JP5845124B2 - Waste disposal method - Google Patents

Waste disposal method Download PDF

Info

Publication number
JP5845124B2
JP5845124B2 JP2012067514A JP2012067514A JP5845124B2 JP 5845124 B2 JP5845124 B2 JP 5845124B2 JP 2012067514 A JP2012067514 A JP 2012067514A JP 2012067514 A JP2012067514 A JP 2012067514A JP 5845124 B2 JP5845124 B2 JP 5845124B2
Authority
JP
Japan
Prior art keywords
waste
reaction vessel
chlorine
solid
solid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012067514A
Other languages
Japanese (ja)
Other versions
JP2013199542A (en
Inventor
智典 竹本
智典 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012067514A priority Critical patent/JP5845124B2/en
Publication of JP2013199542A publication Critical patent/JP2013199542A/en
Application granted granted Critical
Publication of JP5845124B2 publication Critical patent/JP5845124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

本発明は、廃棄物の処理方法に関する。さらに詳細には、塩素を含有する廃棄物の処理方法に関する。   The present invention relates to a waste treatment method. More particularly, the present invention relates to a method for treating waste containing chlorine.

近年、医療ゴミ、廃プラスチック、建築廃棄物、廃自動車シュレッダーダスト、都市ゴミ等の廃棄物(これらを加工したRPFなども含む)にポリ塩化ビニル等の塩素含有プラスチックが大量に含まれるようになった。このような廃棄物の大部分は単純に焼却されるか、埋立て処理されていた。   In recent years, wastes such as medical waste, waste plastic, building waste, waste car shredder dust, city waste, etc. (including RPF processed from these) have come to contain a large amount of chlorine-containing plastics such as polyvinyl chloride. It was. Most of these wastes were simply incinerated or landfilled.

しかし、埋立て場不足や数々の法規制を背景にして、単純に焼却処理や埋立て処理するのではなく、廃棄物中に含まれる燃料としての有効成分を回収し、固形燃料として再利用することが検討されている。具体的には、塩素含有プラスチックを含む廃棄物を熱分解し、得られる炭化物を水洗することによって低塩素燃料を得る方法が提案されている(例えば、特許文献1参照)。   However, because of the shortage of landfill sites and numerous laws and regulations, instead of simply incineration and landfill treatment, the active ingredients contained in the waste are recovered and reused as solid fuel. It is being considered. Specifically, a method of obtaining a low chlorine fuel by thermally decomposing waste containing chlorine-containing plastic and washing the resulting carbide with water has been proposed (for example, see Patent Document 1).

しかしながら、この方法では、廃棄物を熱分解するため、塩素は塩化水素(HCl)ガスとして他の揮発成分と共に廃棄物中から除去される。他の揮発成分が除去されるため燃料品位が低下するとともに、ガスには様々な成分が含まれているのでガス処理工程が必要となる課題があった。   However, in this method, chlorine is removed from the waste together with other volatile components as hydrogen chloride (HCl) gas to thermally decompose the waste. Since other volatile components are removed, the fuel quality is deteriorated, and various components are contained in the gas, so that there is a problem that a gas processing step is required.

また、燃焼装置内にアルカリ金属化合物とカルシウム化合物とを投入し、燃焼装置内の廃棄物が含有する塩素を固相中に固定しつつ、廃棄物を燃焼処理し、得られる残渣から塩素を分離する廃棄物処理方法が提案されている(例えば、特許文献2参照)。   In addition, an alkali metal compound and a calcium compound are introduced into the combustion device, and the waste contained in the combustion device is fixed in the solid phase, while the waste is burned, and chlorine is separated from the resulting residue. A waste disposal method has been proposed (see, for example, Patent Document 2).

しかしながら、この方法では、投入されるアルカリ金属化合物等によっては、塩化水素ガスの発生が阻害されて、廃棄物中に塩素が残留し、固形燃料として使用する際に供給される炉の腐食等の課題、あるいは、セメント製造用の固形燃料として使用した場合におけるセメント品質の低下の問題があった。   However, in this method, the generation of hydrogen chloride gas is hindered depending on the alkali metal compound or the like to be introduced, chlorine remains in the waste, and corrosion of the furnace supplied when used as a solid fuel, etc. There was a problem or a problem of deterioration in cement quality when used as a solid fuel for cement production.

さらに、得られた固形物中に残存する塩素の含有率を十分に低減させるには、多量の水を用いる水洗処理が必要であった。   Furthermore, in order to sufficiently reduce the content of chlorine remaining in the obtained solid, a water washing treatment using a large amount of water was necessary.

特開2000−96066号公報JP 2000-96066 A 特開2003−39038号公報JP 2003-39038 A

従って、本発明の目的は、簡便な方法で、塩素を含有する廃棄物を処理して、塩素含有量が低く固形燃料等として再利用可能な生成物を得る方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for treating a waste containing chlorine by a simple method to obtain a product having a low chlorine content and reusable as a solid fuel or the like.

本発明者らは、かかる実情に鑑み、種々検討した結果、廃棄物中の塩素揮発をアルカリ添加により抑制することによって、燃料成分の揮発を防止し、さらに、過熱水蒸気を反応容器に供給し、反応容器内で廃棄物中の塩素が分解し発生する塩化水素をアルカリにより固相へ固定し、反応容器内に残留した固形分を再生固形燃料として反応容器外に導出し、反応容器外に導出された固形分を破砕した後、所定の粒度で分級した微粒の固形分のみを水洗することにより、従来より少ないエネルギーで優れた品質の固形燃料を得ることができることを見出し、本発明を完成した。   As a result of various investigations in view of such circumstances, the present inventors have prevented the volatilization of fuel components by suppressing the volatilization of chlorine in waste by addition of alkali, and further supplied superheated steam to the reaction vessel, Hydrogen chloride generated by the decomposition of chlorine in the waste in the reaction vessel is fixed to the solid phase with alkali, and the solid content remaining in the reaction vessel is led out of the reaction vessel as a recycled solid fuel, and out of the reaction vessel The present invention was completed by finding that a solid fuel of superior quality can be obtained with less energy than in the past by crushing the solid content and washing only the fine solid content classified with a predetermined particle size with water. .

すなわち、本発明は、塩素を含む廃棄物を高温で分解脱塩する廃棄物の処理方法であって、塩素を含む廃棄物と、当該廃棄物の粒径よりも粒径が小さいアルカリを反応容器内に導入するとともに、過熱水蒸気を前記反応容器に供給・排出し、前記反応容器内で廃棄物中の塩素が分解し発生する塩化水素をアルカリにより固相へ固定し、前記反応容器内に残留した固形分を再生固形燃料として反応容器外に導出し、当該反応容器外に導出された固形分を破砕した後、好ましくは篩目の孔径が1〜5mmの篩で分級し、篩目を通過した固形分のみを水洗する廃棄物の処理方法を提供するものである。   That is, the present invention relates to a waste treatment method for decomposing and desalinating chlorine-containing waste at a high temperature, wherein chlorine containing waste and alkali having a particle size smaller than the particle size of the waste Introducing into the reaction vessel, supplying and discharging superheated steam to the reaction vessel, fixing the hydrogen chloride generated by the decomposition of chlorine in the waste to the solid phase with alkali, and remaining in the reaction vessel The obtained solid content is led out as a regenerated solid fuel to the outside of the reaction vessel, and after pulverizing the solid content led out of the reaction vessel, it is preferably classified with a sieve having a sieve pore diameter of 1 to 5 mm and passed through the sieve mesh. Therefore, the present invention provides a waste processing method in which only the solid content is washed with water.

本発明によれば、少ないエネルギーで塩素を含む廃棄物を分解し、塩素を含む廃棄物を分解し、塩素を効率良く除去することができ、常圧で連続処理することが可能となる。特に、水洗時の排水量を低減できるので排水処理にかかるコストを削減することが可能となる。   According to the present invention, waste containing chlorine can be decomposed with less energy, waste containing chlorine can be decomposed, chlorine can be efficiently removed, and continuous treatment at normal pressure can be performed. In particular, since the amount of drainage during washing can be reduced, the cost for wastewater treatment can be reduced.

また、アルカリ添加により塩化水素およびその他の揮発成分の固相への固定を促進するため、排ガス処理にかかるコストを削減することができ、優れた品質を有する固形燃料を得ることができたという優れた効果を奏する。   In addition, the addition of alkali promotes the fixation of hydrogen chloride and other volatile components to the solid phase, so it is possible to reduce the cost of exhaust gas treatment and to obtain a solid fuel with excellent quality. Has an effect.

本発明の一実施形態で使用する装置を示す模式図である。It is a schematic diagram which shows the apparatus used by one Embodiment of this invention.

以下、本発明の実施の形態について添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1にて、本発明の処理対象とする塩素を含む廃棄物1は、塩素を含有するプラスチックを含むもので、例えば、医療ゴミ、廃ラ、建築廃棄物、廃自動車シュレッダーダスト、都市ゴミ等の廃棄物(これら廃棄物を加工したRPF(Refuse Paper & Plastic Fuel)なども含む)である。 In Figure 1, waste 1 containing chlorine to be processed of the present invention, which comprises plastic containing chlorine, for example, medical waste, waste-flop la, building waste, waste automotive shredder residue, municipal waste (Including RPF (Refuse Paper & Plastic Fuel) processed from these wastes).

塩素を含む廃棄物の粒径の範囲を0.5〜50mmとするのが好ましく、廃棄物中において、粒径0.5〜50mmの粒子が80質量%以上含まれるのが好ましい。また、脱塩率及び水洗水量削減の点から塩素を含む廃棄物の粒径の範囲を2〜50mmとするのがより好ましく、廃棄物中において、粒径2〜50mmの粒子が80質量%以上含まれるのがより好ましい。さらに、塩素を含む廃棄物の粒径の範囲を2〜30mmとするのがさらに好ましく、粒径2〜30mmの粒子が80質量%以上含まれるのがさらに好ましい。   The particle size range of the waste containing chlorine is preferably 0.5 to 50 mm, and the waste preferably contains 80% by mass or more of particles having a particle size of 0.5 to 50 mm. Moreover, it is more preferable that the range of the particle size of the waste containing chlorine is 2 to 50 mm from the viewpoint of reducing the desalination rate and the amount of washing water, and in the waste, particles having a particle size of 2 to 50 mm are 80% by mass or more. More preferably it is included. Furthermore, the range of the particle size of the waste containing chlorine is more preferably 2 to 30 mm, and more preferably 80% by mass or more of particles having a particle size of 2 to 30 mm.

このような廃棄物を導入する反応容器5の形状は特に限定されず、市販の様々な形状のものを使用することができる。例えば、バッチ式の反応容器や、連続的に処理する場合には、コンベア型、ロータリーキルン型、流動床炉、竪型炉、多段型、パドル型攪拌等の搬送機能を有する反応容器が好ましい。   The shape of the reaction vessel 5 into which such waste is introduced is not particularly limited, and various commercially available shapes can be used. For example, a batch type reaction vessel or a reaction vessel having a conveying function such as a conveyor type, a rotary kiln type, a fluidized bed furnace, a vertical furnace, a multistage type, a paddle type stirring is preferable in the case of continuous processing.

反応容器5は、反応容器内での廃棄物の熱分解を効率的に行うため、外熱式の反応容器を使用するのが好ましい。外熱の熱源としては、電気、重油、ガスを熱源とした加熱又は工場廃熱などを使用できる。反応容器5の外熱温度は、250〜450℃となるように調整するのが好ましい。   The reaction vessel 5 is preferably an externally heated reaction vessel in order to efficiently decompose the waste in the reaction vessel. As a heat source for external heat, heating using electricity, heavy oil, gas as a heat source, factory waste heat, or the like can be used. It is preferable to adjust the external heat temperature of the reaction vessel 5 to be 250 to 450 ° C.

過熱水蒸気は、飽和水蒸気を発生させた後、過熱装置により飽和水蒸気を二次加熱することにより過熱水蒸気とし、反応容器5に供給・排出される。飽和水蒸気を発生させる装置は特に限定されず、例えば、市販の水管ボイラ、丸ボイラ等を使用することができる。   After the saturated steam is generated, the superheated steam is secondarily heated by the superheater to obtain superheated steam, which is supplied to and discharged from the reaction vessel 5. The apparatus for generating saturated water vapor is not particularly limited, and for example, a commercially available water tube boiler, round boiler, or the like can be used.

また、セメント製造工程等で発生する工場廃熱を用いて飽和水蒸気を発生させる廃熱ボイラを使用することもできる。過熱装置の熱源は、特に限定されず、燃料バーナー、高周波加熱装置等を使用したり、セメント製造工程等で発生する廃熱を利用することも好ましい。   In addition, a waste heat boiler that generates saturated steam using factory waste heat generated in a cement manufacturing process or the like can also be used. The heat source of the superheater is not particularly limited, and it is also preferable to use a fuel burner, a high frequency heating device or the like, or to use waste heat generated in a cement manufacturing process or the like.

廃棄物とアルカリとの混合物表面を炭化する点から、過熱水蒸気の温度は、210℃以上350℃以下の範囲とするのが好ましい。   From the viewpoint of carbonizing the surface of the mixture of waste and alkali, the temperature of the superheated steam is preferably in the range of 210 ° C to 350 ° C.

従来の熱分解では、350℃以上の温度での処理が必要であったため、多大なエネルギーを要していたが、本発明においては、これより低い温度での処理により、塩素を含む廃棄物を分解し、塩素を除去することが可能となる。   In the conventional pyrolysis, a treatment at a temperature of 350 ° C. or higher was necessary, so a great deal of energy was required. However, in the present invention, the waste containing chlorine is treated by a treatment at a temperature lower than this. It is possible to decompose and remove chlorine.

過熱水蒸気を得るための飽和水蒸気の温度は、一般的な低圧ボイラの温度範囲である100℃以上130℃以下の範囲とするのが好ましく、二次加熱による過熱度は80K以上250K以下の範囲とするのが好ましい。本発明の処理において、水分を含む廃棄物を処理した場合は乾燥効果も得られるため、より多くの水分を廃棄物から過熱水蒸気に移行させるには、過熱度が高いほど好ましい。   The temperature of saturated steam for obtaining superheated steam is preferably in the range of 100 ° C. to 130 ° C., which is the temperature range of a general low-pressure boiler, and the degree of superheat by secondary heating is in the range of 80K to 250K. It is preferable to do this. In the treatment of the present invention, when a waste containing moisture is treated, a drying effect is also obtained. Therefore, in order to transfer more moisture from waste to superheated steam, it is preferable that the degree of superheat is high.

なお、過熱度とは、飽和水蒸気を二次加熱して所定の過熱水蒸気の温度まで上昇させる温度上昇分をいう。   Note that the degree of superheat refers to the amount of temperature rise that is caused by secondary heating of saturated steam to raise the temperature to a predetermined superheated steam.

前記のような過熱水蒸気は、市販の過熱水蒸気発生装置7を用いて供給することができる。反応容器内において、廃棄物を過熱水蒸気で処理する時間を、10分以上60分以下の範囲とするのが好ましく、20分以上60分以下の範囲とするのがより好ましい。過熱水蒸気による処理は、常圧でも可能である。   Such superheated steam can be supplied using a commercially available superheated steam generator 7. In the reaction vessel, the time for treating the waste with superheated steam is preferably in the range of 10 minutes to 60 minutes, more preferably in the range of 20 minutes to 60 minutes. Treatment with superheated steam is possible even at normal pressure.

使用する過熱水蒸気量は、反応容器の形状、充填率、処理する廃棄物の塩素含有量、含水率、性状等によって異なり、特に限定されないが、廃棄物1kg当り、0.5L/hr以上とするのが好ましい。   The amount of superheated steam to be used varies depending on the shape and filling rate of the reaction vessel, the chlorine content, water content, properties, etc. of the waste to be treated, and is not particularly limited, but is 0.5 L / hr or more per 1 kg of waste. Is preferred.

過熱水蒸気による処理により、反応容器内で廃棄物中の塩素は熱分解される。塩素が分解し発生する塩化水素は、事前に添加されているアルカリにより固相への固定が促進され、固定できなかった塩化水素は過熱水蒸気とともに反応容器外に導出される。排出された塩化水素を含む過熱水蒸気は、凝縮及び凝縮水の廃水処理(中和処理)等の工程により、無害化される。   By treatment with superheated steam, chlorine in the waste is thermally decomposed in the reaction vessel. The hydrogen chloride generated by the decomposition of chlorine is promoted to be fixed to the solid phase by the alkali added in advance, and the hydrogen chloride that cannot be fixed is led out of the reaction vessel together with the superheated steam. Superheated steam containing discharged hydrogen chloride is rendered harmless by processes such as condensation and wastewater treatment (neutralization treatment) of condensed water.

本発明においては、反応容器内に固体状、スラリー状、液体状のアルカリ2が導入される。アルカリとして、例えば、アルカリ金属化合物、アルカリ土類金属化合物等を使用することができる。アルカリ金属化合物及びアルカリ土類金属化合物として、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭酸アルカリ金属、炭酸アルカリ土類金属等、例えば、Ca(OH)2、CaCO3、NaOH、Na2CO3等が好ましく用いられる。 In the present invention, solid, slurry, or liquid alkali 2 is introduced into the reaction vessel. As the alkali, for example, an alkali metal compound, an alkaline earth metal compound, or the like can be used. Examples of the alkali metal compound and alkaline earth metal compound include alkali metal hydroxide, alkaline earth metal hydroxide, alkali carbonate metal, alkaline earth carbonate carbonate, etc., for example, Ca (OH) 2 , CaCO 3 , NaOH, Na 2 CO 3 or the like is preferably used.

本発明においては、固体状およびスラリー状のアルカリを使用する場合、アルカリの粒径を、塩素を含む廃棄物の粒径よりも小さくするのが好ましい。更に、塩素含有廃棄物との混合性及び廃棄物から揮発する塩化水素との接触率向上の観点から、アルカリの粒径を0.5mm未満とするのが好ましく、10μm〜500μmの範囲とするのがより好ましい。液体状のアルカリを使用する場合、アルカリが溶解しているため、粒径は特に限定されない。   In the present invention, when solid and slurry alkalis are used, the alkali particle size is preferably smaller than the particle size of the waste containing chlorine. Furthermore, it is preferable that the alkali particle size be less than 0.5 mm from the viewpoint of improving the mixing ratio with chlorine-containing waste and the contact rate with hydrogen chloride volatilized from the waste, and the range of 10 μm to 500 μm is preferable. Is more preferable. When a liquid alkali is used, the particle size is not particularly limited because the alkali is dissolved.

そして、塩化水素の揮発に伴う燃料として有用な成分の揮発を抑制する点から、導入するアルカリ量を、廃棄物中の塩素量に対して3モル当量以上とするのが好ましく、特に、6モル当量以上の範囲とするのがより好ましい。導入するアルカリ量の上限値は、特に限定されないが、廃棄物中の塩素量に対して10モル当量以下とするのが好ましい。   And from the point which suppresses volatilization of the component useful as a fuel accompanying volatilization of hydrogen chloride, it is preferable that the alkali amount to introduce | transduce shall be 3 mol equivalent or more with respect to the chlorine amount in waste, especially 6 mol. It is more preferable that the range be equal to or greater than the equivalent. The upper limit of the amount of alkali to be introduced is not particularly limited, but is preferably 10 molar equivalents or less with respect to the amount of chlorine in the waste.

一方、反応容器内に残留した固形分は、容器外に導出され、再生固形燃料14として使用される。   On the other hand, the solid content remaining in the reaction vessel is led out of the vessel and used as the regenerated solid fuel 14.

この固形分は、本発明で対象とする、医療ゴミ、廃ラ、建築廃棄物、廃自動車シュレッダーダスト、都市ゴミ、RPF等の場合、セメントキルンやボイラで使用されるRPF燃料の要求規格の点から塩素含有量が0.4〜5質量%程度まで低減され、そのままでも、再生固形燃料として利用可能なものである。 The solids, is an object of the present invention, medical waste, waste-flops La, construction waste, waste automobile shredder residue, municipal solid waste, in the case of the RPF, etc., of the RPF fuel to be used in cement kilns and boilers request of the standard From this point, the chlorine content is reduced to about 0.4 to 5% by mass, and it can be used as a regenerated solid fuel as it is.

また、廃棄物に含まれていた塩素は十分に除去されつつ、燃料となり得る他の化学成分(炭素、水素等)は、ほとんど除去されていないので、再生固形燃料として用いた際の総発熱量も高いものとなる。   In addition, the chlorine contained in the waste is sufficiently removed, but other chemical components (carbon, hydrogen, etc.) that can become fuel are hardly removed, so the total calorific value when used as recycled solid fuel Is also expensive.

本発明においては、固体状又はスラリー状又は液状で導入したアルカリは、アルカリ粒子単独で、あるいは廃棄物の固形分の表面・表面近傍に付着・固着して存在している。廃棄物中の塩素が分解し発生する塩化水素はそのアルカリにすぐに捕捉され塩化アルカリの粒子を生成する。このため、残留固形分から、生成した塩化アルカリ粒子及び塩化アルカリ粒子が付着・固着している固形分表面を分離することで、主に塩化アルカリ粒子からなる高塩素濃度の固形分とそれ以外の低塩素濃度の固形分に分離することができる。この際、アルカリの粒径を廃棄物の粒径よりも小さくすることによって、効率よく分離することが可能となる。また、この分離は、以下の破砕処理及び分級処理によって行うことが可能である。   In the present invention, the alkali introduced in the solid state, slurry state or liquid state is present by adhering to and adhering to the surface / surface vicinity of the solid content of the waste alone or alone. Hydrogen chloride generated by the decomposition of chlorine in the waste is immediately trapped by the alkali and produces alkali chloride particles. For this reason, by separating the generated alkali chloride particles and the solid content surface to which the alkali chloride particles adhere and adhere from the residual solids, the high chlorine concentration solids mainly composed of alkali chloride particles and the other low It can be separated into a solid content of chlorine concentration. At this time, the alkali can be separated efficiently by making the particle diameter of the alkali smaller than the particle diameter of the waste. This separation can be performed by the following crushing and classification processes.

水洗処理前に、反応容器から導出された固形分を破砕する。固形分の破砕には、フードミキサー、ダブルロールクラッシャー、ハードクラッシャー、衝撃せん断ミル等の乾式の破砕機を採用することができる。固形物の破砕にあたっては、固形分全量を微破砕する必要はなく、固形分の表面・表面近傍に付着・固着した塩化アルカリ粒子を固形分から剥ぎ取ることができる程度の破砕効果で良い。   Prior to the water washing treatment, the solid content derived from the reaction vessel is crushed. For crushing solids, a dry crusher such as a food mixer, double roll crusher, hard crusher, impact shear mill or the like can be employed. When crushing the solid matter, it is not necessary to finely crush the entire solid content, and the crushing effect may be sufficient to remove the alkali chloride particles adhering or adhering to the surface or the vicinity of the solid content from the solid content.

破砕後、破砕された固形分を分級する。固形分の分級には、振動式、円筒回転式等の篩式分級機、比重選別式、重力慣性式等の風力式分級機等の分級機を採用することができるが、特に篩式分級機を用いることが好ましい。この分級処理によって、主に塩化アルカリ粒子からなる高塩素濃度の微粒の固形分と、それ以外の低塩素濃度の固形分とに所定の粒度で分離される。分級における所定の粒度は、処理される廃棄物の種類や粒度、導入するアルカリの種類や粒度、過熱水蒸気による反応条件、あるいは破砕条件などに応じて適宜調整されるが、例えば、篩式分級機を用いる場合は、篩目の孔径が1〜5mmの範囲の篩で分級するのが好ましい。篩機の篩目は、単一の孔径を有するものを使用するのが好ましい。   After crushing, the crushed solid content is classified. For classification of solid content, classifiers such as a vibration classifier, a cylindrical classifier such as a rotary cylinder type, a wind classifier such as a specific gravity sorting type, a gravity inertia type, etc. can be adopted. Is preferably used. By this classification treatment, it is separated into a solid content of fine particles mainly composed of alkali chloride particles and a solid content of low chlorine concentration other than that with a predetermined particle size. The predetermined particle size in the classification is appropriately adjusted according to the type and particle size of the waste to be treated, the type and particle size of the alkali to be introduced, the reaction conditions with superheated steam, or the crushing conditions. For example, a sieve classifier Is preferably classified with a sieve having a sieve pore diameter of 1 to 5 mm. It is preferable to use a sieve having a single pore diameter.

分級後、篩機の篩上に残存した残分の質量割合を、篩機にかける前の固形分に対して、40〜70%の範囲とすることが好ましい。   After classification, the mass ratio of the residue remaining on the sieve of the sieving machine is preferably in the range of 40 to 70% with respect to the solid content before being passed through the sieving machine.

本発明は、篩目を通過した、高塩素濃度の固形分(以下、篩下品と称する)のみを水洗処理する。篩目を通過せず、篩上に残存した、低塩素濃度の固形分(以下、篩上品と称する)は、水洗処理を施さなくてもよい。篩下品は、既に細かくされているので、水洗脱塩効率が高く、改めて粉砕せずに、そのまま水洗処理に供することができる。また、篩上に残存した固形分は、水洗処理を施さないため、水洗処理に使用する水量を削減することが可能となる。   In the present invention, only a solid matter having a high chlorine concentration (hereinafter referred to as an under sieve product) that has passed through the sieve screen is washed with water. The low chlorine concentration solid content (hereinafter referred to as sieve product) that does not pass through the sieve mesh and remains on the sieve does not have to be subjected to a water washing treatment. Since the sieved product is already finely divided, the water washing and desalting efficiency is high, and it can be directly subjected to the washing treatment without being pulverized again. Further, since the solid content remaining on the sieve is not subjected to the water washing treatment, the amount of water used for the water washing treatment can be reduced.

水洗処理の方法は、固形分と水を接触させる方法であれば特に限定されず、例えば、下部に金網、溝等の水抜き機構を有するピットに固形分の粉状体を堆積させ、その上部より水を散布する方法、攪拌機付の洗浄槽内で固形分を水に懸濁させた後、濾過して水を除去する方法等を採用することができる。ここで、濾過は、フィルタープレス、遠心分離機等により行うことが好ましく、灰押出し機や、積み付け時の自然流下による水切り程度でもよい。   The method of the water washing treatment is not particularly limited as long as it is a method in which the solid content is brought into contact with water. For example, the solid content powder is deposited in a pit having a drainage mechanism such as a wire mesh or a groove at the lower portion, and the upper portion thereof. For example, a method of spraying water, a method of suspending solid content in water in a washing tank equipped with a stirrer, and then removing water by filtration can be employed. Here, the filtration is preferably performed by a filter press, a centrifugal separator, or the like, and may be an ash extruder or a water drainage by natural flow at the time of stacking.

また、水洗を2段以上の工程を経て行う、いわゆるカスケード水洗方式を採用することもできる。   In addition, a so-called cascade water washing method in which water washing is performed through two or more steps can be employed.

水洗の際、固液比(質量比)を2〜5の範囲とするのが好ましく、水洗時間を10〜60分の範囲とするのが好ましく、20〜40分の範囲とするのがより好ましい。また、水洗時の温度を、50℃以上100℃以下の範囲とするのが好ましく、70℃以上100℃以下の範囲とするのがより好ましい。100℃以上でも好ましく行われるが加圧下での実施が必要となる。   In the case of washing with water, the solid-liquid ratio (mass ratio) is preferably in the range of 2 to 5, the washing time is preferably in the range of 10 to 60 minutes, and more preferably in the range of 20 to 40 minutes. . Moreover, it is preferable to make the temperature at the time of water washing into the range of 50 to 100 degreeC, and it is more preferable to set it as the range of 70 to 100 degreeC. Although it is preferably carried out at 100 ° C. or higher, it is necessary to carry out under pressure.

水洗処理による「脱塩率」以外の観点で考えると、反応容器から導出された固形分の全量を水洗した場合、濾過残渣には20〜40%の水分が残ってしまうことになり、これを、再生固形燃料として高温炉に投入すると高温帯への水分の持ち込みとなり熱損失が発生する。これを防ぐには、高温炉投入前に乾燥処理が必要となる。   Considering from a viewpoint other than the “desalting rate” by the water washing treatment, when the entire solid content derived from the reaction vessel is washed with water, 20 to 40% of water remains in the filtration residue. When it is put into a high-temperature furnace as a regenerated solid fuel, moisture is brought into the high-temperature zone and heat loss occurs. In order to prevent this, a drying process is required before charging the high temperature furnace.

これに対して、篩下品のみを水洗した場合、水洗濾過残渣には20〜40%の水分が残っているが、水洗していない残り(篩上品)はほぼ絶乾なので、両者を併せると5〜20%の水分となり、この程度の水分ならばそのまま高温炉に投入しても熱損失への影響を最小限に抑えることができる。また、高温炉への水分持ち込みを最小限にするため、湿潤状態の篩下品のみ乾燥処理を行う場合、全量水洗した濾過残渣を乾燥する場合よりも乾燥処理量が少なくて済む。 On the other hand, when only the under sieve product is washed with water, 20 to 40% of water remains in the washing filtration residue, but the unwashed residue (sieved product) is almost completely dry. Even if it is put in a high temperature furnace as it is, the influence on heat loss can be minimized. In addition, in order to minimize the amount of moisture brought into the high-temperature furnace, when the drying treatment is performed only on the wet sieved product, the amount of drying treatment may be smaller than when the filtration residue washed with water is dried.

本発明の処理により得られる再生固形燃料は、過熱水蒸気処理後の固形分を水洗処理することにより、塩素を効率的に除去するが、固形分中の燃料となり得る他の化学成分は、ほとんど除去されていないので燃料品位の良好なものを得ることができる。また、固形分の被粉砕性も良好なものであり、例えば、固形燃料をセメントキルンで好適に使用できる条件として、粒度が1.5mm以下の割合を90%以上とするのが好ましいが、本発明の処理物は、このような粒度に粉砕することが可能である。   The regenerated solid fuel obtained by the treatment of the present invention efficiently removes chlorine by washing the solid content after the superheated steam treatment with water, but almost removes other chemical components that can become fuel in the solid content. Since it is not done, a fuel of good quality can be obtained. In addition, the pulverization property of the solid content is also good. For example, as a condition that the solid fuel can be suitably used in the cement kiln, the ratio of the particle size of 1.5 mm or less is preferably 90% or more. The processed product of the invention can be pulverized to such a particle size.

以下、本発明をより具体的に説明するため、実施例を示すが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.

[実施例1〜4]
(供試試料)
全塩素濃度が2.85(質量%)(実施例1、2、比較例1、2)と3.50(質量%)(実施例、比較例)であるASR(Automobile Shredder Residue)を10mm以下に破砕した破砕品について、以下の処理条件で処理を行った。
[Examples 1 to 4]
(Test sample)
ASR (Automobile) having total chlorine concentrations of 2.85 (mass%) (Examples 1 and 2, Comparative Examples 1 and 2) and 3.50 (mass%) (Examples 3 and 4 and Comparative Examples 3 and 4 ) About the crushed goods which shredded Shredder Residue) to 10 mm or less, it processed on the following process conditions.

(過熱水蒸気発生装置:サンケイエンジニアリング社製)
・バッチ式処理反応槽
・ステンレスメッシュ反応容器
・飽和水蒸気および過熱水蒸気連続生成装置
(IHヒーターにより、100℃の飽和水蒸気を連続して二次加熱し過熱水蒸気を生成)
(Superheated steam generator: Sankei Engineering Co., Ltd.)
・ Batch processing reaction tank ・ Stainless steel mesh reaction vessel ・ Saturated steam and superheated steam continuous generator (Saturated steam at 100 ℃ is secondarily heated by IH heater to generate superheated steam)

(処理条件)
・ASR破砕品充填量:20g
・飽和水蒸気発生量:1.8kg/hr(100℃)
・過熱水蒸気の温度:260℃(過熱度:160K)
・処理時間:60分
(Processing conditions)
・ ASR crushed product filling amount: 20g
・ Saturated water vapor generation amount: 1.8 kg / hr (100 ° C.)
-Temperature of superheated steam: 260 ° C (degree of superheat: 160K)
・ Processing time: 60 minutes

(アルカリ添加)
アルカリとして、Ca化合物を用い、廃棄物中の全塩素量に対して6モル当量となるように、反応容器内に導入した。具体的には、アルカリとして固体状のCa(OH)2(150μm以下)を用い、全塩素濃度が2.85質量%の廃棄物20gに対して3.57g添加した。全塩素濃度が3.50質量%の廃棄物20gに対して4.39g添加した。
(Alkali added)
A Ca compound was used as the alkali, and was introduced into the reaction vessel so as to be 6 molar equivalents relative to the total amount of chlorine in the waste. Specifically, solid Ca (OH) 2 (150 μm or less) was used as the alkali, and 3.57 g was added to 20 g of waste having a total chlorine concentration of 2.85% by mass. 4.39 g was added to 20 g of waste having a total chlorine concentration of 3.50% by mass.

(破砕条件)
過熱水蒸気処理後、反応容器から取り出した固形分を、ミルサー(イワタニ社製IFM−170G)を用いて、20秒間破砕した。
(Crushing conditions)
After the superheated steam treatment, the solid content taken out from the reaction vessel was crushed for 20 seconds using a miller (IFM-170G manufactured by Iwatani Corporation).

(分級条件)
破砕した固形分を篩の篩目孔径1.0mm、2.0mmの篩で篩い分け、篩目を通過した小さな固形分粒子(篩下品と称する)を回収した。
(Classification conditions)
The crushed solid content was sieved with a sieve having a sieve pore size of 1.0 mm and 2.0 mm, and small solid particles (referred to as an under sieve product) that passed through the sieve were collected.

(水洗条件)
100mlビーカーに破砕・分級を行って回収した篩下品10gを入れ、蒸留水を試料に対する固液比(質量比)が1:4になるように投入した。蒸留水投入後、マグネチックスターラーで攪拌しながら、試料を30分間水洗した。なお、100mlビーカーを保温材で被い、水温を50℃に保持した。水洗処理後、全量濾過し、濾過残渣を回収する。
(Washing conditions)
10 g of the sieving product recovered by crushing and classification in a 100 ml beaker was put, and distilled water was added so that the solid-liquid ratio (mass ratio) to the sample was 1: 4. After adding distilled water, the sample was washed with water for 30 minutes while stirring with a magnetic stirrer. A 100 ml beaker was covered with a heat insulating material, and the water temperature was kept at 50 ° C. After washing with water, the whole amount is filtered to collect the filtration residue.

(分析方法)
水洗処理を施していない篩上品および水洗処理を施した篩下品の全塩素濃度をエシュカ法(JIS M8813「石炭類及びコークス類−元素分析方法」およびJIS Z7302−6「廃棄物固形化燃料−第6部:全塩素分試験方法」解説に記載の方法)にて測定した。なお、過熱水蒸気処理後の固形分(以下、炭化品と称する)の残留塩素量と脱塩率は下記式により算出した。
・炭化品残留塩素=水洗処理を施していない篩上品の全塩素濃度+水洗処理を施した篩下品の全塩素濃度
・脱塩率=(炭化品全塩素−炭化品残留塩素)/(炭化品全塩素)×100
(Analysis method)
The total chlorine concentration of the sieved product that has not been washed with water and the sieved product that has been washed with water is determined using the Eshka method (JIS M8813 “Coals and cokes—elemental analysis method” and JIS Z7302-6 “Waste solidified fuel—No. 6 parts: Total chlorine content test method "described in the explanation). In addition, the residual chlorine amount and the desalting rate of the solid content (hereinafter referred to as carbonized product) after the superheated steam treatment were calculated by the following formula.
・ Carbonized product residual chlorine = Total chlorine concentration of sieved products that have not been washed + Total chlorine concentration of sieved products that have been washed with water · Desalination rate = (Carbonized product total chlorine-Carbized product residual chlorine) / (Carbized product) Total chlorine) x 100

得られた脱塩率の結果を表1に示す。各実施例の脱塩率と水洗水量削減率が、それぞれ目標値である60%以上、40%を超えているので、燃料品位の優れた固形燃料を得ることができた。   The results of the obtained desalting rate are shown in Table 1. Since the desalination rate and the washing water amount reduction rate of each example exceeded the target values of 60% or more and 40%, respectively, a solid fuel with excellent fuel quality could be obtained.

[比較例1]
熱水蒸気処理後の固形分破砕、分級処理を実施しない以外は、実施例1と同様にして固形分を得た。水洗水量削減率が0%となり、水洗水量を削減することができなかった。
[Comparative Example 1]
Solids crushing after overheating steaming, except that not carried out classification treatment to obtain a solid in the same manner as in Example 1. The washing water reduction rate was 0%, and the washing water amount could not be reduced.

[比較例2]
熱水蒸気処理後の分級処理の際の篩目孔径を0.5mmとした以外は、実施例1と同様にして固形分を得た。脱塩率が目標値60%に満たないものしか得ることができなかった。
[Comparative Example 2]
Except that the sieve hole diameter during the classification process after overheating steamed and 0.5mm, the solid parts in the same manner as in Example 1. Only those with a desalination rate below the target value of 60% could be obtained.

[比較例3]
熱水蒸気処理後の固形分破砕、分級処理を実施しない以外は、実施例3と同様にして固形分を得た。水洗水量削減率が0%となり、水洗水量を削減することができなかった。
[Comparative Example 3]
Solids crushing after overheating steaming, except that not carried out classification treatment to obtain a solid in the same manner as in Example 3. The washing water reduction rate was 0%, and the washing water amount could not be reduced.

[比較例4]
熱水蒸気処理後の分級処理の際の篩目孔径を0.5mmとした以外は、実施例3と同様にして固形分を得た。脱塩率が目標値60%に満たないものしか得ることができなかった。
[Comparative Example 4]
Except that the sieve hole diameter during the classification process after overheating steamed and 0.5mm, the solid parts in the same manner as in Example 3. Only those with a desalination rate below the target value of 60% could be obtained.

Figure 0005845124
Figure 0005845124

本発明の廃棄物の処理方法によれば、塩素を含有する廃棄物から優れた品位の再生固形燃料を得ることができる。   According to the waste processing method of the present invention, an excellent quality recycled solid fuel can be obtained from chlorine-containing waste.

1 廃棄物
2 アルカリ
3 定量供給機
4 定量供給機
5 反応容器
6 排ガス
7 過熱水蒸気発生装置
8 破砕処理
9 分級処理
10 水洗脱塩処理
11 排水処理
12 排水
13 水
14 再生固形燃料
DESCRIPTION OF SYMBOLS 1 Waste 2 Alkali 3 Fixed-quantity supply machine 4 Fixed-quantity supply machine 5 Reaction container 6 Exhaust gas 7 Superheated steam generator 8 Crushing process 9 Classification process 10 Water washing desalination process 11 Drainage process 12 Drainage 13 Water 14 Regenerated solid fuel

Claims (5)

塩素を含有するプラスチックを含む廃棄物を高温で分解脱塩する廃棄物の処理方法であって、
塩素を含有するプラスチックを含む廃棄物の破砕品と、当該破砕品よりも粒径が小さい粒径10〜500μmの固体状のアルカリ金属化合物又はアルカリ土類金属化合物とを反応容器内に導入するとともに、過熱水蒸気を前記反応容器に供給・排出し、
前記反応容器内で前記廃棄物中のプラスチックが分解し発生する塩化水素を前記アルカリ金属化合物又はアルカリ土類金属化合物に捕捉させることにより固相へ固定し、
前記反応容器内に残留した固形分を再生固形燃料として反応容器外に導出し、
当該反応容器外に導出された固形分を破砕した後、篩目の孔径が1〜5mmである篩を使用して分級し、前記固形分の破砕及び分級によって、生成した塩化アルカリ粒子と塩化アルカリ粒子が付着又は固着している固形分表面とこれら以外の低塩素濃度の固形分から分離され
前記分級により篩目を通過した高塩素濃度の微粒固形分のみを水洗する、
廃棄物の処理方法。
A waste treatment method for decomposing and desalinating waste containing chlorine-containing plastic at high temperature,
While introducing a crushed product of waste containing plastic containing chlorine and a solid alkali metal compound or alkaline earth metal compound having a particle size of 10 to 500 μm smaller than the crushed product into the reaction vessel Supplying and discharging superheated steam to the reaction vessel,
Fixing the hydrogen chloride generated by the decomposition of the plastic in the waste in the reaction vessel to the solid phase by capturing the alkali metal compound or alkaline earth metal compound,
The solid content remaining in the reaction vessel is led out of the reaction vessel as a regenerated solid fuel,
After crushing the solid content led out of the reaction vessel, classification is performed using a sieve having a sieve pore size of 1 to 5 mm, and the alkali chloride particles and alkali chloride produced by the crushing and classification of the solid content are performed. and a solid surface in which the particles are adhered or fixed is separated from the solids of low chlorine concentration than these,
Washing only the fine solid content of high chlorine concentration that has passed through the sieve by the classification,
Waste disposal method.
前記廃棄物の破砕品が、粒径0.5〜50mmの粒子を80質量%以上含有するものである請求項1記載の廃棄物の処理方法。   The waste disposal method according to claim 1, wherein the crushed product of waste contains 80% by mass or more of particles having a particle size of 0.5 to 50 mm. 導入するアルカリ金属化合物又はアルカリ土類金属化合物の量を、前記廃棄物の破砕品中の塩素量に対して3モル当量以上とする請求項1又は2記載の廃棄物の処理方法。   The waste processing method according to claim 1 or 2, wherein the amount of the alkali metal compound or alkaline earth metal compound to be introduced is 3 molar equivalents or more with respect to the amount of chlorine in the crushed product of the waste. 過熱水蒸気の温度を210〜350℃とする請求項1〜3のいずれか1項記載の廃棄物の処理方法。   The waste disposal method according to any one of claims 1 to 3, wherein the temperature of the superheated steam is 210 to 350 ° C. 過熱水蒸気の過熱度が80K以上250K以下であることを特徴とする請求項1〜4のいずれか1項に記載の廃棄物の処理方法。   The method for treating waste according to any one of claims 1 to 4, wherein the superheated steam has a superheat degree of 80K or more and 250K or less.
JP2012067514A 2012-03-23 2012-03-23 Waste disposal method Active JP5845124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067514A JP5845124B2 (en) 2012-03-23 2012-03-23 Waste disposal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067514A JP5845124B2 (en) 2012-03-23 2012-03-23 Waste disposal method

Publications (2)

Publication Number Publication Date
JP2013199542A JP2013199542A (en) 2013-10-03
JP5845124B2 true JP5845124B2 (en) 2016-01-20

Family

ID=49520027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067514A Active JP5845124B2 (en) 2012-03-23 2012-03-23 Waste disposal method

Country Status (1)

Country Link
JP (1) JP5845124B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6598372B2 (en) * 2016-02-29 2019-10-30 太平洋セメント株式会社 Waste treatment apparatus and treatment method
JP6827582B1 (en) * 2020-04-27 2021-02-10 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel
JP2022138989A (en) * 2021-03-11 2022-09-26 学校法人帝京大学 Method for producing alkali metal halide and method for producing halide

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121573A (en) * 1997-06-30 1999-01-26 Meidensha Corp Process for dechlorinating rdf
JP4008105B2 (en) * 1998-07-01 2007-11-14 三菱重工業株式会社 Production equipment for dechlorinated fuel
JP2000096066A (en) * 1998-09-18 2000-04-04 Tokuyama Corp Production of fuel having low chlorine content
DK173613B1 (en) * 1998-10-02 2001-04-30 Stigsnaes Industrimiljoe As Process for the treatment of halogen-containing organic waste material
JP4814445B2 (en) * 2001-07-30 2011-11-16 太平洋セメント株式会社 Waste disposal method
JP2004250496A (en) * 2003-02-18 2004-09-09 Taiheiyo Cement Corp Method for dechlorinating chlorine-containing resin
JP4338029B2 (en) * 2004-03-09 2009-09-30 鹿島建設株式会社 Combined contaminated soil purification equipment
HU3201U (en) * 2006-02-08 2006-12-28 Csokai Viktor Dr Apparatus for recycling of pvc
JP2010185021A (en) * 2009-02-13 2010-08-26 Kubota Kankyo Service Kk Method and apparatus for producing dechlorinated fuel
JP2011031226A (en) * 2009-08-06 2011-02-17 Tokyo Institute Of Technology Waste desalination method and waste desalination apparatus
JP6022745B2 (en) * 2010-03-23 2016-11-09 太平洋セメント株式会社 Waste disposal method
JP2011255338A (en) * 2010-06-11 2011-12-22 Taiheiyo Cement Corp Treatment method of waste
JP5704427B2 (en) * 2010-06-30 2015-04-22 住友大阪セメント株式会社 Thermal decomposition apparatus, dechlorination treatment apparatus, thermal decomposition method and dechlorination method

Also Published As

Publication number Publication date
JP2013199542A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP4995812B2 (en) Integrated process for waste treatment by pyrolysis and related plants
JP4438329B2 (en) Method for treating waste containing organic matter
CN102906502A (en) Waste to energy by way of hydrothermal decomposition and resource recycling
CN103420549B (en) Harmless waste treatment method in coal chemical industry
JP2007083144A (en) Ash treating method and system
JP5311007B2 (en) Heat treatment system and heat treatment method
JP5845124B2 (en) Waste disposal method
JP2019089040A (en) Friedel's salt removal method and Friedel's salt removal system
JP6022745B2 (en) Waste disposal method
JP2000008057A (en) Solid fuel and is production
JP5852491B2 (en) Waste treatment system and treatment method
RU2734832C1 (en) Incineration plant, device and method
JP5732278B2 (en) Waste disposal method
JP5843568B2 (en) Method and apparatus for treating incineration ash
JP2003268380A (en) Apparatus for manufacturing high quality fuel from organic waste and manufacturing method
JPH09316467A (en) Improvement of slurry produced by reaction
JP2004230284A (en) Method for treating powder content containing combustible solid content
JP7107685B2 (en) How to treat chlorine-containing plastics
CN203741192U (en) Innocent treatment system for wastes in coal chemical industry
JP4647000B2 (en) Carbide desalting method and apparatus
JP2005024193A (en) Generated gas treatment method for waste disposal furnace
JP2006272163A (en) Waste separation recovery device and recovery method
JP2013095605A (en) Incineration ash treatment method
JP2011255338A (en) Treatment method of waste
JPH09316465A (en) Improvement of solid waste material slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5845124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250