JP5848073B2 - Aerobic biological treatment equipment - Google Patents

Aerobic biological treatment equipment Download PDF

Info

Publication number
JP5848073B2
JP5848073B2 JP2011202050A JP2011202050A JP5848073B2 JP 5848073 B2 JP5848073 B2 JP 5848073B2 JP 2011202050 A JP2011202050 A JP 2011202050A JP 2011202050 A JP2011202050 A JP 2011202050A JP 5848073 B2 JP5848073 B2 JP 5848073B2
Authority
JP
Japan
Prior art keywords
biological treatment
oxygen
containing gas
pipe
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011202050A
Other languages
Japanese (ja)
Other versions
JP2013063365A (en
Inventor
敏機 吉村
敏機 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Able Corp
Original Assignee
Able Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Able Corp filed Critical Able Corp
Priority to JP2011202050A priority Critical patent/JP5848073B2/en
Publication of JP2013063365A publication Critical patent/JP2013063365A/en
Application granted granted Critical
Publication of JP5848073B2 publication Critical patent/JP5848073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、好気性微生物による生物処理装置に関し、より詳しくは、好気性微生物を担体に付着させる生物膜式好気性生物処理装置に関する。   The present invention relates to a biological treatment apparatus using aerobic microorganisms, and more particularly to a biofilm aerobic biological treatment apparatus for attaching aerobic microorganisms to a carrier.

好気性微生物を担体に付着させる生物膜式好気性生物処理装置(以下、単に好気性生物処理装置と言う)は、何らかの不具合により好気性微生物の浮遊集合体からなる汚泥が系外に流出(バルキング)してしまうおそれのある浮遊式活性汚泥装置と比較して、処理性能の安定性が高く、汚泥付加量を大きくすることが出来、単位処理量あたりの装置の設置面積を小さく出来るという利点を有している。   A biofilm aerobic biological treatment device that attaches aerobic microorganisms to a carrier (hereinafter simply referred to as an aerobic biological treatment device) causes sludge consisting of suspended aerobic microorganisms to flow out of the system due to some problem (bulking) ) Compared with the floating activated sludge equipment that may cause a large amount of sludge, the added amount of sludge can be increased and the installation area of the equipment per unit treatment amount can be reduced. Have.

しかしながら、好気性生物処理装置においては、運転に伴い担体に付着する好気性微生物量が増加するため、運転を中断し、洗浄操作により担体に付着した余剰汚泥(余剰の好気性微生物)を除去する必要がある。その結果、比較的多量の洗浄廃水が生じるため洗浄廃水受槽が必要になり、かつ運転を中断している間に流出される被処理水を滞留させる受槽が必要になる。   However, in the aerobic biological treatment apparatus, the amount of aerobic microorganisms attached to the carrier increases with the operation, so the operation is interrupted and the excess sludge (excess aerobic microorganisms) attached to the carrier is removed by the washing operation. There is a need. As a result, since a relatively large amount of washing wastewater is generated, a washing wastewater receiving tank is required, and a receiving tank for retaining treated water that flows out while operation is interrupted is required.

そこで、担体充填層の下部に、槽中心部から槽外周に至る部分的断面を洗浄するための一本の洗浄エア噴出手段を取り付け、当該洗浄エア噴出手段を低速度で回転させる好気性生物処理装置が開発されている(例えば、特許文献1)。   Therefore, an aerobic biological treatment in which a single cleaning air jetting means for cleaning a partial cross-section from the center of the tank to the outer periphery of the tank is attached to the lower part of the carrier packed bed and the cleaning air jetting means is rotated at a low speed. An apparatus has been developed (for example, Patent Document 1).

特許文献1に記載された好気性微生物処理装置によれば、洗浄エア噴出手段が低速度で回転するので、洗浄エア噴出手段の上方に位置する部分的断面の充填層を洗浄し、ついでその隣の部分的断面の充填層を洗浄するというように槽内の充填層を順次洗浄することができ、よって装置を中断する必要がなく、かつ洗浄廃水受槽も不要とし得る。   According to the aerobic microorganism treatment apparatus described in Patent Document 1, since the cleaning air jetting unit rotates at a low speed, the partial cross-section packed bed located above the cleaning air jetting unit is washed, and then adjacent to it. The packed bed in the tank can be cleaned sequentially, such as by cleaning the packed bed of the partial cross section, so that it is not necessary to interrupt the apparatus, and the cleaning waste water receiving tank can be dispensed with.

特開平8−80495号公報Japanese Patent Laid-Open No. 8-80495

特許文献1に記載された好気性微生物処理装置においては、槽内被処理水を好気性雰囲気に維持するための空気を供給する散気手段を、洗浄エア噴出手段とは別に設ける必要がある。また、長期間運転を継続すると、水中に含まれているカルシウム、マグネシウム、シリカ等の成分がスケールとして洗浄管のエア噴出口等へ析出することがあるが、このようなスケールの堆積を防止する方法については特に記載されていない。   In the aerobic microorganism treatment apparatus described in Patent Document 1, it is necessary to provide a diffuser means for supplying air for maintaining the water to be treated in the tank in an aerobic atmosphere separately from the cleaning air jet means. In addition, if the operation is continued for a long time, components such as calcium, magnesium, silica, etc. contained in the water may be deposited as scales on the air outlet of the cleaning pipe, etc., which prevents such scale accumulation. The method is not specifically described.

本発明は、従来の好気性生物処理装置における上記課題を解決し、散気手段のみで充填層の洗浄と充填層全体への酸素の供給を達成することを目的とし、さらにスケールや沈殿物等の影響を受けることなく長期間安定して酸素含有ガスを供給可能な構造を提供することを目的とする。   The present invention aims to solve the above-mentioned problems in the conventional aerobic biological treatment apparatus, and to achieve the cleaning of the packed bed and the supply of oxygen to the entire packed bed only by aeration means. It is an object to provide a structure capable of stably supplying an oxygen-containing gas for a long period of time without being affected by the above.

上記課題を解決するために、本発明に係る好気性生物処理装置は、好気性微生物を担持した担体が充填された生物処理手段と、該生物処理手段よりも下方に設けられ、複数の散気孔を通して前記生物処理手段に対し酸素含有ガスを供給しながら回転軸の周りを回転する散気手段とが処理槽内に設けられた好気性生物処理装置であって、前記散気孔が前記酸素含有ガスを水中に噴き出す噴出管の開口端からなり、前記散気手段が前記噴出管へ酸素含有ガスを導入する導入孔を有しており、該導入孔の開口面積が前記噴出管の流路断面積以下であって、前記生物処理手段において生成する余剰汚泥を、いずれかの散気孔を通して前記生物処理手段に供給される前記酸素含有ガスにより前記担体から剥離させることを特徴とするものからなる。 In order to solve the above problems, an aerobic biological treatment apparatus according to the present invention comprises a biological treatment means filled with a carrier carrying an aerobic microorganism, and a plurality of aeration holes provided below the biological treatment means. An aerobic biological treatment apparatus provided in the treatment tank with an aeration means rotating around a rotation axis while supplying an oxygen-containing gas to the biological treatment means through the aeration hole, wherein the aeration holes are the oxygen-containing gas. The air diffusion means has an introduction hole for introducing an oxygen-containing gas into the ejection pipe, and the opening area of the introduction hole is a flow passage cross-sectional area of the ejection pipe. The surplus sludge generated in the biological treatment means is separated from the carrier by the oxygen-containing gas supplied to the biological treatment means through any of the air holes.

このような本発明に係る好気性生物処理装置によれば、生物処理手段に酸素含有ガスを供給する散気孔が、回転軸の周りを回転する散気手段に設けられているので、一つの散気孔から酸素含有ガスが供給される領域は散気手段の回転に伴って移動することとなり、少数の散気孔により幅広い領域へ酸素含有ガスを供給することができる。従って、生物処理手段全体へ酸素含有ガスを供給するための散気孔数を従来装置と比較して少なく抑えることができ、酸素含有ガスの消費量を抑えることができる。その結果、好気性生物処理装置においてエネルギー消費量の多い酸素供給用動力を節約することができ、装置の運用コストが削減される。   According to such an aerobic biological treatment apparatus according to the present invention, the diffuser holes for supplying the oxygen-containing gas to the biological treatment means are provided in the diffuser means that rotates around the rotation axis. The region where the oxygen-containing gas is supplied from the pores moves with the rotation of the air diffusion means, and the oxygen-containing gas can be supplied to a wide region by a small number of air diffusion holes. Therefore, the number of diffused holes for supplying the oxygen-containing gas to the entire biological treatment means can be reduced as compared with the conventional apparatus, and the consumption of the oxygen-containing gas can be suppressed. As a result, it is possible to save power for oxygen supply that consumes a large amount of energy in the aerobic biological treatment apparatus, thereby reducing the operating cost of the apparatus.

また、散気手段に設けられたいずれかの散気孔を通して生物処理手段に供給される酸素含有ガスにより、生物処理手段において生成した余剰汚泥が担体から剥離されるので、生物処理手段への酸素供給と、生物処理手段の洗浄(すなわち、生物処理手段に充填された担体からの余剰汚泥の剥離)とが散気手段によって同時に行われることとなる。従って、生物処理手段において散気手段により洗浄される部分を一部に限定しつつ散気手段を回転させることにより、当該洗浄部分を移動させて実質的に連続した部分洗浄を行うことができ、しかも、他の非洗浄部分においては担体に付着した微生物によって微生物処理を継続的に行うことができる。その結果、微生物処理と生物処理手段の洗浄とを同時に並行して行うことが可能となり、生物処理手段の洗浄のために微生物処理を中断する必要がない。なお、生物処理手段において散気手段により洗浄される部分は、一の連続した領域であってもよいし、複数の領域に分散されていてもよい。   Further, since oxygen-containing gas supplied to the biological treatment means through any of the air holes provided in the diffusion means causes excess sludge generated in the biological treatment means to be peeled off from the carrier, oxygen supply to the biological treatment means The cleaning of the biological treatment means (that is, the removal of excess sludge from the carrier filled in the biological treatment means) is simultaneously performed by the aeration means. Therefore, by rotating the air diffuser while limiting the portion to be cleaned by the air diffuser in the biological treatment device, the cleaning portion can be moved to perform a substantially continuous partial cleaning. In addition, in other non-washing parts, the microorganism treatment can be continuously performed by the microorganisms attached to the carrier. As a result, the microbial treatment and the cleaning of the biological treatment means can be performed simultaneously in parallel, and there is no need to interrupt the microbial treatment for cleaning the biological treatment means. In addition, the part wash | cleaned by the aeration means in a biological treatment means may be one continuous area | region, and may be disperse | distributed to the several area | region.

本発明に係る好気性生物処理装置は、微生物処理と生物処理手段の洗浄とを同時に並行して行うことができるため、長期間にわたって安定した微生物処理を行うことができる。間欠的な一括洗浄を行う従来の装置では、洗浄作業により担体に付着する微生物の量が大幅に減少し、一時的に水質の悪化や処理能力の低下が起こるおそれがあった。これに対し、本発明に係る好気性生物処理装置は、生物処理手段の一部分を洗浄しながら当該部分を移動させることにより連続的な洗浄を実現するものであるから、当該部分の洗浄が過度に行われることがあったとしても全体の処理能力には大きな影響がなく、安定した処理能力を継続的に発揮することができる。また、従来の間欠的な一括洗浄方式と異なり、散気孔を通じた酸素含有ガスの供給を洗浄のために中断する必要がないため、散気手段を継続的に運転することによって散気孔の目詰まりを防止することができる。その結果、散気孔および散気手段の保守作業の頻度を大きく減らすことができ、保守コストの大幅な削減が可能となる。さらに、上述の連続洗浄機構により担体の閉塞が防止されるので、微生物の成長が速い高負荷環境においても安定した処理能力を発揮することができる。   The aerobic biological treatment apparatus according to the present invention can perform microbial treatment and washing of the biological treatment means in parallel at the same time, so that stable microbial treatment can be performed over a long period of time. In the conventional apparatus that performs intermittent batch cleaning, the amount of microorganisms adhering to the carrier is greatly reduced by the cleaning operation, and there is a possibility that the water quality may be temporarily deteriorated and the processing capacity may be temporarily reduced. On the other hand, since the aerobic biological treatment apparatus according to the present invention realizes continuous washing by moving the part while washing a part of the biological treatment means, the washing of the part is excessive. Even if it is performed, the overall processing capacity is not greatly affected, and stable processing capacity can be continuously exhibited. In addition, unlike the conventional intermittent batch cleaning method, it is not necessary to interrupt the supply of the oxygen-containing gas through the air diffuser for cleaning, so the air diffuser is clogged by continuously operating the air diffuser. Can be prevented. As a result, the frequency of maintenance work for the air holes and the air diffuser can be greatly reduced, and the maintenance cost can be greatly reduced. Furthermore, since the clogging of the carrier is prevented by the above-described continuous cleaning mechanism, a stable processing ability can be exhibited even in a high load environment where the growth of microorganisms is fast.

本発明に係る好気性生物処理装置は、担体から余剰汚泥を剥離させる手段を別途設ける必要がないため、装置の小型化・簡素化が容易であり、容量あたりの処理能力が高い好気性生物処理装置を低コストで実現できる。   Since the aerobic biological treatment apparatus according to the present invention does not require a separate means for separating excess sludge from the carrier, it is easy to downsize and simplify the apparatus, and the aerobic biological treatment with a high capacity per unit capacity. The device can be realized at low cost.

上記散気孔は、酸素含有ガスを水中に噴き出す噴出管の開口端からなる。このような構成によれば、噴出管の開口端の開口面積を十分に大きくすることで、スケール析出による開口端の閉塞を防ぐことができる。   The air diffusion hole is composed of an opening end of an ejection pipe for ejecting oxygen-containing gas into water. According to such a configuration, it is possible to prevent the opening end from being blocked by scale deposition by sufficiently increasing the opening area of the opening end of the ejection pipe.

上記酸素含有ガスは、散気孔から下方に向けて水中に供給されることが好ましい。このように散気孔が下方に向けて水中に開口していることによって、沈殿物や余剰汚泥の入り込みによる散気孔の閉塞が防止される。なお、散気孔は、鉛直方向下向きに開口されるほか、斜め下方に向けて開口されていてもよい。   It is preferable that the oxygen-containing gas is supplied into the water downward from the air diffusion holes. In this way, since the air holes are opened downward in the water, the air holes are prevented from being blocked due to the entrance of sediment and excess sludge. The diffuser hole may be opened obliquely downward as well as opened downward in the vertical direction.

散気手段には、単位時間あたりの酸素含有ガス供給量の大きい部位と小さい部位とが設けられていることが好ましい。このような構成によれば、単位時間あたりの酸素含有ガスの供給量が相対的に多い部位においては、気泡による汚泥せん断力の働きが大きくなって生物処理手段に充填された担体から余剰汚泥が剥離されやすくなる。一方、単位時間あたりの酸素含有ガスの供給量が相対的に少ない部位では、細かい気泡により酸素を分散させつつ生物処理手段へと供給することができる。このように酸素含有ガスの供給量の異なる部位を散気手段に設けることにより、気泡による汚泥せん断力の働きが相対的に大きく生物処理手段に充填された担体の洗浄に適した部位と、細かい気泡による生物処理手段への酸素の分散供給に適した部位とが生じることとなるので、生物処理手段を洗浄しつつ生物処理手段への溶存酸素の分散供給を効果的に行うことができる。   It is preferable that the air diffuser is provided with a portion having a large oxygen supply gas supply amount per unit time and a portion having a small amount. According to such a configuration, in a portion where the supply amount of the oxygen-containing gas per unit time is relatively large, the action of the sludge shearing force due to the bubbles is increased, and excess sludge is removed from the carrier filled in the biological treatment means. It becomes easy to peel. On the other hand, at a site where the supply amount of the oxygen-containing gas per unit time is relatively small, oxygen can be supplied to the biological treatment means while being dispersed by fine bubbles. In this way, by providing the diffuser means with different portions of the oxygen-containing gas supply amount, the action of the sludge shearing force due to the bubbles is relatively large, and the portion suitable for cleaning the carrier filled in the biological treatment means is fine. Since a portion suitable for the distributed supply of oxygen to the biological treatment means is generated by bubbles, it is possible to effectively perform the distributed supply of dissolved oxygen to the biological treatment means while washing the biological treatment means.

上記散気手段は、噴出管へ酸素含有ガスを導入する導入孔を有し、この導入孔の開口面積は、噴出管の流路断面積以下であるこのような構成によれば、噴出管の開口端(すなわち、散気孔)より水中へ噴き出される酸素含有ガスの量を導入孔の開口面積によって制御でき、スケール析出等の影響を受けない安定した酸素含有ガスの供給が可能となる。導入孔は、例えば、噴出管の一端(開口端とは反対側の一端)を他の管の側壁面に水密状に接着し、噴出管内と他の管内とを連通する小径の孔を当該他の管の側壁面上に穿孔した構造に形成される。 The air diffuser has an introduction hole for introducing an oxygen-containing gas into the ejection pipe, and the opening area of the introduction hole is equal to or smaller than the flow passage cross-sectional area of the ejection pipe . According to such a configuration, the amount of oxygen-containing gas ejected into the water from the opening end (that is, the diffuser hole) of the ejection pipe can be controlled by the opening area of the introduction hole, and stable without being affected by scale deposition or the like. An oxygen-containing gas can be supplied. For example, the introduction hole is formed by adhering one end of the ejection pipe (one end opposite to the opening end) to the side wall surface of the other pipe in a water-tight manner, and forming a small-diameter hole communicating the inside of the ejection pipe with the other pipe. It is formed in the structure perforated on the side wall surface of the tube.

散気手段が有する当該導入孔は、開口面積分布が2個以上のピークを有するように構成されていることが好ましい。開口面積の異なる導入孔を設けることにより、気泡による汚泥せん断力の働きが相対的に大きく生物処理手段に充填された担体の洗浄に適した噴出管と、生物処理手段への酸素の分散供給に適した噴出管とが生じ、単位時間あたり酸素含有ガス供給量の異なる部位が散気手段に設けられることとなるので、生物処理手段を洗浄しつつ生物処理手段への溶存酸素の供給を効果的に行うことができる。なお、一つの噴出管に対し複数の導入孔が設けられている場合には、噴出管ごとに合計した導入孔の開口面積値をもって当該導入孔の開口面積とする。 It is preferable that the introduction hole of the air diffuser is configured so that the opening area distribution has two or more peaks. By providing introduction holes with different opening areas, the action of sludge shearing force due to bubbles is relatively large, suitable for cleaning the carrier filled in the biological treatment means, and for the supply of oxygen to the biological treatment means in a dispersed manner A suitable jet pipe is formed, and a part having a different supply amount of oxygen-containing gas per unit time is provided in the aeration means. Therefore, it is possible to effectively supply dissolved oxygen to the biological treatment means while washing the biological treatment means. Can be done. When a plurality of introduction holes are provided for one ejection pipe, the opening area value of the introduction holes is defined as the total area of the introduction holes for each ejection pipe.

散気手段の構成はとくに限定されず、例えば、散気手段が、前記回転軸から放射状に延設された主管と、主管から分岐して設けられた枝管とを有する構成を採用することができる。   The configuration of the air diffuser is not particularly limited, and for example, the air diffuser may adopt a configuration having a main pipe radially extending from the rotation shaft and a branch pipe provided by branching from the main pipe. it can.

上記散気孔は、散気孔の回転半径分布が所定のピッチで繰り返し現れるピークを有するように構成されていることが好ましい。ここで、散気孔の回転半径分布とは、散気手段の回転軸から散気孔の開口部重心までの距離(回転半径)に対する散気孔数の度数分布を表す。このような構成を採用することにより、散気孔を通して酸素含有ガスが径方向に関し所定のピッチをあけて生物処理手段へ供給されることとなり、酸素含有ガスが生物処理手段全体にわたってまんべんなく供給される。   It is preferable that the air diffuser is configured to have a peak in which the rotation radius distribution of the air diffuser repeatedly appears at a predetermined pitch. Here, the rotation radius distribution of the air diffuser represents a frequency distribution of the number of air diffusers with respect to the distance (rotation radius) from the rotation axis of the air diffuser to the center of gravity of the opening of the air diffuser. By adopting such a configuration, the oxygen-containing gas is supplied to the biological treatment means through the air diffusion holes at a predetermined pitch in the radial direction, and the oxygen-containing gas is supplied throughout the biological treatment means.

上記担体は、放射状に延びる複数の突起を有することが好ましい。このような構成によれば、散気孔から水中へ噴き出された酸素含有ガスの気泡が、担体に設けられた突起により微細化するため、溶存酸素量が増えるとともに、生物処理手段内に充填された担体の狭隘部にも微細気泡が供給されることとなる。その結果、酸素移動効率、酸素供給効率および洗浄効率の向上が図られ、従来装置よりもさらに少ない量の酸素含有ガスにて生物処理手段への酸素供給および生物処理手段の洗浄を行うことができ、運用コストのさらなる低減を図ることができる。また、放射状に延びる多数の突起を担体に設けて担体の空隙率を向上させることにより、担体の表面積を大きくするとともに多量の汚泥を保持することが可能となり、処理効率の向上を図ることができる。   The carrier preferably has a plurality of radially extending protrusions. According to such a configuration, since the bubbles of the oxygen-containing gas ejected into the water from the air diffusion holes are refined by the protrusions provided on the carrier, the amount of dissolved oxygen increases and the biological treatment means is filled. Fine bubbles are also supplied to the narrow portion of the carrier. As a result, the oxygen transfer efficiency, the oxygen supply efficiency, and the cleaning efficiency are improved, and the oxygen supply to the biological treatment means and the biological treatment means can be cleaned with a smaller amount of oxygen-containing gas than the conventional apparatus. The operation cost can be further reduced. Further, by providing a large number of radially extending protrusions on the carrier to improve the porosity of the carrier, it is possible to increase the surface area of the carrier and to retain a large amount of sludge, thereby improving the processing efficiency. .

本発明に係る好気性生物処理装置によれば、生物処理手段に酸素含有ガスを供給する散気孔が、回転軸の周りを回転する散気手段に設けられているので、生物処理手段に対して酸素含有ガスを効率良く供給することができ、酸素含有ガスの消費量が削減される。また、生物処理手段の一部分を洗浄しつつ、生物処理手段の他の部分にて継続的に微生物処理を行うことができるので、保守作業の頻度を減らしつつ長期間にわたって安定運転を行うことが可能となり、保守コストの大幅な低減が図られる。さらに、生物処理手段を洗浄するための手段を別途設ける必要がないため、装置の簡素化・小型化が可能となる。   According to the aerobic biological treatment apparatus according to the present invention, the air diffusion holes for supplying the oxygen-containing gas to the biological treatment means are provided in the air diffusion means rotating around the rotation axis. Oxygen-containing gas can be supplied efficiently, and consumption of oxygen-containing gas is reduced. In addition, it is possible to perform microbial treatment continuously in other parts of the biological treatment means while washing a part of the biological treatment means, thus enabling stable operation over a long period of time while reducing the frequency of maintenance work. Thus, the maintenance cost can be greatly reduced. Furthermore, since it is not necessary to separately provide a means for cleaning the biological treatment means, the apparatus can be simplified and downsized.

本発明の一実施態様に係る好気性生物処理装置の縦断面図である。It is a longitudinal cross-sectional view of the aerobic biological treatment apparatus which concerns on one embodiment of this invention. 図1の好気性生物処理装置に備えられた散気手段の平面図である。It is a top view of the aeration means with which the aerobic biological treatment apparatus of FIG. 1 was equipped. 図2の散気手段に設けられた噴出管の縦断面図である。It is a longitudinal cross-sectional view of the ejection pipe | tube provided in the aeration means of FIG. 従来装置における散気孔の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the air diffusion hole in a conventional apparatus. 図2の散気手段に設けられた導入孔の開口面積分布を示す折れ線グラフである。It is a line graph which shows opening area distribution of the introduction hole provided in the aeration means of FIG. 図1の好気性生物処理装置の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the aerobic biological treatment apparatus of FIG. 図2の散気手段に設けられた散気孔の回転半径分布を示す棒グラフである。It is a bar graph which shows the rotation radius distribution of the air diffusion hole provided in the air diffusion means of FIG.

以下に、発明の望ましい実施の形態について、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る好気性生物処理装置を示している。図1において、好気性生物処理装置1には、処理槽2と、処理槽2の上部に連通する被処理水供給手段としての流入管3と、一端が開放端に形成されるとともに他端が処理槽2の下部に連通されている処理水排出手段としての流出管4とが設けられている。また、流出管4において、処理槽2内の水面Sとほぼ同じ高さに相当する位置には流出枝管5が連通され、処理槽2内の水面Sが所定の高さに保たれている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an aerobic biological treatment apparatus according to an embodiment of the present invention. In FIG. 1, the aerobic biological treatment apparatus 1 includes a treatment tank 2, an inflow pipe 3 as a treated water supply means communicating with an upper portion of the treatment tank 2, one end formed at an open end, and the other end. An outflow pipe 4 as a treated water discharge means communicating with the lower part of the treatment tank 2 is provided. Further, in the outflow pipe 4, the outflow branch pipe 5 communicates with a position corresponding to the substantially same height as the water surface S in the treatment tank 2, and the water surface S in the treatment tank 2 is maintained at a predetermined height. .

処理槽2内には、好気性微生物を担持した担体6が充填された生物処理手段7と、下方に向けて開口する噴出管8および噴出管8の開口端としての散気孔9を備えた散気手段10とが設けられており、散気手段10は生物処理手段7の下方に配置されている。また、処理槽2の中央部には導管11が立設されており、導管11の下端は散気手段10に連通され、導管11の上端には回転ガス供給装置12、減速機13、モータ14が備えられている。回転ガス供給装置12にはガス流入管15が接続されており、ガス流入管15から回転ガス供給装置12へ流入した酸素含有ガスは、導管11を通じて散気手段10へ供給され、噴出管8の開口端、すなわち散気孔9より下方に向けて水中に供給される。また、モータ14の回転は減速機13により減速されて導管11に伝達され、導管11は回転の軸心となって回転し、それに伴い散気手段10が導管11を軸心として回転する。散気手段10の回転速度はとくに限定されないが、一回転に要する時間は10〜50日の範囲内にあることが好ましく、25〜35日の範囲内にあることがより好ましい。なお、散気手段10は、連続的に回転するように構成されていてもよいし、所定時間ごとに間欠的に小角度の移動をするように構成されていてもよい。また、散気手段10による酸素含有ガスの供給は、連続的に行ってもよいし、担体6からの余剰汚泥の剥離の程度に応じて供給を一時休止する間欠的な方法であってもよい。   In the treatment tank 2, a biological treatment means 7 filled with a carrier 6 supporting aerobic microorganisms, a discharge pipe 8 opening downward, and a diffusion hole 9 as an opening end of the discharge pipe 8 are provided. An air means 10 is provided, and the air diffuser 10 is disposed below the biological treatment means 7. A conduit 11 is erected at the center of the treatment tank 2, and the lower end of the conduit 11 communicates with the air diffuser 10. The upper end of the conduit 11 has a rotating gas supply device 12, a speed reducer 13, and a motor 14. Is provided. A gas inflow pipe 15 is connected to the rotating gas supply device 12, and the oxygen-containing gas that has flowed into the rotating gas supply device 12 from the gas inflow tube 15 is supplied to the aeration means 10 through the conduit 11, and The water is supplied to the opening end, that is, downward from the air diffusion hole 9. Further, the rotation of the motor 14 is decelerated by the speed reducer 13 and transmitted to the conduit 11, the conduit 11 rotates as the axis of rotation, and accordingly, the air diffuser 10 rotates around the conduit 11. The rotational speed of the air diffuser 10 is not particularly limited, but the time required for one rotation is preferably in the range of 10 to 50 days, and more preferably in the range of 25 to 35 days. The air diffuser 10 may be configured to rotate continuously, or may be configured to move at a small angle intermittently at predetermined time intervals. Further, the supply of the oxygen-containing gas by the air diffuser 10 may be performed continuously, or may be an intermittent method in which the supply is temporarily suspended according to the degree of the excess sludge peeling from the carrier 6. .

担体6はプラスチック製で、外観は略楕円球形状であり、中央部から放射状に延びる多数の短い突起(図示略)を有している。担体6の空隙率は約95%であり、空隙部に多量の好気性微生物を保持することが可能である。なお、担体6の材質および形状は上記に限定されるものではなく、好気性微生物を多量に保持することが可能であるように構成されていればよい。   The carrier 6 is made of plastic, has an outer appearance that is substantially elliptical, and has a number of short protrusions (not shown) extending radially from the center. The porosity of the carrier 6 is about 95%, and a large amount of aerobic microorganisms can be retained in the voids. Note that the material and shape of the carrier 6 are not limited to the above, and may be configured so that a large amount of aerobic microorganisms can be retained.

図2は、図1の好気性生物処理装置1に設けられた散気手段10を上方から見た平面図である。図2において、散気手段10は、中心部から放射状に延びる主管16と、主管から分岐する多数の枝管17とを有しており、主管16および枝管17には、噴出管8に連通する導入孔18が設けられている。導入孔18は、直径約5mm(開口面積約19.6mm)の略円形の孔である孔18aと、直径約15mm(開口面積約176.7mm)の略円形の孔である孔18bの2種類で構成されている。なお、図2において、2点鎖線で描かれた円は、散気手段10の回転軸を中心とした100mm間隔の仮想的な同心円を表しており、導入孔18(孔18aおよび孔18b)に連通する噴出管8は、その開口端の重心(中心)が上記同心円近傍に配置されるよう構成されている。 FIG. 2 is a plan view of the air diffuser 10 provided in the aerobic biological treatment apparatus 1 of FIG. 1 as viewed from above. In FIG. 2, the air diffuser 10 has a main pipe 16 extending radially from the central portion and a number of branch pipes 17 branched from the main pipe. The main pipe 16 and the branch pipes 17 communicate with the ejection pipe 8. An introduction hole 18 is provided. Introducing hole 18, the hole 18a is substantially circular hole with a diameter of about 5 mm (about opening area 19.6 mm 2), a substantially circular hole in a hole 18b having a diameter of about 15 mm (about opening area 176.7mm 2) It consists of two types. In FIG. 2, a circle drawn by a two-dot chain line represents a virtual concentric circle having an interval of 100 mm centered on the rotation axis of the air diffuser 10, and is introduced into the introduction hole 18 (hole 18 a and hole 18 b). The communicating ejection pipe 8 is configured such that the center of gravity (center) of the opening end is arranged in the vicinity of the concentric circle.

図3は、噴出管8および導入孔18の構造を示す拡大縦断面図である。なお、以下では、導入孔18としての孔18aが主管16に連通している構造について図3を例に挙げて説明するが、これらの説明は、孔18bが主管16に連通している構造や、導入孔18としての孔18aまたは孔18bが枝管17に連通している構造にも同様に当てはまる。図3において、噴出管8の一端は散気孔9として下方に向けた開口端に構成されており、他端は主管16に水密状に接着されている。また、噴出管8の他端には、主管16へ連通し噴出管8よりも断面積(開口面積)の小さい導入孔18としての孔18aが設けられている。主管16から孔18aを通じて噴出管8へ流入した酸素含有ガスは、散気孔9より水中へ供給され、気泡となって水中を上昇する。孔18aの開口面積は噴出管8の断面積よりも小さく、単位時間あたり主管16から噴出管8へ流入する酸素含有ガスの流量は、孔18aの開口面積に依存する。散気手段10内に設けられた孔18aの周囲には酸素含有ガスの層があるため、孔18aにはスケールが付着することがなく、酸素含有ガスの流量の低下が防止される。なお、好気性生物処理装置1を長期間運転した場合、水中に含まれているカルシウム、マグネシウム、シリカ等の成分がスケール19として噴出管8の開口端に析出するおそれがあるため、噴出管8の開口端の開口面積は、スケール19の析出による狭隘化の影響を実質的に無視できる程度の大きさであることが好ましい。   FIG. 3 is an enlarged longitudinal sectional view showing the structure of the ejection pipe 8 and the introduction hole 18. In the following, the structure in which the hole 18a as the introduction hole 18 communicates with the main pipe 16 will be described with reference to FIG. 3 as an example. The same applies to the structure in which the hole 18 a or the hole 18 b as the introduction hole 18 communicates with the branch pipe 17. In FIG. 3, one end of the ejection pipe 8 is formed as an air diffusion hole 9 at an opening end directed downward, and the other end is bonded to the main pipe 16 in a watertight manner. Further, the other end of the ejection pipe 8 is provided with a hole 18 a as an introduction hole 18 that communicates with the main pipe 16 and has a smaller cross-sectional area (opening area) than the ejection pipe 8. The oxygen-containing gas that has flowed from the main pipe 16 into the ejection pipe 8 through the hole 18a is supplied into the water from the air diffusion holes 9, and rises in the water as bubbles. The opening area of the hole 18a is smaller than the cross-sectional area of the ejection pipe 8, and the flow rate of the oxygen-containing gas flowing from the main pipe 16 into the ejection pipe 8 per unit time depends on the opening area of the hole 18a. Since there is a layer of oxygen-containing gas around the hole 18a provided in the air diffuser 10, scale does not adhere to the hole 18a, and a decrease in the flow rate of the oxygen-containing gas is prevented. When the aerobic biological treatment apparatus 1 is operated for a long period of time, components such as calcium, magnesium, and silica contained in water may be deposited on the opening end of the ejection pipe 8 as the scale 19. It is preferable that the opening area of the opening end is of such a size that the influence of narrowing due to the precipitation of the scale 19 can be substantially ignored.

図4は、従来装置における散気孔の一例を示しており、下方へ向けて開口する散気孔100がガス管101の側面に設けられている構造を例示している。このような構造は加工が非常に容易であるものの、水中に含まれているカルシウム、マグネシウム、シリカ等の成分がスケール102として散気孔100の周囲に析出し、ガス管101から散気孔100を介して水中へ供給される酸素含有ガスの流量が減少し、長時間の運転によって散気孔100が閉塞するおそれがある。これに対し、図3に示す構造においては、噴出管8の開口端の開口面積を適度に大きくすることにより、簡素な構造にてスケール19の析出による狭隘化の影響を回避することができ、装置の製造コストの上昇を最小限に抑えつつ、運転を長時間継続した場合においても酸素含有ガスの流量の安定性を確保することが可能となる。   FIG. 4 shows an example of a diffuser hole in a conventional apparatus, and illustrates a structure in which a diffuser hole 100 that opens downward is provided on the side surface of the gas pipe 101. Although such a structure is very easy to process, components such as calcium, magnesium, silica, etc. contained in water are deposited around the air diffuser 100 as the scale 102, and pass through the air diffuser 100 from the gas pipe 101. As a result, the flow rate of the oxygen-containing gas supplied to the water decreases, and there is a possibility that the air diffusion holes 100 may be blocked by long-time operation. On the other hand, in the structure shown in FIG. 3, the influence of narrowing due to precipitation of the scale 19 can be avoided with a simple structure by appropriately increasing the opening area of the opening end of the ejection pipe 8. It is possible to ensure the stability of the flow rate of the oxygen-containing gas even when the operation is continued for a long time while suppressing an increase in the manufacturing cost of the apparatus.

図5は、散気手段10に設けられた導入孔18の開口面積分布を表す折れ線グラフである。図5に示す通り、導入孔18の開口面積分布は、10〜30mmの範囲内および170〜190mmの範囲内に存在する2つのピークを有しており、これらのピークはそれぞれ孔18aおよび孔18bを示している。 FIG. 5 is a line graph showing the opening area distribution of the introduction holes 18 provided in the air diffuser 10. As shown in FIG. 5, the opening area distribution of the introduction hole 18 has two peaks present in the range of range and 170~190Mm 2 of 10 to 30 mm 2, these peaks respectively holes 18a and Hole 18b is shown.

図6は、好気性生物処理装置1の部分縦断面図であり、孔18bを通じて散気孔9より水中に噴出された酸素含有ガスが、気泡20として水中に供給される様子を示している。なお、以下では、導入孔18としての孔18bが主管16に連通している構造について図6を例に挙げて説明するが、これらの説明は、孔18bが枝管16に連通している構造についても同様に当てはまる。図6において、主管16より孔18bを通って噴出管8に流入した酸素含有ガスは、下方に向いた噴出管8の開口端、すなわち散気孔9より気泡20として水中に供給される。気泡20が水中を上昇して生物処理手段7に到達すると、上昇する気泡20の振動およびせん断力により、担体6に付着している余剰汚泥が剥離され、剥離された汚泥は処理槽2内を沈降して流出枝管5より系外へと流出する。また、上述のとおり、担体6には中央部から放射状に延びる突起が設けられているので、気泡20は突起により微細化され微細気泡21となって生物処理手段7内を上昇する。その結果、水中への酸素の溶解が促進されるとともに、担体6内の微小な空隙に対しても酸素含有ガスが十分に供給される。   FIG. 6 is a partial vertical cross-sectional view of the aerobic biological treatment apparatus 1 and shows a state in which the oxygen-containing gas ejected into the water from the diffuser holes 9 through the holes 18 b is supplied into the water as the bubbles 20. In the following, the structure in which the hole 18b as the introduction hole 18 communicates with the main pipe 16 will be described by taking FIG. 6 as an example. However, these explanations are the structures in which the hole 18b communicates with the branch pipe 16. The same applies to. In FIG. 6, the oxygen-containing gas that has flowed into the ejection pipe 8 through the hole 18 b from the main pipe 16 is supplied into the water as bubbles 20 from the opening end of the ejection pipe 8 facing downward, that is, the air diffusion holes 9. When the bubbles 20 rise in the water and reach the biological treatment means 7, surplus sludge adhering to the carrier 6 is peeled off by the vibration and shearing force of the rising bubbles 20, and the peeled sludge passes through the treatment tank 2. It sinks and flows out of the system from the outflow branch pipe 5. Further, as described above, since the carrier 6 is provided with protrusions extending radially from the central portion, the bubbles 20 are refined by the protrusions to become fine bubbles 21 and rise in the biological treatment means 7. As a result, the dissolution of oxygen in water is promoted, and the oxygen-containing gas is sufficiently supplied to the minute gaps in the carrier 6.

孔18bよりも開口面積の小さい孔18aを通して散気孔9より水中に噴出される酸素含有ガスの気泡に関しても、上述の孔18bの場合と同様に、担体6に設けられた突起により気泡の微細化が生じ、水中への酸素の溶解が促進される。   As for the bubbles of oxygen-containing gas ejected into the water from the diffuser holes 9 through the holes 18a having a smaller opening area than the holes 18b, the bubbles are refined by the protrusions provided on the carrier 6 as in the case of the holes 18b. And the dissolution of oxygen in water is promoted.

図7は、散気手段10に設けられた散気孔9の回転半径分布を示す棒グラフである。図7に示すとおり、散気孔9の回転半径分布、すなわち散気手段10の回転軸から散気孔9の開口部重心までの距離(回転半径)に対する散気孔数の度数分布は、所定のピッチで繰り返し現れるピークを有している。このような構成によれば、散気孔9から噴出された酸素含有ガスが生物処理手段7全体にわたってまんべんなく供給されることとなり、生物処理手段7への酸素供給および生物処理手段7に充填された担体6の洗浄が効果的に行われる。   FIG. 7 is a bar graph showing the rotation radius distribution of the air holes 9 provided in the air diffuser 10. As shown in FIG. 7, the rotation radius distribution of the air holes 9, that is, the frequency distribution of the number of air holes with respect to the distance (rotation radius) from the rotation axis of the air diffuser 10 to the center of gravity of the opening of the air diffuser 9 is a predetermined pitch. It has peaks that appear repeatedly. According to such a configuration, the oxygen-containing gas ejected from the air diffusion holes 9 is supplied uniformly throughout the biological treatment means 7, and oxygen supply to the biological treatment means 7 and the carrier filled in the biological treatment means 7 are performed. 6 is effectively performed.

本発明に係る好気性生物処理装置は、コストに関する要求水準が厳しく長期間の安定運転が要求される、工場排水の処理装置として好適なものであり、食品、飲料、医薬品、化学、製紙、機械工場等の排水処理に幅広く適用可能である。   The aerobic biological treatment apparatus according to the present invention is suitable as a factory wastewater treatment apparatus that requires strict cost-related requirements and requires long-term stable operation, and is suitable for food, beverages, pharmaceuticals, chemistry, papermaking, machinery It can be widely applied to wastewater treatment at factories.

1 好気性生物処理装置
2 処理槽
3 流入管
4 流出管
5 流出枝管
6 担体
7 生物処理手段
8 噴出管
9 散気孔
10 散気手段
11 導管
12 回転ガス供給装置
13 減速機
14 モータ
15 ガス流入管
16 主管
17 枝管
18 導入孔
18a、18b 孔
19 スケール
20 気泡
21 微細気泡
100 散気孔
101 ガス管
102 スケール
DESCRIPTION OF SYMBOLS 1 Aerobic biological treatment apparatus 2 Processing tank 3 Inflow pipe 4 Outflow pipe 5 Outflow branch pipe 6 Carrier 7 Biological treatment means 8 Ejection pipe 9 Air diffuser hole 10 Air diffuser means 11 Conduit 12 Rotating gas supply device 13 Reducer 14 Motor 15 Gas inflow Pipe 16 Main pipe 17 Branch pipe 18 Introduction holes 18a, 18b Hole 19 Scale 20 Bubble 21 Fine bubble 100 Aeration hole 101 Gas pipe 102 Scale

Claims (6)

好気性微生物を担持した担体が充填された生物処理手段と、該生物処理手段よりも下方に設けられ、複数の散気孔を通して前記生物処理手段に対し酸素含有ガスを供給しながら回転軸の周りを回転する散気手段とが処理槽内に設けられた好気性生物処理装置であって、前記散気孔が前記酸素含有ガスを水中に噴き出す噴出管の開口端からなり、前記散気手段が前記噴出管へ酸素含有ガスを導入する導入孔を有しており、該導入孔の開口面積が前記噴出管の流路断面積以下であって、前記生物処理手段において生成する余剰汚泥を、いずれかの散気孔を通して前記生物処理手段に供給される前記酸素含有ガスにより前記担体から剥離させることを特徴とする好気性生物処理装置。 A biological treatment means filled with a carrier carrying aerobic microorganisms, and provided around the biological treatment means, around the rotation axis while supplying oxygen-containing gas to the biological treatment means through a plurality of air holes. A rotating aeration means is an aerobic biological treatment apparatus provided in the treatment tank, wherein the aeration holes are formed from an opening end of an ejection pipe for ejecting the oxygen-containing gas into water, and the aeration means is the ejection An introduction hole for introducing an oxygen-containing gas into the pipe, the opening area of the introduction hole being less than or equal to the flow passage cross-sectional area of the ejection pipe, and surplus sludge generated in the biological treatment means, An aerobic biological treatment apparatus, wherein the oxygen-containing gas supplied to the biological treatment means through aeration holes is separated from the carrier. 前記酸素含有ガスが、前記散気孔から下方に向けて水中に供給される、請求項1に記載の好気性生物処理装置。   The aerobic biological treatment apparatus according to claim 1, wherein the oxygen-containing gas is supplied into the water downward from the air diffusion holes. 前記導入孔の開口面積分布が2個以上のピークを有する、請求項1または2に記載の好気性生物処理装置。 The aerobic biological treatment apparatus according to claim 1 or 2 , wherein the opening area distribution of the introduction hole has two or more peaks. 前記散気手段が、前記回転軸から放射状に延設された主管と、該主管から分岐して設けられた枝管とを有する、請求項1〜のいずれかに記載の好気性生物処理装置。 The aerobic biological treatment apparatus according to any one of claims 1 to 3 , wherein the air diffuser includes a main pipe extending radially from the rotation shaft and a branch pipe provided by branching from the main pipe. . 前記散気孔の回転半径分布が所定のピッチで繰り返し現れるピークを有するように、前記散気孔が配置されている、請求項1〜のいずれかに記載の好気性生物処理装置。 The aerobic biological treatment apparatus according to any one of claims 1 to 4 , wherein the air holes are arranged so that the rotation radius distribution of the air holes has a peak that repeatedly appears at a predetermined pitch. 前記担体が、放射状に延びる複数の突起を有する、請求項1〜のいずれかに記載の好気性生物処理装置。 Wherein said carrier comprises a plurality of projections extending radially, aerobic biological treatment apparatus according to any one of claims 1-5.
JP2011202050A 2011-09-15 2011-09-15 Aerobic biological treatment equipment Active JP5848073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011202050A JP5848073B2 (en) 2011-09-15 2011-09-15 Aerobic biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011202050A JP5848073B2 (en) 2011-09-15 2011-09-15 Aerobic biological treatment equipment

Publications (2)

Publication Number Publication Date
JP2013063365A JP2013063365A (en) 2013-04-11
JP5848073B2 true JP5848073B2 (en) 2016-01-27

Family

ID=48187401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011202050A Active JP5848073B2 (en) 2011-09-15 2011-09-15 Aerobic biological treatment equipment

Country Status (1)

Country Link
JP (1) JP5848073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190101005A (en) * 2018-02-22 2019-08-30 지유 주식회사 System for Sewage Treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585121A (en) * 2016-02-03 2016-05-18 安徽乙地生态科技有限公司 Unit-type bionic oxygen-carrying technological sewage purification device
CN106277684B (en) * 2016-09-09 2023-05-26 九江学院 Immobilized sulfur oxidizing bacteria biological rotating disc reaction device and application

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724199B2 (en) * 1974-03-12 1982-05-22
JPS57184492A (en) * 1981-05-11 1982-11-13 Japan Organo Co Ltd Contact method fixed-bed type oxidation vessel
JPS5936898U (en) * 1982-08-26 1984-03-08 海洋工業株式会社 water purification device
JPH0290999A (en) * 1988-09-27 1990-03-30 Inax Corp Air diffusion type soil water treatment process and its device
US5217616A (en) * 1991-12-06 1993-06-08 Allied-Signal Inc. Process and apparatus for removal of organic pollutants from waste water
US5897771A (en) * 1994-09-14 1999-04-27 Able Co., Ltd. Apparatus for aerobic treatment of waste water
JPH08173982A (en) * 1994-12-22 1996-07-09 Shin Nippon Koa Kk Method for treating organic wastewater
JPH10323681A (en) * 1997-05-23 1998-12-08 Shin Meiwa Ind Co Ltd Water cleaning device
JP2001327986A (en) * 2000-05-23 2001-11-27 Hitachi Chem Co Ltd Microorganism carrier and septic tank using the same
US7582474B2 (en) * 2005-07-11 2009-09-01 Honeywell International Inc. Process reactor with layered packed bed
JP5094022B2 (en) * 2006-02-13 2012-12-12 三菱レイヨン株式会社 Aeration device and membrane filtration unit applied when collecting filtrate of solid-liquid mixed processing liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190101005A (en) * 2018-02-22 2019-08-30 지유 주식회사 System for Sewage Treatment
KR102097100B1 (en) * 2018-02-22 2020-04-03 지유 주식회사 System for Sewage Treatment

Also Published As

Publication number Publication date
JP2013063365A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5848073B2 (en) Aerobic biological treatment equipment
JPH0880495A (en) Aerobic microorganism treating device
JP5480973B2 (en) Biological purification method and biological purification apparatus for sewage
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
JPH09501346A (en) High-throughput, single-tank water purification system
JP5294555B2 (en) Sewage treatment equipment
JP2005152777A (en) Filtration tank
JP4887797B2 (en) Wastewater treatment equipment
JPS6331280B2 (en)
JP7219656B2 (en) Trickling filter type water treatment equipment and method for cleaning the trickling filter type water treatment equipment
JP4102366B2 (en) Sewage / sludge treatment equipment
US20230202891A1 (en) Wastewater filtering method and apparatus comprising filter media of different sizes
JP3549064B2 (en) Fluidized bed nitrogen removal equipment
JP4887796B2 (en) Wastewater treatment equipment
JP4581432B2 (en) Wastewater treatment equipment
JPH0747390A (en) Sewage treating device
JP6425217B1 (en) Water treatment equipment
JP4274975B2 (en) Cleaning method for carrier separation screen, cleaning device therefor, and sewage treatment device
RU2536984C1 (en) Bioreactor
JPH09220586A (en) Water collecting apparatus and method
US20130175209A1 (en) Clarifier
KR100488471B1 (en) Backwashing apparatus of tertiary sewage treatment system
JP2001047088A (en) Water quality improving apparatus
JPH05146792A (en) Waste water treating device
KR100991565B1 (en) Waste water treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent or registration of utility model

Ref document number: 5848073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250