケーブル内に含まれる油102の種類、架台10の内部10hの体積等によって変動する。つまり、これら地絡の大きさ、油102の種類、架台10内の体積等を変数として、耐裂性シート20の材質、厚さ、重ね合わせの枚数が決定される。   As described above, the explosion energy E varies depending on the size of the ground fault, the type of the oil 102 included in the OF cable, the volume of the interior 10h of the gantry 10, and the like. That is, the material, thickness, and number of overlapping sheets of the tear resistant sheet 20 are determined by using the size of the ground fault, the type of oil 102, the volume in the gantry 10, and the like as variables.

(4)地絡防災方法
上記の地絡防災部1の構成は、本実施形態に係る地絡防災方法により得られる。すなわち、本実施形態に係る地絡防災方法は、例えば、図1(a)に例示する架台10の内部10hに収容されるOFケーブル100の終端部100cに対して行われる。本実施形態に係る地絡防災方法では、架台10の外面を囲うように耐裂性シート20を設ける。
(4) Ground fault disaster prevention method The structure of said ground fault disaster prevention part 1 is obtained by the ground fault disaster prevention method which concerns on this embodiment. That is, the ground fault disaster prevention method according to the present embodiment is performed on the terminal end portion 100c of the OF cable 100 housed in the interior 10h of the gantry 10 illustrated in FIG. In the ground fault disaster prevention method according to the present embodiment, the tear resistant sheet 20 is provided so as to surround the outer surface of the gantry 10.

このとき、OFケーブル100の絶縁材103中に含浸されていた油102をアーク放電によりガス化膨張させる地絡エネルギーKWと、OFケーブル100の絶縁材103中に含浸されていた油102が架台10内の酸素と反応することにより爆発的に燃焼するときの燃焼エネルギーBと、に基づいて耐裂性シート20の材質、厚さ、枚数を決定する。耐裂性シート20の最表面には、耐候性樹脂を含む層を形成してもよい。   At this time, the grounding energy KW for gasifying and expanding the oil 102 impregnated in the insulating material 103 of the OF cable 100 by arc discharge and the oil 102 impregnated in the insulating material 103 of the OF cable 100 are the base 10. The material, thickness, and number of tear resistant sheets 20 are determined based on the combustion energy B when explosively combusting by reacting with the oxygen therein. A layer containing a weather resistant resin may be formed on the outermost surface of the tear resistant sheet 20.

また、架台10に耐裂性シート20を設ける際には、固定部材30を用いる。すなわち、耐裂性シート20の端部を折り返した折り返し部20rにワイヤ33を通す。この耐裂性シート20を金属プレート31と架台10とで挟み込む。架台10、金属プレート31、耐裂性シート20を貫通するようボルト32bを挿入し、ナット32nを嵌めこむ。   Further, when the tear resistant sheet 20 is provided on the gantry 10, the fixing member 30 is used. That is, the wire 33 is passed through the folded portion 20r where the end portion of the tear resistant sheet 20 is folded. The tear resistant sheet 20 is sandwiched between the metal plate 31 and the gantry 10. A bolt 32b is inserted so as to penetrate the gantry 10, the metal plate 31, and the tear resistant sheet 20, and a nut 32n is fitted.

また、架台10の外面に、架台10の内部の圧力が所定値を超えると、架台10の内部10hの雰囲気を放出する逆止弁40を設ける。   Further, a check valve 40 is provided on the outer surface of the gantry 10 to release the atmosphere inside the gantry 10 when the pressure inside the gantry 10 exceeds a predetermined value.

また、架台10が設置される床面Fに、地絡エネルギーKWと燃焼エネルギーBとに耐える強度を有する強化プラスチック板50を設置する。   Moreover, the reinforced plastic board 50 which has the intensity | strength which can withstand the ground fault energy KW and the combustion energy B is installed in the floor surface F in which the mount frame 10 is installed.

なお、これらの方法の実施順は上記の記載順によらない。   The order in which these methods are performed does not depend on the order described above.

(5)本実施形態に係る効果 本実施形態によれば、以下に示す1つ又は複数の効果を奏する。 (5) Effects according to the present embodiment According to the present embodiment, the following one or more effects are achieved.

(a)すなわち、本実施形態では、OFケーブル100の終端部100cを内部10hに収容する架台10の外面を囲うように耐裂性シート20を設ける。このように、架台10ごとOFケーブル100の終端部100cを覆うので、複雑な周辺構造をとるOFケーブル100の終端部100cに適用可能となる。 (A) In other words, in this embodiment, the tear resistant sheet 20 is provided so as to surround the outer surface of the gantry 10 that houses the terminal portion 100c of the OF cable 100 in the interior 10h. Thus, since the entire frame 10 covers the end portion 100c of the OF cable 100, it can be applied to the end portion 100c of the OF cable 100 having a complicated peripheral structure.

(b)また、本実施形態では、例えば剛性を有する板状の部材等を用いず、耐裂性シート20を用いている。これにより、地絡の発生時、例えば架台10の外側に耐裂性シート20が撓むことで、爆圧による膨張をある程度許容しながら爆圧の衝撃等を吸収することができる。よって、より確実に地絡による爆発等を架台10内に封じ込めることができる。 (B) Moreover, in this embodiment, the tear-resistant sheet | seat 20 is used, without using the plate-shaped member etc. which have rigidity, for example. Thereby, when a ground fault occurs, for example, the tear-resistant sheet 20 bends to the outside of the gantry 10, so that it is possible to absorb the impact of the explosion pressure while allowing the explosion due to the explosion pressure to some extent. Therefore, an explosion or the like due to a ground fault can be contained in the gantry 10 more reliably.

(c)また、本実施形態では、地絡エネルギーKWと燃焼エネルギーBとに基づいて耐裂性シート20の材質、厚さ、枚数を決定する。また、このとき、上記の式(1)〜(4)を用いる。これにより、例えばトラフ内よりも遥かに膨大な量の酸素を有する架台10内での、瞬間的かつ爆発的な燃焼を含む爆圧に耐えるに充分な強度が得られる。 (C) Moreover, in this embodiment, the material, thickness, and number of sheets of the tear resistant sheet 20 are determined based on the ground fault energy KW and the combustion energy B. Moreover, said Formula (1)-(4) is used at this time. This provides sufficient strength to withstand explosive pressure, including instantaneous and explosive combustion, for example in a gantry 10 that has a much larger amount of oxygen than in the trough.

上述のように、架台10の内部10hの体積Vには、燃焼エネルギーEが最大となる体積が存在する。本発明者等は、このような体積を有する架台の外面に、耐裂性シートとしてアラミド繊維シートを設け、地絡の模擬試験を行った。このとき、特許文献2の算出方法および本実施形態に係る式(1)〜(4)に基づき重ね合わせの枚数等の仕様を決定し、それぞれの仕様について模擬試験の結果を得た。   As described above, the volume V of the interior 10h of the gantry 10 has a volume where the combustion energy E is maximum. The present inventors provided an aramid fiber sheet as a tear-resistant sheet on the outer surface of the gantry having such a volume, and conducted a ground fault simulation test. At this time, specifications such as the number of overlapping sheets were determined based on the calculation method of Patent Document 2 and the formulas (1) to (4) according to the present embodiment, and the result of the simulation test was obtained for each specification.

これによれば、特許文献2に基づく仕様では、大量の酸素を有する架台内で起きた爆発的な燃焼に耐えられず、アラミド繊維シートが破断した。一方、本実施形態に基づく仕様では、アラミド繊維シートに破断は生じなかった。   According to this, in the specification based on Patent Document 2, the aramid fiber sheet was broken because it could not withstand the explosive combustion that occurred in the gantry having a large amount of oxygen. On the other hand, in the specification based on this embodiment, the aramid fiber sheet did not break.

(d)また、本実施形態では、上記の式(1)〜(4)に基づいて耐裂性シート20の材質、厚さ、枚数を決定する。これにより、上記の式(1)〜(4)に含まれる地絡の大きさ、OFケーブル100内に含まれる油102の種類、架台10の内部10hの体積等、ときどきで異なる変数を考慮にいれることができ、より確実に爆圧に耐える構造とすることができる。 (D) Moreover, in this embodiment, the material, thickness, and number of sheets of the tear resistant sheet 20 are determined based on said Formula (1)-(4). This takes into account variables that are sometimes different, such as the size of the ground fault included in the above formulas (1) to (4), the type of oil 102 contained in the OF cable 100, the volume of the interior 10h of the gantry 10, and so on. Therefore, the structure can withstand explosion pressure more reliably.

(e)また、本実施形態では、耐裂性シート20はアラミド繊維からなる。このように、耐裂性、高い引張強度や耐圧性、耐衝撃性のみならず、難燃性や耐熱性を備える素材を用いることにより、地絡時に発生する燃焼や熱にも耐え、架台10の外部への延焼を抑えることができる。 (E) Moreover, in this embodiment, the tear-resistant sheet | seat 20 consists of an aramid fiber. In this way, by using a material having not only tear resistance, high tensile strength, pressure resistance, and impact resistance, but also flame resistance and heat resistance, it can withstand combustion and heat generated in the event of a ground fault. Fire spread to the outside can be suppressed.

(f)また、アラミド繊維は、非導電性有機繊維である。よって、例えば高圧電力の送電用に用いられるOFケーブル100の終端部100cにおいて、平常時、および地絡によるアーク放電が生じた時、より高い安全性が確保される。 (F) Moreover, an aramid fiber is a nonelectroconductive organic fiber. Therefore, higher safety is ensured at the terminal portion 100c of the OF cable 100 used for power transmission of high-voltage power, for example, during normal times and when arc discharge occurs due to a ground fault.

(g)また、本実施形態では、耐裂性シート20は、耐候性樹脂を含む層が形成されたアラミド繊維からなる。これにより、例えば架台10が屋外等に設置された場合でも、耐裂性シート20に耐候性を持たせ、長寿命化を図ることができる。 (G) Moreover, in this embodiment, the tear resistant sheet 20 consists of an aramid fiber in which the layer containing a weather resistant resin was formed. Thereby, for example, even when the gantry 10 is installed outdoors or the like, the tear resistant sheet 20 can be provided with weather resistance, and the life can be extended.

(h)また、本実施形態では、耐裂性シート20を、金属プレート31と架台10との間に挟み込み、金属プレート31と共に架台10に固定する。これにより、例えば耐裂性シート20が地絡の爆圧を受け、架台10の外側に撓んだとしても、ボルト32bが挿入された耐裂性シート20の貫通孔の周囲が金属プレート31で押さえ込まれる。よって、耐裂性シート20がボルト32bで引っ張られて貫通孔を起点に裂けてしまうことを抑制できる。 (H) In the present embodiment, the tear resistant sheet 20 is sandwiched between the metal plate 31 and the gantry 10 and fixed to the gantry 10 together with the metal plate 31. Thereby, for example, even if the tear resistant sheet 20 receives a ground fault explosion pressure and bends to the outside of the gantry 10, the periphery of the through hole of the tear resistant sheet 20 into which the bolt 32b is inserted is pressed by the metal plate 31. . Therefore, it can suppress that the tear-resistant sheet | seat 20 is pulled with the volt | bolt 32b, and tears from a through-hole as a starting point.

(i)また、金属プレート31を当接させて耐裂性シート20を架台10に固定することで、耐裂性シート20の架台10に対する密閉性をより向上させることができる。よって、地絡時の爆発で飛散したものが架台10の外部にまき散らされることや、新たな酸素の流入により燃焼が広がることを抑制できる。 (I) Moreover, the metal plate 31 is brought into contact with and the tear-resistant sheet 20 is fixed to the gantry 10, whereby the sealing property of the tear-resistant sheet 20 to the gantry 10 can be further improved. Therefore, it is possible to suppress the scattering of the explosion caused by the ground fault from spreading to the outside of the gantry 10 and the spread of combustion due to the inflow of new oxygen.

(j)また、本実施形態では、JIS規格による強度区分が4.8以上、呼び径がM12のボルト32bを用いる。また、各ボルト32b間のピッチ(間隔)を100mm以下とする。これにより、少なくとも地絡の模擬試験では、上記に挙げた性能が充分に得られることが確認されている。 (J) In this embodiment, a bolt 32b having a strength classification of 4.8 or more and a nominal diameter of M12 according to the JIS standard is used. Further, the pitch (interval) between the bolts 32b is set to 100 mm or less. As a result, it has been confirmed that the above-described performance can be sufficiently obtained at least in a ground fault simulation test.

(k)また、本実施形態では、架台10の内部10hの圧力が所定値を超えると、架台10の内部10hの雰囲気を放出する逆止弁40を備える。これにより、地絡の爆圧が生じた際、架台10内の圧力を速やかに低下させ、耐裂性シート20に対する爆圧の衝撃を和らげることができる。 (K) Moreover, in this embodiment, when the pressure of the inside 10h of the gantry 10 exceeds a predetermined value, the check valve 40 that releases the atmosphere of the inside 10h of the gantry 10 is provided. Thus, when a ground fault explosion pressure occurs, the pressure in the gantry 10 can be quickly reduced, and the impact of the explosion pressure on the tear resistant sheet 20 can be reduced.

(l)また、本実施形態では、架台10が設置される床面Fに設置され、地絡エネルギーKWと燃焼エネルギーBとに耐える強度を有する強化プラスチック板50を備える。これにより、架台10が設置される床面Fが地絡の爆圧や燃焼等により破損したり変形したりすることが抑制され、床面Fを保護することができる。 (L) Moreover, in this embodiment, the reinforced plastic board 50 which has the intensity | strength which is installed in the floor surface F in which the mount frame 10 is installed, and withstands ground fault energy KW and combustion energy B is provided. Thereby, it is suppressed that the floor surface F in which the mount frame 10 is installed is damaged or deform | transformed by the ground fault explosion pressure, combustion, etc., and the floor surface F can be protected.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態では、主に図1(a)に示すOFケーブル100の終端部100cの周辺構造に対して適用される地絡防災部1および地絡防災方法について説明したが、本発明に係る地絡防災部および地絡防災方法は、様々に異なる周辺構造を有する終端部に対して適用可能である。   For example, in the above-described embodiment, the ground fault disaster prevention unit 1 and the ground fault disaster prevention method that are mainly applied to the peripheral structure of the terminal end portion 100c of the OF cable 100 illustrated in FIG. The ground fault disaster prevention unit and the ground fault disaster prevention method according to the present invention can be applied to terminal portions having various different peripheral structures.

また、上述の実施形態では、架台10の1枚の側壁10sに対し、1枚のあるいは複数枚重ね合わせた耐裂性シート20を張り合わせることとしたが、本発明はこのような構成に限られない。例えば、架台の周囲に長尺状の耐裂性シートを必要回数巻き付けたり、筒状の耐裂性シートで架台の外面を覆ったりしてもよい。また、耐裂性シートを、四つ折り、八つ折り、つづら折りなどに折り畳んで用いてもよい。   In the above-described embodiment, one or a plurality of stacked tear-resistant sheets 20 are attached to one side wall 10s of the gantry 10, but the present invention is limited to such a configuration. Absent. For example, a long tear-resistant sheet may be wound around the gantry as many times as necessary, or the outer surface of the gantry may be covered with a cylindrical tear-resistant sheet. Further, the tear-resistant sheet may be folded into four, eight, or zigzag folds.

また、上述の実施形態では、図3にOFケーブル100を例示したが、本発明が適用されるOFケーブルの構造はこれに限られない。例えば、図3のような1本の導電芯線101を有する単芯ケーブルのみならず、3芯ケーブル等であってもよい。   In the above embodiment, the OF cable 100 is illustrated in FIG. 3, but the structure of the OF cable to which the present invention is applied is not limited thereto. For example, not only a single core cable having one conductive core wire 101 as shown in FIG.

また、上述の実施形態に係る耐裂性シート20に形成される耐候性樹脂を含む層、架台10の外面に設けられる逆止弁40、架台10が設置される床面Fに設けられる強化プラスチック板50等は、本発明の必須要件ではない。   Moreover, the layer containing the weather resistant resin formed in the tear resistant sheet 20 according to the above-described embodiment, the check valve 40 provided on the outer surface of the gantry 10, and the reinforced plastic plate provided on the floor surface F on which the gantry 10 is installed 50 or the like is not an essential requirement of the present invention.

10 架台
10h 内部
10s 側壁
10u 上板
10w 窓部
20 耐裂性シート
30 固定部材
31 金属プレート(固定板)
32b ボルト
32n ナット
33 ワイヤ
40 逆止弁
50 強化プラスチック板
100 OFケーブル
100c 終端部
100p 保護管
200 終端接続部
300 碍子
F 床面
DESCRIPTION OF SYMBOLS 10 Base 10h Inside 10s Side wall 10u Top plate 10w Window part 20 Tear resistant sheet 30 Fixing member 31 Metal plate (fixing plate)
32b Bolt 32n Nut 33 Wire 40 Check valve 50 Reinforced plastic plate 100 OF cable 100c Termination portion 100p Protection tube 200 Termination connection portion 300 Insulator F Floor

Claims (8)

導電芯線と前記導電芯線の外周に被覆され絶縁性の油が含浸された絶縁材とを備えるOFケーブルの終端部を内部に収容し、側壁に窓部が設けられる架台と、
前記架台の前記窓部を塞ぐように設けられる耐裂性シートと、を備え、
前記耐裂性シートの材質、厚さ、枚数
前記OFケーブルの絶縁材中に含浸されていた油をアーク放電によりガス化膨張させる地絡エネルギーKWと、
前記OFケーブルの絶縁材中に含浸されていた油が前記架台内の酸素と反応することにより爆発的に燃焼するときの燃焼エネルギーBと、に基づいて決定され、
地絡による爆発発生時に、前記耐裂性シートが撓むことで、爆圧を前記架台内に封じ込めるよう構成される
ことを特徴とする地絡防災部。
A pedestal that houses therein a terminal portion of an OF cable that includes a conductive core wire and an insulating material coated on the outer periphery of the conductive core wire and impregnated with insulating oil ; and a window provided on a side wall ;
A tear-resistant sheet provided so as to close the window of the gantry,
The material, thickness and number of tear resistant sheets are
A ground fault energy KW for gasifying and expanding the oil impregnated in the insulating material of the OF cable by arc discharge;
The oil impregnated in the insulation material of the OF cable is determined based on combustion energy B when it explosively burns by reacting with oxygen in the gantry ,
A ground fault disaster prevention unit configured to contain explosion pressure in the gantry by bending the tear resistant sheet when an explosion occurs due to a ground fault.
前記地絡エネルギーKW(MJ)は、
前記アーク放電の電力の平均値W(MW)と、
前記アーク放電の電力のうち前記OFケーブルの絶縁材中に含浸される油のガス化膨張に関与する電力の比率βと、
前記油のガス化膨張に関わる定数kと、により規定される次式(1)、
KW=k×β×W×4.19・・・(1)
により求められ、
前記油のガス化膨張に関わる定数kは、
前記油の比重C(kg/m)と、
前記油のガス定数G(m/k)と、
前記油のガス温度Gt(℃)と、
前記油のガス化に必要なエネルギーGq(kcal/kg)と、により規定される次式(2)、
k=(C×G/9.8)×{Gt/(4.186×Gq)}・・・(2)
により諸定数を複合させた定数であり、
前記燃焼エネルギーB(MJ)は、
前記架台の内部の体積V(m)と、
前記油の最大発熱量Q(MJ/mol)と、により規定される次式(3)、
B=0.407×V×Q・・・(3)
により求められる
ことを特徴とする請求項1に記載の地絡防災部。
The ground fault energy KW (MJ) is
An average value W (MW) of the electric power of the arc discharge;
Of the electric power of the arc discharge, the ratio β of the electric power involved in the gasification expansion of the oil impregnated in the insulating material of the OF cable,
The following equation (1) defined by the constant k related to the gasification expansion of the oil:
KW = k × β × W × 4.19 (1)
Sought by
The constant k related to the gasification expansion of the oil is
Specific gravity C 0 (kg / m 3 ) of the oil;
Gas constant G (m / k) of the oil;
A gas temperature Gt (° C.) of the oil;
The following formula (2) defined by the energy Gq (kcal / kg) required for gasification of the oil:
k = (C 0 × G / 9.8) × {Gt / (4.186 × Gq)} (2)
Is a constant that combines various constants by
The combustion energy B (MJ) is
A volume V (m 3 ) inside the frame;
The following formula (3) defined by the maximum calorific value Q (MJ / mol) of the oil,
B = 0.407 × V × Q (3)
It is calculated | required by these, The ground fault disaster prevention part of Claim 1 characterized by the above-mentioned.
前記耐裂性シートはアラミド繊維からなる
ことを特徴とする請求項1又は2に記載の地絡防災部。
The ground fault disaster prevention unit according to claim 1 or 2, wherein the tear resistant sheet is made of an aramid fiber.
前記耐裂性シートは、耐候性樹脂を含む層が形成されたアラミド繊維からなる
ことを特徴とする請求項1〜3のいずれかに記載の地絡防災部。
The ground fault disaster prevention part according to any one of claims 1 to 3, wherein the tear resistant sheet is made of an aramid fiber in which a layer containing a weather resistant resin is formed.
前記耐裂性シートの表面に当接される固定板と、
前記固定板を当接させた前記耐裂性シートを、前記固定板と前記架台との間に挟み込み、前記固定板と共に前記架台に固定する固定ネジと、を備える
ことを特徴とする請求項1〜4のいずれかに記載の地絡防災部。
A fixing plate abutted against the surface of the tear resistant sheet;
A fixing screw that sandwiches the tear-resistant sheet with the fixing plate abutted between the fixing plate and the gantry and fixes the fixing plate together with the fixing plate to the gantry. The ground fault disaster prevention part in any one of 4.
前記架台の内部の圧力が所定値を超えると、前記架台の内部の雰囲気を放出する逆止弁を備える
ことを特徴とする請求項1〜5のいずれかに記載の地絡防災部。
The ground fault disaster prevention unit according to any one of claims 1 to 5, further comprising a check valve that releases an atmosphere inside the mount when a pressure inside the mount exceeds a predetermined value.
前記架台が設置される床面に設置され、前記地絡エネルギーKWと前記燃焼エネルギーBとに耐える強度を有する強化プラスチック板を備える
ことを特徴とする請求項1〜6のいずれかに記載の地絡防災部。
The ground according to any one of claims 1 to 6, further comprising a reinforced plastic plate that is installed on a floor on which the gantry is installed and has strength to withstand the ground fault energy KW and the combustion energy B. Tangle Disaster Prevention Department.
側壁に窓部が設けられる架台の内部に収容され、導電芯線と前記導電芯線の外周に被覆され絶縁性の油が含浸された絶縁材とを備えるOFケーブルの終端部に対して行われる地絡防災方法であって、
前記架台の前記窓部を塞ぐように耐裂性シートを設け、
前記架台に前記耐裂性シートを設けるときは、
前記OFケーブルの絶縁材中に含浸されていた油をアーク放電によりガス化膨張させる地絡エネルギーKWと、
前記OFケーブルの絶縁材中に含浸されていた油が前記架台内の酸素と反応することにより爆発的に燃焼するときの燃焼エネルギーBと、に基づいて前記耐裂性シートの材質、厚さ、枚数を決定し、
地絡による爆発発生時に、前記耐裂性シートを撓ませることで、爆圧を前記架台内に封じ込める
ことを特徴とする地絡防災方法。
A ground fault that is accommodated in a base having a window provided on a side wall, and that is performed on a terminal end portion of an OF cable that includes a conductive core wire and an insulating material that is coated on an outer periphery of the conductive core wire and impregnated with insulating oil. A disaster prevention method,
A tear-resistant sheet is provided so as to close the window portion of the gantry,
When providing the tear-resistant sheet on the mount,
A ground fault energy KW for gasifying and expanding the oil impregnated in the insulating material of the OF cable by arc discharge;
Based on the combustion energy B when the oil impregnated in the insulating material of the OF cable reacts with oxygen in the gantry and burns explosively, the material, thickness, number of sheets of the tear resistant sheet to determine,
A ground fault disaster prevention method characterized in that, when an explosion occurs due to a ground fault, the explosion resistant sheet is bent to contain the explosion pressure in the gantry .
JP2012278003A 2012-12-20 2012-12-20 Ground fault disaster prevention department and ground fault disaster prevention method Active JP5848693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012278003A JP5848693B2 (en) 2012-12-20 2012-12-20 Ground fault disaster prevention department and ground fault disaster prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012278003A JP5848693B2 (en) 2012-12-20 2012-12-20 Ground fault disaster prevention department and ground fault disaster prevention method

Publications (2)

Publication Number Publication Date
JP2014124015A JP2014124015A (en) 2014-07-03
JP5848693B2 true JP5848693B2 (en) 2016-01-27

Family

ID=51404109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012278003A Active JP5848693B2 (en) 2012-12-20 2012-12-20 Ground fault disaster prevention department and ground fault disaster prevention method

Country Status (1)

Country Link
JP (1) JP5848693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058781B (en) * 2016-06-12 2017-12-08 句容市圣友科技有限公司 A kind of suspension type light current installation construction device
CN106058780B (en) * 2016-06-12 2018-05-11 句容圣友科技服务管理有限公司 A kind of light current installation frame for being layered suspension

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177218A (en) * 1981-04-25 1982-10-30 Sumitomo Electric Industries Dc underground transmission line
JP4575895B2 (en) * 2006-04-04 2010-11-04 東京電力株式会社 Ground fault prevention method for OF cable connection

Also Published As

Publication number Publication date
JP2014124015A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US7939764B2 (en) Fire, heat and high voltage cable protection wrap
CN202503150U (en) Modularization connector for tube or cable, assembly and connector system
CN104967086B (en) A kind of Integral high-pressure cable explosion-proof connector box
JP5848693B2 (en) Ground fault disaster prevention department and ground fault disaster prevention method
CN201298725Y (en) Fire-proof and explosion-proof unit for middle cable joint
CN110706857B (en) High ageing resistance does not have steamed low fire-retardant marine frock spare special cable of cigarette
RU206084U1 (en) POWER CABLE
CN201984843U (en) Halogen-free low-smoke flame-retardant cable
CN108806826A (en) Superconduction graphene fireproof cable
CN207895903U (en) A kind of fire-retardant fireproof cable
CN215730968U (en) High-strength explosion-proof B1-grade cable
CN211858191U (en) Special flat fireproof cable for elevator shaft
CN104167247A (en) Novel fireproof cable
CN203118539U (en) Novel cross-linking polyethylene insulation control cable
CN209980842U (en) Mineral substance rat-proof and termite-proof power-controlled environment-friendly cable
CN105931698A (en) Environmental protection flexible fireproof cable and preparation method thereof
CN105825938A (en) Armored cable and manufacturing method thereof
CN113066613A (en) Medium-voltage corrugated copper-clad armored power cable
CN103971790A (en) Novel cross-linked polyethylene insulating control cable
CN104300453A (en) Fire-proof structure for cable at inflammable and electrical device comprising fire-proof structure
CN203536035U (en) Explosion-proof type medium voltage mineral fireproof cable
CN214203291U (en) Low-smoke halogen-free flame-retardant fire-resistant cable
Matsuya et al. Degradation mechanism of SCOF cable due to cable core movement
CN215933218U (en) B1-grade low-voltage fireproof cable
CN211376238U (en) Stainless steel strip armored fireproof cable

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151127

R150 Certificate of patent or registration of utility model

Ref document number: 5848693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250