JP5847757B2 - Method for producing negative electrode active material for battery - Google Patents
Method for producing negative electrode active material for battery Download PDFInfo
- Publication number
- JP5847757B2 JP5847757B2 JP2013095411A JP2013095411A JP5847757B2 JP 5847757 B2 JP5847757 B2 JP 5847757B2 JP 2013095411 A JP2013095411 A JP 2013095411A JP 2013095411 A JP2013095411 A JP 2013095411A JP 5847757 B2 JP5847757 B2 JP 5847757B2
- Authority
- JP
- Japan
- Prior art keywords
- composite oxide
- battery
- titanium composite
- secondary particles
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明の実施形態は、電池用負極活物質の製造方法に関する。 Embodiments described herein relate generally to a method for producing a negative electrode active material for a battery.
近年、単斜晶系β型構造を有するチタン酸化物が非水電解質電池用活物質として注目されている(例えば、特許文献1〜3)。従来、実用されているスピネル型チタン酸リチウム(Li4Ti5O12)は、単位化学式あたりの挿入・脱離可能なリチウムイオンの数が3つである。このため、チタンイオン1つあたりに挿入・脱離可能なリチウムイオンの数は、3/5で、0.6が理論上の最大であった。これに対して、単斜晶系β型構造を有するチタン酸化物は、チタンイオン1つあたりに挿入・脱離可能なリチウムイオンの数は最大で1.0となり、約335mAh/gという高い理論容量を有する。よって、単斜晶系β型構造を有するチタン酸化物を用いた優れた性能を有する電池の開発が期待されている。 In recent years, titanium oxide having a monoclinic β-type structure has attracted attention as an active material for nonaqueous electrolyte batteries (for example, Patent Documents 1 to 3). Conventionally, spinel-type lithium titanate (Li 4 Ti 5 O 12 ) that has been practically used has three lithium ions that can be inserted and removed per unit chemical formula. For this reason, the number of lithium ions that can be inserted / removed per titanium ion was 3/5, and 0.6 was the theoretical maximum. In contrast, a titanium oxide having a monoclinic β-type structure has a maximum number of lithium ions that can be inserted / removed per titanium ion of 1.0, which is a high theory of about 335 mAh / g. Have capacity. Therefore, development of a battery having excellent performance using a titanium oxide having a monoclinic β-type structure is expected.
優れた充放電サイクル性能を有する非水電解質電池、該非水電解質電池に用いられる電池用負極活物質とその製造方法を提供することを目的とする。 An object is to provide a non-aqueous electrolyte battery having excellent charge / discharge cycle performance, a negative electrode active material for a battery used in the non-aqueous electrolyte battery, and a method for producing the same.
実施形態によれば、平均一次粒径が1nm以上10μm以下である単斜晶系β型チタン複合酸化物の一次粒子を含み、平均粒径が1μm以上100μm以下であり、圧縮破壊強度が20MPa以上である二次粒子を含む電池用負極活物質の製造方法であって、
チタンを含む化合物及びアルカリカチオンを含む化合物を含む原料二次粒子を製造することと、
該原料二次粒子を加熱処理して、二次粒子状のプロトン交換前駆体を得ることと、
該プロトン交換前駆体に酸を反応させてアルカリカチオンをプロトン交換することにより、二次粒子状のプロトン交換体を得ることと、
該プロトン交換体を加熱処理することにより、二次粒子状の単斜晶系β型チタン複合酸化物を得ることとを含む製造方法が提供される。
According to the embodiment, it includes primary particles of monoclinic β-type titanium composite oxide having an average primary particle size of 1 nm to 10 μm, an average particle size of 1 μm to 100 μm, and a compressive fracture strength of 20 MPa or more. A method for producing a negative electrode active material for a battery comprising secondary particles,
Producing raw material secondary particles comprising a compound comprising titanium and a compound comprising an alkali cation;
Heat-treating the raw material secondary particles to obtain a secondary particulate proton exchange precursor;
Obtaining a secondary particulate proton exchanger by reacting an acid with the proton exchange precursor to proton exchange an alkali cation;
By providing the proton exchanger with heat treatment, a production method including obtaining a monoclinic β-type titanium composite oxide in the form of secondary particles is provided.
以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
(第1実施形態)
本実施形態において、単斜晶系β型チタン複合酸化物とは、単斜晶系二酸化チタンの結晶構造を有するチタン複合酸化物を示す。単斜晶系二酸化チタンの結晶構造はTiO2(B)と表記する。TiO2(B)は、主に空間群C2/mに属し、図1に例示されるようなトンネル構造を示す。TiO2(B)の詳細な結晶構造に関しては、非特許文献1に記載されている。
(First embodiment)
In the present embodiment, the monoclinic β-type titanium composite oxide refers to a titanium composite oxide having a monoclinic titanium dioxide crystal structure. The crystal structure of monoclinic titanium dioxide is expressed as TiO 2 (B). TiO 2 (B) mainly belongs to the space group C2 / m and exhibits a tunnel structure as exemplified in FIG. Non-patent document 1 describes the detailed crystal structure of TiO 2 (B).
図1に示すようにTiO2(B)は、チタンイオン73と酸化物イオン72が骨格構造部分71aを構成し、この骨格構造部分71aが交互に配置された構造を有する。骨格構造部分71a同士の間には空隙部分71bが形成される。この空隙部分71bは、異原子種のインターカレート(挿入)のホストサイトとなることができる。TiO2(B)はまた、結晶表面にも異原子種を吸蔵放出可能なホストサイトが存在するといわれている。リチウムイオンがこれらのホストサイトに挿入・脱離することにより、TiO2(B)はリチウムイオンを可逆的に吸蔵・放出することができる。
As shown in FIG. 1, TiO 2 (B) has a structure in which
リチウムイオンが空隙部分71bに挿入されると、骨格を構成するTi4+がTi3+へと還元され、これによって結晶の電気的中性が保たれる。TiO2(B)を有するチタン酸化物は化学式あたり1つのTi4+を有するため、理論上、層間に最大1つのリチウムイオンを挿入することが可能である。このため、TiO2(B)を有するチタン酸化物は一般式LixTiO2 (0≦x≦1)により表わすことができる。この場合、理論容量335mAh/gが得られる。
When lithium ions are inserted into the
チタン酸リチウムは導電性に乏しいため、大電流特性を向上させるために粒子径を小さくして用いられることがある。しかしながら、微粒子化したチタン酸リチウムは、比表面積が大きいため、電極中で集電体と活物質の密着強度が低く、界面の抵抗が大きくなることがあった。 Since lithium titanate has poor conductivity, it may be used with a reduced particle size in order to improve large current characteristics. However, since finely divided lithium titanate has a large specific surface area, the adhesion strength between the current collector and the active material in the electrode is low, and the resistance at the interface may increase.
そこで、本発明者らは、単斜晶系β型チタン複合酸化物の二次粒子を製造し、これを用いて電極を作製した。しかしながら、このような二次粒子は、電極の製造工程において崩壊し、一次粒子の形状となりやすいことが分かった。二次粒子が崩壊して一次粒子の形状になると、活物質間の結着強度が低下し、活物質と集電体の剥離が生じやすくなる。 Therefore, the present inventors manufactured secondary particles of monoclinic β-type titanium composite oxide, and manufactured electrodes using this. However, it has been found that such secondary particles are easily collapsed in the electrode manufacturing process and become the shape of primary particles. When the secondary particles collapse to form the primary particles, the binding strength between the active materials decreases, and the active material and the current collector are easily separated.
さらに、K2Ti4O9のような単斜晶系β型チタン複合酸化物の合成前駆体が繊維粒状に成長しやすいため、一次粒子も主として繊維粒状である。そのため、塗工及び圧延のような電極製造工程において、繊維状の一次粒子が集電体となる基板と平行に並んでしまう。 Furthermore, since a synthetic precursor of a monoclinic β-type titanium composite oxide such as K 2 Ti 4 O 9 is likely to grow into fiber granules, the primary particles are mainly fiber granules. Therefore, in the electrode manufacturing process such as coating and rolling, the fibrous primary particles are aligned in parallel with the substrate serving as the current collector.
本発明者らは、リチウムイオンの吸蔵及び放出に伴って、結晶格子の拡張及び収縮が起こり、さらに、特定の結晶軸に沿って大きく拡張及び収縮が生じることを確認している。繊維状の一次粒子が集電体と平行に並んでいる場合、特定方向に電極体積の膨張及び収縮が繰り返されるため、電池厚さが変化する。これが原因となって、電極層が基板から剥離し易くなったり、電池がよれたり、電極間が広がって、電池の抵抗が大きくなり、電池特性が低下するという問題がある。 The present inventors have confirmed that the expansion and contraction of the crystal lattice occurs along with the insertion and release of lithium ions, and further, the expansion and contraction greatly occur along a specific crystal axis. When fibrous primary particles are arranged in parallel with the current collector, the expansion and contraction of the electrode volume are repeated in a specific direction, so that the battery thickness changes. Due to this, there are problems that the electrode layer is easily peeled off from the substrate, the battery is swung, the gap between the electrodes is widened, the resistance of the battery is increased, and the battery characteristics are deteriorated.
そこで、本発明者らは、圧縮破壊強度が高い単斜晶系β型チタン複合酸化物の二次粒子を用いることにより、電極製造の際に二次粒子が崩壊せず、優れた大電流性能と充放電サイクル性能に寄与する電極用活物質を提供できることを見出した。なお、ここで二次粒子の圧縮破壊強度とは、粉体強度と称することもできる。 Therefore, the present inventors use secondary particles of monoclinic β-type titanium composite oxide with high compressive fracture strength, so that secondary particles do not collapse during electrode manufacturing, and excellent large current performance It was found that an electrode active material that contributes to charge / discharge cycle performance can be provided. Here, the compression fracture strength of the secondary particles can also be referred to as powder strength.
本実施形態における電池用活物質は、平均一次粒径が1nm以上10μm以下である単斜晶系β型チタン複合酸化物の一次粒子を含む平均粒径が1μm以上100μm以下である二次粒子を含み、該二次粒子の圧縮破壊強度が20MPa以上である。 The active material for a battery in the present embodiment includes secondary particles having an average particle diameter of 1 μm or more and 100 μm or less including primary particles of a monoclinic β-type titanium composite oxide having an average primary particle diameter of 1 nm or more and 10 μm or less. And the compressive fracture strength of the secondary particles is 20 MPa or more.
電池用活物質に単斜晶系β型チタン複合酸化物の二次粒子を含むことにより、リチウムイオンを吸蔵及び放出する際に、等方的に体積変化が起こるため、電極層内の応力が緩和され、抵抗の増大を抑制することができる。 By including secondary particles of monoclinic β-type titanium composite oxide in the battery active material, volume change isotropically occurs when lithium ions are occluded and released. It is mitigated and an increase in resistance can be suppressed.
二次粒子は、平均粒径が1μm以上100μm以下である。平均粒径が1μm未満であると、工業生産上、扱い難くなり、100μmを超えると、電極を作製するための塗膜において、質量及び厚さを均一にすることが困難になり、また、表面平滑性が低下しやすくなる。二次粒子の平均粒径は、3μm以上30μm以下であることがより好ましい。 The secondary particles have an average particle size of 1 μm or more and 100 μm or less. If the average particle size is less than 1 μm, it will be difficult to handle in industrial production, and if it exceeds 100 μm, it will be difficult to make the mass and thickness uniform in the coating film for producing the electrode, Smoothness tends to decrease. The average particle size of the secondary particles is more preferably 3 μm or more and 30 μm or less.
単斜晶系β型チタン複合酸化物が二次粒子状であることは、走査型電子顕微鏡(SEM)観察によって確認できる。 It can be confirmed by scanning electron microscope (SEM) observation that the monoclinic β-type titanium composite oxide is in the form of secondary particles.
二次粒子の平均粒径の測定方法は、以下の通りである。レーザー回折式分布測定装置(島津SALD-300)を用い、まず、ビーカーに試料を約0.1gと界面活性剤と1〜2mLの蒸留水を添加して十分に攪拌した後、攪拌水槽に注入し、2秒間隔で64回光度分布を測定し、粒度分布データを解析するという方法にて測定した。 The measuring method of the average particle diameter of the secondary particles is as follows. Using a laser diffraction distribution analyzer (Shimadzu SALD-300), first add about 0.1 g of the sample, a surfactant, and 1 to 2 mL of distilled water to a beaker, stir well, and then inject into a stirred water tank. The luminous intensity distribution was measured 64 times at intervals of 2 seconds, and the particle size distribution data was analyzed.
二次粒子を構成する一次粒子は、平均一次粒径が1nm以上10μm以下である。平均一次粒径が1nm未満であると、工業生産上、扱い難くなり、10μmを超えると、チタン複合酸化物の固体内におけるリチウムイオンの拡散が遅くなる。平均一次粒径は、10nm以上1μm以下であることがより好ましい。 The primary particles constituting the secondary particles have an average primary particle size of 1 nm to 10 μm. When the average primary particle size is less than 1 nm, it is difficult to handle in industrial production, and when it exceeds 10 μm, the diffusion of lithium ions in the solid of the titanium composite oxide is slow. The average primary particle size is more preferably 10 nm or more and 1 μm or less.
平均一次粒径は、走査型電子顕微鏡(SEM)観察によって確認できる。典型的な視野から抽出される典型的な粒子10個の平均を求め、平均一次粒径を決定する。 The average primary particle size can be confirmed by observation with a scanning electron microscope (SEM). The average of 10 typical particles extracted from a typical field of view is determined and the average primary particle size is determined.
一次粒子は繊維状であることが好ましい。本実施形態において、繊維状の粒子とは、アスペクト比が3以上である粒子を意味する。一次粒子が繊維状である場合、平均一次粒径は繊維直径である。一次粒子が繊維状粒子であることは、走査型電子顕微鏡(SEM)観察によって確認できる。 The primary particles are preferably fibrous. In the present embodiment, the fibrous particles mean particles having an aspect ratio of 3 or more. When the primary particles are fibrous, the average primary particle size is the fiber diameter. It can be confirmed by scanning electron microscope (SEM) observation that the primary particles are fibrous particles.
二次粒子の圧縮破壊強度は20MPa以上である。圧縮破壊強度が20MPa未満であると、電極製造工程中に粒子が崩壊して、電極の結着性が低下し、活物質と集電体の剥離が生じてサイクル寿命が大きく低下する。圧縮破壊強度は、好ましくは35MPa以上である。圧縮破壊強度の上限は100MPa以下であることが好ましい。圧縮破壊強度が100MPa以下であると、電極密度が高めやすく、体積エネルギー密度を増大させることができる。 The compressive fracture strength of the secondary particles is 20 MPa or more. When the compressive fracture strength is less than 20 MPa, the particles collapse during the electrode manufacturing process, the binding property of the electrode is lowered, the active material and the current collector are peeled off, and the cycle life is greatly reduced. The compressive fracture strength is preferably 35 MPa or more. The upper limit of the compressive fracture strength is preferably 100 MPa or less. When the compressive fracture strength is 100 MPa or less, the electrode density can be easily increased, and the volume energy density can be increased.
二次粒子は、BET法によって測定された比表面積が、5m2/g以上50m2/g以下であることが好ましい。比表面積が5m2/g以上である場合には、リチウムイオンの吸蔵・脱離サイトを十分に確保することが可能になる。比表面積が50m2/g以下である場合には、工業生産上、扱い易くなる。 The secondary particles preferably have a specific surface area measured by the BET method of 5 m 2 / g or more and 50 m 2 / g or less. In the case where the specific surface area is 5 m 2 / g or more, it is possible to sufficiently ensure the occlusion / desorption sites of lithium ions. When the specific surface area is 50 m 2 / g or less, it becomes easy to handle in industrial production.
(圧縮破壊強度の測定)
圧縮破壊強度(St[MPa])は、以下に示す装置により測定され、下記(1)式に示す平松らの式(非特許文献2)により求められる。
(Measurement of compressive fracture strength)
The compressive fracture strength (St [MPa]) is measured by the apparatus shown below, and is determined by the expression of Hiramatsu et al.
測定装置:島津微小圧縮試験機MCT−W
<試験条件>
試験圧子:FLAT50
測定モード:圧縮試験
試験力: 20.00[mN]
負荷速度:0.892405[mN]/sec]
算出式:St=2.8P/πd2 (1)式
P:試験力[N]、d:粒子径(mm)
本実施形態では、粒径が平均粒径の±3μm以内である二次粒子5個について、上述の測定を行い、測定値の平均値を圧縮破壊強度とした。
Measuring device: Shimadzu micro compression tester MCT-W
<Test conditions>
Test indenter: FLAT50
Measurement mode: Compression test Test force: 20.00 [mN]
Load speed: 0.892405 [mN] / sec]
Calculation formula: St = 2.8 P / πd 2 (1) Formula
P: Test force [N], d: Particle diameter (mm)
In the present embodiment, the above-described measurement was performed on five secondary particles having a particle size within ± 3 μm of the average particle size, and the average value of the measured values was taken as the compression fracture strength.
本実施形態において、単斜晶系β型チタン複合酸化物にはさらに、5族及び13族から選ばれる少なくとも1つの元素を含むことが好ましい。当該元素を含む単斜晶系β型チタン複合酸化物中の当該元素の含有量は、0.03質量%以上15質量%以下の範囲であることが好ましい。
In the present embodiment, it is preferable that the monoclinic β-type titanium composite oxide further includes at least one element selected from
5族、13族から選ばれる少なくとも1つの元素を、0.03質量%以上含むことにより、十分な圧縮破壊強度を得ることができ、15質量%以下含むことにより、電気容量及び充放電サイクル性能を低下させる要因となり得るTiO2(B)の異相の発生を防ぐことができる。該元素のより好ましい含有量は、1質量%以上10質量%以下である。
By containing at least one element selected from
5族、13族から選ばれる少なくとも1つの元素は、V、Nb、Ta、Al、Ga及びInの群から選択されることが好ましく、特に、Nb、V、及びAlから選択されることが好ましい。上記少なくとも1つの元素は、単独で添加されてもよく、あるいは、2種以上の元素が添加されてもよい。2種以上の元素を添加する場合は、何れの組み合わせであってもよいが、特にNbとV,NbとAl,及びNbとVとAlの組合せを用いることが好ましい。
At least one element selected from
5族、13族から選ばれる少なくとも1つの元素は、単斜晶系β型チタン複合酸化物のTiサイトの一部を置換した状態で存在するか、又は固溶された状態であると考えられる。5族、13族から選ばれる少なくとも1つの元素の含有量を多くすると、より高い圧縮破壊強度を得ることができるが、該元素の固溶限を超えると異相が表れるため、固溶限の範囲内で添加することが好ましい。0.03質量%以上15質量%以下の範囲で含ませることにより、より効果的に二次粒子の圧縮破壊強度を高めることができる。
It is considered that at least one element selected from
なお、2種以上の元素を添加する場合は、それらの元素を合計した含有量が0.03質量%以上15質量%以下であることが好ましい。 In addition, when adding 2 or more types of elements, it is preferable that content which totaled those elements is 0.03 mass% or more and 15 mass% or less.
5族、13族から選ばれる少なくとも1つの元素の合計含有量は、ICP発光分光法によって測定できる。ICP発光分光法による上記元素の含有量の測定は、例えば以下の方法で実行できる。放電状態で電池を解体し、電極(例えば負極)を取り出し、その負極層を水中で失活する。その後、負極層中のチタン複合酸化物を抽出する。抽出処理は、例えば、バインダーにポリフッ化ビニリデンを用いた場合には、N-メチル-2-ピロリドンなどで洗浄してバインダー成分を除去した後、適切な目開きのメッシュで導電剤を除去する。これらの成分が僅かに残存する場合は、大気中での加熱処理(例えば、250℃で30分など)によって除去すれば良い。抽出したチタン複合酸化物を容器に測り取った後、酸融解またはアルカリ融解して測定溶液を得る。この測定溶液を測定装置(例えばエスアイアイ・ナノテクノロジー社製:SPS−1500V)でICP発光分光を行なって上記元素の含有量を測定する。
The total content of at least one element selected from
本実施形態における活物質を負極活物質として用いる場合、単独で用いてもよいが、他の活物質とともに用いてもよい。他の活物質は、例えば、スピネル構造を有するリチウムチタン複合酸化物(Li4Ti5O12など)、アナターゼ或いはルチル構造を有するチタン複合酸化物(a−TiO2、r−TiO2)、鉄複合硫化物(FeS、FeS2など)を用いることができる。また、本実施形態における活物質を正極活物質として用いる場合、単独で用いてもよいが、他の活物質とともに用いてもよい。他の活物質は、例えば、スピネル構造を有するリチウムチタン複合酸化物(Li4Ti5O12など)、アナターゼ或いはルチル構造を有するチタン複合酸化物(a−TiO2、r−TiO2)、鉄複合硫化物(FeS、FeS2など)を用いることができる。 When using the active material in this embodiment as a negative electrode active material, you may use independently, but you may use it with another active material. Other active materials include, for example, lithium titanium composite oxides having a spinel structure (such as Li 4 Ti 5 O 12 ), titanium composite oxides having anatase or rutile structure (a-TiO 2 , r-TiO 2 ), iron can be formed using a composite sulfide (FeS, etc. FeS 2). Moreover, when using the active material in this embodiment as a positive electrode active material, you may use independently, but you may use it with another active material. Other active materials include, for example, lithium titanium composite oxides having a spinel structure (such as Li 4 Ti 5 O 12 ), titanium composite oxides having anatase or rutile structure (a-TiO 2 , r-TiO 2 ), iron can be formed using a composite sulfide (FeS, etc. FeS 2).
電極中に他の活物質も含まれる場合は、5族、13族から選ばれる少なくとも1つの元素の合計含有量は、以下のように測定することができる。電極中から取り出した負極活物質をTEM−EDXに供し、制限視野回折法によって各々の粒子の結晶構造を特定する。β型TiO2に帰属される回折パターンを有する粒子を選定し、EDX分析によって、5族、13族から選ばれる少なくとも1つの元素の合成含有量を測定する。
When another active material is also contained in the electrode, the total content of at least one element selected from
電池を解体して活物質を抽出する場合、以下の手順によって行うことができる。まず、電池を25℃環境において0.1C電流で定格終止電圧まで放電させる。放電させた電池を不活性雰囲気中で解体し、電極(例えば負極)中央部を切り出す。切り出した負極をエチルメチルカーボネートで充分に洗浄して電解質成分を除去した後、大気中で1日放置するか、或いは水で洗浄し、失活させる。その後、負極層中のチタン複合酸化物を抽出する。抽出処理は、例えば大気中で、200〜300℃、3時間未満の加熱処理によって負極層中の導電剤及び結着剤を除去することにより行うことができる。 When the battery is disassembled and the active material is extracted, it can be performed by the following procedure. First, the battery is discharged to a rated end voltage with a current of 0.1 C in a 25 ° C. environment. The discharged battery is disassembled in an inert atmosphere, and the center part of an electrode (for example, negative electrode) is cut out. The cut-out negative electrode is sufficiently washed with ethyl methyl carbonate to remove the electrolyte component, and then left in the atmosphere for one day, or washed with water and deactivated. Thereafter, the titanium composite oxide in the negative electrode layer is extracted. The extraction treatment can be performed, for example, by removing the conductive agent and the binder in the negative electrode layer by heat treatment at 200 to 300 ° C. for less than 3 hours in the air.
(製造方法)
次に、実施形態に係る電池用活物質の製造方法を説明する。
本実施形態の製造方法は、チタンを含む化合物及びアルカリカチオンを含む化合物を含む原料二次粒子を製造することと、該原料二次粒子を加熱処理して、二次粒子状のプロトン交換前駆体を得ることと、該プロトン交換前駆体に酸を反応させてアルカリカチオンをプロトン交換することにより、二次粒子状のプロトン交換体を得ることと、該プロトン交換体を加熱処理することにより、二次粒子状の単斜晶系β型チタン複合酸化物を得ることと、を含む。
(Production method)
Next, the manufacturing method of the active material for batteries which concerns on embodiment is demonstrated.
The production method of the present embodiment includes producing raw material secondary particles containing a compound containing titanium and a compound containing an alkali cation, and heat-treating the raw material secondary particles to form a secondary particle proton exchange precursor. Obtaining a secondary particulate proton exchanger by reacting an acid with the proton exchange precursor to proton exchange the alkali cation, and heat-treating the proton exchanger, Obtaining a next-particulate monoclinic β-type titanium composite oxide.
本実施形態の方法に従って、チタンを含む化合物及びアルカリカチオンを含む化合物のような出発原料を二次粒子形状にし、この二次粒子を高温で焼成することにより、最終産物として圧縮破壊強度が高い単斜晶系β型チタン複合酸化物の二次粒子を得ることができる。 In accordance with the method of the present embodiment, starting materials such as a compound containing titanium and a compound containing alkali cations are formed into secondary particle shapes, and the secondary particles are fired at a high temperature, whereby a single product having a high compression fracture strength is obtained as a final product. Secondary particles of an oblique β-type titanium composite oxide can be obtained.
以下、より詳細に説明する。
まず、出発原料を用いて二次粒子を製造する。この出発原料からなる二次粒子を、原料二次粒子と称する。原料二次粒子は、出発原料を所定比率で混合し、例えばスプレードライすることによって製造できる。
This will be described in more detail below.
First, secondary particles are produced using starting materials. The secondary particles made of this starting material are called raw material secondary particles. The raw material secondary particles can be produced by mixing the starting raw materials at a predetermined ratio and, for example, spray drying.
出発原料には、チタンを含む化合物と、アルカリカチオンを含む化合物を用いることができ、例えば、アナターゼ構造を有するTiO2、K2CO3、Na2CO3、又は、Cs2CO3などを用いることができる。 As a starting material, a compound containing titanium and a compound containing an alkali cation can be used. For example, TiO 2 having an anatase structure, K 2 CO 3 , Na 2 CO 3 , or Cs 2 CO 3 is used. be able to.
スプレードライは、例えば、純水のような溶媒に、アルカリカチオンを含む化合物を溶解し、これにチタンを含む化合物を分散させて噴霧することにより実施できる。スプレードライによれば、微粒子を高分散した液滴を瞬時に乾燥することができるため球状の二次粒子が得られ易い。 Spray drying can be carried out, for example, by dissolving a compound containing an alkali cation in a solvent such as pure water, and dispersing and spraying a compound containing titanium. According to spray drying, droplets in which fine particles are highly dispersed can be instantly dried, so that spherical secondary particles are easily obtained.
次いで、原料二次粒子を熱処理し、プロトン交換前駆体として用いられる二次粒子状のチタン酸アルカリ化合物を得る。チタン酸アルカリ化合物は、これらに限定されないが、Na2Ti3O7、K2Ti4O9、又はCs2Ti5O12のような、チタン酸ナトリウム、チタン酸カリウム又はチタン酸セシウムであることが好ましい。所望のチタン酸アルカリ化合物に合わせて出発原料を混合する比率を決定する。熱処理は、850〜1200℃の温度範囲で、1〜100時間の間行われることが好ましい。この原料二次粒子を上記温度範囲で焼成することにより、二次粒子の圧縮破壊強度を上昇させることができる。一次粒子及び二次粒子の平均粒径は、熱処理の温度と時間を変化させることによって調節することができる。 Next, the raw material secondary particles are heat-treated to obtain secondary particulate alkali titanate compound used as a proton exchange precursor. The alkali titanate compound is sodium titanate, potassium titanate or cesium titanate, such as, but not limited to, Na 2 Ti 3 O 7 , K 2 Ti 4 O 9 , or Cs 2 Ti 5 O 12. It is preferable. The mixing ratio of the starting materials is determined according to the desired alkali titanate compound. The heat treatment is preferably performed in a temperature range of 850 to 1200 ° C. for 1 to 100 hours. By calcining the raw material secondary particles in the above temperature range, the compressive fracture strength of the secondary particles can be increased. The average particle diameter of the primary particles and the secondary particles can be adjusted by changing the temperature and time of the heat treatment.
単斜晶系β型チタン複合酸化物に、5族及び13族から選ばれる少なくとも1つの元素を含有させる場合は、出発原料、即ち、チタンを含む化合物及びアルカリカチオンを含む化合物のうち少なくともいずれかに、5族、13族から選ばれる少なくとも1つの元素を含有させてもよい。或いは、Nb2O5のような、5族又は13族の元素を含む化合物を、出発原料と混合してもよい。
When the monoclinic β-type titanium composite oxide contains at least one element selected from
次に、チタン酸アルカリ化合物をプロトン交換に供する。得られた二次粒子状のチタン酸アルカリ化合物を純水で十分に水洗し、不純物を取り除く。その後、酸で処理することにより、アルカリカチオンがプロトンに交換される。酸処理は、例えば二次粒子状のチタン酸アルカリ化合物を濃度1Mの塩酸に加えて攪拌することによって行うことができる。酸処理は、充分にプロトン交換が完了するまで行われることが望ましい。プロトン交換時には、溶液にアルカリ性溶液を添加してpHを調整してもよい。プロトン交換の完了後、再び純水で水洗する。チタン酸ナトリウム、チタン酸カリウムおよびチタン酸セシウムは、結晶構造を崩さずにアルカリカチオンをプロトンに交換することが可能である。 Next, the alkali titanate compound is subjected to proton exchange. The obtained secondary particulate alkali titanate compound is sufficiently washed with pure water to remove impurities. Thereafter, the alkali cations are exchanged for protons by treatment with an acid. The acid treatment can be performed, for example, by adding a secondary particulate alkali titanate compound to hydrochloric acid having a concentration of 1 M and stirring. The acid treatment is desirably performed until the proton exchange is sufficiently completed. During proton exchange, an alkaline solution may be added to the solution to adjust the pH. After the proton exchange is completed, it is washed again with pure water. Sodium titanate, potassium titanate and cesium titanate can exchange alkali cations for protons without breaking the crystal structure.
次に、プロトン交換を終了した二次粒子状の生成物を水洗及び乾燥することにより、中間生成物である二次粒子状のプロトン交換体を得る。このプロトン交換体を加熱処理することにより、最終生成物である二次粒子状の単斜晶系β型チタン複合酸化物を得ることができる。原料二次粒子の製造工程において、5族、13族から選ばれる少なくとも1つの元素を含有した化合物を用いた場合は、5族、13族から選ばれる少なくとも1つの元素を含有した単斜晶系β型チタン複合酸化物が得られる。
Next, the secondary particulate product that has undergone proton exchange is washed with water and dried to obtain a secondary particulate proton exchanger that is an intermediate product. By subjecting this proton exchanger to heat treatment, a secondary particulate monoclinic β-type titanium composite oxide as the final product can be obtained. Monoclinic system containing at least one element selected from
プロトン交換体の加熱処理は、300℃〜500℃で行われることが好ましい。加熱温度を300℃未満にすると、結晶性が著しく低下し、電極容量、充放電効率、繰り返し特性が低下する。一方、加熱温度が500℃を超えると、アナターゼ相のような不純物相が生成され、容量が低下する虞がある。より好ましい加熱温度は、350℃〜400℃である。なお、プロトン交換体の加熱処理における、熱処理の温度と時間を変化させることによっても、一次粒子及び二次粒子の平均粒径を調節することができる。 The heat treatment of the proton exchanger is preferably performed at 300 ° C to 500 ° C. When the heating temperature is less than 300 ° C., the crystallinity is remarkably lowered, and the electrode capacity, charge / discharge efficiency, and repeatability are lowered. On the other hand, when the heating temperature exceeds 500 ° C., an impurity phase such as an anatase phase is generated, and the capacity may be reduced. A more preferable heating temperature is 350 ° C to 400 ° C. Note that the average particle size of the primary particles and the secondary particles can also be adjusted by changing the temperature and time of the heat treatment in the heat treatment of the proton exchanger.
本実施形態の方法では、出発原料を二次粒子の形状にすることにより、二次粒子の状態で高温焼成することが可能である。二次粒子の状態で高温焼成すると、一次粒子の界面における結合を増強させることができ、これによって、圧縮破壊強度の高い二次粒子を得ることができる。本実施形態の方法によって得られた単斜晶系β型チタン複合酸化物の二次粒子は、圧縮破壊強度が高く、電極製造工程においても崩壊しない。よって、該単斜晶系β型チタン複合酸化物を用いることにより、優れた充放電サイクル性能を有する非水電解質電池を製造できる電極活物質を提供することができる。 In the method of this embodiment, it is possible to perform high-temperature firing in the state of secondary particles by making the starting material into the shape of secondary particles. When fired at a high temperature in the state of secondary particles, the bonding at the interface of the primary particles can be enhanced, whereby secondary particles having a high compression fracture strength can be obtained. The secondary particles of the monoclinic β-type titanium composite oxide obtained by the method of the present embodiment have high compressive fracture strength and do not collapse even in the electrode manufacturing process. Therefore, by using the monoclinic β-type titanium composite oxide, an electrode active material capable of producing a nonaqueous electrolyte battery having excellent charge / discharge cycle performance can be provided.
なお、本実施形態に係る電池用活物質は、負極のみならず、正極にも用いることができ、いずれに適用しても優れた充放電サイクル性能を得ることができる。すなわち、優れたサイクル特性は、二次粒子の圧縮破壊強度を高めることで得られる効果であり、負極に用いても正極に用いてもその効果は変わらない。したがって、実施形態に係る電池用活物質は正極にも負極にも用いることができ、同様な効果を得ることができる。 In addition, the battery active material according to the present embodiment can be used not only for the negative electrode but also for the positive electrode, and excellent charge / discharge cycle performance can be obtained by applying to any of them. That is, excellent cycle characteristics are the effects obtained by increasing the compressive fracture strength of the secondary particles, and the effects do not change when used for the negative electrode or the positive electrode. Therefore, the battery active material according to the embodiment can be used for both the positive electrode and the negative electrode, and similar effects can be obtained.
実施形態に係る電池用活物質を正極に用いる場合、対極としての負極の活物質は金属リチウム、リチウム合金、またはグラファイト、コークスなどの炭素系材料を用いることができる。 When the battery active material according to the embodiment is used for the positive electrode, the active material of the negative electrode as the counter electrode can be a metallic lithium, a lithium alloy, or a carbon-based material such as graphite or coke.
(第2実施形態)
次に、第2実施形態に係る非水電解質電池を説明する。
(Second Embodiment)
Next, the nonaqueous electrolyte battery according to the second embodiment will be described.
実施形態に係る非水電解質電池は、外装材と、外装材内に収納された正極と、外装材内に正極と空間的に離間して、例えばセパレータを介在して収納された活物質を含む負極と、外装材内に充填された非水電解質とを具備する。 The nonaqueous electrolyte battery according to the embodiment includes an exterior material, a positive electrode accommodated in the exterior material, and an active material that is spatially separated from the positive electrode in the exterior material, for example, via a separator. A negative electrode and a non-aqueous electrolyte filled in the exterior material are provided.
負極の活物質には、第1実施形態にかかる電池用活物質が用いられる。 The battery active material according to the first embodiment is used as the negative electrode active material.
実施形態に係る非水電解質電池100の一例を示した図2、図3を参照してより詳細に説明する。図2は、外装材2がラミネートフィルムからなる扁平型非水電解質電池100の断面模式図であり、図3は図2のA部の拡大断面図である。なお、各図は説明のための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
This will be described in more detail with reference to FIGS. 2 and 3 showing an example of the
扁平状の捲回電極群1は、2枚の樹脂層の間にアルミニウム箔を介在したラミネートフィルムからなる袋状外装材2内に収納されている。扁平状の捲回電極群1は、外側から負極3、セパレータ4、正極5、セパレータ4の順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成される。最外殻の負極3は、図3に示すように負極集電体3aの内面側の片面に負極層3bを形成した構成を有する。その他の負極3は、負極集電体3aの両面に負極層3bを形成して構成されている。正極5は、正極集電体5aの両面に正極層5bを形成して構成されている。
The flat wound electrode group 1 is housed in a bag-shaped
捲回電極群1の外周端近傍において、負極端子6は最外殻の負極3の負極集電体3aに電気的に接続され、正極端子7は内側の正極5の正極集電体5aに電気的に接続されている。これらの負極端子6および正極端子7は、袋状外装材2の開口部から外部に延出されている。例えば液状非水電解質は、袋状外装材2の開口部から注入されている。袋状外装材2の開口部を負極端子6および正極端子7を挟んでヒートシールすることにより捲回電極群1および液状非水電解質を完全密封している。
In the vicinity of the outer peripheral end of the wound electrode group 1, the
負極端子は、例えばリチウムイオン金属に対する電位が0.6V以上3V以下の範囲における電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。負極端子6は、負極集電体3aとの接触抵抗を低減するために、負極集電体3aと同様の材料であることが好ましい。
For the negative electrode terminal, for example, a material having electrical stability and conductivity in a range where the potential with respect to the lithium ion metal is 0.6 V or more and 3 V or less can be used. Specifically, aluminum or an aluminum alloy containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si can be given. The
正極端子7は、リチウムイオン金属に対する電位が3〜5Vの範囲における電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。正極端子7は、正極集電体5aとの接触抵抗を低減するために、正極集電体5aと同様の材料であることが好ましい。
The
以下、非水電解質電池100の構成部材である外装材2、負極3、正極5、セパレー4タおよび非水電解質について詳細に説明する。
Hereinafter, the
1)外装材
外装材2は、厚さ1mm以下のラミネートフィルムから形成される。或いは、外装材は厚さ3mm以下の金属製容器が用いられる。金属製容器は、厚さ1mm以下であることがより好ましい。
1) Exterior material The
外装材2の形状は、扁平型(薄型)、角型、円筒型、コイン型、及びボタン型から選択できる。外装材の例には、電池寸法に応じて、例えば携帯用電子機器等に積載される小型電池用外装材、二輪乃至四輪の自動車等に積載される大型電池用外装材などが含まれる。
The shape of the
ラミネートフィルムは、樹脂層間に金属層を介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装材の形状に成形することができる。 As the laminate film, a multilayer film in which a metal layer is interposed between resin layers is used. The metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction. For the resin layer, for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used. The laminate film can be molded into the shape of an exterior material by sealing by heat sealing.
金属製容器は、アルミニウムまたはアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属が含まれる場合、その量は100質量ppm以下にすることが好ましい。 The metal container is made of aluminum or an aluminum alloy. The aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon. When transition metals such as iron, copper, nickel, and chromium are included in the alloy, the amount is preferably 100 ppm by mass or less.
2)負極
負極3は、集電体3aと、この集電体3aの片面または両面に形成され、活物質、導電剤および結着剤を含む負極層3bとを備える。
2) Negative electrode The negative electrode 3 includes a current collector 3a and a negative electrode layer 3b formed on one or both surfaces of the current collector 3a and including an active material, a conductive agent, and a binder.
活物質としては、第1の実施形態に係る電池用活物質が用いられる。 As the active material, the battery active material according to the first embodiment is used.
このような活物質を含む負極層3bを備えた負極3を組み込まれた非水電解質電池100は、大電流特性および充放電サイクル性能を向上できる。
The
導電剤は、活物質の集電性能を高め、集電体との接触抵抗を抑える。導電剤の例は、アセチレンブラック、カーボンブラック、黒鉛を含む。 The conductive agent improves the current collection performance of the active material and suppresses the contact resistance with the current collector. Examples of the conductive agent include acetylene black, carbon black, and graphite.
結着剤は、活物質と導電剤を結着できる。結着剤の例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴムを含む。 The binder can bind the active material and the conductive agent. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, and styrene butadiene rubber.
負極層3b中の活物質、導電剤および結着剤は、それぞれ70質量%以上96質量%以下、2質量%以上28質量%以下および2質量%以上28質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極層3bの集電性能を向上させ、非水電解質電池100の大電流特性を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極層3bと集電体3aの結着性を高め、サイクル特性を向上させることができる。一方、導電剤および結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。
The active material, the conductive agent, and the binder in the negative electrode layer 3b may be blended at a ratio of 70% by mass to 96% by mass, 2% by mass to 28% by mass, and 2% by mass to 28% by mass, respectively. preferable. By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode layer 3b can be improved, and the large current characteristics of the
集電体3aは、1Vよりも貴である電位範囲において電気化学的に安定であるアルミニウム箔またはMg、Ti、Zn、Mn、Fe、Cu、Siのような元素を含むアルミニウム合金箔であること好ましい。 The current collector 3a is an aluminum foil that is electrochemically stable in a potential range nobler than 1 V or an aluminum alloy foil containing elements such as Mg, Ti, Zn, Mn, Fe, Cu, and Si. preferable.
負極3は、例えば活物質、導電剤および結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体3aに塗布し、乾燥し、その後、プレスを施すことにより作製される。負極3はまた活物質、導電剤および結着剤をペレット状に形成して負極層3bとし、これを集電体3a上に形成することにより作製されてもよい。 The negative electrode 3 is prepared by, for example, suspending an active material, a conductive agent and a binder in a commonly used solvent to prepare a slurry, applying the slurry to the current collector 3a, drying, and then pressing the slurry. Produced. The negative electrode 3 may also be produced by forming an active material, a conductive agent, and a binder in the form of a pellet to form the negative electrode layer 3b and forming it on the current collector 3a.
3)正極
正極5は、集電体5aと、この集電体5aの片面または両面に形成され、活物質、導電剤および結着剤を含む正極層5bとを備える。
3) Positive electrode The
活物質は、例えば酸化物、ポリマー等を用いることができる。 As the active material, for example, an oxide, a polymer, or the like can be used.
酸化物は、例えばリチウムを吸蔵した二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケルおよびリチウムマンガン複合酸化物(例えばLixMn2O4またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoyO2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-yO2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(LixMn2-yNiyO4)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4)、硫酸鉄(Fe2(SO4)3)、またはバナジウム酸化物(例えばV2O5)を用いることができる。ここで、x、yは0<x≦1、0≦y≦1であることが好ましい。 Examples of the oxide include manganese occluded lithium (MnO 2 ), iron oxide, copper oxide, nickel oxide and lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide. (Eg, Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel cobalt composite oxide (eg, LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (eg, Li x Mn y) Co 1 -y O 2 ), lithium manganese nickel composite oxide having a spinel structure (Li x Mn 2 -y Ni y O 4 ), lithium phosphorus oxide having an olivine structure (for example, Li x FePO 4 , Li x Fe 1) -y Mn y PO 4, Li x CoPO 4), iron sulfate (Fe 2 (SO 4) 3 ), or vanadium oxides (for example, V 2 O 5 ) Can be used. Here, x and y are preferably 0 <x ≦ 1 and 0 ≦ y ≦ 1.
ポリマーは、例えばポリアニリンやポリピロールのような導電性ポリマー材料、またはジスルフィド系ポリマー材料を用いることができる。イオウ(S)、フッ化カーボンもまた活物質として使用できる。 As the polymer, for example, a conductive polymer material such as polyaniline or polypyrrole, or a disulfide polymer material can be used. Sulfur (S) and carbon fluoride can also be used as the active material.
好ましい活物質の例には、正極電圧が高いリチウムマンガン複合酸化物(LixMn2O4)、リチウムニッケル複合酸化物(LixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(LixNi1-yCoyO2)、スピネル構造のリチウムマンガンニッケル複合酸化物(LixMn2-yNiyO4)、リチウムマンガンコバルト複合酸化物(LixMnyCo1-yO2)、またはリチウムリン酸鉄(LixFePO4)が含まれる。ここで、x、yは0<x≦1、0≦y≦1であることが好ましい。 Examples of preferable active materials include lithium manganese composite oxide (Li x Mn 2 O 4 ), lithium nickel composite oxide (Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ) having a high positive electrode voltage, Lithium nickel cobalt composite oxide (Li x Ni 1-y CoyO 2 ), spinel lithium manganese nickel composite oxide (Li x Mn 2 -y Ni y O 4 ), lithium manganese cobalt composite oxide (Li x Mn y) Co 1-y O 2 ), or lithium iron phosphate (Li x FePO 4 ). Here, x and y are preferably 0 <x ≦ 1 and 0 ≦ y ≦ 1.
さらに好ましい活物質は、リチウムコバルト複合酸化物またはリチウムマンガン複合酸化物である。これらの活物質は、イオン伝導性が高いため、前述した負極活物質との組み合わせにおいて、正極活物質中のリチウムイオンの拡散が律速段階になり難い。このため、前記活物質は前記負極活物質中のリチウムチタン複合酸化物との適合性に優れる。 A more preferable active material is a lithium cobalt composite oxide or a lithium manganese composite oxide. Since these active materials have high ion conductivity, diffusion of lithium ions in the positive electrode active material is unlikely to be a rate-determining step in combination with the negative electrode active material described above. For this reason, the said active material is excellent in compatibility with the lithium titanium complex oxide in the said negative electrode active material.
導電剤は、活物質の集電性能を高め、集電体との接触抵抗を抑える。導電剤の例は、アセチレンブラック、カーボンブラック、黒鉛などの炭素質物を含む。 The conductive agent improves the current collection performance of the active material and suppresses the contact resistance with the current collector. Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
結着剤は、活物質と導電剤を結着させる。結着剤の例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを含む。 The binder binds the active material and the conductive agent. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
正極層5b中の活物質、導電剤および結着剤は、それぞれ80質量%以上95質量%以下、3質量%以上18質量%以下および2質量%以上17質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。導電剤は、18質量%以下の量にすることにより高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤は、2質量%以上の量にすることにより十分な正極強度が得られる。結着剤は、17質量%以下の量にすることにより、正極中の絶縁材料である結着剤の配合量を減少させ、内部抵抗を減少できる。 The active material, the conductive agent, and the binder in the positive electrode layer 5b may be blended at a ratio of 80% by mass to 95% by mass, 3% by mass to 18% by mass, and 2% by mass to 17% by mass, respectively. preferable. The conductive agent can exhibit the above-described effects by adjusting the amount to 3% by mass or more. By making the amount of the conductive agent 18% by mass or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage can be reduced. A sufficient positive electrode strength can be obtained by adjusting the amount of the binder to 2% by mass or more. By setting the binder to an amount of 17% by mass or less, the amount of the binder, which is an insulating material in the positive electrode, can be reduced, and the internal resistance can be reduced.
集電体は、例えばアルミニウム箔、またはMg、Ti、Zn、Mn、Fe、Cu、Siのような元素を含むアルミニウム合金箔であることが好ましい。 The current collector is preferably, for example, an aluminum foil or an aluminum alloy foil containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si.
正極5は、例えば活物質、導電剤および結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体5aに塗布し、乾燥し、その後、プレスを施すことにより作製される。正極5はまた活物質、導電剤および結着剤をペレット状に形成して正極層5bとし、これを集電体5a上に形成することにより作製されてもよい。
The
4)非水電解質
非水電解質は、例えば電解質を有機溶媒に溶解することにより調製される液状非水電解質、または液状電解質と高分子材料を複合化したゲル状非水電解質を用いることができる。
4) Non-aqueous electrolyte As the non-aqueous electrolyte, for example, a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in an organic solvent or a gel-like non-aqueous electrolyte obtained by combining a liquid electrolyte and a polymer material can be used.
液状非水電解質は、電解質を0.5M以上2.5M以下の濃度で有機溶媒に溶解することが好ましい。 The liquid non-aqueous electrolyte is preferably dissolved in an organic solvent at a concentration of 0.5M to 2.5M.
電解質の例は、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO2)2]のリチウム塩、またはこれらの混合物を含む。電解質は、高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。 Examples of electrolytes are lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), trifluorometasulfone Lithium salt of lithium acid (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], or a mixture thereof. The electrolyte is preferably one that is not easily oxidized even at a high potential, and LiPF 6 is most preferred.
有機溶媒の例は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトエタン(DEE)のような鎖状エーテル;またはγ−ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)を含む。これらの有機溶媒は、単独または混合溶媒の形態で用いることができる。 Examples of organic solvents include propylene carbonate (PC), ethylene carbonate (EC), cyclic carbonates such as vinylene carbonate; chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX); chain ethers such as dimethoxyethane (DME) and dietoethane (DEE); or γ-butyrolactone (GBL), acetonitrile ( AN) and sulfolane (SL). These organic solvents can be used alone or in the form of a mixed solvent.
高分子材料の例は、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)を含む。 Examples of the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
好ましい有機溶媒は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)からなる群のうち、少なくとも2つ以上を混合した混合溶媒、またはγ−ブチロラクトン(GBL)を含む混合溶媒である。これらの混合溶媒を用いることにより、高温特性の優れた非水電解質電池を得ることができる。 A preferable organic solvent is a mixed solvent in which at least two of the group consisting of propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed, or a mixed solvent containing γ-butyrolactone (GBL). is there. By using these mixed solvents, a nonaqueous electrolyte battery having excellent high temperature characteristics can be obtained.
5)セパレータ
セパレータ4は、例えばポリエチレン、ポリプロピレン、セルロース、もしくはポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、または合成樹脂製不織布を用いることができる。好ましい多孔質フィルムは、ポリエチレンまたはポリプロピレンから作られ、一定温度において溶融し、電流を遮断することが可能であるために安全性を向上できる。
5) Separator As the
以上記載した本実施形態によれば、優れた充放電サイクル性能を有する非水電解質電池を提供することができる。 According to this embodiment described above, a non-aqueous electrolyte battery having excellent charge / discharge cycle performance can be provided.
(第3実施形態)
次に、実施形態に係る電池パックを詳細に説明する。
(Third embodiment)
Next, the battery pack according to the embodiment will be described in detail.
実施形態に係る電池パックは、上記第2実施形態に係る非水電解質電池(即ち、単電池)を一以上有する。電池パックに複数の単電池が含まれる場合、各単電池は、電気的に直列、並列、或いは、直列と並列に接続して配置される。 The battery pack according to the embodiment has one or more nonaqueous electrolyte batteries (that is, single cells) according to the second embodiment. When the battery pack includes a plurality of single cells, the single cells are electrically connected in series, parallel, or connected in series and parallel.
図4および図5を参照して電池パック200を具体的に説明する。図3に示す電池パック200では、単電池21として図2に示す扁平型非水電解液電池を使用している。
The
複数の単電池21は、外部に延出した負極端子6および正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図5に示すように互いに電気的に直列に接続されている。
The plurality of
プリント配線基板24は、負極端子6および正極端子7が延出する単電池21側面と対向して配置されている。プリント配線基板24には、図5に示すようにサーミスタ25、保護回路26および外部機器への通電用端子27が搭載されている。なお、組電池23と対向する保護回路基板24の面には組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
The printed
正極側リード28は、組電池23の最下層に位置する正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子6に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29,31は、プリント配線基板24に形成された配線32,33を通して保護回路26に接続されている。
The positive
サーミスタ25は、単電池21の温度を検出するために用いられ、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34aおよびマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21もしくは単電池21全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図4および図5の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。
The
正極端子7および負極端子6が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
The assembled
なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
In addition, instead of the
図4、図5では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続しても、または直列接続と並列接続を組み合わせてもよい。組み上がった電池パックをさらに直列、並列に接続することもできる。
4 and 5 show the configuration in which the
以上記載した本実施形態によれば、優れた充放電サイクル性能を有する電池パックを提供することができる。 According to this embodiment described above, a battery pack having excellent charge / discharge cycle performance can be provided.
なお、電池パックの態様は用途により適宜変更される。電池パックの用途は、大電流を取り出したときに優れたサイクル特性を示すものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、高温特性の優れた非水電解質電池を用いた電池パックは車載用に好適に用いられる。 In addition, the aspect of a battery pack is changed suitably by a use. The battery pack is preferably one that exhibits excellent cycle characteristics when a large current is taken out. Specific examples include a power source for a digital camera, a vehicle for a two- to four-wheel hybrid electric vehicle, a two- to four-wheel electric vehicle, an assist bicycle, and the like. In particular, a battery pack using a nonaqueous electrolyte battery having excellent high temperature characteristics is suitably used for in-vehicle use.
(第4実施形態)
第4の実施形態に係る自動車は、第3の実施形態に係る電池パックを備える。ここでいう自動車としては、二輪〜四輪のハイブリッド電気自動車、二輪〜四輪の電気自動車、アシスト自転車などが挙げられる。
(Fourth embodiment)
The automobile according to the fourth embodiment includes the battery pack according to the third embodiment. Examples of the vehicle herein include a two-wheel to four-wheel hybrid electric vehicle, a two-wheel to four-wheel electric vehicle, and an assist bicycle.
図6〜8は、内燃機関と電池駆動の電動機とを組み合わせて走行動力源としたハイブリッドタイプの自動車を示している。自動車の駆動力には、その走行条件に応じ、広範囲な回転数及びトルクの動力源が必要となる。一般的に内燃機関は理想的なエネルギー効率を示すトルク・回転数が限られているため、それ以外の運転条件ではエネルギー効率が低下する。ハイブリッドタイプの自動車は、内燃機関を最適条件で稼動させて発電すると共に、車輪を高効率な電動機にて駆動することによって、あるいは内燃機関と電動機の動力を合わせて駆動したりすることによって、自動車全体のエネルギー効率を向上できるという特徴を有する。また、減速時に車両のもつ運動エネルギーを電力として回生することによって、通常の内燃機関単独走行の自動車に比較して、単位燃料当りの走行距離を飛躍的に増大させることができる。 FIGS. 6 to 8 show a hybrid type automobile using a driving power source by combining an internal combustion engine and a battery-driven electric motor. The driving force of an automobile requires a power source with a wide range of rotation speeds and torques depending on the running conditions. In general, an internal combustion engine has a limited torque and rotational speed that show ideal energy efficiency. Therefore, the energy efficiency decreases under other operating conditions. Hybrid type automobiles generate power by operating an internal combustion engine under optimum conditions, and by driving wheels with a high-efficiency electric motor, or by driving the internal combustion engine and the electric motor together. The overall energy efficiency can be improved. Further, by regenerating the kinetic energy of the vehicle as electric power during deceleration, the travel distance per unit fuel can be dramatically increased compared to a normal internal combustion engine vehicle.
ハイブリッド自動車は、内燃機関と電動機の組み合わせ方によって、大きく3つに分類することができる。 Hybrid vehicles can be broadly classified into three types depending on the combination of the internal combustion engine and the electric motor.
図6には、一般にシリーズハイブリッド自動車と呼ばれるハイブリッド自動車50が示されている。内燃機関51の動力を一旦すべて発電機52で電力に変換し、この電力をインバータ53を通じて電池パック54に蓄える。電池パック54には上記第3の実施形態に係る電池パックが使用される。電池パック54の電力はインバータ53を通じて電動機55に供給され、電動機55により車輪56が駆動する。電気自動車に発電機が複合されたようなシステムである。内燃機関は高効率な条件で運転でき、電力回生も可能である。その反面、車輪の駆動は電動機のみによって行われるため、高出力な電動機が必要となる。また、電池パックも比較的大容量のものが必要となる。電池パックの定格容量は、5〜50Ahの範囲にすることが望ましい。より好ましい範囲は10〜20Ahである。ここで、定格容量とは、0.2Cレートで放電した時の容量を意味する。
FIG. 6 shows a
図7には、パラレルハイブリッド自動車と呼ばれるハイブリッド自動車57が示されている。付番58は、発電機を兼ねた電動機を示す。内燃機関51は主に車輪56を駆動し、場合によりその動力の一部を発電機58で電力に変換し、その電力で電池パック54が充電される。負荷が重くなる発進や加速時には電動機58により駆動力を補助する。通常の自動車がベースになっており、内燃機関51の負荷変動を少なくして高効率化を図り、電力回生なども合わせて行うシステムである。車輪56の駆動は主に内燃機関51によって行うため、電動機58の出力は必要な補助の割合によって任意に決定することができる。比較的小さな電動機58及び電池パック54を用いてもシステムを構成することができる。電池パックの定格容量は、1〜20Ahの範囲にすることができる。より好ましい範囲は5〜10Ahである。
FIG. 7 shows a
図8には、シリーズ・パラレルハイブリッド車と呼ばれるハイブリッド自動車59が示されている。シリーズとパラレルの両方を組み合わせた方式である。動力分割機構60は、内燃機関51の出力を、発電用と車輪駆動用とに分割する。パラレル方式よりもきめ細かくエンジンの負荷制御を行い、エネルギー効率を高めることができる。
FIG. 8 shows a
電池パックの定格容量は、1〜20Ahの範囲にすることが望ましい。より好ましい範囲は5〜10Ahである。 The rated capacity of the battery pack is desirably in the range of 1 to 20 Ah. A more preferable range is 5 to 10 Ah.
上述した図6〜図8に示すようなハイブリッド自動車に搭載される電池パックの公称電圧は、200〜600Vの範囲にすることが望ましい。 The nominal voltage of the battery pack mounted on the hybrid vehicle as shown in FIGS. 6 to 8 is preferably in the range of 200 to 600V.
電池パック54は、一般に外気温度変化の影響を受けにくく、衝突時などに衝撃を受けにくい場所に配置されるのが好ましい。例えば図9に示すようなセダンタイプの自動車では、後部座席61後方のトランクルーム62内などに配置することができる。また、座席61の下や後ろに配置することができる。電池質量が大きい場合には、車両全体を低重心化するため、座席の下や床下などに配置するのが好ましい。
The
本実施形態によれば、上記第3実施形態に係る優れたサイクル特性を有する電池パックを備えることにより、優れた性能を有する自動車を提供することができる。 According to this embodiment, by providing the battery pack having excellent cycle characteristics according to the third embodiment, an automobile having excellent performance can be provided.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
(実施例1)
<正極の作製>
正極活物質としてリチウムニッケル複合酸化物(LiNi0.8Co0.1Mn0.1O2)を用い、導電剤としてアセチレンブラック及びポリフッ化ビニリデン(PVdF)を用いて正極を作製した。
(Example 1)
<Preparation of positive electrode>
A positive electrode was prepared using lithium nickel composite oxide (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) as the positive electrode active material and acetylene black and polyvinylidene fluoride (PVdF) as the conductive agent.
まず、リチウムニッケル複合酸化物粉末90質量%、アセチレンブラック5質量%、及びポリフッ化ビニリデン(PVdF)5質量%をN−メチルピロリドン(NMP)に混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥し、プレスして、電極密度が3.15g/cm3の正極を作製した。 First, 90 mass% of lithium nickel composite oxide powder, 5 mass% of acetylene black, and 5 mass% of polyvinylidene fluoride (PVdF) were mixed with N-methylpyrrolidone (NMP) to prepare a slurry. This slurry was applied on both sides of a current collector made of an aluminum foil having a thickness of 15 μm, dried and pressed to produce a positive electrode having an electrode density of 3.15 g / cm 3 .
<チタン複合酸化物の作製>
炭酸カリウム(K2CO3)、及びアナターゼ構造を有する酸化チタン(TiO2)から、スプレードライによって原料二次粒子を作製した。スプレードライは、K:Ti=2:4のモル比で前記原料を量り取り、これらを蒸留水を溶媒として分散させた後、スプレードライヤーを用いて噴霧乾燥させることにより行った。
<Preparation of titanium composite oxide>
Secondary particles were produced by spray drying from potassium carbonate (K 2 CO 3 ) and titanium oxide (TiO 2 ) having an anatase structure. The spray drying was performed by measuring the raw materials at a molar ratio of K: Ti = 2: 4, dispersing them using distilled water as a solvent, and then spray drying using a spray dryer.
次いで、該原料二次粒子を1000℃で24時間焼成し、K2Ti4O9の二次粒子を得た。このK2Ti4O9の二次粒子を純水で洗浄し、プロトン交換前駆体の二次粒子を得た。このプロトン交換前駆体の二次粒子は、平均粒径が約10μmであった。プロトン交換前駆体の二次粒子を1Mの塩酸溶液中に投入し、25℃の環境下で12時間攪拌してプロトン交換を行った。これにより、プロトン交換体の二次粒子を得た。 Next, the raw material secondary particles were fired at 1000 ° C. for 24 hours to obtain K 2 Ti 4 O 9 secondary particles. The secondary particles of K 2 Ti 4 O 9 were washed with pure water to obtain secondary particles of a proton exchange precursor. The proton exchange precursor secondary particles had an average particle size of about 10 μm. The secondary particles of the proton exchange precursor were put into a 1M hydrochloric acid solution and stirred for 12 hours in an environment at 25 ° C. to perform proton exchange. Thereby, secondary particles of the proton exchanger were obtained.
プロトン交換体の二次粒子を、大気中で350℃で3時間焼成し、チタン複合酸化物
(TiO2)の二次粒子を得た。この二次粒子は球状であり、平均粒径は9.6μmであり、比表面積は10.8m2/gであり、圧縮破壊強度は37MPaであり、平均一次粒径は0.30μmであった。
The secondary particles of the proton exchanger were calcined in the atmosphere at 350 ° C. for 3 hours to obtain secondary particles of titanium composite oxide (TiO 2 ). The secondary particles were spherical, the average particle size was 9.6 μm, the specific surface area was 10.8 m 2 / g, the compression fracture strength was 37 MPa, and the average primary particle size was 0.30 μm. .
<チタン複合酸化物のX線回折解析>
得られたチタン複合酸化物を直径25mmの標準ガラスホルダーに詰め、広角X線回折法による測定を行った。その結果、図10に示すX線回折パターンを得た。この回折パターンから、得られたチタン複合酸化物を構成する主物質がJCPDS(Joint Committee on Powder Diffraction Standards):46−1237に帰属される単斜晶系β型チタン複合酸化物であることが確認された。以下に測定装置および条件を示す。
<X-ray diffraction analysis of titanium composite oxide>
The obtained titanium composite oxide was packed in a standard glass holder having a diameter of 25 mm and measured by a wide angle X-ray diffraction method. As a result, the X-ray diffraction pattern shown in FIG. 10 was obtained. From this diffraction pattern, it is confirmed that the main material constituting the obtained titanium composite oxide is a monoclinic β-type titanium composite oxide belonging to JCPDS (Joint Committee on Powder Diffraction Standards): 46-1237. It was done. The measuring equipment and conditions are shown below.
(1)X線回折装置:Bruker AXS 社製;D8 ADVANCE(封入管型)
X線源:CuKα線(Niフィルター使用)
出力 :40kV,40mA
スリット系:Div. Slit;0.3°
検出器:LynxEye(高速検出器)
(2)スキャン方式:2θ/θ連続スキャン
(3)測定範囲(2θ):5〜100°
(4)ステップ幅(2θ):0.01712°
(5)計数時間:1秒間/ステップ。
(1) X-ray diffractometer: Bruker AXS; D8 ADVANCE (encapsulated tube type)
X-ray source: CuKα ray (using Ni filter)
Output: 40kV, 40mA
Slit system: Div. Slit; 0.3 °
Detector: LynxEye (High-speed detector)
(2) Scan method: 2θ / θ continuous scan (3) Measurement range (2θ): 5 to 100 °
(4) Step width (2θ): 0.01712 °
(5) Counting time: 1 second / step.
<負極の作製>
得られたチタン複合酸化物を活物質として用い、導電剤としてアセチレンブラック及びポリフッ化ビニリデン(PVdF)を用いて負極を作製した。
<Production of negative electrode>
The obtained titanium composite oxide was used as an active material, and a negative electrode was produced using acetylene black and polyvinylidene fluoride (PVdF) as a conductive agent.
チタン複合酸化物粉末90質量%、アセチレンブラック5質量%、ポリフッ化ビニリデン(PVdF)5質量%を、N−メチルピロリドン(NMP)に混合し、スラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥した。その後、プレスすることにより電極密度が1.9g/cm3の負極を作製した。 90% by mass of titanium composite oxide powder, 5% by mass of acetylene black, and 5% by mass of polyvinylidene fluoride (PVdF) were mixed with N-methylpyrrolidone (NMP) to prepare a slurry. This slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm and dried. Then, the negative electrode whose electrode density is 1.9 g / cm < 3 > was produced by pressing.
<電極群の作製>
正極、厚さ25μmのポリエチレン製多孔質フィルムからなるセパレータ、負極、及びセパレータを、この順序で積層し、次いで、渦巻き状に捲回した。これを90℃で加熱プレスすることにより、幅が30mm、厚さ1.8mmの偏平状電極群を作製した。得られた電極群をラミネートフィルムからなるパックに収納し、80℃で24時間真空乾燥した。ラミネートフィルムは厚さ40μmのアルミニウム箔の両面にポリプロピレン層を有する構成であり、全体の厚さが0.1mmである。
<Production of electrode group>
A positive electrode, a separator made of a polyethylene porous film having a thickness of 25 μm, a negative electrode, and a separator were laminated in this order, and then spirally wound. This was heated and pressed at 90 ° C. to produce a flat electrode group having a width of 30 mm and a thickness of 1.8 mm. The obtained electrode group was housed in a pack made of a laminate film and vacuum dried at 80 ° C. for 24 hours. The laminate film has a structure in which a polypropylene layer is formed on both surfaces of an aluminum foil having a thickness of 40 μm, and the total thickness is 0.1 mm.
<液状非水電解質の調製>
エチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)を1:2の体積比率で混合して混合溶媒とした。この混合溶媒に電解質であるLiPF6を1M溶解することにより液状非水電解質を調製した。
<Preparation of liquid nonaqueous electrolyte>
Ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2 to obtain a mixed solvent. A liquid non-aqueous electrolyte was prepared by dissolving 1 M of LiPF 6 as an electrolyte in this mixed solvent.
<非水電解質二次電池の製造>
電極群を収納したラミネートフィルムのパック内に液状非水電解質を注入した。その後、パックをヒートシールにより完全密閉し、図2に示す構造を有し、幅35mm、厚さ2mm、高さが65mmの非水電解質二次電池を製造した。
<Manufacture of non-aqueous electrolyte secondary batteries>
A liquid non-aqueous electrolyte was poured into a laminate film pack containing the electrode group. Thereafter, the pack was completely sealed by heat sealing to produce a non-aqueous electrolyte secondary battery having a structure shown in FIG. 2 and having a width of 35 mm, a thickness of 2 mm, and a height of 65 mm.
(実施例2〜4)
<チタン複合酸化物の作製>
炭酸カリウム(K2CO3)、及びアナターゼ構造を有する酸化チタン(TiO2)から、スプレードライによって原料二次粒子を作製した。スプレードライは、K:Ti=2:4のモル比で前記原料を量り取り、これらを蒸留水を溶媒として分散させた後、スプレードライヤーを用いて噴霧乾燥させることにより行った。このとき、噴霧条件を変えて、原料二次粒子の粒径を調整した。その後は実施例1と同様の方法でチタン複合酸化物(TiO2)の二次粒子を得た。この二次粒子は球状であり、平均粒径、比表面積、圧縮破壊強度、平均一次粒径は、表1の通りであった。
(Examples 2 to 4)
<Preparation of titanium composite oxide>
Secondary particles were produced by spray drying from potassium carbonate (K 2 CO 3 ) and titanium oxide (TiO 2 ) having an anatase structure. The spray drying was performed by measuring the raw materials at a molar ratio of K: Ti = 2: 4, dispersing them using distilled water as a solvent, and then spray drying using a spray dryer. At this time, the spraying conditions were changed to adjust the particle size of the raw material secondary particles. Thereafter, secondary particles of titanium composite oxide (TiO 2 ) were obtained in the same manner as in Example 1. The secondary particles were spherical, and the average particle diameter, specific surface area, compressive fracture strength, and average primary particle diameter were as shown in Table 1.
得られたチタン複合酸化物をX線回折により解析した結果、チタン複合酸化物を構成する主物質がJCPDS:46−1237に帰属される単斜晶系β型チタン複合酸化物であることが確認された。 As a result of analyzing the obtained titanium composite oxide by X-ray diffraction, it was confirmed that the main material constituting the titanium composite oxide was a monoclinic β-type titanium composite oxide belonging to JCPDS: 46-1237. It was done.
このチタン複合酸化物を用いて、実施例1と同様に非水電解質二次電池を製造した。 Using this titanium composite oxide, a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1.
(実施例5〜8)
<チタン複合酸化物の作製>
炭酸カリウム(K2CO3)、及びアナターゼ構造を有する酸化チタン(TiO2)から、スプレードライによって原料二次粒子を作製した。スプレードライは、K:Ti=2:4のモル比で前記原料を量り取り、これらを蒸留水を溶媒として分散させた後、スプレードライヤーを用いて噴霧乾燥させることにより行った。
(Examples 5 to 8)
<Preparation of titanium composite oxide>
Secondary particles were produced by spray drying from potassium carbonate (K 2 CO 3 ) and titanium oxide (TiO 2 ) having an anatase structure. The spray drying was performed by measuring the raw materials at a molar ratio of K: Ti = 2: 4, dispersing them using distilled water as a solvent, and then spray drying using a spray dryer.
次いで、該原料二次粒子を表1記載の温度で24時間焼成し、K2Ti4O9の二次粒子を得た。このK2Ti4O9の二次粒子を純水で洗浄し、プロトン交換前駆体の二次粒子を得た。このプロトン交換前駆体の二次粒子は、平均粒径が約10μmであった。プロトン交換前駆体の二次粒子を1Mの塩酸溶液中に投入し、25℃の環境下で12時間攪拌してプロトン交換を行った。これにより、プロトン交換体の二次粒子を得た。 Next, the raw material secondary particles were fired for 24 hours at the temperature shown in Table 1 to obtain K 2 Ti 4 O 9 secondary particles. The secondary particles of K 2 Ti 4 O 9 were washed with pure water to obtain secondary particles of a proton exchange precursor. The proton exchange precursor secondary particles had an average particle size of about 10 μm. The secondary particles of the proton exchange precursor were put into a 1M hydrochloric acid solution and stirred for 12 hours in an environment at 25 ° C. to perform proton exchange. Thereby, secondary particles of the proton exchanger were obtained.
その後は実施例1と同様の方法でチタン複合酸化物(TiO2)の二次粒子を得た。この二次粒子は球状であり、平均粒径、比表面積、圧縮破壊強度、平均一次粒径は、表1の通りであった。 Thereafter, secondary particles of titanium composite oxide (TiO 2 ) were obtained in the same manner as in Example 1. The secondary particles were spherical, and the average particle diameter, specific surface area, compressive fracture strength, and average primary particle diameter were as shown in Table 1.
得られたチタン複合酸化物をX線回折により解析した結果、チタン複合酸化物を構成する主物質がJCPDS:46−1237に帰属される単斜晶系β型チタン複合酸化物であることが確認された。 As a result of analyzing the obtained titanium composite oxide by X-ray diffraction, it was confirmed that the main material constituting the titanium composite oxide was a monoclinic β-type titanium composite oxide belonging to JCPDS: 46-1237. It was done.
このチタン複合酸化物を用いて、実施例1と同様に非水電解質二次電池を製造した。 Using this titanium composite oxide, a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1.
(実施例9〜23)
原料として、炭酸カリウム(K2CO3)、及び、アナターゼ構造を有する酸化チタン(TiO2)とともに、酸化ニオブ(Nb2O5)、酸化バナジウム(V2O5)、酸化アルミ(Al2O3)、酸化タンタル(Ta2O5)、酸化ガリウム(Ga2O3)、又は酸化インジウム(In2O3)、を用い、配合比を変えた以外は、実施例1と同様にしてチタン複合酸化物((Ti,Nb)O2)を合成した。
(Examples 9 to 23)
As raw materials, potassium carbonate (K 2 CO 3 ) and titanium oxide (TiO 2 ) having an anatase structure, niobium oxide (Nb 2 O 5 ), vanadium oxide (V 2 O 5 ), aluminum oxide (Al 2 O) 3 ) Titanium oxide (Ta 2 O 5 ), gallium oxide (Ga 2 O 3 ), or indium oxide (In 2 O 3 ) was used, and titanium was prepared in the same manner as in Example 1 except that the compounding ratio was changed. A composite oxide ((Ti, Nb) O 2 ) was synthesized.
得られたチタン複合酸化物の平均一次粒径、二次粒子の平均粒径、比表面積、及び圧縮破壊強度をそれぞれ表1に示す。 Table 1 shows the average primary particle size, the average particle size of the secondary particles, the specific surface area, and the compression fracture strength of the obtained titanium composite oxide.
得られたチタン複合酸化物をX線回折により解析した結果、チタン複合酸化物を構成する主物質がJCPDS:46−1237に帰属される単斜晶系β型チタン複合酸化物であることが確認された。 As a result of analyzing the obtained titanium composite oxide by X-ray diffraction, it was confirmed that the main material constituting the titanium composite oxide was a monoclinic β-type titanium composite oxide belonging to JCPDS: 46-1237. It was done.
また、得られたチタン複合酸化物のNb、V、Al、Ta、Ga、又はInの濃度を、ICP発光分光法によって測定した。その結果を表1に示す。 Further, the concentration of Nb, V, Al, Ta, Ga, or In of the obtained titanium composite oxide was measured by ICP emission spectroscopy. The results are shown in Table 1.
得られたチタン複合酸化物を用いて、実施例1と同様に非水電解質二次電池を製造した。 Using the obtained titanium composite oxide, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
(比較例1)
<チタン複合酸化物の作製>
炭酸カリウム(K2CO3)、及びアナターゼ構造を有する酸化チタン(TiO2)を
ジルコニア製容器を用いて、600rpmで3時間のボールミル処理を行って混合した。該混合物を600℃で24時間焼成してK2Ti4O9を合成した。これを純水で洗浄しプロトン交換前駆体を得た。得られたプロトン交換前駆体を1Mの塩酸溶液中に投入し、25℃の環境下で12時間攪拌して、プロトン交換体を得た。
(Comparative Example 1)
<Preparation of titanium composite oxide>
Potassium carbonate (K 2 CO 3 ) and titanium oxide having an anatase structure (TiO 2 ) were mixed by ball milling at 600 rpm for 3 hours using a zirconia container. The mixture was baked at 600 ° C. for 24 hours to synthesize K 2 Ti 4 O 9 . This was washed with pure water to obtain a proton exchange precursor. The obtained proton exchange precursor was put into a 1M hydrochloric acid solution and stirred for 12 hours in an environment at 25 ° C. to obtain a proton exchanger.
プロトン交換体をスプレードライすることにより、平均粒径が約10μmの凝集粒子を得た。これを大気中で350℃、3時間焼成し、チタン複合酸化物(TiO2)を合成した。合成したチタン複合酸化物の平均粒径、比表面積、圧縮破壊強度、平均一次粒径は、表1の通りであった。 By spray-drying the proton exchanger, aggregated particles having an average particle size of about 10 μm were obtained. This was baked in the atmosphere at 350 ° C. for 3 hours to synthesize titanium composite oxide (TiO 2 ). Table 1 shows the average particle size, specific surface area, compressive fracture strength, and average primary particle size of the synthesized titanium composite oxide.
得られたチタン複合酸化物をX線回折により解析した結果、チタン複合酸化物を構成する主物質がJCPDS:46−1237に帰属される単斜晶系β型チタン複合酸化物であることが確認された。 As a result of analyzing the obtained titanium composite oxide by X-ray diffraction, it was confirmed that the main material constituting the titanium composite oxide was a monoclinic β-type titanium composite oxide belonging to JCPDS: 46-1237. It was done.
このチタン複合酸化物を用いて、実施例1と同様に非水電解質二次電池を製造した。 Using this titanium composite oxide, a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1.
(比較例2、3)
原料の混合物の焼成温度を表1に記載した通りにした以外は、比較例1と同様にチタン複合酸化物(TiO2)を合成した。得られたチタン複合酸化物をX線回折により解析した結果、チタン複合酸化物を構成する主物質がJCPDS:46−1237に帰属される単斜晶系β型チタン複合酸化物であることが確認された。得られたチタン複合酸化物を用いて、実施例1と同様に非水電解質二次電池を製造した。
(Comparative Examples 2 and 3)
A titanium composite oxide (TiO 2 ) was synthesized in the same manner as in Comparative Example 1 except that the firing temperature of the raw material mixture was set as shown in Table 1. As a result of analyzing the obtained titanium composite oxide by X-ray diffraction, it was confirmed that the main material constituting the titanium composite oxide was a monoclinic β-type titanium composite oxide belonging to JCPDS: 46-1237. It was done. Using the obtained titanium composite oxide, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
(比較例4)
原料に、炭酸カリウム(K2CO3)、酸化アルミ(Al2O3)、及びアナターゼ構造を有する酸化チタン(TiO2)を用いた以外は、比較例1と同様にチタン複合酸化物(TiO2)を合成した。
(Comparative Example 4)
Titanium composite oxide (TiO 2 ) as in Comparative Example 1 except that potassium carbonate (K 2 CO 3 ), aluminum oxide (Al 2 O 3 ), and titanium oxide (TiO 2 ) having an anatase structure were used as raw materials. 2 ) was synthesized.
得られたチタン複合酸化物をX線回折により解析した結果、チタン複合酸化物を構成する主物質がJCPDS:46−1237に帰属される単斜晶系β型チタン複合酸化物であることが確認された。 As a result of analyzing the obtained titanium composite oxide by X-ray diffraction, it was confirmed that the main material constituting the titanium composite oxide was a monoclinic β-type titanium composite oxide belonging to JCPDS: 46-1237. It was done.
また、得られたチタン複合酸化物の添加元素濃度をICP発光分光法によって測定した。結果を表1に示す。 Further, the additive element concentration of the obtained titanium composite oxide was measured by ICP emission spectroscopy. The results are shown in Table 1.
得られたチタン複合酸化物を用いて、実施例1と同様に非水電解質二次電池を製造した。 Using the obtained titanium composite oxide, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
(電池性能の測定)
得られた実施例1〜23、比較例1〜4の二次電池について、抵抗値を測定した。抵抗測定は1kHzの交流インピーダンスで行った。その後、充放電サイクル試験を実施した。充放電サイクル試験は、1C充電/1C放電の充放電を繰返す充放電サイクルを100回繰り返した。初回放電容量に対する100回目の放電容量の比率、すなわち放電維持率(%)を表1に示す。また、各二次電池について、「100サイクル後の抵抗値/サイクル前の抵抗値」を算出し、抵抗増加率[倍]として表1に示した。抵抗は1kHzの交流インピーダンスを測定した。
(Measurement of battery performance)
The resistance values of the obtained secondary batteries of Examples 1 to 23 and Comparative Examples 1 to 4 were measured. Resistance measurement was performed with an AC impedance of 1 kHz. Thereafter, a charge / discharge cycle test was performed. In the charge / discharge cycle test, a charge / discharge cycle of repeating 1C charge / 1C discharge was repeated 100 times. Table 1 shows the ratio of the discharge capacity at the 100th time to the initial discharge capacity, that is, the discharge maintenance ratio (%). For each secondary battery, “resistance value after 100 cycles / resistance value before cycle” was calculated and shown in Table 1 as a resistance increase rate [times]. For the resistance, an AC impedance of 1 kHz was measured.
また、図11に、電極表面を走査型電子顕微鏡により撮影した写真を示した。図11(a)は実施例1の負極表面であり、図11(b)は比較例1の負極表面である。負極の中央部分を切り取り、電極圧延時に圧延ローラーと接する部分を撮影した。
実施例1〜23におけるチタン複合酸化物の二次粒子は、比較例1〜4の二次粒子よりも圧縮破壊強度が著しく高かった。このような二次粒子を用いた実施例1〜23の二次電池は、比較例1〜4の二次電池に比べて抵抗増加率が小さく、容量維持率が高かった。よって、本実施形態に従って製造され、圧縮破壊強度が20MPa以上であるチタン複合酸化物の二次粒子を用いた二次電池は、優れた充放電サイクル性能を有することが示された。 The secondary particles of the titanium composite oxide in Examples 1 to 23 had significantly higher compressive fracture strength than the secondary particles of Comparative Examples 1 to 4. The secondary batteries of Examples 1 to 23 using such secondary particles had a smaller resistance increase rate and a higher capacity retention rate than the secondary batteries of Comparative Examples 1 to 4. Therefore, it was shown that the secondary battery using the secondary particles of the titanium composite oxide manufactured according to this embodiment and having a compressive fracture strength of 20 MPa or more has excellent charge / discharge cycle performance.
単斜晶系β型チタン複合酸化物にNb、V、又はAlを含有させた実施例9〜23の二次電池は、より一層優れた充放電サイクル性能を有することが示された。 It was shown that the secondary batteries of Examples 9 to 23 in which Nb, V, or Al was contained in the monoclinic β-type titanium composite oxide had much better charge / discharge cycle performance.
また、図11(a)に示した実施例1の電池の電極は、活物質の粒子が大きく、電極製造後も二次粒子の形状が保たれていることが分かる。一方、図11(b)に示した比較例1の電池の電極は、活物質の粒子が小さく、電極製造工程により二次粒子が崩壊していることが分かる。比較例1〜4の電池では、チタン複合酸化物の二次粒子が崩壊して一次粒子の形状となったことにより、電池抵抗を増大させ、容量維持率を低下させたことが示されている。 Further, it can be seen that the electrode of the battery of Example 1 shown in FIG. 11A has large active material particles, and the shape of the secondary particles is maintained even after the electrode is manufactured. On the other hand, it can be seen that the electrode of the battery of Comparative Example 1 shown in FIG. 11B has small active material particles, and secondary particles are collapsed by the electrode manufacturing process. In the batteries of Comparative Examples 1 to 4, it was shown that the secondary particles of the titanium composite oxide collapsed into the shape of primary particles, thereby increasing the battery resistance and reducing the capacity retention rate. .
また、実施例1〜23におけるチタン複合酸化物の二次粒子は、比較例1〜4の二次粒子よりも比表面積が著しく小さかった。これは、原料二次粒子を高温で焼成したことによって、一次粒子が融解し、隣接する一次粒子同士の界面が融合することにより、二次粒子の表面積を低下させたことによるものである。表1に示したとおり、二次粒子の比表面積が小さい実施例1〜23の容量維持率が、比表面積の大きい比較例1〜4よりも著しく高いことから、良好な充放電サイクル性能を得るために二次粒子の比表面積が小さい方が望ましいと考えられる。 Moreover, the specific surface area of the secondary particle of the titanium composite oxide in Examples 1-23 was remarkably smaller than the secondary particle of Comparative Examples 1-4. This is because the primary particles are melted by firing the raw material secondary particles at a high temperature, and the surface area of the secondary particles is reduced by fusing the interfaces between adjacent primary particles. As shown in Table 1, since the capacity retention ratios of Examples 1 to 23 in which the specific surface area of the secondary particles is small are significantly higher than those in Comparative Examples 1 to 4 having a large specific surface area, good charge / discharge cycle performance is obtained. Therefore, it is considered desirable that the secondary particles have a smaller specific surface area.
付記
[1]平均一次粒径が1nm以上10μm以下である単斜晶系β型チタン複合酸化物の一次粒子を含む平均粒径が1μm以上100μm以下である二次粒子を含み、該二次粒子の圧縮破壊強度が20MPa以上であることを特徴とする電池用活物質。
Supplementary Note [1] Secondary particles having an average particle size of 1 μm or more and 100 μm or less including primary particles of monoclinic β-type titanium composite oxide having an average primary particle size of 1 nm to 10 μm, The active material for batteries characterized by having a compressive fracture strength of 20 MPa or more.
[2]前記単斜晶系β型チタン複合酸化物が5族及び13族から選ばれる少なくとも1つの元素を0.03質量%以上15質量%以下の範囲で含むことを特徴とする請求項1に記載の電池用活物質。
[2] The monoclinic β-type titanium composite oxide contains at least one element selected from
[3]前記少なくとも1つの元素は、前記単斜晶系β型チタン複合酸化物のTiサイトの一部を置換することを特徴とする[1]又は[2]に記載の電池用活物質。 [3] The battery active material according to [1] or [2], wherein the at least one element substitutes a part of a Ti site of the monoclinic β-type titanium composite oxide.
[4]正極と、[1]〜[3]の何れか一つに記載の電池用活物質を含む負極と、非水電解質と、を備えることを特徴とする非水電解質電池。 [4] A nonaqueous electrolyte battery comprising: a positive electrode; a negative electrode containing the battery active material according to any one of [1] to [3]; and a nonaqueous electrolyte.
[5]前記正極は、リチウムニッケル複合酸化物及びリチウムマンガン複合酸化物から選択される一種以上の正極活物質を含むことを特徴とする、[4]に記載の非水電解質電池。 [5] The nonaqueous electrolyte battery according to [4], wherein the positive electrode includes one or more positive electrode active materials selected from a lithium nickel composite oxide and a lithium manganese composite oxide.
[6]ラミネートフィルム製の外装材をさらに備えることを特徴とする、[4]又は[5]に記載の非水電解質電池。 [6] The nonaqueous electrolyte battery according to [4] or [5], further comprising an exterior material made of a laminate film.
[7]上記[4]〜[6]の何れか一項に記載の非水電解質電池を一以上備えることを特徴とする電池パック。 [7] A battery pack comprising one or more of the nonaqueous electrolyte batteries according to any one of [4] to [6].
[8]電気的に接続された複数の前記非水電解質電池を具備し、各非水電解質電池の電圧が検知可能な保護回路をさらに備えることを特徴とする、[7]に記載の電池パック。 [8] The battery pack according to [7], further comprising a protection circuit that includes the plurality of non-aqueous electrolyte batteries that are electrically connected, and that can detect the voltage of each non-aqueous electrolyte battery. .
[9]上記[7]又は[8]に記載の電池パックを具備することを特徴とする自動車。 [9] An automobile comprising the battery pack according to [7] or [8].
1…捲回電極群、2…外装材、3…負極、4…セパレータ、5…正極、6…負極端子、7…正極端子、21…単電池、24…プリント配線基板、25…サーミスタ、26…保護回路、37…収納容器、50,57,59…ハイブリッド自動車、51,64…内燃機関、52…発電機、53…インバータ、54…電池パック、55,65…電動機、56,66…車輪、58…発電機を兼ねた電動機、60…動力分割機構、61…後部座席、62…トランクルーム、100…非水電解質二次電池、200…電池パック。
DESCRIPTION OF SYMBOLS 1 ... Winding electrode group, 2 ... Exterior material, 3 ... Negative electrode, 4 ... Separator, 5 ... Positive electrode, 6 ... Negative electrode terminal, 7 ... Positive electrode terminal, 21 ... Single cell, 24 ... Printed wiring board, 25 ... Thermistor, 26 DESCRIPTION OF SYMBOLS ... Protection circuit, 37 ... Storage container, 50, 57, 59 ... Hybrid vehicle, 51, 64 ... Internal combustion engine, 52 ... Generator, 53 ... Inverter, 54 ... Battery pack, 55, 65 ... Electric motor, 56, 66 ...
Claims (4)
チタンを含む化合物及びアルカリカチオンを含む化合物を含む原料二次粒子を製造することと、
該原料二次粒子を850〜1200℃で加熱処理して、二次粒子状のプロトン交換前駆体を得ることと、
該プロトン交換前駆体に酸を反応させてアルカリカチオンをプロトン交換することにより、二次粒子状のプロトン交換体を得ることと、
該プロトン交換体を加熱処理することにより、二次粒子状の単斜晶系β型チタン複合酸化物を得ることとを含む製造方法。 Rights Hitoshitsubu diameter is at 100μm or less than 3.4 .mu.m, compression breaking strength is a method of preparing a negative active material for battery comprising the secondary particles is more than 20 MPa, the secondary particles are average primary particle size 1nm Containing primary particles of monoclinic β-type titanium composite oxide having a thickness of 10 μm or less,
Producing raw material secondary particles comprising a compound comprising titanium and a compound comprising an alkali cation;
Heat-treating the raw material secondary particles at 850 to 1200 ° C. to obtain a secondary particle-like proton exchange precursor;
Obtaining a secondary particulate proton exchanger by reacting an acid with the proton exchange precursor to proton exchange an alkali cation;
A secondary particle monoclinic β-type titanium composite oxide by heat-treating the proton exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013095411A JP5847757B2 (en) | 2013-04-30 | 2013-04-30 | Method for producing negative electrode active material for battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013095411A JP5847757B2 (en) | 2013-04-30 | 2013-04-30 | Method for producing negative electrode active material for battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010154275A Division JP5439299B2 (en) | 2010-07-06 | 2010-07-06 | Negative electrode active material for battery, non-aqueous electrolyte battery, battery pack, and automobile |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013157335A JP2013157335A (en) | 2013-08-15 |
JP5847757B2 true JP5847757B2 (en) | 2016-01-27 |
Family
ID=49052267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013095411A Active JP5847757B2 (en) | 2013-04-30 | 2013-04-30 | Method for producing negative electrode active material for battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5847757B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5802622B2 (en) * | 2012-07-24 | 2015-10-28 | 株式会社東芝 | Battery active material, non-aqueous electrolyte battery and battery pack |
JP6275593B2 (en) | 2013-09-24 | 2018-02-07 | 株式会社東芝 | Negative electrode active material for lithium ion secondary battery and method for producing the same, lithium ion secondary battery, battery pack, and automobile |
JP6873406B2 (en) * | 2015-08-20 | 2021-05-19 | 日本電気硝子株式会社 | Negative electrode active material for sodium secondary batteries |
CN114242995B (en) * | 2021-11-12 | 2024-06-18 | 中山大学 | Sodium ion battery nano sheet negative electrode material and preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI444333B (en) * | 2007-08-28 | 2014-07-11 | Ishihara Sangyo Kaisha | Titanic acid compound, process for producing the same, electrode active material comprising the same and capacitor device comprising the electrode active material |
JP5205923B2 (en) * | 2007-11-08 | 2013-06-05 | 三菱化学株式会社 | Non-aqueous electrolyte secondary battery electrode material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery using the same |
JP5421644B2 (en) * | 2009-04-21 | 2014-02-19 | 石原産業株式会社 | Method for producing titanic acid compound or titanium oxide |
JP5450159B2 (en) * | 2010-02-25 | 2014-03-26 | チタン工業株式会社 | Titanium oxide compound for electrode and lithium secondary battery using the same |
JP5980472B2 (en) * | 2010-05-14 | 2016-08-31 | 日立化成株式会社 | Titanium dioxide, method for producing titanium dioxide, lithium ion battery, and electrode for lithium ion battery |
-
2013
- 2013-04-30 JP JP2013095411A patent/JP5847757B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013157335A (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5439299B2 (en) | Negative electrode active material for battery, non-aqueous electrolyte battery, battery pack, and automobile | |
JP5531301B2 (en) | Non-aqueous electrolyte battery active material, non-aqueous electrolyte battery and battery pack | |
JP5985674B2 (en) | Nonaqueous electrolyte battery and battery pack | |
JP5017492B2 (en) | Non-aqueous electrolyte battery active material, non-aqueous electrolyte battery and battery pack | |
US9774032B2 (en) | Active substance | |
JP6092466B2 (en) | Battery active materials, non-aqueous electrolyte batteries, assembled batteries, battery packs and automobiles | |
JP2014209443A (en) | Active material for battery use, nonaqueous electrolyte battery, and battery pack | |
JP5209004B2 (en) | Battery active material, non-aqueous electrolyte battery, battery pack, and automobile | |
JP6223760B2 (en) | Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery, battery pack and vehicle | |
JP2012074133A (en) | Active material and production method thereof, nonaqueous electrolyte battery and battery pack | |
US10096828B2 (en) | Active material, nonaqueous electrolyte battery, battery module, battery pack, automobile and vehicle | |
JP2016171011A (en) | Active material for battery, nonaqueous electrolyte battery, assembled battery, battery pack, and automobile | |
JP2017168320A (en) | Active material, nonaqueous electrolyte battery, battery pack, and vehicle | |
JP5910730B2 (en) | Active material, electrode using the same, and lithium ion secondary battery | |
JP5468098B2 (en) | Battery active material, non-aqueous electrolyte battery and battery pack | |
JP5847757B2 (en) | Method for producing negative electrode active material for battery | |
JP5586549B2 (en) | Battery active material, non-aqueous electrolyte battery and battery pack | |
JP5596077B2 (en) | Battery active material manufacturing method, battery active material, non-aqueous electrolyte battery, and battery pack | |
JP5684334B2 (en) | Active material and manufacturing method thereof, non-aqueous electrolyte battery and battery pack | |
JP2014241293A (en) | Active material and production method thereof, nonaqueous electrolyte battery and battery pack | |
JP2014067731A (en) | Nonaqueous electrolyte battery, and battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130614 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131219 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140602 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151125 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5847757 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |