JP5844599B2 - CONNECTION DEVICE, CONNECTION MANUFACTURING METHOD, CONNECTION METHOD - Google Patents

CONNECTION DEVICE, CONNECTION MANUFACTURING METHOD, CONNECTION METHOD Download PDF

Info

Publication number
JP5844599B2
JP5844599B2 JP2011224994A JP2011224994A JP5844599B2 JP 5844599 B2 JP5844599 B2 JP 5844599B2 JP 2011224994 A JP2011224994 A JP 2011224994A JP 2011224994 A JP2011224994 A JP 2011224994A JP 5844599 B2 JP5844599 B2 JP 5844599B2
Authority
JP
Japan
Prior art keywords
electronic component
mounting portion
cushioning material
wiring board
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011224994A
Other languages
Japanese (ja)
Other versions
JP2012039142A (en
Inventor
誠一郎 篠原
誠一郎 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2011224994A priority Critical patent/JP5844599B2/en
Publication of JP2012039142A publication Critical patent/JP2012039142A/en
Application granted granted Critical
Publication of JP5844599B2 publication Critical patent/JP5844599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Bonding (AREA)
  • Combinations Of Printed Boards (AREA)

Description

本発明は、一面に電子部品が実装された基板の他面にも電子部品を接続する両面実装用の接続装置、及びこれを用いた接続方法、接続体の製造方法に関する。   The present invention relates to a connection device for double-sided mounting that connects an electronic component to the other surface of a substrate on which the electronic component is mounted on one surface, a connection method using the same, and a method for manufacturing a connection body.

従来、基板に対して電子部品を実装する工法として、ハンダを用いる方法の他に、異方性導電フィルムを用いる方法がある。異方性導電フィルムは、例えば、平均粒径が数μmオーダーの球状または鱗片状の導電性粒子を熱硬化型バインダー樹脂組成物に分散してフィルム化したものが使用されている。   Conventionally, as a method for mounting electronic components on a substrate, there is a method using an anisotropic conductive film in addition to a method using solder. As the anisotropic conductive film, for example, a film obtained by dispersing spherical or scaly conductive particles having an average particle diameter of the order of several μm in a thermosetting binder resin composition is used.

異方性導電フィルムは、基板の電子部品が実装される実装部の電極と電子部品との間に介在された後、加熱ボンダーによって電子部品の上から熱加圧されることにより、バインダー樹脂が流動性を示して電極、電子部品間より流出されるとともに、導電性粒子が電極と電子部品間の導通を図り、この状態でバインダー樹脂が熱硬化する。   The anisotropic conductive film is interposed between the electrode of the mounting part on which the electronic component of the substrate is mounted and the electronic component, and then thermally pressed from above the electronic component by a heating bonder, so that the binder resin is While flowing out from between the electrode and the electronic component while exhibiting fluidity, the conductive particles conduct between the electrode and the electronic component, and in this state, the binder resin is thermoset.

ところで、近年、主に携帯電話やノートパソコン等の機器においては、小型化軽量化薄型化とともに高機能化が進展している背景から、より高密度実装が求められるようになっている。このような小型軽量薄型の機器において高密度実装を実現するために、基板両面に電子部品を実装する両面実装が有効な手段となる。   By the way, in recent years, mainly in devices such as mobile phones and notebook personal computers, higher density mounting has been demanded due to the background of progress in advanced functions as well as downsizing, weight reduction and thinning. In order to realize high-density mounting in such a small, lightweight, and thin device, double-sided mounting in which electronic components are mounted on both sides of the substrate is an effective means.

しかし、異方性導電フィルムを用いた工法では、加熱ボンダーによる熱加圧を伴うため、既に片面に電子部品を実装済みの基板に対して、その反対面に電子部品の実装を行うと、既に実装済みの電子部品に加熱ボンダーによる圧力が掛かり、電子部品の破損や接着箇所の剥離やクラック等が生じるおそれがあった。   However, the method using an anisotropic conductive film involves heat pressing with a heating bonder, so when mounting an electronic component on the opposite side of a substrate that already has an electronic component mounted on one side, The mounted electronic component is subjected to pressure by a heating bonder, and there is a possibility that the electronic component is damaged or the bonded portion is peeled off or cracked.

この対策として、実装済みの電子部品と接続装置の受け台との間に緩衝材を配置する方法が提案されている(例えば特許文献1、特許文献2参照)。しかし、この方法では、実装済みの電子部品の高さが異なる場合に、各実装済み部品に均一に圧力を掛けることが困難であり、高さの高い実装済み部品の破損等が生じるおそれがあった。   As a countermeasure against this, a method has been proposed in which a cushioning material is arranged between the mounted electronic component and the cradle of the connection device (see, for example, Patent Document 1 and Patent Document 2). However, with this method, when the heights of mounted electronic components are different, it is difficult to uniformly apply pressure to each mounted component, which may cause damage to the mounted components that are tall. It was.

また、片面に電子部品を実装済みの基板の反対面に実装される電子部品にかかる加熱ボンダーの圧力が、実装済みの電子部品の高さ差に起因して不均等となる。異方性導電フィルムを用いた実装においては、適正な圧力で加圧することによって導電接続が図られることから、加熱ボンダーによる圧力に過不足が生じると、電子部品の接続信頼性が劣るおそれがある。   In addition, the pressure of the heating bonder applied to the electronic component mounted on the opposite surface of the substrate on which the electronic component is mounted on one side becomes uneven due to the height difference of the mounted electronic component. In mounting using an anisotropic conductive film, conductive connection is achieved by pressurizing at an appropriate pressure. Therefore, if the pressure by the heating bonder is excessive or insufficient, the connection reliability of electronic components may be inferior. .

また、予め緩衝材の実装済み部品と接する表面に実装済み部品の高さに対応する凹部を設ける方法も提案されている(特許文献3参照)。しかし、この方法では凹部の深さを厳密に制御する必要があり、また、圧着時に急激な圧力が掛かるために、電子部品の損傷が懸念される。   There has also been proposed a method in which a concave portion corresponding to the height of a mounted component is provided on the surface in contact with the mounted component of the cushioning material in advance (see Patent Document 3). However, according to this method, it is necessary to strictly control the depth of the concave portion, and abrupt pressure is applied during crimping, which may cause damage to electronic components.

特開2007−214434号公報JP 2007-214434 A 特開2001−160569号公報JP 2001-160569 A 特開2009−105204号公報JP 2009-105204 A

そこで、本発明は、接着剤を介して配置される電子部品に均等に圧力をかけることにより接続信頼性を向上させるとともに、実装済み部品の破損や接着箇所の剥離等を防止し、確実に両面実装を行うことができる接続装置、接続体の製造方法及び接続方法を提供することを目的とする。   Therefore, the present invention improves the connection reliability by applying pressure evenly to the electronic parts arranged via the adhesive, and prevents damage to the mounted parts, peeling of the bonded parts, etc. It is an object of the present invention to provide a connection device, a connection body manufacturing method, and a connection method that can be mounted.

上述した課題を解決するために、本発明に係る接続装置は、一面に電子部品が実装された基板を支持する受台と、上記電子部品が実装されている実装部の反対側の上記基板の他面に、接着剤を介して配置される接続部材を加圧するヘッドと、上記受け台上に上記ヘッドと対向して設けられ、上記基板の上記一面側を支持する緩衝材とを備え、上記緩衝材は、ゴム硬度が60以下であり、上記緩衝材は、弾性材料により形成されるとともに、上記一面を支持する面を平坦化され、上記平坦化された面と反対側の面に上記実装部が載置される位置に対応して凹部が設けられ、上記凹部の深さd1は、上記実装部の電子部品と上記一面に実装され上記実装部の電子部品より低背の他の電子部品又は上記実装部と隣接する領域との高さ差td以上であり、上記緩衝材の厚みt1から上記凹部の深さd1を引いた緩衝材本体部の厚さ(t1−d1)は、上記実装部の電子部品の高さt2以上である。 In order to solve the above-described problems, a connection device according to the present invention includes a cradle that supports a substrate on which an electronic component is mounted on one surface, and the substrate on the opposite side of the mounting portion on which the electronic component is mounted. on the other side, a head for pressing the connecting members disposed over the adhesive, disposed opposite to the head on the cradle on, and a cushioning material for supporting the one side of the substrate, the The cushioning material has a rubber hardness of 60 or less, and the cushioning material is formed of an elastic material, and a surface supporting the one surface is flattened, and the mounting is performed on the surface opposite to the planarized surface. A concave portion is provided corresponding to the position where the portion is placed, and the depth d1 of the concave portion is the same as the electronic component of the mounting portion and the other electronic component mounted on the one surface and lower in height than the electronic component of the mounting portion. Or a height difference td or more between the mounting portion and the adjacent region. The cushioning material from the thickness t1 minus the depth d1 of the recess cushioning material body portion thickness of (t1-d1) is the height t2 or more electronic components of the mounting portion.

また、本発明に係る接続体の製造方法は、一面に電子部品が実装された基板の当該一面を、受け台に設けられた緩衝材上に載置し、上記電子部品が実装されている実装部の反対側の上記基板の他面に、接着剤を介して接続部材を配置し、上記緩衝材と対向して設けられたヘッドによって上記接続部材を加圧する工程を有し、上記緩衝材は、ゴム硬度が60以下であり、上記緩衝材は、弾性材料により形成されるとともに、上記一面側を支持する面を平坦化され、上記平坦化された面と反対側の面に上記実装部が載置される位置に対応して凹部が設けられ、上記凹部の深さd1は、上記実装部の電子部品と上記一面に実装され上記実装部の電子部品より低背の他の電子部品又は上記実装部と隣接する領域との高さ差td以上であり、上記緩衝材の厚みt1から上記凹部の深さd1を引いた緩衝材本体部の厚さ(t1−d1)は、上記実装部の電子部品の高さt2以上である。 Further, in the method for manufacturing a connection body according to the present invention, the one surface of the substrate on which the electronic component is mounted on one surface is placed on a cushioning material provided on a cradle, and the electronic component is mounted on the mounting surface. A connecting member is disposed on the other surface of the substrate on the opposite side of the part with an adhesive, and the connecting member is pressurized by a head provided to face the cushioning material. The rubber hardness is 60 or less, and the cushioning material is formed of an elastic material, the surface supporting the one surface side is flattened, and the mounting portion is on the surface opposite to the flattened surface. A concave portion is provided corresponding to the mounting position, and the depth d1 of the concave portion is mounted on the electronic component of the mounting portion and the other electronic component having a lower height than the electronic component of the mounting portion or the electronic component of the mounting portion. The height difference between the mounting portion and the adjacent region is td or more, and the cushioning material Cushioning material body portion thickness of from thickness t1 minus the depth d1 of the recess (t1-d1) is the height t2 or more electronic components of the mounting portion.

また、本発明に係る接続方法は、一面に電子部品が実装された基板の当該一面を、受け台に設けられた緩衝材上に載置し、上記電子部品が実装されている実装部の反対側の上記基板の他面に、接着剤を介して接続部材を配置し、上記緩衝材と対向して設けられたヘッドによって上記接続部材を加圧する工程を有し、上記緩衝材は、ゴム硬度が60以下であり、上記緩衝材は、弾性材料により形成されるとともに、上記一面側を支持する面を平坦化され、上記平坦化された面と反対側の面に上記実装部が載置される位置に対応して凹部が設けられ、上記凹部の深さd1は、上記実装部の電子部品と上記一面に実装され上記実装部の電子部品より低背の他の電子部品又は上記実装部と隣接する領域との高さ差td以上であり、上記緩衝材の厚みt1から上記凹部の深さd1を引いた緩衝材本体部の厚さ(t1−d1)は、上記実装部の電子部品の高さt2以上である。 Further, the connection method according to the present invention is such that the one surface of the substrate on which the electronic component is mounted on one surface is placed on a cushioning material provided on the cradle, and is opposite to the mounting portion on which the electronic component is mounted. The connecting member is disposed on the other surface of the substrate on the side through an adhesive, and the connecting member is pressed by a head provided opposite to the cushioning material . The cushioning material has a rubber hardness. There is 60 or less, the cushioning material, while being formed of an elastic material, are planarized surface for supporting the one side, the mounting portion is placed on the surface opposite to the above surface planarized A concave portion corresponding to the position of the mounting portion, and the depth d1 of the concave portion is different from the electronic component of the mounting portion and the other electronic component mounted on the one surface and lower in height than the electronic component of the mounting portion or the mounting portion. The height difference td between adjacent regions is greater than the thickness t of the cushioning material. From minus depth d1 of the recess cushioning material body portion thickness (t1-d1) is the height t2 or more electronic components of the mounting portion.

本発明によれば、凹部は、深さd1と実装部に実装されている電子部品と他の電子部品11や実装部との隣接領域との高さ差tdとが、d1≧tdを満たすことにより、緩衝材の平坦面全体で基板の一面を支持し、ヘッドで基板の他面に配置された接続部材を押圧したときに、実装部の反対側に配置された接続部材と実装部以外の領域の反対側に配置された接続部材とにかかるヘッドの圧力差を吸収することができる。したがって、基板の他面に接着剤を介して配置された接続部材を適正な圧力で均等に押圧することができ、接続信頼性を向上させることができる。   According to the present invention, the depth d1 and the height difference td between the electronic component mounted on the mounting part and the adjacent region of the other electronic component 11 or the mounting part satisfy d1 ≧ td. By supporting one surface of the substrate with the entire flat surface of the cushioning material and pressing the connection member disposed on the other surface of the substrate with the head, the connection member other than the mounting portion and the mounting portion other than the mounting portion are pressed. It is possible to absorb the pressure difference of the head applied to the connecting member disposed on the opposite side of the region. Therefore, the connecting member disposed on the other surface of the substrate via the adhesive can be pressed evenly with an appropriate pressure, and the connection reliability can be improved.

また、本発明によれば、実装部上の電子部品と実装部以外の領域に実装されている電子部品とに掛かる応力差を吸収することができ、実装済みの電子部品の破損や接続箇所の剥離等を防止することができる。   In addition, according to the present invention, it is possible to absorb a stress difference between the electronic component on the mounting portion and the electronic component mounted in a region other than the mounting portion, and damage of the mounted electronic component or the connection location Separation and the like can be prevented.

また、凹部は、緩衝材の厚みt1から凹部の深さd1を引いた本体部の厚さ(t1−d1)と、実装部に実装されている電子部品の高さt2とが(t1−d1)≧t2を満たすことにより、実装部の反対側に配置された接続部材にヘッドの圧力が集中することを防止すると共に、実装部に実装されている電子部品に掛かる応力を吸収し、破損や実装部からの剥離等を防止することができる。したがって、本発明によれば、接着剤を用いて、実装済み部品の破損や接着箇所の剥離等を防止し、確実に両面実装を行うことができる。   In addition, the recess has a thickness (t1-d1) of the main body portion obtained by subtracting the depth d1 of the recess from the thickness t1 of the cushioning material and a height t2 of the electronic component mounted on the mounting portion (t1-d1). ) By satisfying ≧ t2, it is possible to prevent the pressure of the head from concentrating on the connection member arranged on the opposite side of the mounting portion, and to absorb the stress applied to the electronic components mounted on the mounting portion, Peeling from the mounting portion can be prevented. Therefore, according to the present invention, it is possible to reliably perform double-sided mounting by using an adhesive to prevent damage to mounted components, separation of bonded portions, and the like.

本発明が適用された接続装置を示す側面図である。It is a side view showing a connection device to which the present invention is applied. 緩衝材を示す側面図である。It is a side view which shows a buffer material. 配線基板を示す側面図である。It is a side view which shows a wiring board. 凹部の一例を示す斜視図である。It is a perspective view which shows an example of a recessed part. 異方性導電フィルムを示す断面図である。It is sectional drawing which shows an anisotropic conductive film. 剥離フィルムに支持され、リール状に巻回された異方性導電フィルムを示す側面図である。It is a side view which shows the anisotropic conductive film supported by the peeling film and wound by the reel shape. 接続方法の一例を示す側面図である。It is a side view which shows an example of the connection method. 実施例を説明する底面図及び側面図である。It is the bottom view and side view explaining an Example. 実施例を説明する底面図及び側面図である。It is the bottom view and side view explaining an Example. 実施例を説明する底面図及び側面図である。It is the bottom view and side view explaining an Example.

以下、本発明が適用された接続装置、接続体の製造方法及び接続方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a connection device, a connection body manufacturing method, and a connection method to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

本発明が適用された接続装置1は、例えば、リジッドプリント配線板やフレキシブルプリント配線板等の基板に、電子部品を両面実装する際に用いられるものである。   The connection device 1 to which the present invention is applied is used, for example, when mounting electronic components on both sides of a substrate such as a rigid printed wiring board or a flexible printed wiring board.

[配線基板]
先ず、接続装置1を用いて電子部品が実装される両面実装用の配線基板10について説明する。図1に示すように、配線基板10は、例えばいわゆるリジッドプリント配線板やフレキシブルプリント配線板、フレックスリジッド基板やガラス基板等の各種の基板を用いることができる。配線基板10は、一面10aに、ファインピッチで配線パターンが形成されるとともに、高さの異なる複数の電子部品11が実装されている。電子部品11としては、例えば抵抗やコンデンサ、ICチップ等がある。
[Wiring board]
First, the wiring board 10 for double-side mounting on which electronic components are mounted using the connection device 1 will be described. As shown in FIG. 1, various substrates such as a so-called rigid printed wiring board, a flexible printed wiring board, a flex rigid board, and a glass substrate can be used as the wiring board 10. The wiring substrate 10 has a wiring pattern formed on one surface 10a at a fine pitch, and a plurality of electronic components 11 having different heights are mounted thereon. Examples of the electronic component 11 include a resistor, a capacitor, and an IC chip.

この配線基板10は、両面実装用の基板であり、図1に示すように、一面10aに実装された電子部品11のうち、最も高さの高い電子部品11aが実装されている領域を実装部12とし、この実装部12の反対側の他面10bに、電極が形成されるとともに電子部品13が接続される。電子部品13は、例えば、フレキシブルフラットケーブルやフレキシブルプリント配線板、抵抗、コンデンサ、ICチップ等がある。図1では、電子部品13として、フレキシブルプリント配線板を用いた状態を例示している。   This wiring board 10 is a board for double-sided mounting, and as shown in FIG. 1, among the electronic parts 11 mounted on one surface 10a, a region where the highest electronic part 11a is mounted is mounted. 12, an electrode is formed on the other surface 10b on the opposite side of the mounting portion 12, and the electronic component 13 is connected. Examples of the electronic component 13 include a flexible flat cable, a flexible printed wiring board, a resistor, a capacitor, and an IC chip. FIG. 1 illustrates a state in which a flexible printed wiring board is used as the electronic component 13.

配線基板10は、接続装置1に設けられた緩衝材4に一面10aが支持された状態で、後述する異方性導電接着剤17を介して他面10bの電極上に配設された電子部品13が、加熱押圧ヘッド3によって所定の温度、圧力、時間で熱加圧されることにより他面10bの電極上に電子部品13が導通接続される。図1では、フレキシブルプリント配線板(電子部品13)は、同図に示す配線基板10の幅方向に亘って他面10bに形成された図示しない複数の電極と、同方向に亘って形成された図示しない複数の電極とが、異方性導電接着剤17を介して接続される。   The wiring board 10 is an electronic component disposed on an electrode on the other surface 10b with an anisotropic conductive adhesive 17 described later in a state where the one surface 10a is supported by the buffer material 4 provided in the connection device 1. 13 is heated and pressed by the heating and pressing head 3 at a predetermined temperature, pressure, and time, whereby the electronic component 13 is electrically connected to the electrode on the other surface 10b. In FIG. 1, the flexible printed wiring board (electronic component 13) is formed in the same direction as a plurality of electrodes (not shown) formed on the other surface 10 b across the width direction of the wiring board 10 shown in the figure. A plurality of electrodes (not shown) are connected via an anisotropic conductive adhesive 17.

[接続装置1]
次いで、配線基板10に電子部品13を接続する接続装置1について説明する。図1に示すように、接続装置1は、配線基板10を支持する受け台2と、配線基板10に、後述する異方性導電接着剤17を介して載置された電子部品13を熱加圧する加熱押圧ヘッド3と、受け台2上に加熱押圧ヘッド3と対向して設けられ配線基板10の予め電子部品11が実装されている実装部12を支持するとともに加熱押圧ヘッド3による押圧力を吸収する緩衝材4とを備える。
[Connecting device 1]
Next, the connection device 1 that connects the electronic component 13 to the wiring board 10 will be described. As shown in FIG. 1, the connection device 1 heats a cradle 2 that supports a wiring board 10 and an electronic component 13 that is placed on the wiring board 10 via an anisotropic conductive adhesive 17 described later. The heating and pressing head 3 to be pressed, and the mounting portion 12 provided on the cradle 2 so as to face the heating and pressing head 3 on which the electronic component 11 is mounted in advance are supported, and the pressing force by the heating and pressing head 3 is applied. A buffer material 4 to be absorbed.

受け台2は、例えば板状のセラミックによって形成され、上面には緩衝材4が設けられ、緩衝材4上に配線基板10が載置される。   The cradle 2 is made of, for example, a plate-like ceramic, and a cushioning material 4 is provided on the upper surface, and the wiring board 10 is placed on the cushioning material 4.

加熱押圧ヘッド3は、電子部品13を熱加圧することにより、異方性導電接着剤17を熱硬化させ、電子部品13と配線基板10の他面10bの電極とを導通接続させるものである。加熱押圧ヘッド3は、ヒータが内蔵されるとともに、図示しない昇降機構に支持されることにより受け台2に対する熱加圧面の近接離間が自在とされ、受け台2に緩衝材4を介して載置された配線基板10に対して電子部品13を熱加圧することができる。   The heating and pressing head 3 heat-presses the electronic component 13 to thermally cure the anisotropic conductive adhesive 17, thereby electrically connecting the electronic component 13 and the electrode on the other surface 10 b of the wiring board 10. The heating and pressing head 3 has a built-in heater and is supported by an elevating mechanism (not shown) so that the heat pressurizing surface can be moved close to and away from the cradle 2, and is placed on the cradle 2 via the buffer material 4. The electronic component 13 can be heat-pressed against the printed wiring board 10.

[緩衝材4]
緩衝材4は、配線基板10の一面10aに設けられた実装部12を支持することにより、加熱押圧ヘッド3による圧力を吸収し、実装部12と実装部12以外の領域との圧力差を吸収し、配線基板10の他面10bに配設された電子部品13に対する均一な熱加圧を行うものである。同時に、緩衝材4は、実装部12に実装されている電子部品11aの損傷や接着箇所の剥離等を防止するものである。緩衝材4は、例えばシリコーン樹脂等の弾性体からなり、全体を略矩形状に形成されている。また、緩衝材4は、配線基板10の一面10aを支持する面4aを平坦化され、平坦面4aと反対側の他面4bに実装部12が載置される位置に対応して凹部5が形成されている。
[Buffer material 4]
The buffer material 4 supports the mounting portion 12 provided on the one surface 10 a of the wiring substrate 10, thereby absorbing the pressure by the heating and pressing head 3 and absorbing the pressure difference between the mounting portion 12 and a region other than the mounting portion 12. Then, uniform heat and pressure are applied to the electronic component 13 disposed on the other surface 10b of the wiring board 10. At the same time, the cushioning material 4 prevents damage to the electronic component 11a mounted on the mounting portion 12, peeling of the bonded portion, and the like. The buffer material 4 is made of, for example, an elastic body such as a silicone resin, and is formed in a substantially rectangular shape as a whole. In addition, the cushioning material 4 has a flat surface 4a that supports the one surface 10a of the wiring board 10, and a concave portion 5 corresponding to a position where the mounting portion 12 is placed on the other surface 4b opposite to the flat surface 4a. Is formed.

そして、緩衝材4は、凹部5が形成された他面4bを受け台2側に向けて、平坦面4a側を上側に向けて使用される。緩衝剤4は、平坦面4aを上側に向けて配線基板10の一面10aを平坦面4a全面で支持することにより、配線基板10を均一に支持し、加熱押圧ヘッド3との間で支持面全体を均一に加圧することができる。   And the buffer material 4 is used for the other surface 4b in which the recessed part 5 was formed toward the receiving stand 2 side, and the flat surface 4a side toward the upper side. The buffer 4 supports the wiring substrate 10 uniformly by supporting the one surface 10 a of the wiring substrate 10 with the entire flat surface 4 a with the flat surface 4 a facing upward, and the entire supporting surface with the heating and pressing head 3. Can be uniformly pressurized.

緩衝材4の他面4bに形成される凹部5は、凹部5上の緩衝材本体部4cとともに実装部12に実装されている電子部品11aに掛かる応力を分散し、実装部12と実装部12以外の領域とにおける加熱押圧ヘッド3の圧力差を解消するためのものである。凹部5は、実装部12に予め実装されている電子部品11aの高さ、及び配線基板10の一面10aの実装部12以外に実装されている電子部品11と実装部12に実装されている電子部品11aとの高さ差に応じた形状を有する。   The concave portion 5 formed on the other surface 4b of the cushioning material 4 disperses the stress applied to the electronic component 11a mounted on the mounting portion 12 together with the cushioning material main body portion 4c on the concave portion 5, and the mounting portion 12 and the mounting portion 12 This is to eliminate the pressure difference of the heating / pressing head 3 in the other area. The recess 5 is formed by mounting the electronic component 11 mounted on the mounting portion 12 and the electronic component 11 mounted on a portion other than the mounting portion 12 on the first surface 10a of the wiring board 10. It has a shape corresponding to the height difference from the component 11a.

すなわち、図2及び図3に示すように、凹部5は、深さd1が、実装部12の電子部品11aと、実装部12に隣接する領域に実装され実装部12の電子部品11より低背の他の電子部品11、あるいは実装部12に隣接する領域に電子部品が実装されていない場合は当該隣接領域との高さ差td以上とされている(d1≧td)。   That is, as shown in FIG. 2 and FIG. 3, the recess 5 has a depth d1 that is lower than the electronic component 11 of the mounting portion 12 mounted in the electronic component 11a of the mounting portion 12 and a region adjacent to the mounting portion 12. When an electronic component is not mounted in another electronic component 11 or an area adjacent to the mounting portion 12, the height difference from the adjacent area is equal to or greater than td (d1 ≧ td).

また、凹部5は、緩衝材の厚みt1から凹部5の深さd1を引いた本体部4cの厚さ(t1−d1)が、実装部12の電子部品11aの高さt2以上とされている((t1−d1)≧t2)。   Further, in the recess 5, the thickness (t1-d1) of the main body portion 4c obtained by subtracting the depth d1 of the recess 5 from the thickness t1 of the cushioning material is equal to or greater than the height t2 of the electronic component 11a of the mounting portion 12. ((T1-d1) ≧ t2).

凹部5は、深さd1と一面10aに実装されている電子部品11aと他の電子部品11や隣接領域との高さ差tdとが、d1≧tdを満たすことにより、緩衝材4の平坦面4a全体で配線基板10の一面10aを支持したときに、一面10aにおける電子部品11aとの高さ差に起因する他面10bに配置される電子部品13への圧力差を解消するとともに、実装部12上の電子部品11aと実装部12以外の領域に実装されている電子部品11とに掛かる応力差を吸収することができる。   The recess 5 has a flat surface of the cushioning material 4 when the depth d1 and the height difference td between the electronic component 11a mounted on the one surface 10a and another electronic component 11 or an adjacent region satisfy d1 ≧ td. When the one surface 10a of the wiring board 10 is supported by the whole 4a, the pressure difference to the electronic component 13 disposed on the other surface 10b due to the height difference from the electronic component 11a on the one surface 10a is eliminated, and the mounting portion The stress difference applied to the electronic component 11a on the electronic component 11 and the electronic component 11 mounted in a region other than the mounting portion 12 can be absorbed.

すなわち、加熱押圧ヘッド3によって配線基板10が熱加圧され、配線基板10の一面10aを平坦面4aで支持すると、当該平坦面4aに支持されている電子部品のうち、実装部12に実装されている高背の電子部品11aには、実装部12以外の領域に実装されている低背の電子部品11との間で、高さ差に起因して応力差が生じる。また、実装部12の反対側に配設された電子部品13と、実装部12以外の領域の反対側に配設された電子部品13との間で、高さ差に起因して加熱押圧ヘッド3の圧力差が生じる。そこで、緩衝材4は、凹部5の深さd1が一面10aに実装されている電子部品11aと他の電子部品11や隣接領域との高さ差td以上の深さを有することにより、高さ差tdに応じて凹部5が屈曲し、高さ差に起因して生じる応力差や圧力差を吸収、解消することができる。   That is, when the wiring substrate 10 is heated and pressed by the heating and pressing head 3 and one surface 10a of the wiring substrate 10 is supported by the flat surface 4a, the electronic component supported by the flat surface 4a is mounted on the mounting portion 12. The high-profile electronic component 11a has a stress difference due to the height difference from the low-profile electronic component 11 mounted in a region other than the mounting portion 12. Further, the heating and pressing head is caused by the height difference between the electronic component 13 disposed on the opposite side of the mounting portion 12 and the electronic component 13 disposed on the opposite side of the region other than the mounting portion 12. A pressure difference of 3 occurs. Accordingly, the cushioning material 4 has a depth d1 of the concave portion 5 that is greater than the height difference td between the electronic component 11a mounted on the one surface 10a and another electronic component 11 or an adjacent region. The concave portion 5 bends according to the difference td, and the stress difference and pressure difference caused by the height difference can be absorbed and eliminated.

また、凹部5は、緩衝材4の厚みt1から凹部5の深さd1を引いた本体部4cの厚さ(t1−d1)と、実装部12に実装されている電子部品11aの高さt2とが(t1−d1)≧t2を満たすことにより、実装部12の反対側に配置された電子部品13に加熱押圧ヘッド3の圧力が集中することを防止すると共に、実装部12に実装されている電子部品11aに掛かる応力を吸収し、破損や実装部12からの剥離等を防止することができる。   The recess 5 includes a thickness (t1-d1) of the main body 4c obtained by subtracting the depth d1 of the recess 5 from the thickness t1 of the cushioning material 4, and a height t2 of the electronic component 11a mounted on the mounting portion 12. And (t1−d1) ≧ t2 prevents the pressure of the heating and pressing head 3 from concentrating on the electronic component 13 disposed on the opposite side of the mounting portion 12 and is mounted on the mounting portion 12. The stress applied to the electronic component 11a can be absorbed, and breakage, peeling from the mounting portion 12, and the like can be prevented.

すなわち、凹部5の深さd1に比して、凹部5直上の緩衝材本体部4cが薄く、電子部品11aの高さt2未満であると、実装部12の反対側に配置された電子部品13や電子部品11aに掛かる応力を本体部4cで受けきれず、電子部品13や電子部品11aが破損したり、実装部12からの剥離や接続箇所にクラックが生じるおそれがある。そこで、緩衝材4は、凹部5の直上の緩衝材本体部4cの厚さ(t1−d1)と、電子部品11aの高さt2とが(t1−d1)≧t2を満たすことにより、実装部12を支持する緩衝材本体部4cによって電子部品13や電子部品11に掛かる応力を吸収する。   That is, the electronic component 13 disposed on the opposite side of the mounting portion 12 is thinner than the depth d1 of the concave portion 5 when the cushioning material main body 4c immediately above the concave portion 5 is thin and less than the height t2 of the electronic component 11a. In addition, the stress applied to the electronic component 11a cannot be received by the main body portion 4c, and the electronic component 13 or the electronic component 11a may be damaged, or peeling from the mounting portion 12 or a crack may occur in the connection portion. Therefore, the cushioning material 4 is configured so that the thickness (t1-d1) of the cushioning material main body 4c immediately above the recess 5 and the height t2 of the electronic component 11a satisfy (t1-d1) ≧ t2. The buffer material body 4c that supports 12 absorbs the stress applied to the electronic component 13 and the electronic component 11.

なお、実装部12以外領域の反対側に配置された電子部品13や実装部12以外の領域に実装されている電子部品11に掛かる応力は、本体部4cよりも肉厚な緩衝材4のその他の部分で吸収するため、当該電子部品11の破損や剥離等も防止されている。   Note that the stress applied to the electronic component 13 disposed on the opposite side of the region other than the mounting portion 12 and the electronic component 11 mounted in the region other than the mounting portion 12 is other than that of the buffer material 4 that is thicker than the main body portion 4c. Therefore, the electronic component 11 is prevented from being damaged or peeled off.

また、凹部5の底面は、実装部12と同等以上の面積を有する。すなわち、凹部5の底面は、実装部12に実装されている全電子部品11aの実装面積と同等以上の面積を有する。これにより、凹部5は、実装部12の反対側に配設された電子部品13に掛かる圧力を分散させるとともに、実装部12に実装されている全電子部品11aに掛かる応力を吸収し、破損や実装部12からの剥離等を防止することができる。   Further, the bottom surface of the recess 5 has an area equal to or larger than the mounting portion 12. That is, the bottom surface of the recess 5 has an area equal to or larger than the mounting area of all the electronic components 11 a mounted on the mounting portion 12. Thereby, the concave portion 5 disperses the pressure applied to the electronic component 13 disposed on the opposite side of the mounting portion 12, absorbs the stress applied to all the electronic components 11a mounted on the mounting portion 12, and is damaged or damaged. Peeling from the mounting portion 12 can be prevented.

このように、緩衝材4は、凹部5によって、実装部12に実装されている電子部品11aと、実装部12以外の領域に実装されている電子部品11との高さ差に起因して生じる実装部12の反対側に配置された電子部品13と実装部12以外の領域の反対側に配置された電子部品13とに掛かる加熱押圧ヘッド3の圧力差や、実装部12に実装されている電子部品11aと実装部12以外に実装されている電子部品11とにかかる応力差を吸収するとともに、凹部5直上の本体部4cによって、実装部12の反対側に配置された電子部品13及び実装部12に実装されている電子部品11に掛かる応力を吸収する。したがって、接続装置1によれば、他面10bに配置された電子部品13に均等に適正な圧力で押圧し、接続信頼性を向上させるとともに、一面10aに実装されている電子部品11,11aの破損や剥離を防止することができ、配線基板10に対し、確実に両面実装を行うことができる。   As described above, the cushioning material 4 is generated due to the height difference between the electronic component 11 a mounted on the mounting portion 12 and the electronic component 11 mounted on a region other than the mounting portion 12 due to the recess 5. The pressure difference of the heating and pressing head 3 applied to the electronic component 13 disposed on the opposite side of the mounting portion 12 and the electronic component 13 disposed on the opposite side of the region other than the mounting portion 12, or the mounting portion 12 is mounted. While absorbing the stress difference between the electronic component 11a and the electronic component 11 mounted other than the mounting portion 12, the electronic component 13 and the mounting disposed on the opposite side of the mounting portion 12 by the main body portion 4c immediately above the recess 5 The stress applied to the electronic component 11 mounted on the portion 12 is absorbed. Therefore, according to the connection apparatus 1, while pressing the electronic component 13 arrange | positioned at the other surface 10b equally with an appropriate pressure, and improving connection reliability, the electronic components 11 and 11a mounted in the one surface 10a are improved. Damage or peeling can be prevented, and double-sided mounting can be reliably performed on the wiring board 10.

なお、緩衝材4は、ゴム硬度(JIS K6253タイプA)が60未満で用いることができ、20〜40の範囲で好適に用いられる。   The buffer material 4 can be used with a rubber hardness (JIS K6253 type A) of less than 60, and is preferably used in the range of 20-40.

凹部5は、実装部12及び電子部品11の実装パターンに応じた各種形状に形成される。例えば、図4(a)に示すように、凹部5は、矩形状の凹部として形成され、また、図4(b)に示すように、緩衝材4の両側面に端部が臨む複数の溝状に形成される。凹部5は、緩衝材4の両側面に端部が臨む溝状に形成されることにより、圧力が掛かった際に凹部5内の空気を容易に逃がすことができる。なお凹部5は、例えばシリコーンゴム等の緩衝材ブロックを所定のサイズに切削すること等により、形成される。   The concave portion 5 is formed in various shapes according to the mounting pattern of the mounting portion 12 and the electronic component 11. For example, as shown in FIG. 4 (a), the recess 5 is formed as a rectangular recess, and as shown in FIG. 4 (b), a plurality of grooves whose ends face both side surfaces of the cushioning material 4 are formed. It is formed in a shape. The recess 5 is formed in a groove shape with end portions facing both side surfaces of the cushioning material 4, so that air in the recess 5 can be easily released when pressure is applied. The concave portion 5 is formed by cutting a buffer material block such as silicone rubber into a predetermined size.

[異方性導電接着剤]
次いで、配線基板10の他面10bに貼着され、加熱押圧ヘッド3によって熱加圧されることにより電子部品13を接続する異方性導電接着剤17について説明する。異方性導電接着剤17は、例えば図5に示すように、膜形成樹脂、熱硬化性樹脂、潜在性硬化剤、シランカップリング剤等を含有する通常のバインダ(接着剤)23に導電性粒子24が分散されたものである。以下、フィルム状に成形された異方性導電フィルム17を例に説明する。この異方性導電フィルム17は、加熱押圧ヘッド3によって熱加圧されることによりバインダ23が硬化するとともに、配線基板10の他面10bに設けられた接続電極と電子部品13の電極との間に導電性粒子24が挟持され、これにより両電極の電気的、機械的な接続を図る。
[Anisotropic conductive adhesive]
Next, the anisotropic conductive adhesive 17 that is attached to the other surface 10 b of the wiring substrate 10 and connects the electronic component 13 by being thermally pressed by the heating and pressing head 3 will be described. For example, as shown in FIG. 5, the anisotropic conductive adhesive 17 is conductive to a normal binder (adhesive) 23 containing a film-forming resin, a thermosetting resin, a latent curing agent, a silane coupling agent, and the like. The particles 24 are dispersed. Hereinafter, the anisotropic conductive film 17 formed into a film shape will be described as an example. The anisotropic conductive film 17 is heated and pressed by the heating and pressing head 3 to cure the binder 23, and between the connection electrode provided on the other surface 10 b of the wiring substrate 10 and the electrode of the electronic component 13. The conductive particles 24 are sandwiched between the electrodes, thereby achieving electrical and mechanical connection between the two electrodes.

この異方性導電フィルム17は、図6に示すように、導電性粒子24が分散されたバインダ23からなる異方性導電組成物を剥離フィルム25上に塗布することにより剥離フィルム25上に形成される。剥離フィルム25は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなり、異方性導電フィルム17の乾燥を防ぐとともに、異方性導電フィルム17の形状を維持することができる。   As shown in FIG. 6, the anisotropic conductive film 17 is formed on the release film 25 by applying an anisotropic conductive composition comprising a binder 23 in which conductive particles 24 are dispersed on the release film 25. Is done. The release film 25 is formed by, for example, applying a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), etc. While preventing the conductive conductive film 17 from drying, the shape of the anisotropic conductive film 17 can be maintained.

バインダ23に含有される膜形成樹脂としては、平均分子量が10000〜80000程度の樹脂が好ましい。膜形成樹脂としては、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。   The film forming resin contained in the binder 23 is preferably a resin having an average molecular weight of about 10,000 to 80,000. Examples of the film forming resin include various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin. Among these, phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.

熱硬化性樹脂としては、特に限定されず、例えば、市販のエポキシ樹脂、アクリル樹脂等が挙げられる。   It does not specifically limit as a thermosetting resin, For example, a commercially available epoxy resin, an acrylic resin, etc. are mentioned.

エポキシ樹脂としては、特に限定されないが、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。   The epoxy resin is not particularly limited. For example, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin. Naphthol type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin and the like. These may be used alone or in combination of two or more.

アクリル樹脂としては、特に制限はなく、目的に応じてアクリル化合物、液状アクリレート等を適宜選択することができる。例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等を挙げることができる。なお、アクリレートをメタクリレートにしたものを用いることもできる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   There is no restriction | limiting in particular as an acrylic resin, According to the objective, an acrylic compound, liquid acrylate, etc. can be selected suitably. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, dimethylol tricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy- 1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclo Examples include decanyl acrylate, tris (acryloxyethyl) isocyanurate, urethane acrylate, and epoxy acrylate. In addition, what made acrylate the methacrylate can also be used. These may be used individually by 1 type and may use 2 or more types together.

潜在性硬化剤としては、特に限定されないが、例えば、加熱硬化型、UV硬化型等の各種硬化剤が挙げられる。潜在性硬化剤は、通常では反応せず、熱、光、加圧等の用途に応じて選択される各種のトリガにより活性化し、反応を開始する。熱活性型潜在性硬化剤の活性化方法には、加熱による解離反応などで活性種(カチオンやアニオン、ラジカル)を生成する方法、室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法、モレキュラーシーブ封入タイプの硬化剤を高温で溶出して硬化反応を開始する方法、マイクロカプセルによる溶出・硬化方法等が存在する。熱活性型潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミン塩、ジシアンジアミド等や、これらの変性物があり、これらは単独でも、2種以上の混合体であってもよい。中でも、マイクロカプセル型イミダゾール系潜在性硬化剤が好適である。   The latent curing agent is not particularly limited, and examples thereof include various curing agents such as a heat curing type and a UV curing type. The latent curing agent does not normally react, but is activated by various triggers selected according to applications such as heat, light, and pressure, and starts the reaction. The activation method of the thermal activation type latent curing agent includes a method of generating active species (cation, anion, radical) by a dissociation reaction by heating, etc., and it is stably dispersed in the epoxy resin near room temperature, and epoxy at high temperature There are a method of initiating a curing reaction by dissolving and dissolving with a resin, a method of initiating a curing reaction by eluting a molecular sieve encapsulated type curing agent at a high temperature, and an elution / curing method using microcapsules. Thermally active latent curing agents include imidazole, hydrazide, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, etc., and modified products thereof. The above mixture may be sufficient. Among these, a microcapsule type imidazole-based latent curing agent is preferable.

シランカップリング剤としては、特に限定されないが、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。   Although it does not specifically limit as a silane coupling agent, For example, an epoxy type, an amino type, a mercapto sulfide type, a ureido type etc. can be mentioned. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.

導電性粒子24としては、異方性導電フィルム17において使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子24としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。   Examples of the conductive particles 24 include any known conductive particles used in the anisotropic conductive film 17. Examples of the conductive particles 24 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, Examples thereof include those in which the surface of particles such as plastic is coated with metal, or those in which the surface of these particles is further coated with an insulating thin film. In the case where the surface of the resin particle is coated with metal, examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, a divinylbenzene resin, a styrene resin, and the like. Can be mentioned.

なお、本実施の形態では、異方性導電フィルム17に変えて、バインダ23のみからなる絶縁性接着フィルム(NCF(Non Conductive Film))を用いてもよい。この場合、配線基板10及び電子部品13の各電極は、直接接触することにより導通が図られる。   In the present embodiment, instead of the anisotropic conductive film 17, an insulating adhesive film (NCF (Non Conductive Film)) made only of the binder 23 may be used. In this case, the electrodes of the wiring board 10 and the electronic component 13 are brought into conduction by direct contact.

なお、異方性導電フィルム17は、取り扱いの容易さ、保存安定性等の見地から、剥離フィルム25が積層された面とは反対の面側にも剥離フィルムを設ける構成としてもよい。また、異方性導電接着フィルム17の形状は、特に限定されないが、例えば、図4に示すように、プラスチック等からなる巻取リール26に巻回可能な長尺テープ形状とし、所定の長さだけカットして使用することができる。   In addition, the anisotropic conductive film 17 is good also as a structure which provides a peeling film also in the surface side opposite to the surface where the peeling film 25 was laminated | stacked from viewpoints of the ease of handling, storage stability, etc. The shape of the anisotropic conductive adhesive film 17 is not particularly limited. For example, as shown in FIG. 4, the anisotropic conductive adhesive film 17 has a long tape shape that can be wound around a take-up reel 26 made of plastic or the like, and has a predetermined length. Can only be cut and used.

また、上述の実施の形態では、異方性導電接着剤として、バインダ23と導電性粒子24を含有したバインダ23をフィルム状に成形した異方性導電フィルム17を例に説明したが、本発明に係る異方性導電接着剤は、これに限定されず、例えばバインダ23のみからなる絶縁性接着剤層と導電性粒子24を含有したバインダ23からなる導電性粒子含有層とをそれぞれ2層以上設けた構成とすることができる。また、異方性導電接着剤は、このようなフィルム成形されてなる異方性導電フィルムに限定されず、例えば、絶縁性接着剤組成物に導電性粒子が分散された導電性接着剤ペーストや、絶縁性接着剤組成物のみからなる絶縁性接着剤ペーストとしてもよい。本発明に係る接着剤は、上述したいずれの形態をも包含するものである。   In the above-described embodiment, the anisotropic conductive film 17 in which the binder 23 containing the binder 23 and the conductive particles 24 is formed into a film shape as the anisotropic conductive adhesive has been described as an example. The anisotropic conductive adhesive according to the present invention is not limited to this. For example, two or more layers each of an insulating adhesive layer made of only the binder 23 and a conductive particle-containing layer made of the binder 23 containing the conductive particles 24 are used. It can be set as the provided structure. Further, the anisotropic conductive adhesive is not limited to the anisotropic conductive film formed by such a film, for example, a conductive adhesive paste in which conductive particles are dispersed in an insulating adhesive composition, Alternatively, an insulating adhesive paste made only of an insulating adhesive composition may be used. The adhesive according to the present invention includes any of the forms described above.

[接続方法]
次いで、加熱押圧ヘッド3を用いて電子部品13を、予め一面10aに電子部品11が実装されている配線基板10の他面10b上に電子部品13を実装する工程について説明する。先ず、配線基板10を接続装置1の緩衝材4上に配置する。緩衝材4は、凹部5が形成された他面4bを受け台2の面上に向け、平坦面4aを加熱押圧ヘッド3と対峙する上方に向けて、受け台2上に配設される。
[Connection method]
Next, a process of mounting the electronic component 13 on the other surface 10b of the wiring board 10 on which the electronic component 11 is previously mounted on one surface 10a using the heating and pressing head 3 will be described. First, the wiring board 10 is disposed on the buffer material 4 of the connection device 1. The cushioning material 4 is disposed on the cradle 2 with the other surface 4b on which the concave portion 5 is formed facing the surface of the cradle 2 and the flat surface 4a facing upwardly facing the heating and pressing head 3.

配線基板10には、一面10aの実装部12に電子部品11aが実装されるとともに、他面10bには電子部品13と導通接続される電極が実装部12及び実装部12以外の領域の各反対側に形成され、当該電極部位に異方性導電フィルム17が仮貼りされている。異方性導電フィルム17は、巻取リール26より引き出され、電子部品13の電極配置に応じた長さに切断された後、図示しない仮貼りヘッドによって、バインダ23に流動性が生じるが本硬化は生じない程度の温度(例えば40〜60℃)で、所定時間(例えば1〜5秒)、所定の圧力(例えば0.5MPa)熱加圧することで、配線基板10の他面10bに仮貼りされる。   On the wiring board 10, the electronic component 11 a is mounted on the mounting portion 12 on the one surface 10 a, and the electrodes connected to the electronic component 13 on the other surface 10 b are opposite to the mounting portion 12 and areas other than the mounting portion 12. An anisotropic conductive film 17 is temporarily attached to the electrode portion. The anisotropic conductive film 17 is pulled out from the take-up reel 26 and cut to a length corresponding to the electrode arrangement of the electronic component 13, and then the binder 23 is fluidized by a temporary attachment head (not shown), but is fully cured. Is temporarily attached to the other surface 10b of the wiring board 10 by heat-pressing at a temperature (for example, 40 to 60 ° C.) for a predetermined time (for example, 1 to 5 seconds) and a predetermined pressure (for example, 0.5 MPa) Is done.

また、配線基板10は、一面10aが、緩衝材4の平坦面4aに支持されるように載置される。このとき、配線基板10は、実装部12が凹部5上に位置するように位置合わせされる。   Further, the wiring substrate 10 is placed so that one surface 10 a is supported by the flat surface 4 a of the buffer material 4. At this time, the wiring board 10 is aligned so that the mounting portion 12 is positioned on the recess 5.

次いで、フレキシブルプリント配線板等の電子部品13が異方性導電フィルム17上に配置され、所定の温度(例えば130〜180℃)に加熱された加熱押圧ヘッド3が、所定の圧力(例えば1〜5MPa)で、所定時間(例えば10〜15秒)、電子部品13を熱加圧し、配線基板10の他面10bに本圧着する。このとき、異方性導電フィルム17は、流動性を奏するバインダ23が配線基板10側の電極と電子部品13の電極との間から流出するとともに、両電極間に導電性粒子24が挟持され、この状態でバインダ23が熱硬化する。したがって、異方性導電フィルム17は、配線基板10の他面10bに電子部品13を電気的、機械的に接続することができる。   Next, an electronic component 13 such as a flexible printed wiring board is disposed on the anisotropic conductive film 17, and the heating and pressing head 3 heated to a predetermined temperature (for example, 130 to 180 ° C.) is subjected to a predetermined pressure (for example, 1 to 1). 5 MPa), the electronic component 13 is heat-pressed for a predetermined time (for example, 10 to 15 seconds), and is finally pressure-bonded to the other surface 10 b of the wiring board 10. At this time, in the anisotropic conductive film 17, the binder 23 having fluidity flows out from between the electrode on the wiring board 10 side and the electrode of the electronic component 13, and the conductive particles 24 are sandwiched between the two electrodes. In this state, the binder 23 is thermally cured. Therefore, the anisotropic conductive film 17 can electrically and mechanically connect the electronic component 13 to the other surface 10 b of the wiring board 10.

加熱押圧ヘッド3が電子部品13を熱加圧すると、緩衝材4は、加熱押圧ヘッド3による圧力を受けて凹部5が内側に撓まされる。これにより、配線基板10は、緩衝材4の凹部5によって実装部12に実装されている電子部品11aに掛かる応力が吸収される。すなわち、緩衝材4は、凹部5の深さd1と一面10aに実装されている電子部品11aと他の電子部品11や隣接領域との高さ差tdとが、d1≧tdを満たすことにより、緩衝材4の平坦面4a全体で配線基板10の一面10aを支持したときに、実装部12上の電子部品11aと実装部12以外の領域に実装されている電子部品11とに掛かる応力差を吸収することができる。   When the heating and pressing head 3 heat-presses the electronic component 13, the buffer material 4 receives pressure from the heating and pressing head 3 and the concave portion 5 is bent inward. As a result, the wiring board 10 absorbs stress applied to the electronic component 11 a mounted on the mounting portion 12 by the recess 5 of the buffer material 4. That is, the buffer material 4 has a depth d1 of the recess 5 and a height difference td between the electronic component 11a mounted on the one surface 10a and another electronic component 11 or an adjacent region satisfies d1 ≧ td. When one surface 10a of the wiring board 10 is supported by the entire flat surface 4a of the cushioning material 4, a stress difference applied to the electronic component 11a on the mounting portion 12 and the electronic component 11 mounted in a region other than the mounting portion 12 is increased. Can be absorbed.

また、緩衝材4は、配線基板10の一面10aの実装部12に実装されている電子部品11aと、実装部12以外の領域に実装されている電子部品11、または実装部12に隣接する領域に電子部品が実装されていない場合は、当該隣接領域との高さ差tdに起因して、配線基板10の他面10bに配置された電子部品13に生じる加熱押圧ヘッド3による圧力差を吸収し、異方性導電フィルム17の適正な圧力で均等に押圧させることができる。   The buffer material 4 includes an electronic component 11 a mounted on the mounting portion 12 on the one surface 10 a of the wiring substrate 10, an electronic component 11 mounted on a region other than the mounting portion 12, or a region adjacent to the mounting portion 12. When the electronic component is not mounted on the board, the pressure difference due to the heating and pressing head 3 generated in the electronic component 13 disposed on the other surface 10b of the wiring board 10 due to the height difference td from the adjacent region is absorbed. Then, the anisotropic conductive film 17 can be evenly pressed with an appropriate pressure.

また、緩衝材4は、緩衝材4の厚みt1から凹部5の深さd1を引いた凹部5直上の本体部4cの厚さ(t1−d1)と、実装部12に実装されている電子部品11aの高さt2とが(t1−d1)≧t2を満たすことにより、実装部12の反対側に配置された電子部品13や実装部12に実装されている電子部品11aに掛かる応力を吸収し、電子部品13を適正な圧力で押圧するとともに、電子部品11aの破損や実装部12からの剥離等を防止することができる。   The buffer material 4 includes the thickness (t1-d1) of the main body portion 4c immediately above the recess 5 obtained by subtracting the depth d1 of the recess 5 from the thickness t1 of the buffer material 4, and the electronic component mounted on the mounting portion 12. When the height t2 of 11a satisfies (t1-d1) ≧ t2, the stress applied to the electronic component 13 disposed on the opposite side of the mounting portion 12 and the electronic component 11a mounted on the mounting portion 12 is absorbed. In addition to pressing the electronic component 13 with an appropriate pressure, it is possible to prevent damage to the electronic component 11a, peeling from the mounting portion 12, and the like.

このように、接続装置1によれば、予め一面10aに電子部品11,11aが実装されている配線基板10の他面10bに他の電子部品13を異方性導電フィルム17を用いて容易に接続することができる。また、接続装置1は、緩衝材4に設けられた凹部5と電子部品11aが実装された実装部12とを対応させて支持することにより、配線基板10の一面10aにおける高さ差に起因して生じる加熱押圧ヘッド3の圧力差を吸収し、配線基板10の他面10bに異方性導電フィルム17を介して接続される電子部品13を均等に押圧するとともに、電子部品11aの破損や剥離、クラック等の発生を防止することができる。したがって、接続装置1は、異方性導電フィルム17を用いて、配線基板10に両面実装を行うことができる。   As described above, according to the connection device 1, the other electronic component 13 can be easily placed on the other surface 10 b of the wiring substrate 10 on which the electronic components 11 and 11 a are previously mounted on the one surface 10 a by using the anisotropic conductive film 17. Can be connected. In addition, the connection device 1 is caused by the height difference on the one surface 10a of the wiring board 10 by supporting the recess 5 provided in the cushioning material 4 and the mounting portion 12 on which the electronic component 11a is mounted in correspondence. The pressure difference of the heating and pressing head 3 generated in this way is absorbed, and the electronic component 13 connected to the other surface 10b of the wiring board 10 via the anisotropic conductive film 17 is pressed uniformly, and the electronic component 11a is damaged or peeled off. Generation of cracks and the like can be prevented. Therefore, the connection device 1 can perform double-sided mounting on the wiring board 10 using the anisotropic conductive film 17.

なお、接続装置1は、凹部5が断面視で対称形状をなす場合、図7に示すように、凹部5の中心位置を加熱押圧ヘッド3によって加圧する。これにより、凹部5が対称に撓まされ、実装部12に実装されている電子部品11に掛かる応力を均等に吸収することができ、また、緩衝材4からの反発力を均等に受けて電子部品13を接続することができる。   In addition, when the recessed part 5 makes symmetrical shape by sectional view, the connection apparatus 1 pressurizes the center position of the recessed part 5 with the heating press head 3, as shown in FIG. Thereby, the recessed part 5 is bent symmetrically, the stress applied to the electronic component 11 mounted on the mounting part 12 can be evenly absorbed, and the repulsive force from the buffer material 4 is equally received and the electron is received. The component 13 can be connected.

次いで、緩衝材4を備えた接続装置1を用いて、予め一面に抵抗やヒューズ等の電子部品が実装されている配線基板の他面に、フレキシブルプリント配線板を異方性導電接続する実施例について、他の接続装置を用いた場合と比して説明する。   Next, an embodiment in which the flexible printed wiring board is anisotropically conductively connected to the other surface of the wiring board on which electronic components such as resistors and fuses are mounted in advance on one surface using the connecting device 1 including the buffer material 4. Will be described as compared with the case of using another connection device.

実施例及び比較例に用いる配線基板は、リジッドプリント配線板であり、図8、図9、図10に示すように、一面には、予め電子部品として、
抵抗a:R1005;高さ0.35mm
抵抗b:R0603;高さ0.23mm
抵抗c:R1608;高さ0.45mm
ヒューズd:SFH−0412B;高さ1.35mm
が選択的に実装されている。なお、各抵抗a〜cは定格抵抗値が1Ωで、許容差が±5%である。ヒューズdは、ソニーケミカル&インフォメーションデバイス株式会社製セルフコントロールプロテクタ(以下、「SCP」ともいう。)を使用し、ヒーター抵抗は5.5〜9.1mΩである。
The wiring board used in the examples and comparative examples is a rigid printed wiring board, and as shown in FIGS.
Resistance a: R1005; Height 0.35mm
Resistance b: R0603; Height 0.23mm
Resistance c: R1608; Height 0.45mm
Fuse d: SFH-0411B; height 1.35 mm
Has been implemented selectively. Each of the resistors a to c has a rated resistance value of 1Ω and a tolerance of ± 5%. As the fuse d, a self-control protector (hereinafter also referred to as “SCP”) manufactured by Sony Chemical & Information Device Co., Ltd. is used, and the heater resistance is 5.5 to 9.1 mΩ.

各配線基板は、複数種類の電子部品が実装されている一面の領域のうち、高さの最も高い電子部品が実装されている領域を実装部とし、一面と反対側の他面に実装部12の反対側及び実装部12に隣接する領域の反対側の各領域に亘って電極が複数形成され、フレキシブルプリント配線板を異方性導電フィルムによって接続することにより、基板電極とフレキシブルプリント配線板の電極とを導通接続した。なお、図8は、実装部に隣接した領域にも電子部品が実装されている場合を示し、図9は、実装部に隣接する領域に抵抗等の電子部品が実装されていない場合を示す。図10は、実装部にヒューズd(SCP)が実装され、その隣接領域に抵抗bが実装されている状態を示す。   Each wiring board has, as a mounting portion, a region where the electronic component having the highest height is mounted among regions on one surface where a plurality of types of electronic components are mounted, and the mounting portion 12 on the other surface opposite to the one surface. A plurality of electrodes are formed across each region on the opposite side to the region adjacent to the mounting portion 12, and the flexible printed wiring board is connected by an anisotropic conductive film, whereby the substrate electrode and the flexible printed wiring board are connected. Conductive connection was made with the electrode. 8 shows a case where an electronic component is also mounted in a region adjacent to the mounting portion, and FIG. 9 shows a case where an electronic component such as a resistor is not mounted in a region adjacent to the mounting portion. FIG. 10 shows a state in which the fuse d (SCP) is mounted on the mounting portion and the resistor b is mounted in the adjacent region.

フレキシブルプリント配線板は、ポリイミド基板に銅パターンが形成され、金メッキ電極が形成されている。また、異方性導電フィルムは、DP3342MS(ソニーケミカル&インフォメーションデバイス株式会社製)を用い、接続装置による熱加圧条件は、2MPa、130℃、6秒である。   In the flexible printed wiring board, a copper pattern is formed on a polyimide substrate, and a gold plating electrode is formed. The anisotropic conductive film uses DP3342MS (manufactured by Sony Chemical & Information Device Co., Ltd.), and the heat and pressure conditions by the connecting device are 2 MPa, 130 ° C., and 6 seconds.

下記実施例では、いずれも実装部に応じた凹部が形成された緩衝材を介在させた接続装置を用いた。比較例では、緩衝材を備えない接続装置、凹部を有しない緩衝材を介在させた接続装置、凹部が形成された緩衝材を介在させた接続装置を用いた。   In the following examples, a connection device in which a cushioning material in which a recess corresponding to the mounting portion was formed was interposed was used. In the comparative example, a connection device that does not include a buffer material, a connection device that includes a buffer material that does not have a recess, and a connection device that includes a buffer material in which a recess is formed are used.

実施例1では、厚さ12μmの配線基板の実装部に抵抗aを実装し、その隣接領域に抵抗bを実装した(図8)。実施例1に係る抵抗a、b及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部における抵抗aの高さt2:0.35mm
凹部深さd1:1mm
実装部の抵抗aと実装部に隣接する領域の抵抗bとの高さ差td:0.12mm
である(図8)。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は20である。
In Example 1, the resistor a was mounted on the mounting portion of the wiring board having a thickness of 12 μm, and the resistor b was mounted in the adjacent region (FIG. 8). The dimensions of the resistors a and b and the cushioning material according to Example 1 are as follows:
Buffer material thickness t1: 5 mm
Height of resistance a in mounting part t2: 0.35 mm
Concave depth d1: 1 mm
Height difference td between the resistance a of the mounting part and the resistance b of the area adjacent to the mounting part: 0.12 mm
(FIG. 8). The buffer material is made of silicone resin, and the rubber hardness (JIS K6253 type A) is 20.

実施例2では、厚さ12μmの配線基板の実装部に抵抗cを実装し、実装部に隣接する領域には電子部品を実装していない(図9)。抵抗c及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部における抵抗cの高さt2:0.45mm
凹部深さd1:1mm
実装部の抵抗cと実装部に隣接する領域との高さ差td:0.45mm
である。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は20である。
In Example 2, the resistor c is mounted on the mounting portion of the wiring board having a thickness of 12 μm, and no electronic component is mounted in the region adjacent to the mounting portion (FIG. 9). The resistance c and the size of the cushioning material are
Buffer material thickness t1: 5 mm
Height t2 of resistance c in the mounting part: 0.45 mm
Concave depth d1: 1 mm
Height difference td between the resistance c of the mounting part and the area adjacent to the mounting part: 0.45 mm
It is. The buffer material is made of silicone resin, and the rubber hardness (JIS K6253 type A) is 20.

実施例3では、厚さ12μmの配線基板の実装部にヒューズdを実装し、その隣接領域に抵抗bを実装した(図10)。抵抗b、ヒューズd及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部におけるヒューズdの高さt2:1.35mm
凹部深さd1:1.5mm
実装部の抵抗dと実装部に隣接する領域の抵抗bとの高さ差td:1.12mm
である。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は20である。
In Example 3, the fuse d was mounted on the mounting portion of the wiring board having a thickness of 12 μm, and the resistor b was mounted in the adjacent region (FIG. 10). The dimensions of the resistor b, fuse d, and cushioning material are:
Buffer material thickness t1: 5 mm
The height t2 of the fuse d in the mounting part: 1.35 mm
Concave depth d1: 1.5 mm
Height difference td between the resistance d of the mounting portion and the resistance b in the region adjacent to the mounting portion: 1.12 mm
It is. The buffer material is made of silicone resin, and the rubber hardness (JIS K6253 type A) is 20.

実施例4では、厚さ12μmの配線基板の実装部に抵抗aを実装し、その隣接領域に抵抗bを実装した(図8)。実施例4に係る抵抗a、b及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部における抵抗aの高さt2:0.35mm
凹部深さd1:1mm
実装部の抵抗aと実装部に隣接する領域の抵抗bとの高さ差td:0.12mm
である(図8)。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は60である。
In Example 4, the resistor a was mounted on the mounting portion of the wiring board having a thickness of 12 μm, and the resistor b was mounted in the adjacent region (FIG. 8). The dimensions of the resistors a and b and the cushioning material according to Example 4 are as follows:
Buffer material thickness t1: 5 mm
Height of resistance a in mounting part t2: 0.35 mm
Concave depth d1: 1 mm
Height difference td between the resistance a of the mounting part and the resistance b of the area adjacent to the mounting part: 0.12 mm
(FIG. 8). The buffer material is made of a silicone resin, and has a rubber hardness (JIS K6253 type A) of 60.

比較例1は、緩衝材を用いずに、電子部品を実装していない厚さ18μmの配線基板を直接受け台に載置して、フレキシブルプリント配線板を加熱押圧ヘッド3によって接続した。   In Comparative Example 1, a wiring board having a thickness of 18 μm on which no electronic component was mounted was directly placed on a cradle without using a cushioning material, and the flexible printed wiring board was connected by the heating and pressing head 3.

比較例2は、実装部に抵抗aを実装し、その隣接領域に抵抗bを実装した厚さ12μmの配線基板を直接受け台に載置して、緩衝材を用いずに、フレキシブルプリント配線板を加熱押圧ヘッド3によって接続した。抵抗a、bの寸法は、
実装部における抵抗aの高さt2:0.35mm
実装部の抵抗aと実装部に隣接する領域の抵抗bとの高さ差td:0.12mm
である(図8)。
Comparative Example 2 is a flexible printed wiring board in which a 12 μm-thick wiring board in which a resistor a is mounted on a mounting portion and a resistor b is mounted on an adjacent region thereof is directly placed on a cradle, and no cushioning material is used. Were connected by a heating and pressing head 3. The dimensions of resistors a and b are
Height of resistance a in mounting part t2: 0.35 mm
Height difference td between the resistance a of the mounting part and the resistance b of the area adjacent to the mounting part: 0.12 mm
(FIG. 8).

比較例3は、実装部に抵抗aを実装し、その隣接領域に抵抗bを実装した厚さ12μmの配線基板を直接受け台に載置して、凹部が形成されていない緩衝材を用いてフレキシブルプリント配線坂を接続した。抵抗a、b及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部における抵抗aの高さt2:0.35mm
実装部の抵抗aと実装部に隣接する領域の抵抗bとの高さ差td:0.12mm
である(図8)。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は20である。
In Comparative Example 3, a 12 μm-thick wiring board in which a resistor a is mounted on a mounting portion and a resistor b is mounted on an adjacent region thereof is directly placed on a cradle, and a cushioning material in which no recess is formed is used. Flexible printed wiring slope was connected. The dimensions of the resistors a and b and the cushioning material are
Buffer material thickness t1: 5 mm
Height of resistance a in mounting part t2: 0.35 mm
Height difference td between the resistance a of the mounting part and the resistance b of the area adjacent to the mounting part: 0.12 mm
(FIG. 8). The buffer material is made of silicone resin, and the rubber hardness (JIS K6253 type A) is 20.

比較例4では、厚さ12μmの配線基板の実装部に抵抗cを実装し、実装部に隣接する領域には電子部品を実装していない(図9)。また、凹部が形成されていない緩衝材を用い、抵抗c及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部における抵抗cの高さt2:0.45mm
実装部の抵抗cと実装部に隣接する領域との高さ差td:0.45mm
である。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は20である。
In Comparative Example 4, the resistor c is mounted on the mounting portion of the wiring board having a thickness of 12 μm, and no electronic component is mounted in the region adjacent to the mounting portion (FIG. 9). Moreover, the buffer material in which the recessed part is not formed is used, and the dimension of the resistance c and the buffer material is
Buffer material thickness t1: 5 mm
Height t2 of resistance c in the mounting part: 0.45 mm
Height difference td between the resistance c of the mounting part and the area adjacent to the mounting part: 0.45 mm
It is. The buffer material is made of silicone resin, and the rubber hardness (JIS K6253 type A) is 20.

比較例5では、厚さ12μmの配線基板の実装部に抵抗cを実装し、実装部に隣接する領域には電子部品を実装していない(図9)。また、凹部が形成された緩衝材を用い、抵抗c及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部における抵抗cの高さt2:0.45mm
凹部深さd1:1mm
実装部の抵抗cと実装部に隣接する領域との高さ差td:0.45mm
である。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は80である。
In Comparative Example 5, the resistor c is mounted on the mounting portion of the wiring board having a thickness of 12 μm, and no electronic component is mounted in the region adjacent to the mounting portion (FIG. 9). Moreover, the buffer material in which the recessed part was formed is used, and the dimension of the resistance c and the buffer material is
Buffer material thickness t1: 5 mm
Height t2 of resistance c in the mounting part: 0.45 mm
Concave depth d1: 1 mm
Height difference td between the resistance c of the mounting part and the area adjacent to the mounting part: 0.45 mm
It is. The buffer material is made of silicone resin and has a rubber hardness (JIS K6253 type A) of 80.

比較例6では、厚さ12μmの配線基板の実装部にヒューズdを実装し、その隣接領域に抵抗bを実装した(図10)。また、凹部が形成された緩衝材を用い、ヒューズd、抵抗b及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部におけるヒューズdの高さt2:1.35mm
凹部深さd1:1mm
実装部のヒューズdと実装部に隣接する領域の抵抗bとの高さ差td:1.12mm
である。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は20である。
In Comparative Example 6, the fuse d was mounted on the mounting portion of the wiring board having a thickness of 12 μm, and the resistor b was mounted in the adjacent region (FIG. 10). Moreover, using the buffer material in which the concave portion is formed, the dimensions of the fuse d, the resistor b, and the buffer material are:
Buffer material thickness t1: 5 mm
The height t2 of the fuse d in the mounting part: 1.35 mm
Concave depth d1: 1 mm
Height difference td between the fuse d of the mounting part and the resistance b in the region adjacent to the mounting part: 1.12 mm
It is. The buffer material is made of silicone resin, and the rubber hardness (JIS K6253 type A) is 20.

比較例7では、厚さ12μmの配線基板の実装部にヒューズdを実装し、その隣接領域に抵抗bを実装した(図10)。また、凹部が形成された緩衝材を用い、ヒューズd、抵抗b及び緩衝材の寸法は、
緩衝材厚みt1:5mm
実装部におけるヒューズdの高さt2:1.35mm
凹部深さd1:4mm
実装部のヒューズdと実装部に隣接する領域の抵抗bとの高さ差td:1.12mm
である。緩衝材は、シリコーン樹脂から成り、ゴム硬度(JIS K6253タイプA)は20である。
In Comparative Example 7, the fuse d was mounted on the mounting portion of the wiring board having a thickness of 12 μm, and the resistor b was mounted in the adjacent region (FIG. 10). Moreover, using the buffer material in which the concave portion is formed, the dimensions of the fuse d, the resistor b, and the buffer material are:
Buffer material thickness t1: 5 mm
The height t2 of the fuse d in the mounting part: 1.35 mm
Concave depth d1: 4 mm
Height difference td between the fuse d of the mounting part and the resistance b in the region adjacent to the mounting part: 1.12 mm
It is. The buffer material is made of silicone resin, and the rubber hardness (JIS K6253 type A) is 20.

上記条件下で、各実施例及び比較例について、フレキシブルプリント配線板の接続後、配線基板の他面に設けられた電極とフレキシブルプリント配線板の電極との接続部における平均抵抗値(mΩ)及び最大抵抗値(mΩ)を測定した。また、予め配線基板の一面に実装されていた抵抗a〜cの外観及び抵抗器の平均変化率(%)、ヒューズd(SCP)の外観及びヒーター抵抗の平均値(mΩ)を測定した。測定結果を表1に示す。   Under the above conditions, for each example and comparative example, after connecting the flexible printed wiring board, the average resistance value (mΩ) at the connection portion between the electrode provided on the other surface of the wiring board and the electrode of the flexible printed wiring board, and The maximum resistance value (mΩ) was measured. Further, the appearance of resistors a to c previously mounted on one surface of the wiring board, the average rate of change (%) of the resistor, the appearance of fuse d (SCP), and the average value (mΩ) of the heater resistance were measured. The measurement results are shown in Table 1.

Figure 0005844599
Figure 0005844599

表1に示すように、実施例1〜4では、ゴム硬度(JIS K6253タイプA)が20あるいは40の緩衝材を用い、凹部深さd1が実装部における抵抗a、c又はヒューズdと実装部に隣接する領域の抵抗b又は当該領域の高さ差td以上であり(d1≧td)、かつ緩衝材厚みt1から凹部深さd1を引いた本体部の厚み(t1−d1)が実装部における抵抗の高さt2以上である((t1−d1)≧t2)。したがって、実施例1〜4は、リジットプリント配線板とフレキシブルプリント配線板との各電極の接続部の平均抵抗値が最大88.2(mΩ)に抑えられ、最大抵抗値も97.1(mΩ)と、100(mΩ)を超えることなく、良好な接続信頼性を維持していることが分かる。   As shown in Table 1, in Examples 1 to 4, a cushioning material having a rubber hardness (JIS K6253 type A) of 20 or 40 is used, and the recess depth d1 is the resistance a, c or fuse d in the mounting portion and the mounting portion. Is the resistance b of the region adjacent to the region or the height difference td of the region (d1 ≧ td), and the thickness (t1-d1) of the main body portion obtained by subtracting the recess depth d1 from the buffer material thickness t1 is The height of the resistor is t2 or more ((t1-d1) ≧ t2). Therefore, in Examples 1 to 4, the average resistance value of the connection portion of each electrode of the rigid printed wiring board and the flexible printed wiring board is suppressed to 88.2 (mΩ) at the maximum, and the maximum resistance value is also 97.1 (mΩ). It can be seen that good connection reliability is maintained without exceeding 100 (mΩ).

また、実施例1〜4は、予め配線基板の一面に実装されている抵抗a〜cの外観に異常はなく、また定格抵抗値からの平均変化率も最大で−0.51%と問題なく、ヒューズd(SCP)の外観にも異常はなく、ヒーター抵抗の平均値も7.5(mΩ)と問題は生じなかった。   In Examples 1 to 4, there is no abnormality in the appearance of the resistors a to c mounted on one surface of the wiring board in advance, and the average rate of change from the rated resistance value is -0.51% at maximum, with no problem. There was no abnormality in the appearance of the fuse d (SCP), and the average value of the heater resistance was 7.5 (mΩ), and no problem occurred.

一方、比較例1は、リジッドプリント配線基板の一面に予め電子部品が実装されていないため、緩衝材を用いるまでもなく、リジットプリント配線板とフレキシブルプリント配線板とは良好な導通抵抗値を示している。   On the other hand, in Comparative Example 1, since the electronic component is not mounted on one surface of the rigid printed wiring board in advance, it is not necessary to use a cushioning material, and the rigid printed wiring board and the flexible printed wiring board exhibit good conduction resistance values. ing.

また、比較例2は、緩衝材を用いていないため、リジッドプリント配線板に実装されている各抵抗の高さ差に応じて掛かり、フレキシブルプリント配線板とリジッドプリント配線基板の他面に形成された各電極に、加熱押圧ヘッドによる圧力が不均等にかかる。その結果、フレキシブルプリント配線板とリジッドプリント配線基板の各電極間が外れ、導通がとれなかった。また、リジッドプリント配線基板に予め実装されていた抵抗にも破損が見られ、導通がとれなかった。   Moreover, since the comparative example 2 does not use the buffer material, it is hung according to the height difference of each resistor mounted on the rigid printed wiring board, and is formed on the other surface of the flexible printed wiring board and the rigid printed wiring board. Further, the pressure by the heating and pressing head is applied unevenly to each electrode. As a result, the electrodes of the flexible printed wiring board and the rigid printed wiring board were disconnected, and conduction was not achieved. Moreover, the resistance previously mounted on the rigid printed wiring board was also damaged and could not be conducted.

比較例3及び比較例4は、凹部が形成されていない緩衝材を用いているため、実装部における抵抗a、cと実装部に隣接する領域との高さ差に起因して、実装部における抵抗a、cに応力が過剰に掛かり、フレキシブルプリント配線板とリジッドプリント配線基板の他面に形成された各電極に、加熱押圧ヘッドによる圧力が不均等にかかる。その結果、リジットプリント配線板とフレキシブルプリント配線板の接続部における最大抵抗値が144.8(mΩ)、139.7(mΩ)と、100(mΩ)を超え、また、一部の電極間では導通がとれず、接続信頼性が損なわれた。   Since the comparative example 3 and the comparative example 4 use the buffer material in which the recessed part is not formed, due to the height difference between the resistances a and c in the mounting part and the region adjacent to the mounting part, Excessive stress is applied to the resistors a and c, and the pressure applied by the heating and pressing head is applied unevenly to the electrodes formed on the other surfaces of the flexible printed wiring board and the rigid printed wiring board. As a result, the maximum resistance value at the connection between the rigid printed wiring board and the flexible printed wiring board exceeds 144.8 (mΩ), 139.7 (mΩ), and 100 (mΩ). Connection was not possible and connection reliability was impaired.

比較例5は、緩衝材の硬度(JIS K6253タイプA)が80と硬く、加熱押圧ヘッドによる圧力を吸収しきれなかったため、リジットプリント配線板とフレキシブルプリント配線板の接続部における最大抵抗値が140.5(mΩ)と、100(mΩ)を超え、接続信頼性が損なわれた。   In Comparative Example 5, the hardness of the cushioning material (JIS K6253 type A) was as hard as 80, and the pressure by the heating and pressing head could not be absorbed, so the maximum resistance value at the connection portion between the rigid printed wiring board and the flexible printed wiring board was 140. .5 (mΩ) and exceeding 100 (mΩ), connection reliability was impaired.

比較例6では、凹部深さd1が実装部におけるヒューズdと実装部に隣接する領域の抵抗bとの高さ差tdより短いため、この高さ差tdに起因した応力差を吸収することができず、リジットプリント配線板とフレキシブルプリント配線板の接続部における最大抵抗値が138.2(mΩ)と、100(mΩ)を超え、接続信頼性が損なわれた。   In Comparative Example 6, since the recess depth d1 is shorter than the height difference td between the fuse d in the mounting portion and the resistance b in the region adjacent to the mounting portion, the stress difference due to the height difference td can be absorbed. The maximum resistance value at the connecting portion between the rigid printed wiring board and the flexible printed wiring board was 138.2 (mΩ) exceeding 100 (mΩ), and connection reliability was impaired.

比較例7では、緩衝材厚みt1から凹部深さd1を引いた本体部の厚み(t1−d1)が実装部におけるヒューズdの高さt2に満たないため、実装部のヒューズdに掛かる応力を吸収しきれなかったため、リジットプリント配線板とフレキシブルプリント配線板の接続部における最大抵抗値が130.2(mΩ)と、100(mΩ)を超え、接続信頼性が損なわれた。   In Comparative Example 7, since the thickness (t1-d1) of the main body part obtained by subtracting the recess depth d1 from the buffer material thickness t1 is less than the height t2 of the fuse d in the mounting part, the stress applied to the fuse d in the mounting part is Since it was not able to absorb, the maximum resistance value in the connection part of a rigid printed wiring board and a flexible printed wiring board exceeded 130.2 (m (ohm)) and 100 (m (ohm)), and connection reliability was impaired.

1 接続装置、2 受け台、3 加熱押圧ヘッド、4 緩衝材、4a 平坦面、4b 他面、4c 本体部、5 凹部、10 配線基板、11 電子部品、12 実装部、13 電子部品、17 異方性導電接着剤、23 バインダ、24 導電性粒子、25 剥離フィルム、26 巻取リール DESCRIPTION OF SYMBOLS 1 Connection apparatus, 2 cradle, 3 Heating press head, 4 Buffering material, 4a Flat surface, 4b Other surface, 4c Main part, 5 Recessed part, 10 Wiring board, 11 Electronic component, 12 Mounting part, 13 Electronic component, 17 Different Isotropic conductive adhesive, 23 binder, 24 conductive particles, 25 release film, 26 take-up reel

Claims (5)

一面に電子部品が実装された基板を支持する受台と、
上記電子部品が実装されている実装部の反対側の上記基板の他面に、接着剤を介して配置される接続部材を加圧するヘッドと、
上記受け台上に上記ヘッドと対向して設けられ、上記基板の上記一面側を支持する緩衝材とを備え、
上記緩衝材は、ゴム硬度が60以下であり、
上記緩衝材は、弾性材料により形成されるとともに、上記一面を支持する面を平坦化され、上記平坦化された面と反対側の面に上記実装部が載置される位置に対応して凹部が設けられ、
上記凹部の深さd1は、上記実装部の電子部品と上記一面に実装され上記実装部の電子部品より低背の他の電子部品又は上記実装部と隣接する領域との高さ差td以上であり、
上記緩衝材の厚みt1から上記凹部の深さd1を引いた緩衝材本体部の厚さ(t1−d1)は、上記実装部の電子部品の高さt2以上である接続装置。
A cradle for supporting a substrate on which electronic components are mounted on one surface;
A head for pressurizing a connection member disposed on the other surface of the substrate opposite to the mounting portion on which the electronic component is mounted via an adhesive;
A cushioning material provided on the cradle facing the head and supporting the one side of the substrate;
The cushioning material has a rubber hardness of 60 or less,
The cushioning material is formed of an elastic material, and a surface supporting the one surface is flattened, and a concave portion corresponding to a position where the mounting portion is placed on a surface opposite to the flattened surface Is provided,
The depth d1 of the recess is equal to or greater than a height difference td between the electronic component of the mounting portion and another electronic component that is mounted on the one surface and has a lower height than the electronic component of the mounting portion or a region adjacent to the mounting portion. Yes,
A connection device in which the thickness (t1-d1) of the cushioning material main body obtained by subtracting the depth d1 of the recess from the thickness t1 of the cushioning material is equal to or higher than the height t2 of the electronic component of the mounting part.
上記緩衝材は、シリコーンゴムからなる請求項1に記載の接続装置。 The connection device according to claim 1, wherein the cushioning material is made of silicone rubber. 上記接続部材は、電子部品又は配線基板である請求項1又は請求項2に記載の接続装置。 The connection device according to claim 1, wherein the connection member is an electronic component or a wiring board. 一面に電子部品が実装された基板の当該一面を、受け台に設けられた緩衝材上に載置し、上記電子部品が実装されている実装部の反対側の上記基板の他面に、接着剤を介して接続部材を配置し、上記緩衝材と対向して設けられたヘッドによって上記接続部材を加圧する工程を有し、
上記緩衝材は、ゴム硬度が60以下であり、
上記緩衝材は、弾性材料により形成されるとともに、上記一面側を支持する面を平坦化され、上記平坦化された面と反対側の面に上記実装部が載置される位置に対応して凹部が設けられ、
上記凹部の深さd1は、上記実装部の電子部品と上記一面に実装され上記実装部の電子部品より低背の他の電子部品又は上記実装部と隣接する領域との高さ差td以上であり、
上記緩衝材の厚みt1から上記凹部の深さd1を引いた緩衝材本体部の厚さ(t1−d1)は、上記実装部の電子部品の高さt2以上である接続体の製造方法。
Place the one surface of the substrate on which the electronic component is mounted on one surface on a cushioning material provided on the cradle, and adhere to the other surface of the substrate on the opposite side of the mounting portion on which the electronic component is mounted. A step of disposing a connecting member via an agent and pressurizing the connecting member by a head provided to face the buffer material;
The cushioning material has a rubber hardness of 60 or less,
The cushioning material is formed of an elastic material, and a surface that supports the one surface side is flattened, and corresponds to a position where the mounting portion is placed on the surface opposite to the flattened surface. A recess is provided,
The depth d1 of the recess is equal to or greater than a height difference td between the electronic component of the mounting portion and another electronic component that is mounted on the one surface and has a lower height than the electronic component of the mounting portion or a region adjacent to the mounting portion. Yes,
The thickness (t1-d1) of the buffer material main body obtained by subtracting the depth d1 of the recess from the thickness t1 of the buffer material is a method for manufacturing a connection body, which is not less than the height t2 of the electronic component of the mounting part.
一面に電子部品が実装された基板の当該一面を、受け台に設けられた緩衝材上に載置し、上記電子部品が実装されている実装部の反対側の上記基板の他面に、接着剤を介して接続部材を配置し、上記緩衝材と対向して設けられたヘッドによって上記接続部材を加圧する工程を有し、
上記緩衝材は、ゴム硬度が60以下であり、
上記緩衝材は、弾性材料により形成されるとともに、上記一面側を支持する面を平坦化され、上記平坦化された面と反対側の面に上記実装部が載置される位置に対応して凹部が設けられ、
上記凹部の深さd1は、上記実装部の電子部品と上記一面に実装され上記実装部の電子部品より低背の他の電子部品又は上記実装部と隣接する領域との高さ差td以上であり、
上記緩衝材の厚みt1から上記凹部の深さd1を引いた緩衝材本体部の厚さ(t1−d1)は、上記実装部の電子部品の高さt2以上である接続方法。
Place the one surface of the substrate on which the electronic component is mounted on one surface on a cushioning material provided on the cradle, and adhere to the other surface of the substrate on the opposite side of the mounting portion on which the electronic component is mounted. A step of disposing a connecting member via an agent and pressurizing the connecting member by a head provided to face the buffer material;
The cushioning material has a rubber hardness of 60 or less,
The cushioning material is formed of an elastic material, and a surface that supports the one surface side is flattened, and corresponds to a position where the mounting portion is placed on the surface opposite to the flattened surface. A recess is provided,
The depth d1 of the recess is equal to or greater than a height difference td between the electronic component of the mounting portion and another electronic component that is mounted on the one surface and has a lower height than the electronic component of the mounting portion or a region adjacent to the mounting portion. Yes,
The thickness (t1-d1) of the buffer material main body obtained by subtracting the depth d1 of the recess from the thickness t1 of the buffer material is a connection method that is equal to or greater than the height t2 of the electronic component of the mounting part.
JP2011224994A 2011-10-12 2011-10-12 CONNECTION DEVICE, CONNECTION MANUFACTURING METHOD, CONNECTION METHOD Active JP5844599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224994A JP5844599B2 (en) 2011-10-12 2011-10-12 CONNECTION DEVICE, CONNECTION MANUFACTURING METHOD, CONNECTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224994A JP5844599B2 (en) 2011-10-12 2011-10-12 CONNECTION DEVICE, CONNECTION MANUFACTURING METHOD, CONNECTION METHOD

Publications (2)

Publication Number Publication Date
JP2012039142A JP2012039142A (en) 2012-02-23
JP5844599B2 true JP5844599B2 (en) 2016-01-20

Family

ID=45850702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224994A Active JP5844599B2 (en) 2011-10-12 2011-10-12 CONNECTION DEVICE, CONNECTION MANUFACTURING METHOD, CONNECTION METHOD

Country Status (1)

Country Link
JP (1) JP5844599B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082381A (en) * 2012-10-17 2014-05-08 Dexerials Corp Connection method, manufacturing method for connector and connection device
JP6238655B2 (en) * 2013-09-12 2017-11-29 デクセリアルズ株式会社 Connection structure and anisotropic conductive adhesive

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129682A (en) * 2008-11-26 2010-06-10 Nec Corp Substrate connection method, substrate connection device, bonded printed wiring board, and portable terminal apparatus

Also Published As

Publication number Publication date
JP2012039142A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
US10589502B2 (en) Anisotropic conductive film, connected structure, and method for manufacturing a connected structure
JP6043058B2 (en) Connection device, method for manufacturing connection structure, method for manufacturing chip stack component, and method for mounting electronic component
JP6344888B2 (en) Connection body manufacturing method, electronic component connection method, connection structure
JP2013171656A (en) Anisotropic conductive connection material, connection structure, method for manufacturing the same, and connection method
WO2014021424A1 (en) Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
JP5844599B2 (en) CONNECTION DEVICE, CONNECTION MANUFACTURING METHOD, CONNECTION METHOD
JP6000612B2 (en) Connection structure manufacturing method, connection method, and connection structure
JP2015135748A (en) Anisotropic conductive film, connection structure, method for manufacturing connection structure, and apparatus for manufacturing connection structure
JP5732239B2 (en) Thermocompression head, thermocompression bonding equipment, mounting method
JP6562750B2 (en) Electronic component, connection body, manufacturing method of connection body, connection method of electronic component, cushioning material
JP6434210B2 (en) Electronic component, connecting body, manufacturing method of connecting body, and connecting method of electronic component
JP6431572B2 (en) Connection film, connection film manufacturing method, connection structure, connection structure manufacturing method, and connection method
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP2017191780A (en) Method for manufacturing conductive adhesive film, conductive adhesive film, and method for manufacturing connection body
JP2014107305A (en) Manufacturing method of connection structure, connection structure, and connection method
JP6177642B2 (en) Connection film, connection structure, method for manufacturing connection structure, connection method
JP2013201351A (en) Manufacturing method of connection body, connection method of connection member, and connection body
JP2019021947A (en) Electronic component, connection body, manufacturing method of connection body, and connection method of electronic component
JP2014120581A (en) Manufacturing method of connection structure, connection method and connection structure
JP2014082381A (en) Connection method, manufacturing method for connector and connection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151119

R150 Certificate of patent or registration of utility model

Ref document number: 5844599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250