JP5844503B1 - Heat exchanger for aircraft engine - Google Patents

Heat exchanger for aircraft engine Download PDF

Info

Publication number
JP5844503B1
JP5844503B1 JP2015526777A JP2015526777A JP5844503B1 JP 5844503 B1 JP5844503 B1 JP 5844503B1 JP 2015526777 A JP2015526777 A JP 2015526777A JP 2015526777 A JP2015526777 A JP 2015526777A JP 5844503 B1 JP5844503 B1 JP 5844503B1
Authority
JP
Japan
Prior art keywords
heat exchanger
lid member
aircraft engine
heat
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015526777A
Other languages
Japanese (ja)
Other versions
JPWO2016063311A1 (en
Inventor
達哉 植田
達哉 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Application granted granted Critical
Publication of JP5844503B1 publication Critical patent/JP5844503B1/en
Publication of JPWO2016063311A1 publication Critical patent/JPWO2016063311A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

外力による放熱フィンの変形を抑制できる、熱交換器を提供する。本実施形態の熱交換器(1)は、航空機エンジンの湾曲面に沿って配置可能である。熱交換器(1)は、本体(10)と、複数の放熱フィン(20)と、蓋部材(50)とを備える。本体(10)は、流体が流通可能な流路を内部に含み、湾曲面と対向する裏面(3)と、裏面(3)と反対側の表面(2)とを有する。本体(10)は、航空機エンジンの湾曲面に対応して湾曲する。複数の放熱フィン(20)は、本体の表面(2)に配列され、気流に曝される。蓋部材(50)は、複数の放熱フィン(20)の上端に固定される。Provided is a heat exchanger capable of suppressing deformation of a heat radiation fin due to an external force. The heat exchanger (1) of this embodiment can be arranged along the curved surface of the aircraft engine. The heat exchanger (1) includes a main body (10), a plurality of heat radiation fins (20), and a lid member (50). The main body (10) includes a flow path through which fluid can flow, and has a back surface (3) facing the curved surface and a surface (2) opposite to the back surface (3). The body (10) is curved corresponding to the curved surface of the aircraft engine. The plurality of heat dissipating fins (20) are arranged on the surface (2) of the main body and exposed to the airflow. The lid member (50) is fixed to the upper ends of the plurality of radiating fins (20).

Description

本発明は、熱交換器に関し、さらに詳しくは、航空機エンジン用の熱交換器に関する。   The present invention relates to heat exchangers, and more particularly to heat exchangers for aircraft engines.

ガスタービンエンジンに代表される航空機エンジンには、熱交換器が搭載される。航空機エンジン用の熱交換器は、航空機エンジンの潤滑油の冷却や、航空機エンジンに搭載された発電機の潤滑油の冷却に利用される。航空機エンジン用の熱交換器には、プレートフィン型、シェルアンドチューブ型、及び、サーフェス型等がある。   An aircraft engine represented by a gas turbine engine is equipped with a heat exchanger. The heat exchanger for an aircraft engine is used for cooling the lubricating oil of the aircraft engine and cooling the lubricating oil of the generator mounted on the aircraft engine. Air exchangers for aircraft engines include a plate fin type, a shell and tube type, and a surface type.

これらの熱交換器のうち、サーフェス型熱交換器は、他の熱交換器と比較してコンパクト化できる。このようなサーフェス型熱交換器はたとえば、特開2008−144752(特許文献1)及び特許第5442916号(特許文献2)に提案されている。   Among these heat exchangers, the surface type heat exchanger can be made compact as compared with other heat exchangers. Such surface heat exchangers are proposed in, for example, Japanese Patent Application Laid-Open No. 2008-144752 (Patent Document 1) and Patent No. 5442916 (Patent Document 2).

特許文献1及び特許文献2に開示されたサーフェス型熱交換器は弓なりに湾曲した板状であり、表面及び裏面を有する。サーフェス型熱交換器は、航空機エンジンの湾曲面に沿って配置される。このとき、サーフェス型熱交換器の裏面が湾曲面と対向する。航空機エンジンの湾曲面はたとえば、ファンケースの内周面や、エンジンコアケーシングの外周面等である。サーフェス型熱交換器の湾曲形状は、熱交換器が配置される箇所の湾曲面の形状と対応する。   The surface heat exchangers disclosed in Patent Document 1 and Patent Document 2 are plate-shaped curved in a bow shape, and have a front surface and a back surface. The surface heat exchanger is disposed along the curved surface of the aircraft engine. At this time, the back surface of the surface heat exchanger faces the curved surface. The curved surface of the aircraft engine is, for example, the inner peripheral surface of the fan case, the outer peripheral surface of the engine core casing, or the like. The curved shape of the surface type heat exchanger corresponds to the shape of the curved surface where the heat exchanger is disposed.

サーフェス型熱交換器の表面及び裏面は、航空機エンジン内を通過する気流に曝される。サーフェス型熱交換器の表面には、複数の放熱フィンが配置される。複数の放熱フィンは、航空機エンジンの軸方向に延び、航空機エンジンの周方向に配列される。さらに、熱交換器の内部には、流路が形成されている。   The front and back surfaces of the surface heat exchanger are exposed to airflow passing through the aircraft engine. A plurality of radiating fins are arranged on the surface of the surface heat exchanger. The plurality of radiating fins extend in the axial direction of the aircraft engine and are arranged in the circumferential direction of the aircraft engine. Furthermore, a flow path is formed inside the heat exchanger.

上述の潤滑油等の流体(以下、対象流体という)は、サーフェス型熱交換器内に流入し、内部の流路を流れる。サーフェス型熱交換器の表面の複数の放熱フィンは、気流に曝される。そのため、流路中の対象流体の熱が、放熱フィンを介して外部に放出される。冷却された対象流体は、熱交換器から外部に流出され、利用される装置(発電機等)に戻る。   The above-described fluid such as lubricating oil (hereinafter referred to as a target fluid) flows into the surface heat exchanger and flows through the internal flow path. The plurality of heat dissipating fins on the surface of the surface type heat exchanger are exposed to the air flow. Therefore, the heat of the target fluid in the flow path is released to the outside through the radiation fin. The cooled target fluid flows out from the heat exchanger and returns to the device (generator, etc.) to be used.

上述のとおり、サーフェス型熱交換器は、航空機エンジンの任意箇所に、エンジンの湾曲面に沿って配置される。そのため、他の熱交換器と比較して、エンジン内を流れる気流の抵抗が低減される。   As described above, the surface type heat exchanger is disposed at an arbitrary position of the aircraft engine along the curved surface of the engine. Therefore, the resistance of the airflow flowing through the engine is reduced as compared with other heat exchangers.

サーフェス型熱交換器では、航空機エンジンの湾曲面上に、複数の放熱フィンが剥き出で配列される。航空機エンジンは定期的な点検作業が行われる。点検作業時において、作業者は、航空機エンジンの湾曲面上に立ちながら点検作業を行ったり、湾曲面上を歩きながら点検作業を行ったりする。このとき、作業者が、湾曲面上に剥き出しで配列された放熱フィンを誤って踏みつける等、放熱フィンに過度な外力が付与される場合がある。この場合、放熱フィンに過度な応力が集中し、放熱フィンが変形する。同様に、サーフェス型熱交換器を所望の箇所に配置する場合(ハンドリング時)も、誤って放熱フィンに過度の外力が掛かり、放熱フィンが変形する場合がある。放熱フィンが変形すれば、熱交換率が低下する。   In the surface type heat exchanger, a plurality of radiating fins are exposed and arranged on a curved surface of an aircraft engine. Aircraft engines are regularly inspected. During the inspection work, the worker performs the inspection work while standing on the curved surface of the aircraft engine, or performs the inspection work while walking on the curved surface. At this time, an excessive external force may be applied to the heat radiating fins, for example, an operator accidentally steps on the heat radiating fins that are barely arranged on the curved surface. In this case, excessive stress concentrates on the radiating fin, and the radiating fin is deformed. Similarly, when a surface type heat exchanger is arranged at a desired location (during handling), an excessive external force may be applied to the radiating fin by mistake and the radiating fin may be deformed. If the radiating fin is deformed, the heat exchange rate is lowered.

本発明の目的は、外力による放熱フィンの変形を抑制できる、熱交換器を提供することである。   The objective of this invention is providing the heat exchanger which can suppress the deformation | transformation of the radiation fin by external force.

本実施形態による航空機エンジン用の熱交換器は、航空機エンジンの湾曲面に沿って配置可能である。熱交換器は、本体と、複数の放熱フィンと、蓋部材とを備える。本体は、流体が流通可能な流路を内部に含む。本体は、湾曲面と対向する裏面と、裏面と反対側の表面とを有し、上記湾曲面に対応して湾曲する。複数の放熱フィンは、本体の表面に配列され、気流に曝される。蓋部材は、複数の放熱フィンの上端に固定される。   The heat exchanger for an aircraft engine according to the present embodiment can be disposed along the curved surface of the aircraft engine. The heat exchanger includes a main body, a plurality of heat radiation fins, and a lid member. The main body includes a flow path through which a fluid can flow. The main body has a back surface facing the curved surface and a surface opposite to the back surface, and is curved corresponding to the curved surface. The plurality of radiating fins are arranged on the surface of the main body and are exposed to the airflow. The lid member is fixed to the upper ends of the plurality of radiating fins.

本実施形態による熱交換器では、外力による放熱フィンの変形が抑制される。   In the heat exchanger according to the present embodiment, deformation of the radiating fin due to external force is suppressed.

図1は、本実施形態による航空機エンジン用の熱交換器の斜視図である。FIG. 1 is a perspective view of a heat exchanger for an aircraft engine according to the present embodiment. 図2は、図1中のII−II面での断面図である。2 is a cross-sectional view taken along the line II-II in FIG. 図3は、図1に示す熱交換器の分解斜視図である。FIG. 3 is an exploded perspective view of the heat exchanger shown in FIG. 図4は、図1中のIV−IV面での断面図である。4 is a cross-sectional view taken along the plane IV-IV in FIG. 図5は、蓋部材を含まない熱交換器における、気流の流れを説明するための模式図である。FIG. 5 is a schematic diagram for explaining the flow of airflow in a heat exchanger that does not include a lid member. 図6は、図4に示す熱交換器における、気流の流れを説明するための模式図である。FIG. 6 is a schematic diagram for explaining the flow of airflow in the heat exchanger shown in FIG. 4. 図7は、第2の実施形態による熱交換器の断面図である。FIG. 7 is a cross-sectional view of a heat exchanger according to the second embodiment. 図8は、図7と異なる、他の熱交換器の断面図である。FIG. 8 is a cross-sectional view of another heat exchanger different from FIG. 図9は、図7及び図8と異なる、他の熱交換器の断面図である。FIG. 9 is a cross-sectional view of another heat exchanger, which is different from FIGS. 7 and 8. 図10は、図7〜図9と異なる、他の熱交換器の断面図である。FIG. 10 is a cross-sectional view of another heat exchanger, which is different from FIGS. 7 to 9. 図11は、図1と異なる他の熱交換器の斜視図である。FIG. 11 is a perspective view of another heat exchanger different from FIG.

本実施形態による航空機エンジン用の熱交換器は、航空機エンジンの湾曲面に沿って配置可能である。熱交換器は、本体と、複数の放熱フィンと、蓋部材とを備える。本体は、流体が流通可能な流路を内部に含む。本体は、湾曲面と対向する裏面と、裏面と反対側の表面とを有し、上記湾曲面に対応して湾曲する。複数の放熱フィンは、本体の表面に配列され、気流に曝される。蓋部材は、複数の放熱フィンの上端に固定される。   The heat exchanger for an aircraft engine according to the present embodiment can be disposed along the curved surface of the aircraft engine. The heat exchanger includes a main body, a plurality of heat radiation fins, and a lid member. The main body includes a flow path through which a fluid can flow. The main body has a back surface facing the curved surface and a surface opposite to the back surface, and is curved corresponding to the curved surface. The plurality of radiating fins are arranged on the surface of the main body and are exposed to the airflow. The lid member is fixed to the upper ends of the plurality of radiating fins.

放熱フィンに、上方からの外力が直接付与された場合、応力が集中して、放熱フィンが変形し得る。しかしながら、本実施形態では、複数の放熱フィンの上端に蓋部材が固定される。この場合、上方から外力が付与された場合、蓋部材がその外力をいったん受け、さらに、複数の放熱フィンに分散できる。そのため、特定の放熱フィンに応力が集中するのを抑制でき、放熱フィンの変形が抑制される。   When an external force from above is directly applied to the radiating fin, stress concentrates and the radiating fin may be deformed. However, in the present embodiment, the lid member is fixed to the upper ends of the plurality of radiating fins. In this case, when an external force is applied from above, the lid member once receives the external force and can be further distributed to the plurality of heat radiating fins. Therefore, it can suppress that stress concentrates on a specific radiation fin, and a deformation | transformation of a radiation fin is suppressed.

さらに、蓋部材は、隣り合う放熱フィンの間に流入した気流が放熱フィンの外部(上方)に流出するのを抑制する。そのため、放熱フィンがより多くの気流に曝されやすくなり、熱交換率が高まる。   Further, the lid member suppresses the airflow that flows between the adjacent radiating fins from flowing out (upward) of the radiating fins. Therefore, the radiating fins are easily exposed to more airflow, and the heat exchange rate is increased.

好ましくは、蓋部材は、放熱フィンよりも、気流の上流側に延びている。   Preferably, the lid member extends further to the upstream side of the airflow than the radiating fin.

この場合、より多くの気流が、放熱フィンの間に流入されやすくなる。そのため、熱交換率が高まる。   In this case, more airflow is likely to flow between the heat radiating fins. Therefore, the heat exchange rate is increased.

好ましくは、蓋部材の上流側の端部下面は、湾曲面と反対側に傾斜して延びる。   Preferably, the lower surface of the end portion on the upstream side of the lid member extends while being inclined to the opposite side to the curved surface.

この場合、放熱フィンへの気流の流入口が広がる。そのため、より多くの気流が放熱フィンの間に流入される。   In this case, the airflow inlet to the radiating fin is widened. Therefore, more airflow flows between the heat radiating fins.

以下、本実施形態の熱交換器の詳細について、図面を参照して説明する。図中同一又は相当する部分には同一符号を付してその説明は繰り返さない。   Hereinafter, the details of the heat exchanger of the present embodiment will be described with reference to the drawings. In the figure, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.

[熱交換器の全体構成]
図1は、本実施の形態による航空機エンジン用の熱交換器の斜視図である。本実施形態の熱交換器は、航空機エンジンの湾曲面に配置される。航空機エンジンはたとえば、ガスタービンエンジンである。航空機エンジンの湾曲面はたとえば、航空機エンジンのファンケーシングの内周面や、エンジンコアケーシングの外周面等である。図1では、ファンケーシングの内周面に配置される熱交換器を例示する。しかしながら、本実施形態の熱交換器は、ファンケーシング及びエンジンコアケーシング以外の他のエンジン部材の湾曲面に配置されてもよい。湾曲面における熱交換器の配置箇所は任意であり、特に制限されない。
[Overall configuration of heat exchanger]
FIG. 1 is a perspective view of a heat exchanger for an aircraft engine according to the present embodiment. The heat exchanger of this embodiment is arrange | positioned at the curved surface of an aircraft engine. The aircraft engine is, for example, a gas turbine engine. The curved surface of the aircraft engine is, for example, the inner peripheral surface of the fan casing of the aircraft engine, the outer peripheral surface of the engine core casing, or the like. In FIG. 1, the heat exchanger arrange | positioned at the internal peripheral surface of a fan casing is illustrated. However, the heat exchanger of the present embodiment may be disposed on a curved surface of an engine member other than the fan casing and the engine core casing. The location of the heat exchanger on the curved surface is arbitrary and is not particularly limited.

図1を参照して、熱交換器1は弓なりに湾曲した板状であり、いわゆるサーフェス型の熱交換器である。航空機エンジン内において、熱交換器1は、配置される湾曲面(図示せず)に対応して湾曲している。   Referring to FIG. 1, a heat exchanger 1 is a so-called surface-type heat exchanger, which has a plate shape curved like a bow. In the aircraft engine, the heat exchanger 1 is curved corresponding to a curved surface (not shown).

図1中のX軸は、図示しない航空機エンジンの回転軸方向を示す。図1に示す熱交換器1の長さは、航空機エンジンの湾曲面の配置箇所における周方向長さの1/8程度である。しかしながら、熱交換器1の長さは特に限定されない。熱交換器1はたとえば、ファンケーシングの湾曲面の配置箇所における円周方向全長に延びた、円環状であってもよい。   The X axis in FIG. 1 indicates the direction of the rotational axis of an aircraft engine (not shown). The length of the heat exchanger 1 shown in FIG. 1 is about 1/8 of the circumferential length at the location of the curved surface of the aircraft engine. However, the length of the heat exchanger 1 is not particularly limited. The heat exchanger 1 may be, for example, an annular shape extending in the entire circumferential direction at the place where the curved surface of the fan casing is disposed.

図1の紙面左側から、右側に向かって空気流AF(図1中の矢印参照)が流れる。したがって、図1において、熱交換器1の左側が気流の上流側USであり、右側が気流の下流側DSである。   An air flow AF (see arrows in FIG. 1) flows from the left side of FIG. 1 toward the right side. Therefore, in FIG. 1, the left side of the heat exchanger 1 is the upstream side US of the airflow, and the right side is the downstream side DS of the airflow.

熱交換器1は、冷却対象となる流体(以下、対象流体という)を内部に通し、対象流体を冷却する。図2は、図1中のII−II面での断面図である。図1及び図2を参照して、熱交換器1は、表面2と、裏面3とを有する本体10を備える。裏面3は、航空機エンジンの湾曲面(本例ではファンケーシングの内面)と対向する。表面2は、裏面3と反対側に配置される。表面2及び裏面3には、複数の放熱フィン20及び30が配列される。複数の放熱フィン20は、表面2上に立てられている。複数の放熱フィン20は、X軸に沿って延び、航空機エンジンの周方向に配列される。複数の放熱フィン30は裏面3上に立てられ、X軸に沿って延び、航空機エンジンの周方向に配列される。図1〜図3において、複数の放熱フィン20及び30が配列された領域は一点鎖線で示され、一部の放熱フィン20及び30の図示は省略されている。   The heat exchanger 1 passes a fluid to be cooled (hereinafter referred to as a target fluid) through the inside, and cools the target fluid. 2 is a cross-sectional view taken along the line II-II in FIG. With reference to FIGS. 1 and 2, the heat exchanger 1 includes a main body 10 having a front surface 2 and a back surface 3. The back surface 3 faces the curved surface of the aircraft engine (in this example, the inner surface of the fan casing). The front surface 2 is disposed on the side opposite to the back surface 3. A plurality of heat radiation fins 20 and 30 are arranged on the front surface 2 and the back surface 3. The plurality of heat radiation fins 20 are erected on the surface 2. The plurality of radiating fins 20 extend along the X axis and are arranged in the circumferential direction of the aircraft engine. The plurality of radiating fins 30 are erected on the back surface 3, extend along the X axis, and are arranged in the circumferential direction of the aircraft engine. In FIG. 1 to FIG. 3, a region where the plurality of heat radiation fins 20 and 30 are arranged is indicated by a one-dot chain line, and some of the heat radiation fins 20 and 30 are not illustrated.

図3は、熱交換器1の分解斜視図である。本体10は、板状の表部材11と、板状の裏部材12とを備える。本体10はたとえば、アルミニウム又はアルミニウム合金製である。本体10の材質はまた、ステンレス鋼、チタン、銅、インコネル(商標)等であってもよい。   FIG. 3 is an exploded perspective view of the heat exchanger 1. The main body 10 includes a plate-like front member 11 and a plate-like back member 12. The main body 10 is made of, for example, aluminum or an aluminum alloy. The material of the main body 10 may also be stainless steel, titanium, copper, Inconel (trademark) or the like.

表部材11と裏部材12とが板厚方向に重ね合わされ、筐体状の本体10となる。本体10内には、複数のコルゲートフィン40が配置される。表部材11、裏部材12及び板状フィン40はたとえば、ろう付により互いに接合される。   The front member 11 and the back member 12 are overlapped in the plate thickness direction to form a casing-shaped main body 10. A plurality of corrugated fins 40 are disposed in the main body 10. The front member 11, the back member 12, and the plate-like fins 40 are joined together by brazing, for example.

本体10内の空間は、仕切112により、往路111と復路113とに区画される。往路111内には、コルゲートフィン40が配置される。コルゲートフィン40により、往路111は複数の微細な流路に区画される。同様に、復路113にもコルゲートフィン40が配置され、復路113は複数の微細な流路に区画される。往路111と復路113とは本体10内で連結しており、対象流体の流路を形成する。   A space in the main body 10 is divided into an outward path 111 and a return path 113 by a partition 112. Corrugated fins 40 are disposed in the forward path 111. The corrugated fin 40 divides the forward path 111 into a plurality of fine flow paths. Similarly, the corrugated fins 40 are disposed on the return path 113, and the return path 113 is partitioned into a plurality of fine flow paths. The forward path 111 and the return path 113 are connected in the main body 10 to form a flow path of the target fluid.

裏部材12は、流入口121と流出口122とを裏面3に有する。対象流体は、流入口121から熱交換器1内に流入する。対象流体は、コルゲートフィン40により区画された微細な流路に分配され、往路111、復路113の順に、本体10内を流れる。このとき、コルゲートフィン40、放熱フィン20及び30を介して、本体10内の対象流体と外部の気流とで熱交換が行われ、対象流体が冷却される。冷却された対象流体は、流出口122から熱交換器1の外部に流出して、対象流体が利用される装置(エンジンコアや発電機等)に戻る。   The back member 12 has an inlet 121 and an outlet 122 on the back surface 3. The target fluid flows into the heat exchanger 1 from the inlet 121. The target fluid is distributed to fine flow paths partitioned by the corrugated fins 40 and flows through the main body 10 in the order of the forward path 111 and the return path 113. At this time, heat exchange is performed between the target fluid in the main body 10 and the external airflow via the corrugated fins 40 and the heat radiating fins 20 and 30, and the target fluid is cooled. The cooled target fluid flows out of the heat exchanger 1 from the outlet 122 and returns to a device (an engine core, a generator, or the like) in which the target fluid is used.

[蓋部材]
図1及び図2を参照して、熱交換器1はさらに、蓋部材50を備える。蓋部材50は板状であり、複数の放熱フィン20上に配置される。
[Cover member]
With reference to FIGS. 1 and 2, the heat exchanger 1 further includes a lid member 50. The lid member 50 has a plate shape and is disposed on the plurality of heat radiation fins 20.

図4は、図1中のIV−IV面における熱交換器1の断面図である。図4では、円弧状に湾曲した熱交換器1において、上流側USの端部の曲率半径が、下流側DSの端部の曲率半径よりも小さい。つまり、熱交換器1は、上流側USから下流側DSに向かって曲率半径が大きくなるテーパ形状を有する。これは、熱交換器1の湾曲形状が、配置される湾曲面の形状に対応しているためである。   FIG. 4 is a cross-sectional view of the heat exchanger 1 on the IV-IV plane in FIG. 1. In FIG. 4, in the heat exchanger 1 curved in an arc shape, the radius of curvature of the upstream US end is smaller than the radius of curvature of the downstream DS end. That is, the heat exchanger 1 has a tapered shape in which the radius of curvature increases from the upstream US toward the downstream DS. This is because the curved shape of the heat exchanger 1 corresponds to the curved surface to be arranged.

図1及び図4を参照して、蓋部材50は、複数の放熱フィン20の上端21に固定される。蓋部材50はたとえば、ろう付により複数の上端21に固定される。   With reference to FIGS. 1 and 4, the lid member 50 is fixed to the upper ends 21 of the plurality of radiating fins 20. The lid member 50 is fixed to the plurality of upper ends 21 by brazing, for example.

上述のとおり、熱交換器の放熱フィンは、航空機エンジンにおける作業者による定期的な点検時や、熱交換器の取り付け時において、外力を受ける場合がある。外力により放熱フィンに応力が集中すれば、放熱フィンが折れ曲がり、熱交換率が低下する。   As described above, the heat dissipating fins of the heat exchanger may receive an external force during periodic inspection by an operator of the aircraft engine or when the heat exchanger is attached. If stress concentrates on the radiating fin due to an external force, the radiating fin is bent and the heat exchange rate is lowered.

しかしながら、本実施形態の熱交換器1では、複数の放熱フィン20の上端21に蓋部材50が固定される。この場合、作業者等により発生した外力は、放熱フィン20に直接付与されず、蓋部材50に付与される。蓋部材50は複数の放熱フィン20に固定されているため、蓋部材50が受けた外力は、複数の放熱フィン20に分散される。そのため、特定の放熱フィン20への応力の集中が緩和され、放熱フィン20が折れ曲がるのを抑制できる。   However, in the heat exchanger 1 of the present embodiment, the lid member 50 is fixed to the upper ends 21 of the plurality of radiating fins 20. In this case, the external force generated by the operator or the like is not directly applied to the heat radiating fin 20 but is applied to the lid member 50. Since the lid member 50 is fixed to the plurality of radiating fins 20, the external force received by the lid member 50 is distributed to the plurality of radiating fins 20. Therefore, the concentration of stress on the specific radiating fin 20 is alleviated and the radiating fin 20 can be prevented from being bent.

蓋部材50はさらに、熱交換率を高める。気流が放熱フィン20と接触する距離が長いほど、熱交換率が高まる。図5に示すとおり、蓋部材50が配置されない場合、表面2に沿って流れる気流AF1は、上流側USから下流側DSに至るまで、放熱フィン20の全長と接触しながら流れる。しかしながら、斜め上方から流れてくる気流AF2は、複数の放熱フィン20の間を通過する途中で表面2に当たる。このとき、気流AF2は方向を変え、表面2から離れる方向(つまり、放熱フィン20の上方)に進む。そのため、気流AF2は、通過途中で、放熱フィン20から外部(上方)に離れる。同様に、斜め下方から流れてくる気流AF3は、放熱フィン20の前端部と接触するものの、通過途中で放熱フィン20から離れる。したがって、気流AF2及びAF3は、放熱フィン20全長と接触せず、放熱フィン20の一部でのみ接触する。そのため、気流AF2及びAF3は、熱交換に寄与しにくい。   The lid member 50 further increases the heat exchange rate. The longer the distance at which the airflow contacts the radiating fin 20, the higher the heat exchange rate. As shown in FIG. 5, when the lid member 50 is not disposed, the airflow AF1 flowing along the surface 2 flows from the upstream side US to the downstream side DS in contact with the entire length of the radiating fin 20. However, the airflow AF <b> 2 flowing from obliquely above hits the surface 2 in the middle of passing between the plurality of heat radiation fins 20. At this time, the airflow AF2 changes direction and proceeds in a direction away from the surface 2 (that is, above the radiation fin 20). Therefore, the airflow AF2 leaves the heat radiating fin 20 to the outside (upward) in the middle of passage. Similarly, the airflow AF3 flowing obliquely from below is in contact with the front end portion of the radiating fin 20, but is separated from the radiating fin 20 during the passage. Therefore, the airflows AF2 and AF3 do not contact the entire length of the heat radiating fins 20 but contact only a part of the heat radiating fins 20. Therefore, the airflows AF2 and AF3 are unlikely to contribute to heat exchange.

一方、図6を参照して、本実施形態の熱交換器1では、蓋部材50は、気流AF2及びAF3のような気流が複数の放熱フィン20の間から外部(上方)に流出するのを抑制する。図6では、気流AF2及びAF3は、蓋部材50と表面2とに繰り返し当たりながら方向を変え、放熱フィン20の全長にわたって流れる。そのため、熱交換率が高まる。   On the other hand, referring to FIG. 6, in the heat exchanger 1 of the present embodiment, the lid member 50 allows the airflow such as the airflows AF <b> 2 and AF <b> 3 to flow out between the plurality of radiating fins 20 to the outside (upward). Suppress. In FIG. 6, the airflows AF <b> 2 and AF <b> 3 change direction while repeatedly hitting the lid member 50 and the surface 2, and flow over the entire length of the radiating fin 20. Therefore, the heat exchange rate is increased.

要するに、蓋部材50は、上流側USでひとたび複数の放熱フィン20の間に流入した気流を、放熱フィン20の上方に逃がすことなく、放熱フィン20の下流側DSまで導く。そのため、蓋部材50は熱交換器1の熱交換率を高める。   In short, the lid member 50 guides the airflow once flowing between the plurality of radiating fins 20 on the upstream side US to the downstream side DS of the radiating fins 20 without escaping above the radiating fins 20. Therefore, the lid member 50 increases the heat exchange rate of the heat exchanger 1.

さらに、蓋部材50は複数の放熱フィン20の上端21と接合されているため、伝熱面として機能する。   Furthermore, since the lid member 50 is joined to the upper ends 21 of the plurality of radiating fins 20, it functions as a heat transfer surface.

以上のとおり、本実施形態の熱交換器1は、蓋部材50により、外力による放熱フィン20の変形を抑制でき、熱交換率を高めることができる。   As mentioned above, the heat exchanger 1 of this embodiment can suppress the deformation | transformation of the radiation fin 20 by external force with the cover member 50, and can raise a heat exchange rate.

[第2の実施の形態]
図7は、第2の実施形態による熱交換器11の断面図である。図7を参照して、熱交換器11は、熱交換器1と比較して、蓋部材50に替えて、新たに蓋部材51を備える。熱交換器11のその他の構成は、熱交換器1と同じである。
[Second Embodiment]
FIG. 7 is a cross-sectional view of the heat exchanger 11 according to the second embodiment. With reference to FIG. 7, the heat exchanger 11 includes a lid member 51 in place of the lid member 50 as compared with the heat exchanger 1. Other configurations of the heat exchanger 11 are the same as those of the heat exchanger 1.

蓋部材51は、放熱フィン20よりも上流側USに延びている。より具体的には、蓋部材51の上流側USの端面51Eは、放熱フィン20の端面20Eよりも、上流側USに配置される。そのため、蓋部材51の下面51L(表面2と対向する表面)は、放熱フィン20の端面20Eの上端20Pよりも上流側USに延びている。   The lid member 51 extends to the upstream side US from the heat radiation fin 20. More specifically, the end surface 51E on the upstream side US of the lid member 51 is disposed on the upstream side US with respect to the end surface 20E of the radiating fin 20. Therefore, the lower surface 51 </ b> L (surface facing the surface 2) of the lid member 51 extends to the upstream side US from the upper end 20 </ b> P of the end surface 20 </ b> E of the radiating fin 20.

蓋部材51が放熱フィン20よりも上流側USに延びているため、気流AF4のような、蓋部材51が配置されなければ放熱フィン20の間に流入しないような気流も、取り込むことができる。具体的には、気流AF4は、下面51Lに当たり、方向を変えて、複数の放熱フィン20の間に流入する。その後、気流AF4は、蓋部材51の下面51Lと表面2とに当たりながら、放熱フィン20の長手方向全長に流れる。このように、蓋部材51により、さらに多くの気流が放熱フィン20に接触するため、熱交換率が高まる。   Since the lid member 51 extends to the upstream side US from the radiating fin 20, an air current that does not flow between the radiating fins 20, such as the air flow AF <b> 4, can be taken in if the lid member 51 is not disposed. Specifically, the airflow AF4 hits the lower surface 51L, changes its direction, and flows between the plurality of heat radiation fins 20. Thereafter, the air flow AF4 flows over the entire length in the longitudinal direction of the radiation fin 20 while hitting the lower surface 51L and the surface 2 of the lid member 51. Thus, since more airflow contacts the heat radiation fin 20 by the cover member 51, the heat exchange rate is increased.

図8に示すように、蓋部材51のうち、放熱フィン20よりも上流側USに延びる端部511は、熱交換器11が配置される航空機エンジンの湾曲面と反対側(図面では上方)に向かって斜めに延びていてもよい。この場合、蓋部材51と、表面2と、複数の放熱フィン20とで区画される複数の流路25への流入口OPが、図7と比較して広くなる。そのため、より多くの気流が流路25に流入し、複数の放熱フィン20と接触する。そのため、熱交換率が高まる。図8では、下面51Lは湾曲しているが、下面51Lは湾曲せずに平坦であってもよい。   As shown in FIG. 8, the end portion 511 of the lid member 51 that extends to the upstream side US from the radiating fin 20 is on the side opposite to the curved surface of the aircraft engine on which the heat exchanger 11 is disposed (upward in the drawing). You may extend diagonally toward. In this case, the inlet OP to the plurality of flow paths 25 defined by the lid member 51, the surface 2, and the plurality of heat radiation fins 20 is wider than that in FIG. Therefore, more airflow flows into the flow path 25 and comes into contact with the plurality of radiating fins 20. Therefore, the heat exchange rate is increased. In FIG. 8, the lower surface 51L is curved, but the lower surface 51L may be flat without being curved.

図9に示すように、蓋部材51のうち、上面51U(下面51L反対側の表面)は反らずに、下面51Lが、航空機エンジンの湾曲面と反対側に向かって斜めに延びていてもよい。このような場合であっても、図7と比較して、流入口OPは広がる。そのため、多くの気流を流路25に導入できる。下面51Lは、図9に示すように湾曲していてもよいし、図10に示すとおり、平坦であってもよい。いずれの形状であっても、流入口OPは広がる。   As shown in FIG. 9, even though the upper surface 51U (surface opposite to the lower surface 51L) of the lid member 51 is not warped, the lower surface 51L extends obliquely toward the side opposite to the curved surface of the aircraft engine. Good. Even in such a case, the inflow port OP expands compared to FIG. Therefore, a large amount of air current can be introduced into the flow path 25. The lower surface 51L may be curved as shown in FIG. 9, or may be flat as shown in FIG. In any shape, the inlet OP is widened.

以上のとおり、蓋部材が放熱フィン20よりも上流側USに延びていれば、より多くの気流を複数の放熱フィン20の間に取り込むことができ、熱交換率が向上する。   As described above, if the lid member extends to the upstream side US from the radiation fins 20, more airflow can be taken in between the plurality of radiation fins 20, and the heat exchange rate is improved.

上述の実施の形態では、図1に示すとおり、蓋部材50は、放熱フィン20の長手方向全長にわたって延びる。しかしながら、図11に示すとおり、蓋部材50は、放熱フィン20の長手方向の一部に配置されてもよい。   In the above-described embodiment, as shown in FIG. 1, the lid member 50 extends over the entire length of the radiating fin 20 in the longitudinal direction. However, as shown in FIG. 11, the lid member 50 may be disposed in a part in the longitudinal direction of the radiating fin 20.

上述の実施の形態では、図4に示すとおり、放熱フィン20の長手方向の端面20Eは表面2に対して傾斜しており、根本20Bの方が、上端20Pよりも上流側USに配置されている。このように端面20Eが傾斜していれば、空気抵抗を低減できる。しかしながら、端面20Eは、表面2に対して傾斜してなくてもよいし、逆方向に傾斜していてもよい。たとえば、端面20Eは、表面2に対して垂直であってもよい。   In the above-described embodiment, as shown in FIG. 4, the end face 20E in the longitudinal direction of the radiating fin 20 is inclined with respect to the surface 2, and the root 20B is disposed upstream of the upper end 20P. Yes. Thus, if the end surface 20E is inclined, the air resistance can be reduced. However, the end surface 20E may not be inclined with respect to the surface 2 or may be inclined in the opposite direction. For example, the end surface 20E may be perpendicular to the surface 2.

上述の実施の形態では、図7に示すとおり、蓋部材51は、放熱フィン20よりも上流側USに延びている。しかしながら、蓋部材50及び蓋部材51は、放熱フィン20よりも下流側DSに延びていてもよい。また、蓋部材51の下流側端部下面が湾曲面と反対側に傾斜して延びていてもよい。   In the above-described embodiment, as shown in FIG. 7, the lid member 51 extends to the upstream side US from the radiating fin 20. However, the lid member 50 and the lid member 51 may extend to the downstream side DS from the radiation fin 20. Further, the lower surface of the downstream end portion of the lid member 51 may be inclined to the opposite side of the curved surface.

上述の実施の形態では、蓋部材50及び51は、複数の放熱フィン20の上端21と、たとえばろうづけにより接合される。しかしながら、蓋部材50及び51と、複数の放熱フィン20との接合方法は特に限定されない。蓋部材50及び51と、複数の放熱フィン20とが積層造形法又は鋳造造形法により、一体成形されていてもよい。   In the above-described embodiment, the lid members 50 and 51 are joined to the upper ends 21 of the plurality of radiating fins 20 by, for example, brazing. However, the method for joining the lid members 50 and 51 and the plurality of heat radiation fins 20 is not particularly limited. The lid members 50 and 51 and the plurality of radiating fins 20 may be integrally formed by a layered modeling method or a casting modeling method.

上述の説明では、一例として、円環状又は円環の一部に相当する熱交換器本体の内側を表面とした。しかしながら、円環状又は円環の一部に相当する本体の外側を表面として、その表面に蓋部材が配置されてもよい。たとえば、エンジンコアケーシングの外周面に、円環状又は円環の一部に相当する本体を有する熱交換器が配置される場合、円環状又は円環の本体の外側を表面として、蓋部材が配置される。   In the above description, as an example, the inside of the heat exchanger body corresponding to an annular shape or a part of the annular shape is defined as a surface. However, the outer side of the main body corresponding to the annular shape or a part of the annular shape may be the surface, and the lid member may be disposed on the surface. For example, when a heat exchanger having a main body corresponding to an annular shape or a part of an annular ring is arranged on the outer peripheral surface of the engine core casing, the lid member is arranged with the outer side of the annular or annular main body as a surface. Is done.

上述の実施の形態では、熱交換器の本体の表面に複数の放熱フィンが配置され、蓋部材が放熱フィンの上端に固定される。しかしながら、熱交換器の本体の表面及び裏面に複数の放熱フィンが配置され、表面及び裏面の放熱フィンの上端に、蓋部材が配置されてもよい。   In the above-described embodiment, a plurality of radiating fins are arranged on the surface of the main body of the heat exchanger, and the lid member is fixed to the upper end of the radiating fins. However, a plurality of radiating fins may be disposed on the front and back surfaces of the main body of the heat exchanger, and a lid member may be disposed on the upper ends of the radiating fins on the front and back surfaces.

以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。   The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

1 熱交換器
2 表面
3 裏面
10 本体
20,30 放熱フィン
50,51 蓋部材
51L 蓋部材の下面
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Front surface 3 Back surface 10 Main body 20, 30 Radiation fin 50, 51 Cover member 51L Bottom surface of cover member

Claims (3)

航空機エンジンの湾曲面に沿って配置可能であり、航空機エンジンを通過する気流に曝される、航空機エンジン用のサーフェス型熱交換器であって、
流体が流通可能な流路を内部に含み、前記湾曲面と対向する裏面と、前記裏面と反対側の表面とを有し、前記湾曲面に対応して湾曲する本体と、
前記本体の前記表面に配列され、気流に曝される複数の放熱フィンと、
前記複数の放熱フィンの上端に接合されて固定されてい、又は、前記複数の放熱フィンの上端に前記複数の放熱フィンと一体的に成形されて固定されている蓋部材とを備える、熱交換器。
A surface-type heat exchanger for an aircraft engine that can be placed along a curved surface of the aircraft engine and is exposed to an airflow passing through the aircraft engine,
A main body that includes a flow path through which fluid can flow and has a back surface facing the curved surface and a surface opposite to the back surface, and is curved corresponding to the curved surface;
A plurality of heat dissipating fins arranged on the surface of the main body and exposed to airflow;
Wherein there are multiple joined to the upper end of the heat dissipating fins are fixed Tei, or, and a lid member that is fixed said plurality of heat dissipating fins and are integrally molded on the upper end of said plurality of radiating fins, the heat exchanger vessel.
請求項1に記載の熱交換器であって、
前記蓋部材は、前記放熱フィンよりも、前記気流の上流側に延びる、熱交換器。
The heat exchanger according to claim 1,
The said cover member is a heat exchanger extended in the upstream of the said airflow rather than the said radiation fin.
請求項2に記載の熱交換器であって、
前記上流側の前記蓋部材の端部下面は、前記湾曲面と反対側に傾斜して延びる、熱交換器。
The heat exchanger according to claim 2,
The heat exchanger in which the lower surface of the end of the lid member on the upstream side is inclined and extends to the opposite side of the curved surface.
JP2015526777A 2014-10-21 2014-10-21 Heat exchanger for aircraft engine Active JP5844503B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/005334 WO2016063311A1 (en) 2014-10-21 2014-10-21 Heat exchanger for aircraft engine

Publications (2)

Publication Number Publication Date
JP5844503B1 true JP5844503B1 (en) 2016-01-20
JPWO2016063311A1 JPWO2016063311A1 (en) 2017-04-27

Family

ID=55169153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015526777A Active JP5844503B1 (en) 2014-10-21 2014-10-21 Heat exchanger for aircraft engine

Country Status (2)

Country Link
JP (1) JP5844503B1 (en)
WO (1) WO2016063311A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10175003B2 (en) * 2017-02-28 2019-01-08 General Electric Company Additively manufactured heat exchanger
JP7396945B2 (en) 2020-03-26 2023-12-12 住友精密工業株式会社 Heat exchanger
CN113382608B (en) * 2021-06-09 2022-11-08 北京机电工程研究所 Aircraft equipment cabin heat dissipation system and heat dissipation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452216A (en) * 1977-08-18 1979-04-24 Gen Electric Method of and apparatus for cooling gas turbine engine
JPS58132372U (en) * 1982-02-26 1983-09-06 三菱重工業株式会社 wall cooling device
JPH0236767U (en) * 1988-08-26 1990-03-09
JPH03213602A (en) * 1990-01-08 1991-09-19 General Electric Co <Ge> Self cooling type joint connecting structure to connect contact segment of gas turbine engine
JP2000120446A (en) * 1998-10-15 2000-04-25 United Technol Corp <Utc> Liner and augmentor for gas turbine engine
JP2002317605A (en) * 2001-04-04 2002-10-31 Siemens Ag Forming member for forming guide ring in gas turbine and gas turbine
US20050268612A1 (en) * 2004-04-24 2005-12-08 Rolls-Royce Plc Engine
JP2006023031A (en) * 2004-07-08 2006-01-26 Denso Corp Heat exchanger
JP2008144752A (en) * 2006-10-19 2008-06-26 General Electric Co <Ge> Gas turbine engine heat exchanger and gas turbine engine
US20090165995A1 (en) * 2007-12-27 2009-07-02 Techspace Aero Air-oil heat exchanger placed at the location of the air separator nose of a turbojet, and a turbojet including such an air-oil heat exchanger
JP2013127355A (en) * 2011-12-16 2013-06-27 General Electric Co <Ge> System of integrating baffle for enhanced cooling of cmc liner
JP2014034975A (en) * 2012-08-07 2014-02-24 Unison Industries Llc Gas turbine heat exchanger operating method and device
JP5442916B1 (en) * 2013-06-26 2014-03-19 住友精密工業株式会社 Aircraft engine heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724816A (en) * 1996-04-10 1998-03-10 General Electric Company Combustor for a gas turbine with cooling structure

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452216A (en) * 1977-08-18 1979-04-24 Gen Electric Method of and apparatus for cooling gas turbine engine
JPS58132372U (en) * 1982-02-26 1983-09-06 三菱重工業株式会社 wall cooling device
JPH0236767U (en) * 1988-08-26 1990-03-09
JPH03213602A (en) * 1990-01-08 1991-09-19 General Electric Co <Ge> Self cooling type joint connecting structure to connect contact segment of gas turbine engine
JP2000120446A (en) * 1998-10-15 2000-04-25 United Technol Corp <Utc> Liner and augmentor for gas turbine engine
JP2002317605A (en) * 2001-04-04 2002-10-31 Siemens Ag Forming member for forming guide ring in gas turbine and gas turbine
US20050268612A1 (en) * 2004-04-24 2005-12-08 Rolls-Royce Plc Engine
JP2006023031A (en) * 2004-07-08 2006-01-26 Denso Corp Heat exchanger
JP2008144752A (en) * 2006-10-19 2008-06-26 General Electric Co <Ge> Gas turbine engine heat exchanger and gas turbine engine
US20090165995A1 (en) * 2007-12-27 2009-07-02 Techspace Aero Air-oil heat exchanger placed at the location of the air separator nose of a turbojet, and a turbojet including such an air-oil heat exchanger
JP2013127355A (en) * 2011-12-16 2013-06-27 General Electric Co <Ge> System of integrating baffle for enhanced cooling of cmc liner
JP2014034975A (en) * 2012-08-07 2014-02-24 Unison Industries Llc Gas turbine heat exchanger operating method and device
JP5442916B1 (en) * 2013-06-26 2014-03-19 住友精密工業株式会社 Aircraft engine heat exchanger
WO2014207784A1 (en) * 2013-06-26 2014-12-31 住友精密工業株式会社 Heat exchanger for aircraft engine

Also Published As

Publication number Publication date
JPWO2016063311A1 (en) 2017-04-27
WO2016063311A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2016063312A1 (en) Heat exchanger for aircraft engine
JP6183976B2 (en) Heat exchanger for gas turbine engine
US9273632B2 (en) Heat exchanger for aircraft engine
JP5244845B2 (en) Heat exchanger
JP5844503B1 (en) Heat exchanger for aircraft engine
US9704779B2 (en) Semiconductor module cooler and method for manufacturing same
JP6691975B2 (en) Heat exchanger
WO2007125727A1 (en) Structure of protective member for vehicle heat exchanger
JP2007093188A (en) Heat exchanger
EP2853851B1 (en) Heat exchanger thermal fatigue stress reduction
JP2014051981A (en) Serpentine cooling of nozzle end wall
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
JP2015102051A (en) EGR cooler
JP5520806B2 (en) Heat exchanger
JP6051641B2 (en) Intercooler for vehicle
JP2019095094A (en) Reinforcement member and reinforcement structure of heat exchanger using the reinforcement member
JP6687649B2 (en) Exhaust heat recovery device
JP6795445B2 (en) Exhaust heat recovery device
US20210054787A1 (en) Heat Exchanger for Aircraft Engine
JPWO2019131569A1 (en) Header plateless heat exchanger
JP2005221103A (en) Opening enlarging tool of heat exchanger tube
JP2005277193A (en) Heatsink with fan
JP6974083B2 (en) EGR cooler
JP6787005B2 (en) Liner for combustion equipment
JP2021116898A (en) Piping

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151118

R150 Certificate of patent or registration of utility model

Ref document number: 5844503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250