JP2011031226A - Waste desalination method and waste desalination apparatus - Google Patents

Waste desalination method and waste desalination apparatus Download PDF

Info

Publication number
JP2011031226A
JP2011031226A JP2009182927A JP2009182927A JP2011031226A JP 2011031226 A JP2011031226 A JP 2011031226A JP 2009182927 A JP2009182927 A JP 2009182927A JP 2009182927 A JP2009182927 A JP 2009182927A JP 2011031226 A JP2011031226 A JP 2011031226A
Authority
JP
Japan
Prior art keywords
waste
reactor
temperature
mixed
inorganic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009182927A
Other languages
Japanese (ja)
Inventor
Kunio Yoshikawa
邦夫 吉川
Hiroyuki Takano
博幸 高野
Makoto Kyoda
誠 鏡田
Toshifumi Yamada
敏文 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Institute of Technology NUC
Hokuto Kogyo Co Ltd
Original Assignee
Taiheiyo Cement Corp
Tokyo Institute of Technology NUC
Hokuto Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Institute of Technology NUC, Hokuto Kogyo Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2009182927A priority Critical patent/JP2011031226A/en
Publication of JP2011031226A publication Critical patent/JP2011031226A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively crush and desalinize mixed waste containing organic chlorine by heating the mixed waste without remarkably lowering the calorific value of recycled solid fuel and without providing a high performance or large sized heating device to heat the atmosphere of a reaction vessel in the vessel itself. <P>SOLUTION: The waste and a compound of a metal element which causes a reaction with organic chlorine in the waste to produce an inorganic salt are introduced into a reactor and saturated steam having prescribed pressure of 2.0-3.0 MPa is supplied to the reactor to keep the temperature of the reactor to the temperature of the saturated steam. The waste and the compound are stirred in this state to thermally decompose the mixed waste to produce the inorganic salt by the reaction of the organic chlorine with the metal element. The steam in the reactor is led to outside of the reactor and the solid portion containing the inorganic salt remaining in the reactor is discharged outside of the reactor as the recycled solid fuel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、混合廃棄物の廃棄物脱塩方法及び廃棄物脱塩装置に関するものであり、より詳細には、水蒸気による加熱処理によって混合廃棄物を再生燃料化する際に、廃棄物中の有機塩素を無機塩素に転換して無害化する廃棄物脱塩方法及び廃棄物脱塩装置に関するものである。   The present invention relates to a waste desalination method and a waste desalination apparatus for mixed waste. More specifically, the present invention relates to organic matter in waste when recycled mixed waste by heat treatment with steam. The present invention relates to a waste desalting method and a waste desalting apparatus for converting chlorine into inorganic chlorine to make it harmless.

生ゴミ、食品廃棄物、農業廃棄物、林産廃棄物、医療系廃棄物等の混合廃棄物を加熱容器内に収容して加熱・攪拌し、水熱反応によって廃棄物を減容し、微細化し又は微粉化する水熱方式の廃棄物処理装置が知られている(特開2003−306825号公報)。   Mixing waste such as garbage, food waste, agricultural waste, forestry waste, and medical waste in a heating container, heating and stirring, reducing the volume of waste by hydrothermal reaction, miniaturizing Alternatively, a hydrothermal waste treatment apparatus that pulverizes is known (Japanese Patent Laid-Open No. 2003-306825).

このような混合廃棄物を容器内に収容し、高温・高圧の水蒸気によって廃棄物を数十分間加熱(蒸煮)した後、容器内圧力を瞬間的に開放し、水の断熱膨張のエネルギーによって固体成分を粉砕(爆砕)する水蒸気爆砕(蒸煮爆砕)方式の廃棄物処理装置が知られている(特開2003−47409号公報、特許第3613567号公報)。   After storing such mixed waste in a container and heating (cooking) the waste with high-temperature and high-pressure steam for several tens of minutes, the pressure in the container is released momentarily, and the energy of adiabatic expansion of water A steam explosion (steaming explosion) type waste disposal apparatus that crushes (explodes) a solid component is known (Japanese Patent Laid-Open No. 2003-47409, Japanese Patent No. 3613567).

また、混合廃棄物を水中処理する処理容器を使用し、容器内の圧力及び温度を高温・高圧に保持した状態で熱水及び廃棄物を攪拌する廃棄物燃料化装置が、特開2007−112880号等に記載されている。この方式の燃料化装置は、1.55MPa、200℃以上の高温・高圧水によって廃棄物を溶融し且つ加水分解するように構成される。   Further, there is disclosed a waste fueling device that uses a processing container for treating mixed waste in water and stirs hot water and waste while maintaining the pressure and temperature in the container at high temperature and high pressure. It is described in the issue. This type of fueling apparatus is configured to melt and hydrolyze waste with high-temperature, high-pressure water of 1.55 MPa and 200 ° C. or higher.

PVC(ポリ塩化ビニル)等のプラスチック類を含む混合廃棄物の焼却処理又は固形燃料化等の技術が環境負荷軽減等の見地より近年殊に注目されている。PVC(ポリ塩化ビニル)等を含む混合廃棄物の燃焼時に発生する塩化水素(HCl)は、燃焼・焼却設備の腐食等の問題を生じさせるばかりでなく、燃焼・焼却装置の運転条件によっては、ダイオキシン副生等の問題を更に生じさせることが懸念される。このため、特開平2000−344934号公報に記載される如く、廃棄物を300℃以上に加熱して溶融し、廃プラスチック類の熱分解により塩化水素を気化・分離する脱塩化水素処理(脱塩処理また脱塩素処理)が実施され、或いは、特開平7−305825号公報に記載される如く、カルシウム化合物を廃棄物とともに燃焼炉内に投入し、廃棄物の焼却時に発生する塩化水素をカルシウム化合物と反応せしめて無害化する脱塩処理が実施されている。   In recent years, techniques such as incineration of mixed waste containing plastics such as PVC (polyvinyl chloride) or solid fuel production have attracted particular attention from the standpoint of reducing environmental impact. Hydrogen chloride (HCl) generated during the combustion of mixed waste containing PVC (polyvinyl chloride), etc. not only causes problems such as corrosion of combustion and incineration equipment, but depending on the operating conditions of the combustion and incineration equipment, There is concern over further problems such as dioxin by-product. Therefore, as described in JP-A-2000-344934, dehydrochlorination treatment (demineralization) in which waste is heated to 300 ° C. or more and melted, and hydrogen chloride is vaporized and separated by thermal decomposition of waste plastics. Treatment or dechlorination treatment), or as described in JP-A-7-305825, a calcium compound is introduced into a combustion furnace together with waste, and hydrogen chloride generated during incineration of the waste is converted into calcium compound Desalination treatment is carried out to make it harmless by reacting with.

特開2003−306825号公報JP 2003-306825 A 特開2003−47409号公報JP 2003-47409 A 特許第3613567号公報Japanese Patent No. 3613567 特開2007−112880号公報JP 2007-112880 A 特開平2000−344934号公報JP 2000-344934 A 特開平7−305825号公報Japanese Unexamined Patent Publication No. 7-305825

高温・高圧水又は飽和水蒸気による混合廃棄物の加水分解、容器内圧力の急激な減圧による含水廃棄物の爆砕、或いは、加水分解及び爆砕の両作用により、廃棄物の無害化、微粉砕及び乾燥を図る従来の廃棄物処理装置(特許文献1〜3)によれば、比較的高い発熱量を有する再生固形燃料を製造し、これを任意の燃焼装置等に供給し得るかもしれない。   Hydrolysis of mixed waste with high-temperature / high-pressure water or saturated steam, explosion of hydrous waste by rapid pressure reduction in the container, or detoxification, pulverization and drying by both hydrolysis and explosion According to the conventional waste treatment apparatus (Patent Documents 1 to 3) that achieves this, it may be possible to produce a regenerated solid fuel having a relatively high calorific value and supply it to an arbitrary combustion apparatus or the like.

しかし、廃棄物の水熱処理、蒸煮処理又は蒸煮・爆砕処理によって再生固形燃料を製造する従来の廃棄物処理装置においては、通常は、200℃、1.6MPa以下の温度・圧力の高温・高圧水又は飽和水蒸気が使用されていたことから、ポリ塩化ビニル(PVC)等の廃プラスチック類を含む混合廃棄物を再生燃料化しようとすると、廃棄物中の有機塩素が固形燃料中に残留してしまう。このため、再生固形燃料をセメントキルン等の燃焼炉に燃料として供給した場合、塩化水素が炉内に発生して炉の閉塞、炉体の腐食等の問題が生じる。   However, in a conventional waste treatment apparatus that produces recycled solid fuel by hydrothermal treatment, steaming or steaming / explosive treatment of waste, normally, high-temperature / high-pressure water at a temperature / pressure of 200 ° C. and 1.6 MPa or less Or, because saturated steam was used, when trying to recycle mixed waste containing waste plastics such as polyvinyl chloride (PVC), organic chlorine in the waste would remain in the solid fuel . For this reason, when regenerated solid fuel is supplied as a fuel to a combustion kiln such as a cement kiln, hydrogen chloride is generated in the furnace, causing problems such as furnace blockage and furnace body corrosion.

これに対し、処理容器内の圧力及び温度を1.55MPa、200℃以上に保持し、高温・高圧の熱水によって廃棄物を加水分解するように構成された上記燃料化装置(特許文献4)によれば、混合廃棄物中のポリ塩化ビニル等を熱分解して塩化水素を気化させ、塩化水素を水蒸気とともに系外に排出することが可能であろうと考えられる。   On the other hand, the pressure and temperature in the processing container are maintained at 1.55 MPa and 200 ° C. or higher, and the fueling apparatus is configured to hydrolyze waste with high-temperature and high-pressure hot water (Patent Document 4). According to the present invention, it is considered possible to thermally decompose polyvinyl chloride or the like in the mixed waste to vaporize hydrogen chloride, and discharge the hydrogen chloride together with water vapor to the outside of the system.

しかし、このような高温・高圧状態に処理容器内雰囲気を維持するには、容器内の混合廃棄物及び水を加熱し且つ高温高圧状態に保持すべく多量の熱を容器内に供給しなければならず、このため、処理容器は、容器内雰囲気を加熱する高性能且つ大形の加熱装置を要するとともに、この種の加熱装置を作動すべく多量の電力又は燃料を加熱装置に供給する必要が生じる。また、250℃を超える温度に容器内雰囲気を加熱した場合、廃棄物中の塩素のみならず、廃棄物に含まれる有用な有機物も同様に熱分解・気化してしまうので、水蒸気とともに容器外に排出される有機物濃度が増加する傾向があり、これは、容器内に残留する再生固形燃料の発熱量を大きく低下させる要因となる。   However, in order to maintain the atmosphere in the processing container at such a high temperature and high pressure state, a large amount of heat must be supplied into the container in order to heat the mixed waste and water in the container and maintain the high temperature and high pressure state. For this reason, the processing container requires a high-performance and large-sized heating device for heating the atmosphere in the container, and it is necessary to supply a large amount of electric power or fuel to the heating device in order to operate this kind of heating device. Arise. In addition, when the atmosphere in the container is heated to a temperature exceeding 250 ° C., not only the chlorine in the waste but also useful organic substances contained in the waste are similarly thermally decomposed and vaporized. There is a tendency that the concentration of discharged organic matter increases, which is a factor that greatly reduces the calorific value of the regenerated solid fuel remaining in the container.

また、ポリ塩化ビニル等の廃プラスチック類を含む混合廃棄物を300℃以上の高温に加熱・溶融して塩化水素を気化・分離する脱塩方法(特許文献5)は、塩化水素を除去する有効な手段であるかもしれないが、廃棄物を加熱・溶融する比較的大規模且つ高性能の加熱・溶融装置を要する。しかも、生活系廃棄物等の如く、多くの混合廃棄物には特定困難な種々の物質が混在することから、このような混合廃棄物を単一の加熱・溶融装置によって一様に加熱・溶融することは、現実には極めて困難である。   In addition, the desalination method (Patent Document 5) that vaporizes and separates hydrogen chloride by heating and melting mixed waste containing waste plastics such as polyvinyl chloride to a high temperature of 300 ° C. or higher is effective in removing hydrogen chloride. However, it requires a relatively large-scale and high-performance heating / melting device for heating / melting waste. Moreover, since many kinds of mixed waste, such as household waste, contain various substances that are difficult to identify, such mixed waste is uniformly heated and melted by a single heating and melting device. It is extremely difficult to do in reality.

更に、カルシウム化合物を廃棄物とともに燃焼炉内に投入する脱塩方法(特許文献6)は、廃棄物焼却時に高温炉内雰囲気で発生する塩化水素を無害化するためのものであるにすぎず、これは、廃棄物焼却前の前処理過程、或いは、廃棄物の再生燃料化の過程において廃棄物を脱塩するための技術に対して適用し得る方法ではない。   Furthermore, the desalination method (Patent Document 6) in which a calcium compound is introduced into a combustion furnace together with waste is merely for detoxifying hydrogen chloride generated in the atmosphere in the high temperature furnace during waste incineration. This is not a method that can be applied to a technique for desalinating waste in a pretreatment process before waste incineration or in the process of converting waste into a regenerated fuel.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、再生固形燃料の発熱量を大きく低下させることなく、しかも、容器内雰囲気を加熱すべく高性能又は大形の加熱装置を反応容器自体に設けることなく、有機塩素を含む混合廃棄物を加熱して該廃棄物を効果的に破砕し且つ脱塩することができる混合廃棄物の脱塩処理装置及び脱塩処理方法を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to provide a high performance or large capacity to heat the atmosphere in the container without greatly reducing the calorific value of the regenerated solid fuel. Without providing a heating device in the form of a reaction vessel itself, a mixed waste demineralization treatment apparatus and desalting apparatus that can heat mixed waste containing organic chlorine to effectively crush and demineralize the waste. It is to provide a salt treatment method.

本発明は、上記目的を達成すべく、有機塩素を含む混合廃棄物を高温・高圧の容器内領域で熱分解させて脱塩する廃棄物脱塩方法において、
前記廃棄物と、該廃棄物中の有機塩素と反応して無機塩を生成する金属元素の化合物とを反応器内に導入し、
2.0〜3.0MPaの範囲内の所定圧力を有する飽和水蒸気を前記反応器内に供給して該反応器内の温度を前記飽和水蒸気の温度に保持した状態で、前記廃棄物及び前記化合物を混合・攪拌して、前記混合廃棄物を熱分解するとともに、前記有機塩素及び前記金属元素を反応せしめて無機塩を生成し、
前記反応器内の水蒸気を反応器外に導出するとともに、前記反応器内に残留し且つ前記無機塩を含む固形分を再生固形燃料として反応器外に導出することを特徴とする廃棄物脱塩方法を提供する。
In order to achieve the above object, the present invention provides a waste desalination method in which a mixed waste containing organic chlorine is thermally decomposed and desalted in a high-temperature and high-pressure container region.
Introducing the waste and a metal element compound that reacts with organic chlorine in the waste to form an inorganic salt into the reactor;
In the state in which saturated steam having a predetermined pressure within a range of 2.0 to 3.0 MPa is supplied into the reactor and the temperature in the reactor is maintained at the temperature of the saturated steam, the waste and the compound Are mixed and stirred to thermally decompose the mixed waste, and react with the organic chlorine and the metal element to produce an inorganic salt,
Waste demineralization characterized in that the water vapor in the reactor is led out of the reactor, and the solid content remaining in the reactor and containing the inorganic salt is led out of the reactor as a regenerated solid fuel. Provide a method.

本発明は又、有機塩素を含む混合廃棄物を高温・高圧の容器内領域で熱分解させて脱塩する廃棄物脱塩装置において、
前記廃棄物が導入される反応器と、
前記廃棄物中の有機塩素と反応して無機塩を生成する金属元素の化合物を前記反応器内に導入する無機塩生成剤供給装置と、
2.0〜3.0MPaの範囲内の所定圧力を有する飽和水蒸気を前記反応器内に供給する水蒸気供給装置と、
前記廃棄物及び前記化合物を混合・攪拌する攪拌装置とを有し、
前記水蒸気供給装置によって前記反応器内に前記飽和水蒸気を充填して該反応器内の温度を前記飽和水蒸気の温度に保持した状態で、前記攪拌装置を作動して前記廃棄物及び前記化合物を混合・攪拌するようにしたことを特徴とする廃棄物脱塩装置を提供する。
The present invention also relates to a waste desalination apparatus for desalinating by decomposing mixed waste containing organic chlorine in a high-temperature / high-pressure container region.
A reactor into which the waste is introduced;
An inorganic salt generator supply device for introducing into the reactor a compound of a metal element that reacts with organic chlorine in the waste to generate an inorganic salt;
A steam supply device for supplying saturated steam having a predetermined pressure within a range of 2.0 to 3.0 MPa into the reactor;
A stirring device for mixing and stirring the waste and the compound,
The waste water and the compound are mixed by operating the stirring device in a state where the saturated water vapor is filled in the reactor by the water vapor supply device and the temperature in the reactor is maintained at the temperature of the saturated water vapor. Provide a waste desalination apparatus characterized by stirring.

本発明の上記構成によれば、2.0〜3.0MPaの範囲内の所定圧力を有する飽和水蒸気が反応器内に供給され、反応器内の温度は、飽和水蒸気の温度に所定時間保持される。圧力2.0〜3.0MPaの飽和水蒸気の温度は、約212〜233℃であり、従って、反応器内の温度は、約212〜233℃の範囲内の所定温度に所定時間保持される。   According to the above configuration of the present invention, saturated steam having a predetermined pressure in the range of 2.0 to 3.0 MPa is supplied into the reactor, and the temperature in the reactor is maintained at the temperature of the saturated steam for a predetermined time. The The temperature of the saturated steam having a pressure of 2.0 to 3.0 MPa is about 212 to 233 ° C. Therefore, the temperature in the reactor is maintained at a predetermined temperature in the range of about 212 to 233 ° C. for a predetermined time.

反応器内の飽和水蒸気は、廃棄物と接触して凝縮する。廃棄物は、水蒸気が保有する多大な潜熱を受熱して熱分解し、或いは、加水分解される。廃棄物は、主として飽和水蒸気の潜熱によって加熱されるので、容器内雰囲気を加熱する高性能又は大形の加熱装置を反応容器自体に設ける必要は生じない。   Saturated water vapor in the reactor condenses in contact with the waste. Waste is thermally decomposed by receiving a great amount of latent heat held by water vapor, or hydrolyzed. Since the waste is mainly heated by the latent heat of saturated steam, it is not necessary to provide a high-performance or large-sized heating device for heating the atmosphere in the container in the reaction container itself.

反応器内の温度は、飽和水蒸気の温度、即ち、約212〜233℃の範囲内の所定温度に制御されるが、この温度域においては、ポリ塩化ビニル(PVC)等の有機塩素化合物の熱分解反応が進行する一方、炭化水素又は炭素化合物の熱分解反応はほとんど進行しないことが判明している。即ち、混合廃棄物中の有機塩素のみが塩化水素として離脱するのに対し、混合廃棄物中の有機化合物及び炭化水素の熱分解はさほど進行しない。このため、混合廃棄物が保有する可燃分は気化又は液化によって固形分からほとんど流出せず、従って、比較的高い発熱量の固形分が反応器内に残留する。   The temperature in the reactor is controlled to a saturated steam temperature, that is, a predetermined temperature within a range of about 212 to 233 ° C. In this temperature range, the heat of the organic chlorine compound such as polyvinyl chloride (PVC) is controlled. While the decomposition reaction proceeds, it has been found that the thermal decomposition reaction of hydrocarbons or carbon compounds hardly proceeds. That is, only the organic chlorine in the mixed waste is separated as hydrogen chloride, whereas the thermal decomposition of the organic compound and hydrocarbon in the mixed waste does not proceed so much. For this reason, the combustible component held by the mixed waste hardly flows out from the solid component by vaporization or liquefaction, and therefore a solid component having a relatively high calorific value remains in the reactor.

本発明者は、このような混合廃棄物の水熱処理について各種実験を実施したが、その実験過程において、以下の事実に遭遇した。   The present inventor conducted various experiments on the hydrothermal treatment of such mixed waste, and encountered the following facts in the course of the experiment.

(1)塩基又は塩基性化合物の含有量が比較的少ない医療系廃棄物等の混合廃棄物を水熱処理する場合には、反応器内で気化した塩化水素の多くは水蒸気によって効果的に反応器外に排出し得る。 (1) When mixed waste such as medical waste containing a relatively small amount of base or basic compound is hydrothermally treated, most of the hydrogen chloride vaporized in the reactor is effectively removed by steam. Can be discharged outside.

(2)水酸化ナトリウム、水酸化カルシウム等の塩基又は塩基性化合物を比較的多量に含む混合廃棄物を水熱処理すると、熱分解によって廃棄物から離脱する塩化水素が廃棄物中の金属元素化合物と反応し、比較的多量の無機塩を生成する結果、廃棄物中の塩素を所望の如く水蒸気側に移行させることが困難な状況が生じ易い。 (2) When mixed waste containing a relatively large amount of a base or basic compound such as sodium hydroxide or calcium hydroxide is hydrothermally treated, hydrogen chloride released from the waste due to thermal decomposition is separated from the metal element compound in the waste. As a result of reacting and producing a relatively large amount of inorganic salt, it is likely that a situation in which it is difficult to transfer chlorine in waste to the water vapor side as desired.

本発明者は、このような実験結果に鑑み、廃棄物中の有機塩素と反応して無機塩を生成する金属元素の化合物を積極的に反応器内に投入し、この化合物を上記温度条件の飽和水蒸気の存在下に廃棄物と一緒に混合・攪拌する構成を上記の如く採用したものである。   In view of such experimental results, the present inventor positively charged a compound of a metal element that reacts with organic chlorine in waste to produce an inorganic salt into the reactor, and this compound is subjected to the above temperature conditions. A configuration in which mixing and stirring are performed together with waste in the presence of saturated steam is employed as described above.

このような化合物の金属元素は、熱分解により離脱した塩化水素と反応して廃棄物中に無機塩を生成し、無機塩として廃棄物中に残留する。本発明において、「脱塩」は、このようにして有機化合物中の塩素(有機塩素)を無機塩の塩素(無機塩素)に転換すること(即ち、有機塩素を無機塩素化する脱有機塩素処理を行うこと)を意味する。無機塩を含む再生固形燃料は、燃焼用燃料として加熱炉、ボイラー等の燃焼装置に供給され、ガス化燃料としてガス化炉又は熱分解炉に供給され、或いは、油化原料として油化装置に供給されるが、一旦無機化した塩素は、極めて高温(1400℃以上)の燃焼雰囲気において燃焼させない限り、燃焼排ガス中に放出されず、実質的にその全てが焼却残渣として燃焼灰中に残留し、或いは、油化残渣として熱分解釜等に残留する。従って、本発明に従って有機塩素を無機塩素化することにより、従来実施されていた脱塩処理の効果と実質的に同じ効果が得られる。   The metal element of such a compound reacts with hydrogen chloride released by thermal decomposition to produce an inorganic salt in the waste, and remains in the waste as an inorganic salt. In the present invention, “desalting” refers to the conversion of chlorine (organic chlorine) in an organic compound into inorganic salt chlorine (inorganic chlorine) in this way (that is, deorganic chlorine treatment for inorganic chlorination of organic chlorine). Means). Regenerated solid fuel containing inorganic salt is supplied as a combustion fuel to a combustion apparatus such as a heating furnace or a boiler, supplied as a gasification fuel to a gasification furnace or a pyrolysis furnace, or supplied to an oilification apparatus as an oily raw material. Once supplied, the mineralized chlorine is not released into the flue gas unless it is burned in a very high temperature (1400 ° C or higher) combustion atmosphere, and substantially all of it remains in the combustion ash as an incineration residue. Alternatively, it remains in the pyrolysis kettle or the like as an oily residue. Accordingly, by subjecting the organic chlorine to inorganic chlorination according to the present invention, substantially the same effect as that of the conventional desalting treatment can be obtained.

なお、本願明細書においては、「有機塩素」は、水に溶けない非可溶性の有機化合物中の塩素として定義され、「無機塩素」は、水に溶ける可溶性の無機塩中の塩素として定義される。   In the present specification, “organic chlorine” is defined as chlorine in an insoluble organic compound that is not soluble in water, and “inorganic chlorine” is defined as chlorine in a soluble inorganic salt that is soluble in water. .

本発明の廃棄物脱塩方法及び廃棄物脱塩装置によれば、再生固形燃料の発熱量を大きく低下させることなく、しかも、容器内雰囲気を加熱すべく高性能又は大形の加熱装置を反応容器自体に設けることなく、有機塩素を含む混合廃棄物を加熱して該廃棄物を効果的に破砕し且つ脱塩することができる。   According to the waste desalination method and the waste desalination apparatus of the present invention, a high-performance or large-sized heating device is reacted to heat the atmosphere in the container without greatly reducing the calorific value of the regenerated solid fuel. Without providing in the container itself, the mixed waste containing organic chlorine can be heated to effectively crush and demineralize the waste.

本発明の第1実施例に係る脱塩方法を実施するための廃棄物処理装置の全体構成を概略的に示すブロック図である。1 is a block diagram schematically showing an overall configuration of a waste treatment apparatus for carrying out a desalting method according to a first embodiment of the present invention. 図1に示す廃棄物処理装置の構造及び作動形態を概略的に示すブロックフロー図であり、廃棄物処理装置の作動工程が段階的に示されている。FIG. 2 is a block flow diagram schematically showing the structure and operation mode of the waste treatment apparatus shown in FIG. 1, in which the operation process of the waste treatment apparatus is shown in stages. 水熱処理実験の結果として得られた水熱処理後の各試料の塩素含有率を示す線図である。It is a diagram which shows the chlorine content rate of each sample after the hydrothermal treatment obtained as a result of the hydrothermal treatment experiment. 水熱処理実験の結果として得られた水熱処理後の各試料の総発熱量を示す線図である。It is a diagram which shows the total calorific value of each sample after the hydrothermal treatment obtained as a result of the hydrothermal treatment experiment. 本発明の第2実施例に係る脱塩方法を実施するための廃棄物処理装置の全体構成を概略的に示すブロック図である。It is a block diagram which shows roughly the whole structure of the waste-treatment apparatus for enforcing the desalination method which concerns on 2nd Example of this invention. 図5に示す廃棄物処理装置の構造及び作動形態を概略的に示すブロックフロー図である。FIG. 6 is a block flow diagram schematically showing the structure and operation mode of the waste treatment apparatus shown in FIG. 5. 本発明の第3実施例に係る脱塩方法を実施するための廃棄物処理装置の全体構成を概略的に示すブロック図である。It is a block diagram which shows roughly the whole structure of the waste-treatment apparatus for enforcing the desalination method which concerns on 3rd Example of this invention. 図7に示す廃棄物処理装置の構造及び作動形態を概略的に示すブロックフロー図である。FIG. 8 is a block flow diagram schematically showing the structure and operation mode of the waste disposal apparatus shown in FIG. 7. 図7に示す廃棄物処理装置の構造及び作動形態を概略的に示すブロックフロー図であり、図8に示す工程に後続する工程が示されている。FIG. 9 is a block flow diagram schematically showing the structure and operation mode of the waste treatment apparatus shown in FIG. 7, and shows a step subsequent to the step shown in FIG. 8.

好ましくは、上記金属元素は、カルシウム、マグネシウム、ナトリウム及びカリウムよりなる群から選ばれる少なくとも1種類の金属元素であり、上記化合物は、これら金属元素の酸化物、水酸化物又は炭酸塩である。   Preferably, the metal element is at least one metal element selected from the group consisting of calcium, magnesium, sodium and potassium, and the compound is an oxide, hydroxide or carbonate of these metal elements.

本発明の好ましい実施形態によれば、飽和水蒸気の圧力は、2.5〜3.0MPaの範囲内の所定圧力、例えば、2.8MPaに設定され、反応器内の温度は、約224〜233℃の範囲内の温度、例えば、約230℃に設定される。   According to a preferred embodiment of the present invention, the saturated steam pressure is set to a predetermined pressure in the range of 2.5 to 3.0 MPa, for example 2.8 MPa, and the temperature in the reactor is about 224 to 233. It is set to a temperature in the range of ° C, for example, about 230 ° C.

本発明の或る好適な実施形態においては、第2の反応器が更に設けられ、上記反応器(第1反応器)内の固形分は、第1反応器から第2反応器に移送され、第2反応器において乾燥処理を受ける。好ましくは、外気温相当の温度の空気又は所定温度に加熱された空気が、乾燥用空気として第1及び/又は第2反応器内に強制通風される。反応器内雰囲気は換気され、反応器内の固形分は常温空気又は加温空気の通風によって強制乾燥される。   In a preferred embodiment of the present invention, a second reactor is further provided, and solids in the reactor (first reactor) are transferred from the first reactor to the second reactor, A drying process is performed in the second reactor. Preferably, air having a temperature corresponding to the outside air temperature or air heated to a predetermined temperature is forcibly ventilated into the first and / or second reactor as drying air. The atmosphere in the reactor is ventilated, and the solid content in the reactor is forcibly dried by passing normal temperature air or warm air.

好ましくは、第1反応器内の温度又は圧力を検出して、第1反応器に対する飽和水蒸気の供給を制御する制御系設備が設けられる。所望により、この制御系設備は、乾燥工程において乾燥領域(容器内領域)の雰囲気(温度、湿度等)を計測する計測手段を更に有し、乾燥用機器類の運転をも制御するように構成される。   Preferably, a control system facility for detecting the temperature or pressure in the first reactor and controlling the supply of saturated water vapor to the first reactor is provided. If desired, this control system equipment further includes a measuring means for measuring the atmosphere (temperature, humidity, etc.) of the drying region (region in the container) in the drying process, and is also configured to control the operation of the drying equipment. Is done.

上記所定時間(保持時間)は、少なくとも15分、好ましくは、30分以上、更に好ましくは、1時間以上の時間(例えば、90分)に設定される。   The predetermined time (holding time) is set to at least 15 minutes, preferably 30 minutes or more, more preferably 1 hour or more (for example, 90 minutes).

所望により、第1反応器内の固形分は第1反応器内で加水・混合攪拌され、或いは、混合攪拌槽に導入されて加水され且つ所定時間混合攪拌され、この結果、固形分はスラリー化する。固形分中に残留した無機塩は、第1反応器内又は混合攪拌槽内において水中に溶出する。好ましくは、加水される水の重量は、反応器内の固形分1重量部に対して2〜50重量部の範囲内に設定される。固形分を含むスラリーは固液分離装置に導入され、固液分離される。水に溶出した塩は、水溶液として系外に排出される。更に好ましくは、固液分離した固形分は、第2反応器に移送され、乾燥処理を受ける。所望により、外気相当温度の空気又は所定温度に加熱された空気が乾燥空気として第2反応器に通風され、乾燥空気は、固形分を強制乾燥させる。   If desired, the solid content in the first reactor is hydrated, mixed and stirred in the first reactor, or introduced into the mixing and stirring tank to be hydrated and mixed and stirred for a predetermined time. As a result, the solid content is slurried. To do. The inorganic salt remaining in the solid content is eluted in water in the first reactor or the mixing and stirring tank. Preferably, the weight of water to be added is set in the range of 2 to 50 parts by weight with respect to 1 part by weight of the solid content in the reactor. The slurry containing the solid content is introduced into a solid-liquid separation device and separated into solid and liquid. The salt eluted in water is discharged out of the system as an aqueous solution. More preferably, the solid content after the solid-liquid separation is transferred to the second reactor and subjected to a drying treatment. If desired, air at a temperature equivalent to the outside air or air heated to a predetermined temperature is passed through the second reactor as dry air, and the dry air forces the solid content to dry.

図1は、本発明の第1実施例に係る脱塩方法を実施するための廃棄物処理装置の全体構成を概略的に示すブロック図である。   FIG. 1 is a block diagram schematically showing the overall configuration of a waste treatment apparatus for carrying out a desalting method according to a first embodiment of the present invention.

廃棄物処理装置は、第1反応器、第2反応器及び排水処理装置を有する。ポリ塩化ビニル(PVC)を比較的多量に含む混合廃棄物が第1反応器内に供給されるとともに、廃棄物中の有機塩素を無機塩素に転換する無機塩生成剤として、塩化水素と反応して無機塩を生成するカルシウム、マグネシウム、ナトリウム又はカリウムの酸化物、水酸化物又は炭酸塩、例えば、生石灰(CaO)が第1反応器内に供給される。なお、前述のとおり、本明細書においては、「有機塩素」は、水に溶けない非可溶性の有機化合物中の塩素として定義され、「無機塩素」は、水に溶ける可溶性の無機塩中の塩素として定義される。   The waste treatment apparatus includes a first reactor, a second reactor, and a waste water treatment apparatus. Mixed waste containing a relatively large amount of polyvinyl chloride (PVC) is fed into the first reactor, and it reacts with hydrogen chloride as an inorganic salt generator that converts organic chlorine in the waste into inorganic chlorine. Calcium, magnesium, sodium or potassium oxides, hydroxides or carbonates, such as quicklime (CaO), which produce inorganic salts are fed into the first reactor. As described above, in this specification, “organic chlorine” is defined as chlorine in an insoluble organic compound that is not soluble in water, and “inorganic chlorine” is chlorine in a soluble inorganic salt that is soluble in water. Is defined as

高温・高圧の飽和水蒸気が第1反応器内に更に供給される。第1反応器は、容器内の温度及び圧力を検出する温度検出器T及び圧力検出器Pを有し、検出器T、Pは、制御装置(制御ユニット)C/Uに接続される。制御装置C/Uは、水蒸気供給源に制御信号を出力し、或いは、水蒸気供給系設備の弁類等を制御し、これにより、第1反応器に供給される水蒸気の圧力及び供給量(流量)等を制御する。   High temperature and high pressure saturated steam is further fed into the first reactor. The first reactor has a temperature detector T and a pressure detector P that detect the temperature and pressure in the container, and the detectors T and P are connected to a control device (control unit) C / U. The control device C / U outputs a control signal to the steam supply source, or controls valves and the like of the steam supply system equipment, whereby the pressure and supply amount (flow rate) of the steam supplied to the first reactor. ) Etc.

第1反応器内の飽和水蒸気の圧力は、2.0〜3.0MPaの範囲内、好ましくは、2.5〜3.0MPaの範囲内の所定圧力、例えば、2.8MPaに設定される。圧力2.0〜3.0MPaの飽和水蒸気の温度は、約212〜233℃であり、圧力2.5〜3.0MPaの飽和水蒸気の温度は、約224〜233℃である。また、圧力2.8MPaの飽和水蒸気の温度は、約230℃である。   The pressure of the saturated water vapor in the first reactor is set to a predetermined pressure in the range of 2.0 to 3.0 MPa, preferably in the range of 2.5 to 3.0 MPa, for example, 2.8 MPa. The temperature of saturated steam at a pressure of 2.0 to 3.0 MPa is about 212 to 233 ° C., and the temperature of saturated steam at a pressure of 2.5 to 3.0 MPa is about 224 to 233 ° C. Moreover, the temperature of the saturated steam at a pressure of 2.8 MPa is about 230 ° C.

本実施形態においては、2.0〜3.0MPaの範囲内(好ましくは、2.5〜3.0MPaの範囲内)の所定圧力の飽和水蒸気を供給可能な既存又は既設の水蒸気発生装置、例えば、発電設備の既設水蒸気ボイラーや、同等の他の既設水蒸気ボイラーを水蒸気供給源として好適に使用し得る。所望により、このような圧力の飽和水蒸気を供給可能な水蒸気発生装置を新たに設置しても良い。なお、3.0MPaを超える高圧の水蒸気を発生させ且つ供給する水蒸気供給設備は、耐圧性、耐久性等の観点より比較的高度又は特殊な技術を要し、水蒸気ボイラー等の機器又は装置の初期費用(購入・設置費用等)もかなり高額化するのに対し、圧力3.0MPa以下の飽和水蒸気を利用する限りにおいては、上記の如く既存又は汎用の設備を利用することが可能であり、また、仮に水蒸気供給系設備を新設する場合であっても、比較的容易に水蒸気供給系設備を新設することが可能であると考えられる。   In the present embodiment, an existing or existing steam generator capable of supplying saturated steam at a predetermined pressure within a range of 2.0 to 3.0 MPa (preferably within a range of 2.5 to 3.0 MPa), for example, The existing steam boiler of the power generation facility or other equivalent existing steam boiler can be suitably used as the steam supply source. If desired, a steam generator capable of supplying saturated steam at such a pressure may be newly installed. In addition, the steam supply equipment that generates and supplies high-pressure steam exceeding 3.0 MPa requires relatively advanced or special technology from the viewpoint of pressure resistance, durability, etc., and is the initial stage of equipment or devices such as steam boilers. Costs (purchase / installation costs, etc.) are considerably increased, but as long as saturated steam with a pressure of 3.0 MPa or less is used, existing or general-purpose equipment can be used as described above. Even if a steam supply system facility is newly installed, it is considered that a steam supply system facility can be installed relatively easily.

制御装置C/Uは、検出器T、Pの検出結果に基づいて第1反応器内の飽和水蒸気の圧力及び温度を上記圧力及び温度に所定時間保持するように水蒸気供給源に制御信号を出力し、或いは、水蒸気供給系設備を制御する。第1反応器内の圧力及び温度の保持時間は、少なくとも15分、好ましくは、30分以上、更に好ましくは、1時間以上の時間に設定される。   The control device C / U outputs a control signal to the water vapor supply source so as to maintain the pressure and temperature of the saturated water vapor in the first reactor at the pressure and temperature for a predetermined time based on the detection results of the detectors T and P. Alternatively, the steam supply system equipment is controlled. The pressure and temperature holding time in the first reactor is set to at least 15 minutes, preferably 30 minutes or more, and more preferably 1 hour or more.

生石灰(CaO)等の無機塩生成剤を添加した混合廃棄物は、第1反応器内で混合攪拌され、第1反応器内の飽和水蒸気と接触する。飽和水蒸気は凝縮し、水蒸気が保有する多大な潜熱は混合廃棄物に対して放熱される。約212〜233℃の温度域においては、ポリ塩化ビニル(PVC)の熱分解反応は進行するが、炭化水素又は炭素化合物の熱分解反応は生じないことが判明している。即ち、約212〜233℃の温度域においては、実質的に混合廃棄物中の有機塩素のみが塩化水素ガスとして気化しようとするが、混合廃棄物中の有機化合物及び炭化水素の熱分解はさほど進行せず、従って、混合廃棄物が保有する可燃分の多くは、気化又は液化によって固形分から多量に流出することなく、比較的高い発熱量の固形分が第1反応器内に残留する。   The mixed waste to which an inorganic salt generating agent such as quick lime (CaO) is added is mixed and stirred in the first reactor, and comes into contact with the saturated water vapor in the first reactor. The saturated water vapor condenses, and the great latent heat that the water vapor retains is dissipated to the mixed waste. It has been found that in the temperature range of about 212 to 233 ° C., the thermal decomposition reaction of polyvinyl chloride (PVC) proceeds, but the thermal decomposition reaction of hydrocarbons or carbon compounds does not occur. That is, in the temperature range of about 212 to 233 ° C., substantially only organic chlorine in the mixed waste tends to vaporize as hydrogen chloride gas, but thermal decomposition of the organic compound and hydrocarbon in the mixed waste is not so much. Therefore, a large amount of combustible matter retained in the mixed waste does not flow out of the solid content by vaporization or liquefaction, and a relatively high exothermic solid content remains in the first reactor.

生石灰(CaO)等の無機塩生成剤は、第1反応器内において混合廃棄物と混合する。本発明者の実験によれば、アルカリ化合物の含有量が少ない医療系廃棄物等を約212〜233℃の水蒸気によって加熱処理した場合、廃棄物中の有機塩素が相当量離脱し、塩化水素(HCl)として水蒸気に移行するが、塩化水素と反応して無機塩を生成する生石灰(CaO)等の無機塩生成剤を混合した廃棄物を約212〜233℃の水蒸気によって加熱処理した場合、カルシウム等の金属元素が塩化水素の塩素と反応して塩化カルシウム(CaCl2)等の無機塩を生成する。従って、水蒸気への塩化水素の移行は抑制される。有機塩素は無機塩素に転換され、無機塩として廃棄物中に残留する。 An inorganic salt generating agent such as quicklime (CaO) is mixed with the mixed waste in the first reactor. According to the inventor's experiment, when medical waste having a low alkali compound content is heat-treated with steam at about 212 to 233 ° C., a considerable amount of organic chlorine in the waste is released, and hydrogen chloride ( HCl) is transferred to water vapor, but when the waste mixed with an inorganic salt generator such as quick lime (CaO) that reacts with hydrogen chloride to produce an inorganic salt is heat-treated with water vapor at about 212 to 233 ° C., calcium A metal element such as hydrogen chloride reacts with chlorine in hydrogen chloride to produce an inorganic salt such as calcium chloride (CaCl 2 ). Therefore, the transfer of hydrogen chloride to water vapor is suppressed. Organic chlorine is converted to inorganic chlorine and remains in the waste as an inorganic salt.

制御装置C/Uは、第1反応器内の飽和水蒸気の圧力及び温度を所定時間保持した後、第1反応器の水蒸気を廃蒸気として排水処理装置に排出するように第1反応器の廃蒸気排出装置(図示せず)を制御し、廃蒸気は、排水処理装置に排出される。廃蒸気は、排水処理装置において凝縮し且つ中和処理を受け、しかる後、排水系管路(図示せず)を介して系外に排水される。   The control device C / U holds the pressure and temperature of the saturated steam in the first reactor for a predetermined time, and then discards the first reactor so that the steam in the first reactor is discharged as waste steam to the waste water treatment device. A steam discharge device (not shown) is controlled, and the waste steam is discharged to the waste water treatment device. The waste steam is condensed and subjected to neutralization in the waste water treatment apparatus, and then drained out of the system through a drain system pipe line (not shown).

制御装置C/Uは又、第1反応器内に残留した固形分を第2反応器に移送するように第1反応器の固形分移動装置(図示せず)を制御する。第2反応器に移動した固形分は、第2反応器において乾燥処理(又は脱水・乾燥処理)を受ける。乾燥後の固形分は、第2反応器から排出され、無機塩を含む再生固形燃料、例えば、石炭代替の固形燃料として外部施設等に出荷される。所望により、再生固形燃料の一部は、水蒸気供給源を構成する水蒸気ボイラー等(図示せず)の燃料として使用される。   The controller C / U also controls a solid content transfer device (not shown) of the first reactor so that the solid content remaining in the first reactor is transferred to the second reactor. The solid content transferred to the second reactor is subjected to a drying process (or dehydration / drying process) in the second reactor. The solid content after drying is discharged from the second reactor and shipped to an external facility or the like as a regenerated solid fuel containing an inorganic salt, for example, a solid fuel replacing coal. If desired, a part of the regenerated solid fuel is used as a fuel for a steam boiler or the like (not shown) constituting the steam supply source.

無機塩を含む再生固形燃料は、加熱炉、ボイラー等の燃焼装置に供給されて燃焼反応するが、一旦無機化した塩素は、極めて高温(1400℃以上)の燃焼雰囲気において燃焼させない限り、燃焼排ガス中に放出されず、実質的にその全てが焼却残渣として燃焼灰中に残留する。このため、炉の閉塞、炉体の腐食、有害ガス発生等の問題は解消する。即ち、上記の如く有機塩素を無機塩素化することにより、従来の脱塩処理による効果と実質的に同じ効果が得られる。また、再生固形燃料を油化原料として油化装置に供給しても良く、この場合、再生固形燃料に含まれる無機塩は、油化残渣として熱分解釜等に残留する。   Recycled solid fuel containing inorganic salts is supplied to combustion equipment such as heating furnaces and boilers and undergoes a combustion reaction. Chlorine once mineralized is a combustion exhaust gas unless it is burned in a very high temperature (1400 ° C or higher) combustion atmosphere. It is not released in, and substantially all of it remains in the combustion ash as an incineration residue. This eliminates problems such as furnace blockage, furnace body corrosion, and generation of harmful gases. That is, by chlorinating organic chlorine as described above, substantially the same effect as that obtained by the conventional desalting treatment can be obtained. In addition, the regenerated solid fuel may be supplied to the liquefaction apparatus as an oily raw material. In this case, the inorganic salt contained in the regenerated solid fuel remains in the pyrolysis kettle or the like as an oily residue.

図2は、図1に示す廃棄物処理装置の構造及び作動形態を概略的に示すブロックフロー図である。図2には、廃棄物処理装置の作動工程が段階的に示されている。   FIG. 2 is a block flow diagram schematically showing the structure and operation mode of the waste disposal apparatus shown in FIG. FIG. 2 shows a step-by-step operation process of the waste treatment apparatus.

図2(A)に示す如く、第1反応器は、混合廃棄物W0を第1反応器内に導入するピストン・シリンダ式押出機又はホッパー等の廃棄物供給機を備える。第1反応器には、水蒸気供給系設備の水蒸気供給管路が接続されるとともに、生石灰(CaO)等の無機塩生成剤を第1反応器内に導入する無機塩生成剤供給装置が接続される。   As shown in FIG. 2A, the first reactor includes a waste supply machine such as a piston / cylinder type extruder or a hopper for introducing the mixed waste W0 into the first reactor. The first reactor is connected to a water vapor supply line of a water vapor supply system facility, and is connected to an inorganic salt generating agent supply device for introducing an inorganic salt generating agent such as quick lime (CaO) into the first reactor. The

第1反応器は、容器内の水熱反応域に投入された混合廃棄物W1を強制的に攪拌する攪拌装置を備える。攪拌装置は、反応器本体に水平に支承された回転軸と、回転軸に固定され且つ回転軸から径方向に延びる攪拌羽根と、回転軸を回転駆動する電動モータMとを有し、混合廃棄物W1は、回転軸及び攪拌羽根の回転運動によって攪拌される。   The first reactor includes a stirring device for forcibly stirring the mixed waste W1 charged into the hydrothermal reaction zone in the container. The stirrer has a rotating shaft that is horizontally supported by the reactor body, a stirring blade that is fixed to the rotating shaft and extends in the radial direction from the rotating shaft, and an electric motor M that rotationally drives the rotating shaft. The object W1 is agitated by the rotational movement of the rotating shaft and the stirring blade.

廃棄物供給機は、制御装置C/Uの制御下に混合廃棄物W0を第1反応器内に導入し、無機塩生成剤供給装置は、生石灰(CaO)等の無機塩生成剤を制御装置C/Uの制御下に第1反応器内に導入する。   The waste supply machine introduces the mixed waste W0 into the first reactor under the control of the control device C / U, and the inorganic salt generating agent supply device controls the inorganic salt generating agent such as quick lime (CaO). It is introduced into the first reactor under the control of C / U.

所定圧力の飽和水蒸気が、水蒸気供給管路を介して制御装置C/Uの制御下に第1反応器内の水熱反応域に供給され、飽和水蒸気は第1反応器内の水熱反応域に充満する。第1反応器内の混合廃棄物及び無機塩生成剤は攪拌装置によって混合攪拌され、混合廃棄物は飽和水蒸気と混合接触する。反応域の飽和水蒸気は混合廃棄W1の表面で凝縮して多量の潜熱を放熱する。水蒸気が保有する多大な潜熱が混合廃棄物W1に吸熱される結果、混合廃棄物W1の熱分解反応が進行し、混合廃棄物W1は微細化又は微粉化する。   Saturated steam at a predetermined pressure is supplied to the hydrothermal reaction zone in the first reactor under the control of the control device C / U via the steam supply line, and the saturated steam is hydrothermal reaction zone in the first reactor. To charge. The mixed waste and the inorganic salt generating agent in the first reactor are mixed and stirred by a stirrer, and the mixed waste comes into mixed contact with saturated steam. The saturated water vapor in the reaction zone condenses on the surface of the mixed waste W1 and releases a large amount of latent heat. As a result of the large latent heat held by the water vapor being absorbed by the mixed waste W1, the thermal decomposition reaction of the mixed waste W1 proceeds, and the mixed waste W1 is refined or pulverized.

第1反応器内の圧力及び温度は、飽和水蒸気の圧力及び温度であり、前述の如く、2.0〜3.0MPa、約212〜233℃の範囲内、好ましくは、2.5〜3.0MPa、約224〜233℃の範囲内の圧力及び温度、例えば、2.8MPa、約230℃の圧力及び温度に所定時間保持される。前述の如く、このような温度条件の下で進行する熱分解反応では、混合廃棄物中の有機塩素分は塩化水素(HCl)として水蒸気に移行しようとするが、混合廃棄物中の有機塩素分は、無機塩生成剤の金属元素(Ca等)と急激に反応して無機塩を生成する。即ち、添加された無機塩生成剤は、塩化水素(HCl)の気化を抑制する。第1反応器内に生成した無機塩は、廃棄物中に固形分として残留する。   The pressure and temperature in the first reactor are those of saturated steam, and as described above, within the range of 2.0 to 3.0 MPa and about 212 to 233 ° C., preferably 2.5 to 3. The pressure and temperature within the range of 0 MPa and about 224 to 233 ° C., for example, 2.8 MPa and the pressure and temperature of about 230 ° C. are maintained for a predetermined time. As described above, in the pyrolysis reaction that proceeds under such temperature conditions, the organic chlorine content in the mixed waste tends to be transferred to water vapor as hydrogen chloride (HCl), but the organic chlorine content in the mixed waste is reduced. Reacts rapidly with the metal element (such as Ca) of the inorganic salt generating agent to generate an inorganic salt. That is, the added inorganic salt generator suppresses the vaporization of hydrogen chloride (HCl). The inorganic salt produced in the first reactor remains as a solid content in the waste.

制御装置C/Uは、第1反応器内の飽和水蒸気の圧力及び温度を所定時間保持した後、第1反応器の水蒸気を廃蒸気として排水処理装置に排出するように第1反応器の廃蒸気排出装置(図示せず)を制御し、廃蒸気は、図2(B)に示す如く、排水処理装置に排出される。廃蒸気は、排水処理装置において凝縮し且つ中和処理を受け、しかる後、排水系管路(図示せず)を介して系外に排水される。前述の如く、無機塩生成剤が塩化水素(HCl)の気化を抑制するので、水蒸気に移行する塩化水素の量がかなり減少し、この結果、排水処理装置の負荷は軽減する。従って、排水処理装置の容量及び処理性能を大幅に低減することができる。   The control device C / U holds the pressure and temperature of the saturated steam in the first reactor for a predetermined time, and then discards the first reactor so that the steam in the first reactor is discharged as waste steam to the waste water treatment device. A steam discharge device (not shown) is controlled, and the waste steam is discharged to the waste water treatment device as shown in FIG. The waste steam is condensed and subjected to neutralization in the waste water treatment apparatus, and then drained out of the system through a drain system pipe line (not shown). As described above, since the inorganic salt generating agent suppresses the vaporization of hydrogen chloride (HCl), the amount of hydrogen chloride transferred to the water vapor is considerably reduced. As a result, the load on the waste water treatment apparatus is reduced. Therefore, the capacity and treatment performance of the waste water treatment device can be greatly reduced.

所望により、第1反応器内の雰囲気を換気する換気設備又は給排気設備を第1反応器に配設し、廃蒸気後の所定時期に反応域の雰囲気を換気するように第1反応器を構成しても良い。   If desired, a ventilation facility or a supply / exhaust facility for ventilating the atmosphere in the first reactor is disposed in the first reactor, and the first reactor is ventilated at a predetermined time after waste steam. It may be configured.

図2(B)に示す如く、第1反応器に残留した固形分W1'は第2反応器に移送され、第2反応器において常温通風乾燥方式の乾燥処理(又は脱水・乾燥処理)を受ける。第2反応器には、第2反応器内の固形分W2を乾燥させるための通風用給気管及び排気管が接続される。給気管及び排気管の少なくとも一方には、送風機(図示せず)が介装され、常温外気が第2反応器に強制通風される。   As shown in FIG. 2 (B), the solid content W1 ′ remaining in the first reactor is transferred to the second reactor, where it is subjected to drying treatment (or dehydration / drying treatment) in a room temperature ventilation drying system. . The second reactor is connected to a ventilation air supply pipe and an exhaust pipe for drying the solid content W2 in the second reactor. A blower (not shown) is interposed in at least one of the air supply pipe and the exhaust pipe, and normal temperature outside air is forcibly ventilated to the second reactor.

図2(C)に示す如く、乾燥後の固形分W2は、微細化又は微粉化され且つ有機塩素の無機塩素化がなされた再生固形燃料として第2反応器から払い出される。他方、第1反応器内には、混合廃棄物W1が廃棄物供給機によって新たに供給されるとともに、高温・高圧の飽和水蒸気が水蒸気供給系設備によって第1反応器内に導入される。前述の如く、混合廃棄物W1は、回転軸及び攪拌羽根の回転運動によって攪拌され、混合廃棄物W1の水熱処理(有機塩素の無機塩素化処理)が第1反応器内で進行する。以下、図2(A)〜図2(C)に示す工程が反復実施される。   As shown in FIG. 2C, the solid content W2 after drying is discharged from the second reactor as a regenerated solid fuel that has been refined or pulverized and subjected to inorganic chlorination of organic chlorine. On the other hand, the mixed waste W1 is newly supplied into the first reactor by the waste supplier, and high-temperature and high-pressure saturated steam is introduced into the first reactor by the steam supply system equipment. As described above, the mixed waste W1 is stirred by the rotational movement of the rotating shaft and the stirring blade, and the hydrothermal treatment (inorganic chlorination of organic chlorine) of the mixed waste W1 proceeds in the first reactor. Thereafter, the steps shown in FIGS. 2A to 2C are repeatedly performed.

本発明者等は、図1及び図2に示す廃棄物処理装置を使用して水熱処理実験を実施した。以下に説明する表1〜3には、水熱処理実験の実験結果が示されている。   The present inventors conducted a hydrothermal treatment experiment using the waste treatment apparatus shown in FIGS. Tables 1 to 3 described below show the results of the hydrothermal treatment experiment.

水熱処理実験において使用された無機塩生成剤(添加剤)の成分が表1に示されている。表1に示される如く、生石灰(CaO)を主成分とする添加剤が無機塩生成剤として使用された。また、水熱処理実験の供試体として、表2に示す試料1〜5が用意された。   Table 1 shows the components of the inorganic salt-forming agent (additive) used in the hydrothermal treatment experiment. As shown in Table 1, an additive mainly composed of quick lime (CaO) was used as an inorganic salt generator. Samples 1 to 5 shown in Table 2 were prepared as specimens for the hydrothermal treatment experiment.

Figure 2011031226
Figure 2011031226

Figure 2011031226
Figure 2011031226

試料1〜5は各々、上記第1反応器に投入され、第1反応器内に供給された圧力2.4MPa、温度約220℃の飽和水蒸気の存在下に前述の水熱処理を受けた。水熱処理時間は、90分に設定された。試料4及び5は、水熱処理後、約1時間の加熱乾燥工程を経て廃棄物処理装置から取り出され、試料2及び3は、水熱処理後、乾燥工程を経ずに直ちに廃棄物処理装置から取り出された。   Samples 1 to 5 were each charged into the first reactor and subjected to the hydrothermal treatment described above in the presence of saturated water vapor having a pressure of 2.4 MPa and a temperature of about 220 ° C. supplied into the first reactor. The hydrothermal treatment time was set at 90 minutes. Samples 4 and 5 are taken out of the waste treatment apparatus after a hydrothermal treatment and heated for about 1 hour, and samples 2 and 3 are taken out of the waste treatment apparatus immediately after the hydrothermal treatment and without a drying process. It was.

試料1は、混合廃棄物中に含まれるPVC(ポリ塩化ビニル)を模擬する試料であり、建築物等の給排水衛生設備配管として市販されているPVCパイプを適当に裁断してなる試験用原料である。   Sample 1 is a sample that simulates PVC (polyvinyl chloride) contained in mixed waste, and is a raw material for testing that is obtained by appropriately cutting a PVC pipe that is commercially available as a plumbing pipe for water supply and drainage facilities such as buildings. is there.

試料2は、PVCに含まれる塩素1当量と反応する生石灰の理論量(2当量)に対し、その3倍量(即ち、6当量)に相当する量の生石灰を含む添加剤を試料1に対して加え且つ混合してなる試料である。   Sample 2 contains an additive containing quick lime in an amount equivalent to 3 times the amount (ie, 6 equivalents) of the quick lime that reacts with 1 equivalent of chlorine contained in PVC (2 equivalents). The sample is added and mixed.

試料3は、PVCに含まれる塩素1当量と反応する生石灰の理論量(2当量)に対し、その2倍量(即ち、4当量)に相当する量の生石灰を含む添加剤を試料1に対して加え且つ混合してなる試料である。   In Sample 3, an additive containing quick lime in an amount corresponding to twice the theoretical amount (2 equivalents) of quick lime reacting with 1 equivalent of chlorine contained in PVC (2 equivalents) is added to Sample 1. The sample is added and mixed.

試料5は、現実の医療施設(病院)から排出された未調整の医療系廃棄物であり、試料4は、試料5の医療系廃棄物に対して適量の無機塩生成剤(添加剤)を混合してなる試料である。   Sample 5 is unadjusted medical waste discharged from an actual medical facility (hospital), and Sample 4 contains an appropriate amount of inorganic salt generating agent (additive) for the medical waste of Sample 5. This is a mixed sample.

表2には、エシュカ法によって測定された試料1〜5の全塩素(有機塩素及び無機塩素)含有率(重量%)が示されている。図3は、表2に示された全塩素含有率を示す線図である。   Table 2 shows the total chlorine (organic chlorine and inorganic chlorine) content (% by weight) of Samples 1 to 5 measured by the Eshka method. FIG. 3 is a diagram showing the total chlorine content shown in Table 2.

生石灰を添加した試料2及び3は、その全量の増大に伴って、相対的な塩素分の比率、即ち、全塩素含有率が低減している。なお、試料4及び5は現実の医療系廃棄物であり、試料4及び5における全塩素含有率の僅かな相違は、有意な数値差ではない。   In the samples 2 and 3 to which quicklime was added, the ratio of relative chlorine content, that is, the total chlorine content, decreased as the total amount increased. Samples 4 and 5 are actual medical wastes, and the slight difference in the total chlorine content in samples 4 and 5 is not a significant numerical difference.

表2及び図3には、第1反応器から取り出された試料2〜5の各々に関し、その無機塩素含有率(重量%)及び有機塩素含有率(重量%)が示されている。無機塩素含有率は、試料2〜5の水洗によって水溶液中に溶出した可溶性塩素(無機塩素)の塩素量測定結果であり、有機塩素含有率は、水洗残渣に残留した非可溶性塩素(有機塩素)の塩素量測定結果である。また、表2には、有機塩素含有率及び無機塩素含有率に関し、「全塩素を100とした割合」が示されている。なお、試料1については、有機塩素含有率及び無機塩素含有率の値が表2に示されていないが、試料1に含まれる全塩素が有機塩素であると考えられる。また、表2の最右欄に示されるように、有機塩素及び無機塩素の割合の合計値は100に一致しない。これは、水熱処理後の試料の混合状態が不均一であることにより生じた測定誤差によるものである。   Table 2 and FIG. 3 show the inorganic chlorine content (% by weight) and the organic chlorine content (% by weight) for each of Samples 2 to 5 taken from the first reactor. The inorganic chlorine content is the result of measuring the chlorine content of soluble chlorine (inorganic chlorine) eluted in the aqueous solution by washing samples 2 to 5, and the organic chlorine content is the insoluble chlorine (organic chlorine) remaining in the washing residue. It is a chlorine content measurement result. Further, Table 2 shows “a ratio of total chlorine as 100” regarding the organic chlorine content and the inorganic chlorine content. In addition, about the sample 1, although the value of an organic chlorine content rate and an inorganic chlorine content rate is not shown in Table 2, it is thought that all the chlorine contained in the sample 1 is organic chlorine. Further, as shown in the rightmost column of Table 2, the total value of the ratio of organic chlorine and inorganic chlorine does not match 100. This is due to a measurement error caused by the non-uniform mixing state of the sample after the hydrothermal treatment.

表2に示されるように、水熱処理後の試料2及び3は、比較的多量の無機塩素を含む。これは、試料2及び3に含まれる有機塩素の多くが、水熱処理によって無機塩素に転換したことを意味する。また、水熱処理後の試料4及び5を対比すると、添加剤(生石灰)を加えて水熱処理した試料4では、無機塩素含有率が有機塩素含有率よりも高いのに対し、添加剤(生石灰)を添加せずに水熱処理した試料5では、逆に、無機塩素含有率が有機塩素含有率よりも低い。これは、添加剤(生石灰)を添加した状態で水熱処理を行うことにより、有機塩素を無機塩素に転換し得ることを顕著に示している。   As shown in Table 2, samples 2 and 3 after hydrothermal treatment contain a relatively large amount of inorganic chlorine. This means that most of the organic chlorine contained in Samples 2 and 3 was converted to inorganic chlorine by hydrothermal treatment. Moreover, when comparing the samples 4 and 5 after the hydrothermal treatment, in the sample 4 subjected to the hydrothermal treatment by adding the additive (quick lime), the inorganic chlorine content is higher than the organic chlorine content, whereas the additive (quick lime). On the other hand, in the sample 5 subjected to the hydrothermal treatment without adding, the inorganic chlorine content is lower than the organic chlorine content. This remarkably shows that organic chlorine can be converted to inorganic chlorine by performing a hydrothermal treatment in a state where an additive (quick lime) is added.

表3には、水熱処理後の試料1〜5に関し、各試料に含まれる水分、可燃分及び灰分の重量比と、乾燥後の各試料の総発熱量とが示されている。図4には、水熱処理後の試料1〜5に関し、乾燥状態及び未乾燥状態の総発熱量が示されている。   Table 3 shows the weight ratio of moisture, combustible component, and ash component contained in each sample, and the total calorific value of each sample after drying, for samples 1 to 5 after hydrothermal treatment. In FIG. 4, the total calorific values in the dry state and the undried state are shown for samples 1 to 5 after the hydrothermal treatment.

Figure 2011031226
Figure 2011031226

試料4及び5の医療系廃棄物は、いずれも、水熱処理後に高い発熱量を有する。試料4を試料5と対比すると、試料4は、添加剤(生石灰)の添加等のために可燃分の含有量が相対的に低下しているので、総発熱量も相対的に低下している。しかし、表2に示されるとおり、試料4においては多くの有機塩素が無機塩素に転換しており、試料4に対しては、有効な脱塩処理(有機塩素の無機塩素化処理)がなされている。   Both the medical wastes of Samples 4 and 5 have a high calorific value after hydrothermal treatment. When comparing sample 4 with sample 5, sample 4 has a relatively low combustible content due to the addition of an additive (quick lime), etc., so the total calorific value is also relatively low. . However, as shown in Table 2, a lot of organic chlorine is converted to inorganic chlorine in sample 4, and effective desalting treatment (inorganic chlorination treatment of organic chlorine) is performed on sample 4. Yes.

試料1〜3を比較すると、比較的多量の添加剤(生石灰)を添加された試料2においては、可燃分の含有量が相対的に低下しており、その発熱量も低下している。これは、多量の添加剤(生石灰)の添加が再生燃料の発熱量の低下を招くことを意味する。即ち、添加剤(生石灰)の過剰な添加は、再生燃料の発熱量を低下させることから、添加剤(生石灰)の添加量には限界があり、無機塩生成剤の種類、成分等、混合廃棄物の種類、成分等、更には、目標とする再生燃料の発熱量等に相応して適切な添加剤(生石灰)の添加量の範囲が存在する。   When samples 1 to 3 are compared, in sample 2 to which a relatively large amount of additive (quick lime) is added, the combustible content is relatively lowered, and the calorific value is also reduced. This means that the addition of a large amount of additive (quick lime) causes a decrease in the calorific value of the regenerated fuel. In other words, excessive addition of additives (quick lime) reduces the calorific value of regenerated fuel, so there is a limit to the amount of additive (quick lime) added. There is a range of the amount of additive (quick lime) to be added according to the kind, component, etc. of the object, and further the calorific value of the target regenerated fuel.

図5は、本発明の第2実施例に係る混合廃棄物処理方法を実施するための廃棄物処理装置の全体構成を概略的に示すブロック図であり、図6は、図5に示す廃棄物処理装置の構造及び作動形態を概略的に示すブロックフロー図である。   FIG. 5 is a block diagram schematically showing the overall configuration of a waste treatment apparatus for carrying out the mixed waste treatment method according to the second embodiment of the present invention, and FIG. 6 is a waste shown in FIG. It is a block flow figure showing roughly the structure and operation form of a processing unit.

本実施例の廃棄物処理装置は、温風通風乾燥方式の強制乾燥設備を備えた単一の反容器を有する。強制乾燥設備は、外気を反応器に導入する送風機及び給気管と、反応器内の雰囲気を系外に排気する排気管とを備える。給気管には熱交換器が介装される。熱交換器には、熱交換器に熱媒体を循環させる熱媒体循環回路が接続される。熱媒体循環回路を構成する熱源として、反応器に接続した水蒸気供給源を使用し、或いは、水蒸気供給源の燃料と同一又は同等の燃料によって熱媒体流体を加熱する加熱装置等を使用することができる。このような加熱装置の燃料として、再生固形燃料の一部を使用しても良い。   The waste disposal apparatus of the present embodiment has a single anti-container equipped with a forced drying facility of a hot air ventilation drying method. The forced drying facility includes a blower and an air supply pipe for introducing outside air into the reactor, and an exhaust pipe for exhausting the atmosphere in the reactor to the outside of the system. A heat exchanger is interposed in the air supply pipe. A heat medium circulation circuit that circulates the heat medium in the heat exchanger is connected to the heat exchanger. As a heat source constituting the heat medium circulation circuit, a steam supply source connected to the reactor may be used, or a heating device that heats the heat medium fluid with the same or equivalent fuel as the fuel of the steam supply source may be used. it can. A part of the regenerated solid fuel may be used as the fuel for such a heating device.

図6(A)及び図6(B)に示すように、混合廃棄物及び無機塩生成剤が反応器内に導入され、所定圧力の飽和水蒸気を反応器内に充填した状態が所定時間保持された後、水蒸気の供給が停止されるとともに、反応器内の水蒸気が廃蒸気として排水処理装置に排出される。廃蒸気中に含まれる塩化水素は、排水処理装置において除去される。図6(C)に示す如く、熱交換器によって加熱された外界雰囲気の空気が、送風機の送風圧力下に反応器内に強制通風され、反応器内の雰囲気は、強制換気される。反応器内の生成物(水熱反応後の廃棄物)は、温風通風による乾燥処理を受けた後、(塩化水素及び無機塩生成剤の反応によって生成した)無機塩を含む再生固形燃料として反応器から払い出される。   As shown in FIG. 6 (A) and FIG. 6 (B), the mixed waste and the inorganic salt generating agent are introduced into the reactor, and the state in which the saturated steam at a predetermined pressure is filled in the reactor is maintained for a predetermined time. After that, the supply of water vapor is stopped, and the water vapor in the reactor is discharged as waste steam to the waste water treatment apparatus. Hydrogen chloride contained in the waste steam is removed in the waste water treatment apparatus. As shown in FIG. 6C, the air in the outside atmosphere heated by the heat exchanger is forcibly ventilated into the reactor under the blowing pressure of the blower, and the atmosphere in the reactor is forcibly ventilated. The product in the reactor (waste after hydrothermal reaction) is subjected to drying treatment with warm air, and then as a regenerated solid fuel containing inorganic salt (generated by reaction of hydrogen chloride and inorganic salt generator) Discharged from the reactor.

なお、図6に示す廃棄物処理装置の他の作動工程は、図1及び図2に示す廃棄物処理装置の作動工程と実質的に同じものであるので、前述の実施例の説明を引用することにより、重複する記載を省略する。   Since the other operation steps of the waste treatment apparatus shown in FIG. 6 are substantially the same as the operation steps of the waste treatment apparatus shown in FIGS. 1 and 2, the description of the above-described embodiment is cited. Therefore, duplicate descriptions are omitted.

図7は、本発明の第3実施例に係る混合廃棄物処理方法を実施するための廃棄物処理装置の全体構成を概略的に示す廃棄物処理装置のブロック図である。   FIG. 7 is a block diagram of the waste treatment apparatus schematically showing the overall configuration of the waste treatment apparatus for carrying out the mixed waste treatment method according to the third embodiment of the present invention.

本実施例の廃棄物処理装置は、第1反応器内に残留した固形分に含まれる無機塩を溶出除去する手段として、常温(大気温度相当)の水(液相)、或いは、加温された水(液相)を第1反応器の固形分(水熱処理後の廃棄物)に加えて固形分及び水を混合攪拌する混合攪拌槽を備えるとともに、混合攪拌槽に生成した混合スラリーを脱水する固液分離装置を備える。混合攪拌装置は、固形分を水に良好に分散せしめる混合攪拌機構を備えており、固形分中の無機塩は水に溶解し、水中に拡散する。好ましくは、混合攪拌槽内に供給すべき水の重量は、固形分1重量部に対して2重量部から50重量部の範囲内に設定される。   The waste treatment apparatus of this example is a room temperature (equivalent to atmospheric temperature) water (liquid phase) or heated as a means for eluting and removing inorganic salts contained in the solid content remaining in the first reactor. Water (liquid phase) is added to the solid content of the first reactor (waste after hydrothermal treatment) and a mixing and stirring tank for mixing and stirring the solid content and water is provided, and the mixed slurry generated in the mixing and stirring tank is dehydrated. A solid-liquid separator. The mixing and stirring device is provided with a mixing and stirring mechanism that disperses the solid content well in water, and the inorganic salt in the solid content dissolves in water and diffuses in water. Preferably, the weight of water to be supplied into the mixing and stirring tank is set in the range of 2 to 50 parts by weight with respect to 1 part by weight of the solid content.

混合攪拌槽の混合攪拌処理によって得られた混合スラリーは、スラリー給送管等の管路を介して固液分離装置に導入される。固液分離装置として、圧搾脱水方式、加圧脱水方式又は遠心脱水方式の機械式脱水機を好適に使用し得る。固液分離装置内で分離した脱離液は、廃液管等を介して排水処理装置に排出される。固液分離によって得られた固形分は第2反応器に供給され、前述の如く乾燥処理を受けた後、再生固体燃料として第2反応器から払い出される。   The mixed slurry obtained by the mixing and stirring process in the mixing and stirring tank is introduced into the solid-liquid separator through a pipe line such as a slurry feed pipe. As the solid-liquid separator, a mechanical dehydrator of a pressure dehydration method, a pressure dehydration method, or a centrifugal dehydration method can be preferably used. The desorbed liquid separated in the solid-liquid separation device is discharged to a wastewater treatment device through a waste liquid pipe or the like. The solid content obtained by the solid-liquid separation is supplied to the second reactor, subjected to a drying treatment as described above, and then discharged from the second reactor as a regenerated solid fuel.

図8及び図9は、図7に示す廃棄物処理装置の構造および作動形態を概略的に示すブロックフロー図である。   8 and 9 are block flow diagrams schematically showing the structure and operation mode of the waste disposal apparatus shown in FIG.

図8(A)に示す如く、第1反応器の混合廃棄物W1及び無機塩生成剤は飽和水蒸気の存在下に攪拌され、混合廃棄物W1は熱分解処理を受ける。図8(B)に示す如く、第1反応器に残留した固形分W1'は混合攪拌槽に導入され、同時に、所定量の水が混合攪拌槽内に供給される。固形分は槽内で水と混合するとともに、混合攪拌処理を受けてスラリー化する。混合攪拌槽の混合攪拌機構は槽内の撹拌翼を回転駆動し、固形分に含まれた無機塩は水に溶解して水中に拡散する。   As shown in FIG. 8A, the mixed waste W1 and the inorganic salt-generating agent in the first reactor are stirred in the presence of saturated steam, and the mixed waste W1 is subjected to a pyrolysis treatment. As shown in FIG. 8B, the solid content W1 ′ remaining in the first reactor is introduced into the mixing and stirring tank, and at the same time, a predetermined amount of water is supplied into the mixing and stirring tank. The solid content is mixed with water in the tank and slurried by mixing and stirring. The mixing and stirring mechanism of the mixing and stirring tank rotates and rotates the stirring blade in the tank, and the inorganic salt contained in the solid content is dissolved in water and diffused in water.

混合攪拌槽に生成した混合スラリーは固液分離装置に導入される。この工程が図9(A)に示されている。脱水機内で固形分から分離した脱離液は、廃液管を介して排水処理装置に排出され、脱水後の固形分W2のみが第2反応器に供給される。図9(B)に示される如く、固形分W2は、乾燥処理を受けた後、再生固形燃料として第2反応器から払い出される。他方、第1反応器内には、混合廃棄物W1及び無機塩生成剤が新たに供給されるとともに、高温・高圧の飽和水蒸気が水蒸気供給系設備によって第1反応器内に導入される。以下、図8及び図9に示す工程が反復実施される。なお、図8及び図9に示す廃棄物処理装置の他の作動工程は、図1及び図2に示す廃棄物処理装置の作動工程と実質的に同じものであるので、前述の実施例の説明を引用することにより、重複する記載を省略する。   The mixed slurry produced in the mixing and stirring tank is introduced into a solid-liquid separator. This process is shown in FIG. The desorbed liquid separated from the solid content in the dehydrator is discharged to the waste water treatment device through the waste liquid pipe, and only the solid content W2 after the dehydration is supplied to the second reactor. As shown in FIG. 9B, the solid content W2 is discharged from the second reactor as a regenerated solid fuel after being dried. On the other hand, the mixed waste W1 and the inorganic salt generating agent are newly supplied into the first reactor, and high-temperature and high-pressure saturated steam is introduced into the first reactor by the steam supply system facility. Thereafter, the steps shown in FIGS. 8 and 9 are repeatedly performed. The other operation steps of the waste treatment apparatus shown in FIGS. 8 and 9 are substantially the same as the operation steps of the waste treatment apparatus shown in FIGS. Duplicate description is omitted by quoting.

以上、本発明の好適な実施形態及び実施例について詳細に説明したが、本発明は上記実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments and examples of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments and examples, and is within the scope of the present invention described in the claims. Various modifications or changes are possible.

例えば、第1及び第3実施例では、第2反応器は、常温通風乾燥方式の乾燥処理手段を備えた構成のものであるが、地域の気象条件、環境等に応じて、温風通風乾燥方式の乾燥処理手段を第2反応器に設けても良い。   For example, in the first and third examples, the second reactor has a configuration including a drying treatment means of a room temperature ventilation drying method, but depending on the local weather conditions, environment, etc., the warm air ventilation drying is performed. A method of drying treatment may be provided in the second reactor.

また、固形分を乾燥させる手段として、地域の気象条件、環境等によっては、自然乾燥方式の乾燥処理手段を採用することも可能である。この場合、乾燥処理を意図した第2反応器の設置や、送風機、熱源、熱交換器等の乾燥処理用設備機器の設置を省略することができる。   As a means for drying the solid content, it is possible to adopt a natural drying type drying processing means depending on the local weather conditions, environment, and the like. In this case, the installation of the second reactor intended for the drying process and the installation of equipment for drying process such as a blower, a heat source, and a heat exchanger can be omitted.

本発明は、水蒸気による加熱処理によって混合廃棄物を再生燃料化する際に、廃棄物中の有機塩素を除去する廃棄物脱塩方法及び廃棄物脱塩装置に好ましく適用される。本発明の脱塩方法又は脱塩装置によれば、建築物又は建築群等から排出される生活系生ゴミ、廃プチスチック、バイオマス系廃棄物、医療系廃棄物等の廃棄物を脱塩し且つ微細化・微粉化することができる。本発明の脱塩方法又は脱塩装置によって得られた脱塩処理後の再生固形燃料は、例えば、ボイラー、燃焼炉、ガス化炉、熱分解炉、発電装置等の炉内又は燃焼設備に燃料又はガス化原料として供給され、或いは、廃プラスチック油化装置に油化原料として供給される。本発明の脱塩方法又は脱塩装置は、このように燃焼炉、燃焼設備、油化設備等に供給すべき再生燃料を粉砕し且つ脱塩するための前処理設備として位置付けられ又は把握し得る。本発明の廃棄物脱塩方法及び廃棄物脱塩装置によれば、再生固形燃料の発熱量を大きく低下させることなく、しかも、容器内雰囲気を加熱すべく高性能又は大形の加熱装置を反応容器自体に設けることなく、有機塩素を含む混合廃棄物を加熱して該廃棄物を効果的に破砕し且つ脱塩することができるので、その実用的効果は、顕著である。   INDUSTRIAL APPLICABILITY The present invention is preferably applied to a waste desalination method and a waste desalination apparatus for removing organic chlorine in waste when regenerating mixed waste by heat treatment with steam. According to the desalination method or desalination apparatus of the present invention, wastes such as household garbage, waste plastics, biomass waste, medical waste, etc. discharged from a building or a group of buildings are desalted. It can be refined and pulverized. The regenerated solid fuel after the desalting treatment obtained by the desalting method or desalting apparatus of the present invention is, for example, fueled in a furnace or combustion equipment such as a boiler, a combustion furnace, a gasification furnace, a pyrolysis furnace, or a power generator. Alternatively, it is supplied as a gasification raw material, or is supplied as an oily raw material to a waste plastic oil converting apparatus. Thus, the desalination method or desalination apparatus of the present invention can be positioned or grasped as a pretreatment facility for pulverizing and desalinating the regenerated fuel to be supplied to the combustion furnace, combustion facility, oiling facility, etc. . According to the waste desalination method and the waste desalination apparatus of the present invention, a high-performance or large-sized heating device is reacted to heat the atmosphere in the container without greatly reducing the calorific value of the regenerated solid fuel. Since the mixed waste containing organic chlorine can be heated and effectively crushed and desalted without being provided in the container itself, its practical effect is remarkable.

Claims (9)

有機塩素を含む混合廃棄物を高温・高圧の容器内領域で熱分解させて脱塩する廃棄物脱塩方法において、
前記廃棄物と、該廃棄物中の有機塩素と反応して無機塩を生成する金属元素の化合物とを反応器内に導入し、
2.0〜3.0MPaの範囲内の所定圧力を有する飽和水蒸気を前記反応器内に供給して該反応器内の温度を前記飽和水蒸気の温度に保持した状態で、前記廃棄物及び前記化合物を混合・攪拌して、前記混合廃棄物を熱分解するとともに、前記有機塩素及び前記金属元素を反応せしめて無機塩を生成し、
前記反応器内の水蒸気を反応器外に導出するとともに、前記反応器内に残留し且つ前記無機塩を含む固形分を再生固形燃料として反応器外に導出することを特徴とする廃棄物脱塩方法。
In a waste desalination method in which mixed waste containing organic chlorine is thermally decomposed and desalted in a high-temperature and high-pressure container area,
Introducing the waste and a metal element compound that reacts with organic chlorine in the waste to form an inorganic salt into the reactor;
In the state in which saturated steam having a predetermined pressure within a range of 2.0 to 3.0 MPa is supplied into the reactor and the temperature in the reactor is maintained at the temperature of the saturated steam, the waste and the compound Are mixed and stirred to thermally decompose the mixed waste, and react with the organic chlorine and the metal element to produce an inorganic salt,
Waste demineralization characterized in that the water vapor in the reactor is led out of the reactor, and the solid content remaining in the reactor and containing the inorganic salt is led out of the reactor as a regenerated solid fuel. Method.
前記金属元素は、カルシウム、マグネシウム、ナトリウム及びカリウムよりなる群から選ばれる少なくとも1種類の金属元素であり、前記化合物は、前記金属元素の酸化物、水酸化物又は炭酸塩であることを特徴とする請求項1に記載の廃棄物脱塩方法。   The metal element is at least one metal element selected from the group consisting of calcium, magnesium, sodium, and potassium, and the compound is an oxide, hydroxide, or carbonate of the metal element. The waste desalination method according to claim 1. 前記飽和水蒸気の圧力を2.5〜3.0MPaの範囲内の所定圧力に設定し、前記反応器内の温度を該飽和水蒸気の温度に所定時間保持することを特徴とする請求項1又は2に記載の廃棄物脱塩方法。   The pressure of the saturated steam is set to a predetermined pressure within a range of 2.5 to 3.0 MPa, and the temperature in the reactor is maintained at the temperature of the saturated steam for a predetermined time. The method for desalinating waste described in 1. 前記所定時間は、30分以上の時間に設定されることを特徴とする請求項1乃至3のいずれか1項に記載の廃棄物脱塩方法。   The waste desalination method according to any one of claims 1 to 3, wherein the predetermined time is set to a time of 30 minutes or more. 前記反応器内に残留した固形分に加水して該固形分を所定時間混合攪拌し、或いは、前記反応器内の固形分を混合攪拌槽に導入して加水し且つ所定時間混合攪拌し、これにより、前記固形分に残留する無機塩を水中に溶出させることを特徴とする請求項1乃至4のいずれか1項に記載の廃棄物脱塩方法。   Water is added to the solid content remaining in the reactor and the solid content is mixed and stirred for a predetermined time. Alternatively, the solid content in the reactor is introduced into a mixing and stirring tank for water addition and mixed and stirred for a predetermined time. 5. The waste desalting method according to claim 1, wherein the inorganic salt remaining in the solid content is eluted in water. 前記固形分を前記反応器から第2反応器に移送し、第2反応器において乾燥処理することを特徴とする請求項1乃至5のいずれか1項に記載の廃棄物脱塩方法。   The waste desalination method according to any one of claims 1 to 5, wherein the solid content is transferred from the reactor to a second reactor and dried in the second reactor. 有機塩素を含む混合廃棄物を高温・高圧の容器内領域で熱分解させて脱塩する廃棄物脱塩装置において、
前記廃棄物が導入される反応器と、
前記廃棄物中の有機塩素と反応して無機塩を生成する金属元素の化合物を前記反応器内に導入する無機塩生成剤供給装置と、
2.0〜3.0MPaの範囲内の所定圧力を有する飽和水蒸気を前記反応器内に供給する水蒸気供給装置と、
前記廃棄物及び前記化合物を混合・攪拌する攪拌装置とを有し、
前記水蒸気供給装置によって前記反応器内に前記飽和水蒸気を充填して該反応器内の温度を前記飽和水蒸気の温度に保持した状態で、前記攪拌装置を作動して前記廃棄物及び前記化合物を混合・攪拌するようにしたことを特徴とする廃棄物脱塩装置。
In a waste desalination system that desalinates by decomposing mixed waste containing organic chlorine by thermal decomposition in a high-temperature and high-pressure container area,
A reactor into which the waste is introduced;
An inorganic salt generator supply device for introducing into the reactor a compound of a metal element that reacts with organic chlorine in the waste to generate an inorganic salt;
A steam supply device for supplying saturated steam having a predetermined pressure within a range of 2.0 to 3.0 MPa into the reactor;
A stirring device for mixing and stirring the waste and the compound,
The waste water and the compound are mixed by operating the stirring device in a state where the saturated water vapor is filled in the reactor by the water vapor supply device and the temperature in the reactor is maintained at the temperature of the saturated water vapor. A waste desalination apparatus characterized by stirring.
前記固形分を乾燥するための第2反応器を更に有することを特徴とする請求項7に記載の廃棄物脱塩装置。   The waste desalination apparatus according to claim 7, further comprising a second reactor for drying the solid content. 前記反応器内に残留した固形分に加水して該固形分を所定時間混合攪拌して、前記固形分に残留する無機塩を水中に溶出させる混合攪拌槽を更に有することを特徴とする請求項7又は8に記載の廃棄物脱塩装置。   It further comprises a mixing and stirring tank for adding water to the solid content remaining in the reactor, mixing and stirring the solid content for a predetermined time, and eluting the inorganic salt remaining in the solid content into water. The waste desalination apparatus according to 7 or 8.
JP2009182927A 2009-08-06 2009-08-06 Waste desalination method and waste desalination apparatus Pending JP2011031226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182927A JP2011031226A (en) 2009-08-06 2009-08-06 Waste desalination method and waste desalination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182927A JP2011031226A (en) 2009-08-06 2009-08-06 Waste desalination method and waste desalination apparatus

Publications (1)

Publication Number Publication Date
JP2011031226A true JP2011031226A (en) 2011-02-17

Family

ID=43760826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182927A Pending JP2011031226A (en) 2009-08-06 2009-08-06 Waste desalination method and waste desalination apparatus

Country Status (1)

Country Link
JP (1) JP2011031226A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179560A (en) * 2011-03-02 2012-09-20 Taiheiyo Cement Corp Method for processing waste material
JP2013006369A (en) * 2011-06-24 2013-01-10 Altis:Kk Method of removing chlorine-containing plastic from mixed waste plastic
JP2013199542A (en) * 2012-03-23 2013-10-03 Taiheiyo Cement Corp Method for treating waste
JP5865539B1 (en) * 2015-05-21 2016-02-17 株式会社三和商会 Fine dispersion compounding apparatus and fine dispersion compounding method
JP6827582B1 (en) * 2020-04-27 2021-02-10 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263871A (en) * 1998-03-18 1999-09-28 Toshiba Corp Method for treating organic waste containing nitrogen atom or halogen atom
JP2000015635A (en) * 1998-07-01 2000-01-18 Mitsubishi Heavy Ind Ltd Method for dechlorination of waste and method and apparatus for producing dechlorinated fuel
JP2000063559A (en) * 1998-08-24 2000-02-29 Meidensha Corp Method and apparatus for treating chlorine-containing polymer resin
JP2003020362A (en) * 2001-07-05 2003-01-24 Chubu Electric Power Co Inc Method for treating resin mixture
JP2004155872A (en) * 2002-11-05 2004-06-03 Masayuki Horio Method and apparatus for producing useful gas from halogen-containing combustibles and alkali-containing substance
JP2006326499A (en) * 2005-05-26 2006-12-07 Kinki Kankyo Kosan Kk Hydrothermal reaction device for material to be treated and hydrothermal reaction method using the same
JP2007007622A (en) * 2005-07-04 2007-01-18 Eco Material Kk Treating apparatus of organic waste
JP2007112880A (en) * 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ Device for conversion into fuel and method for producing fuel
JP2009120746A (en) * 2007-11-15 2009-06-04 Tokyo Institute Of Technology High water content waste disposal apparatus and high water content waste disposal method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263871A (en) * 1998-03-18 1999-09-28 Toshiba Corp Method for treating organic waste containing nitrogen atom or halogen atom
JP2000015635A (en) * 1998-07-01 2000-01-18 Mitsubishi Heavy Ind Ltd Method for dechlorination of waste and method and apparatus for producing dechlorinated fuel
JP2000063559A (en) * 1998-08-24 2000-02-29 Meidensha Corp Method and apparatus for treating chlorine-containing polymer resin
JP2003020362A (en) * 2001-07-05 2003-01-24 Chubu Electric Power Co Inc Method for treating resin mixture
JP2004155872A (en) * 2002-11-05 2004-06-03 Masayuki Horio Method and apparatus for producing useful gas from halogen-containing combustibles and alkali-containing substance
JP2006326499A (en) * 2005-05-26 2006-12-07 Kinki Kankyo Kosan Kk Hydrothermal reaction device for material to be treated and hydrothermal reaction method using the same
JP2007007622A (en) * 2005-07-04 2007-01-18 Eco Material Kk Treating apparatus of organic waste
JP2007112880A (en) * 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ Device for conversion into fuel and method for producing fuel
JP2009120746A (en) * 2007-11-15 2009-06-04 Tokyo Institute Of Technology High water content waste disposal apparatus and high water content waste disposal method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179560A (en) * 2011-03-02 2012-09-20 Taiheiyo Cement Corp Method for processing waste material
JP2013006369A (en) * 2011-06-24 2013-01-10 Altis:Kk Method of removing chlorine-containing plastic from mixed waste plastic
JP2013199542A (en) * 2012-03-23 2013-10-03 Taiheiyo Cement Corp Method for treating waste
JP5865539B1 (en) * 2015-05-21 2016-02-17 株式会社三和商会 Fine dispersion compounding apparatus and fine dispersion compounding method
JP6827582B1 (en) * 2020-04-27 2021-02-10 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel
WO2021220958A1 (en) * 2020-04-27 2021-11-04 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel
JP2021175781A (en) * 2020-04-27 2021-11-04 東北発電工業株式会社 Solid fuel manufacturing system, solid fuel manufacturing method, and solid fuel
JP2021175788A (en) * 2020-04-27 2021-11-04 東北発電工業株式会社 Solid fuel manufacturing system, solid fuel manufacturing method, and solid fuel
JP6994590B2 (en) 2020-04-27 2022-01-14 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel
CN115335494A (en) * 2020-04-27 2022-11-11 东北发电工业株式会社 Solid fuel production system, solid fuel production method, and solid fuel
CN115335494B (en) * 2020-04-27 2024-04-12 东北发电工业株式会社 Solid fuel production system, solid fuel production method, and solid fuel

Similar Documents

Publication Publication Date Title
Prawisudha et al. Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment
KR101725789B1 (en) Method and apparatus for gasification of organic waste
EP2385091A1 (en) Method for processing organic waste and a device for carrying out said method
JPWO2008038361A1 (en) Organic waste treatment system
JP2008519687A (en) Slurry dehydration and conversion of biosolids into renewable fuels
JP2010106133A (en) Process and apparatus for making waste into fuel
CN102459516B (en) Novel method for pyrogasification of organic waste
KR101200479B1 (en) Treating system of waste materials
JP2010037536A (en) Method for treating mixed waste material
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
CN108443889B (en) Waste metal catalyst and organic sludge co-treatment device and method
JP2011031226A (en) Waste desalination method and waste desalination apparatus
EP2475751A1 (en) Methodology for the removal of inorganic components from urban wastes, industrial wastes and sludges from sewage treatment plants
JP5721832B2 (en) Process for pyrolysis of PVC and other waste containing halogen containing polymer waste
JP2006205027A (en) Apparatus and method for reducing volume/weight of hydrous organic sludge or the like
WO2022067440A1 (en) Volatilization and oxidation of organic waste
JP2000015635A (en) Method for dechlorination of waste and method and apparatus for producing dechlorinated fuel
JP5852491B2 (en) Waste treatment system and treatment method
JP4077772B2 (en) Waste gas processing method for waste treatment furnace
CN102039297B (en) Medical waste subcritical hydrolysis processing apparatus
JPH11267698A (en) Treatment of waste and device therefor
Kępys et al. Waste Thermal Treatment Installations in Poland
JP2004263193A (en) Thermal treatment equipment using superheated steam
JPH11262800A (en) Method and apparatus for treating waste
WO1999004197A1 (en) Recovery of energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130710