JP5843377B2 - Karman vortex reduction device - Google Patents
Karman vortex reduction device Download PDFInfo
- Publication number
- JP5843377B2 JP5843377B2 JP2012015291A JP2012015291A JP5843377B2 JP 5843377 B2 JP5843377 B2 JP 5843377B2 JP 2012015291 A JP2012015291 A JP 2012015291A JP 2012015291 A JP2012015291 A JP 2012015291A JP 5843377 B2 JP5843377 B2 JP 5843377B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- karman vortex
- cylindrical member
- cylindrical
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
この発明は、流れ場に存在する断面形状が筒状の円柱部材によって発生するカルマン渦を低減するカルマン渦低減装置に関する。 The present invention relates to a Karman vortex reduction device that reduces Karman vortices generated by a cylindrical member having a cylindrical cross-section existing in a flow field.
鉄道車両の集電装置は、沿線騒音低減の点から集電舟から発生する空力音が小さいことが重要視されている。集電舟のような鈍頭な断面形状を有する柱状部材から生じる空力音の主たる原因として、部材背後に生じるカルマン渦からの圧力変動であることが知られている。このカルマン渦は、強い渦が物体後流のスパン方向に位相が揃って放出されることで、大きな圧力変動が生じ、それが遠方へ伝搬して強い空力音となる。このようなカルマン渦が原因で生じる空力音は特にエオルス音と呼ばれ、カルマン渦の放出周期に応じた狭帯域音を生ずる。エオルス音の低減には、カルマン渦自体を発生しないようにする対策が有効である。このようなエオルス音を低減する方法としては、流れの剥離そのものを抑制する方法が提案されており、流れの剥離そのものを抑制する方法としては、物体表面からの流れの剥離そのものを抑制することで、カルマン渦の発生自体を低減する方法がある。 In the railway vehicle current collector, it is important that the aerodynamic noise generated from the current collector boat is small from the viewpoint of noise reduction along the railway. It is known that the main cause of aerodynamic sound generated from a columnar member having a blunt cross-sectional shape such as a current collector boat is pressure fluctuation from Karman vortex generated behind the member. In this Karman vortex, strong vortices are emitted in phase in the span direction of the wake of the object, causing a large pressure fluctuation, which propagates far and becomes a strong aerodynamic sound. The aerodynamic sound generated due to such a Karman vortex is particularly called an Erus sound, and produces a narrow band sound corresponding to the Karman vortex emission period. In order to reduce the Aeolian noise, measures to prevent the Karman vortex itself from occurring are effective. As a method for reducing such an Erus sound, a method for suppressing the flow separation itself has been proposed. As a method for suppressing the flow separation itself, the flow separation from the object surface itself is suppressed. There is a method of reducing the generation of Karman vortex itself.
従来の流体流れに置かれる鈍頭物体は、流れに対して交差して配置されている円柱状物体と、この円柱状物体の後流側に取り付けられて流れを阻害する板部材とを備えている(例えば、特許文献1参照)。このような従来の流体流れに置かれる鈍頭物体は、円柱状物体の後流側表面に沿って、この円柱状物体の境界層剥離を起こした部分に流れ込もうとする流れの発生を板部材によって阻害して、カルマン渦の発生を阻害している。 A blunt body placed in a conventional fluid flow includes a cylindrical object that is arranged to intersect the flow, and a plate member that is attached to the downstream side of the cylindrical object and blocks the flow. (For example, refer to Patent Document 1). The blunt body placed in such a conventional fluid flow plate the occurrence of a flow that tries to flow into the part of the cylindrical body where the boundary layer separation occurred along the downstream surface of the cylindrical body. It inhibits by the member and inhibits the generation of Karman vortex.
従来の流体流れに置かれる鈍頭物体は、境界層外部の流体流れが板部材に不必要に乱されることがないように、この板部材の寸法を円柱状部材の投影幅の範囲内に収めている。しかし、従来の流体流れに置かれる鈍頭物体では、円柱状物体の最大厚さ部分よりも下流側の領域において、主流方向とは逆向きの流れが生じるため、この領域では強い速度勾配が生じて強い渦が放出されてしまう問題点がある。 A blunt body placed in a conventional fluid flow has a plate member dimension within the projected width of the cylindrical member so that the fluid flow outside the boundary layer is not unnecessarily disturbed by the plate member. It is stored. However, in a blunt body placed in a conventional fluid flow, a flow in the direction opposite to the main flow direction occurs in the region downstream of the maximum thickness portion of the cylindrical object, and thus a strong velocity gradient occurs in this region. There is a problem that a strong vortex is released.
この発明の課題は、簡単な構造によってカルマン渦の発生を抑制することができるカルマン渦低減装置を提供することである。 The subject of this invention is providing the Karman vortex reduction apparatus which can suppress generation | occurrence | production of Karman vortex with a simple structure.
この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図3に示すように、流れ場に存在する断面形状が筒状の円柱部材(1)によって発生するカルマン渦(F11)を低減するカルマン渦低減装置であって、前記円柱部材の表面(1a)の最大幅部(1b)から接線方向に、この円柱部材の内部に流入した空気を上流側から下流側に向かって噴射する空気噴射部(3)を備え、前記空気噴射部は、前記流れ場の空気(F 1 )の速度と略同じ速度で空気(F 2 )を噴射することを特徴とするカルマン渦低減装置(2)である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
The invention of claim 1 is a Karman vortex reduction device for reducing Karman vortices (F 11 ) generated by a cylindrical member (1) having a cross-sectional shape existing in a flow field as shown in FIG. the maximum width portion of the surface (1a) of the cylindrical member from (1b) tangentially, with an air injection unit for injecting toward the downstream side air flowing into the interior of the cylindrical member from the upstream side (3), the The air injection unit is a Karman vortex reduction device (2) characterized by injecting air (F 2 ) at a speed substantially the same as the speed of air (F 1 ) in the flow field .
この発明によると、簡単な構造によってカルマン渦の発生を抑制することができる。 According to the present invention, the generation of Karman vortices can be suppressed with a simple structure.
以下、図面を参照して、この発明の実施形態について詳しく説明する。
図1〜図3に示す円柱部材1は、流れ場に存在する断面形状が筒状の部材である。円柱部材1は、空気が流れる箇所にこの空気の流れF1を遮るように、水平方向、垂直方向又は斜め方向に配置されている。円柱部材1は、図3に示すように、中心軸に対して垂直な平面で切断したときの断面形状が円形である。円柱部材1は、図3に示すように、上流側に位置して空気の流れF1を受ける半円状の前面部分と下流側に位置する半円状の後面部分とからなる表面1aと、空気の流れる方向に対して直交する方向であり表面1aの前面部分と後面部分とが交わる円柱部材1の最大幅となる最大幅部1bなどを備えている。円柱部材1は、一方の端部が閉鎖されて他方の端部が開放されており、内部を空気が通過可能である。円柱部材1は、例えば、標識又は看板などを支持する支柱などである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The cylindrical member 1 shown in FIGS. 1 to 3 is a member having a cylindrical cross-sectional shape existing in the flow field. The cylindrical member 1 is disposed in the horizontal direction, the vertical direction, or the oblique direction so as to block the air flow F 1 at a location where the air flows. As shown in FIG. 3, the cylindrical member 1 has a circular cross-sectional shape when cut along a plane perpendicular to the central axis. As shown in FIG. 3, the cylindrical member 1 includes a surface 1 a including a semicircular front surface portion that is located upstream and receives an air flow F 1, and a semicircular rear surface portion that is located downstream. A maximum width portion 1b that is the maximum width of the columnar member 1 that is orthogonal to the air flow direction and intersects the front surface portion and the rear surface portion of the surface 1a is provided. The columnar member 1 has one end closed and the other end open, allowing air to pass therethrough. The cylindrical member 1 is, for example, a support that supports a sign or a signboard.
図1〜図3に示すカルマン渦低減装置2は、流れ場に存在する円柱部材1によって発生するカルマン渦F11を低減する装置である。カルマン渦低減装置2は、図3(A)に示すように、円柱部材1の表面1aから空気を吹き出すことによってこの円柱部材1の表面1aに沿ってまとわりつくような噴流F2を生成する。カルマン渦低減装置2は、円柱部材1の表面1aから剥離しようとする流れF1を噴流F2に沿わせて、この円柱部材1の表面1aからこの流れF1が剥離するのを抑制する。カルマン渦低減装置2は、カルマン渦F11の生成を抑制することによって、このカルマン渦F11に起因するエオルス音又は振動を低減する。ここで、カルマン渦F11とは、図3(B)に示すように、円柱部材1の表面1aで剥離した流れF1が円柱部材1の背後に交互に回り込むときに生じる渦(横渦)であり、エオルス音とはこのカルマン渦F11が原因となって生ずる空力音である。カルマン渦低減装置2は、図1〜図3に示す空気噴射部3と、図1に示す空気送出部4と、管路5と、制御部6と、設定部7などを備えている。 The Karman vortex reduction device 2 shown in FIGS. 1 to 3 is a device that reduces the Karman vortex F 11 generated by the cylindrical member 1 existing in the flow field. As shown in FIG. 3A, the Karman vortex reduction device 2 generates a jet F 2 that clings along the surface 1 a of the cylindrical member 1 by blowing air from the surface 1 a of the cylindrical member 1. The Karman vortex reduction device 2 suppresses the separation of the flow F 1 from the surface 1 a of the cylindrical member 1 by causing the flow F 1 to be separated from the surface 1 a of the cylindrical member 1 along the jet F 2 . Karman vortex reducing device 2, by suppressing the formation of Karman vortices F 11, to reduce the Aeolian sound or vibration caused by the Karman vortex F 11. Here, the Karman vortex F 11 is a vortex (lateral vortex) generated when the flow F 1 separated on the surface 1 a of the cylindrical member 1 alternately turns behind the cylindrical member 1 as shown in FIG. The Erus sound is an aerodynamic sound generated by the Karman vortex F 11 . The Karman vortex reduction device 2 includes an air injection unit 3 illustrated in FIGS. 1 to 3, an air delivery unit 4 illustrated in FIG. 1, a pipe line 5, a control unit 6, a setting unit 7, and the like.
図1〜図3に示す空気噴射部3は、円柱部材1の表面1aの最大幅部1bから接線方向に、この円柱部材1の内部に流入した空気を上流側から下流側に向かって噴射する部分である。空気噴射部3は、図3(A)に示すように、円柱部材1の表面1aから気流F1が剥離する剥離点の近傍(剥離点よりも僅かに下流側)の最大幅部1bから接線方向に空気を噴射して噴流F2を生成し、この噴流F2によって流れF1が円柱部材1の表面1aから剥離するのを抑制する。空気噴射部3は、図1〜図3に示す吹出し口3aと、図3に示すノズル部3bなどを備えている。 The air injection part 3 shown in FIGS. 1-3 injects the air which flowed in the inside of this cylindrical member 1 toward the downstream from the maximum width part 1b of the surface 1a of the cylindrical member 1 toward the downstream. Part. Air injection unit 3, as shown in FIG. 3 (A), the tangent from the maximum width portion 1b in the vicinity of the separation point of the air flow F 1 from the surface 1a of the columnar member 1 is peeled off (slightly downstream of the separation point) direction by injecting air to produce a jet F 2 to suppress the flow F 1 by the jet F 2 is peeled off from the surface 1a of the columnar member 1. The air injection part 3 is provided with the blower outlet 3a shown in FIGS. 1-3, the nozzle part 3b shown in FIG.
図1〜図3に示す吹出し口3aは、円柱部材1の表面1aを貫通する複数のスリット状の開口部である。吹出し口3aは、図1に示すように、円柱部材1の長さ方向に所定の間隔をあけて形成されている。図3に示すノズル部3bは、円柱部材1の内部を流れる空気を吹出し口3aから接線方向に吹き出すように導く部分であり、この吹出し口3aに向かって徐々に狭くなるように形成されている。 1 to 3 are a plurality of slit-shaped openings that penetrate the surface 1a of the columnar member 1. As shown in FIG. 1, the outlet 3 a is formed at a predetermined interval in the length direction of the cylindrical member 1. The nozzle portion 3b shown in FIG. 3 is a portion that guides the air flowing inside the cylindrical member 1 so as to blow out in a tangential direction from the blowout port 3a, and is formed so as to be gradually narrowed toward the blowout port 3a. .
図1に示す空気送出部4は、空気噴射部3に空気を送出する部分である。空気送出部4は、空気を送り出す送風機などである。管路5は、空気送出部4から空気噴射部3に向かって空気が流れる流路である。管路5は、上流側の端部が空気送出部4の送出口に接続されており、下流側の端部が円柱部材1の開口端部に接続されている。 The air delivery unit 4 shown in FIG. 1 is a part that sends out air to the air injection unit 3. The air delivery unit 4 is a blower that sends out air. The pipe line 5 is a flow path through which air flows from the air delivery unit 4 toward the air injection unit 3. The pipe 5 has an upstream end connected to the delivery port of the air delivery unit 4 and a downstream end connected to the opening end of the columnar member 1.
制御部6は、空気噴射部3が噴射する空気の速度を制御する部分である。制御部6は、空気噴射部3に空気送出部4が送出する空気の流量が変化するようにこの空気送出部4を駆動制御する。制御部6は、例えば、空気送出部4の駆動電流の周波数を制御することによってこの空気送出部4が送出する空気の流量を調整する。 The control unit 6 is a part that controls the speed of the air ejected by the air ejecting unit 3. The control unit 6 drives and controls the air delivery unit 4 so that the flow rate of the air delivered from the air delivery unit 4 to the air injection unit 3 changes. For example, the control unit 6 adjusts the flow rate of the air delivered by the air delivery unit 4 by controlling the frequency of the drive current of the air delivery unit 4.
設定部7は、空気噴射部3が噴射する空気の速度を設定する部分である。設定部7は、例えば、空気噴射部3が噴射する空気の流速を手動操作によって選択する選択スイッチなどであり、空気噴射部3が噴射する噴流F2の流速を任意の速度に設定する。設定部7は、設定された流速に対応する周波数で駆動電流を出力するように制御部6に指令する。 The setting unit 7 is a part for setting the speed of the air ejected by the air ejecting unit 3. The setting unit 7 is, for example, a selection switch that manually selects the flow velocity of the air ejected by the air ejection unit 3, and sets the flow velocity of the jet flow F 2 ejected by the air ejection unit 3 to an arbitrary speed. The setting unit 7 instructs the control unit 6 to output a drive current at a frequency corresponding to the set flow velocity.
次に、この発明の実施形態に係るカルマン渦低減装置の作用を説明する。
図1〜図3に示すカルマン渦低減装置2の空気噴射部3を円柱部材1が備えていない場合には、図3(B)に示すように空気が矢印方向に流れると、円柱部材1の最大幅部1bよりも僅かに上流側の表面1a上の剥離点で流れF1が剥離して、この円柱部材1の下流側に空気が交互に回り込む。このため、円柱部材1の表面1aの剥離せん断層から発生する渦の相互作用によってカルマン渦F11が発生し、このカルマン渦F11に起因する騒音や振動が発生する。
Next, the operation of the Karman vortex reduction apparatus according to the embodiment of the present invention will be described.
When the columnar member 1 does not include the air injection unit 3 of the Karman vortex reduction device 2 illustrated in FIGS. 1 to 3, when air flows in the arrow direction as illustrated in FIG. The flow F 1 is peeled off at the peeling point on the surface 1 a slightly upstream of the maximum width portion 1 b, and air alternately flows downstream of the cylindrical member 1. For this reason, the Karman vortex F 11 is generated by the interaction of vortices generated from the peeling shear layer on the surface 1 a of the cylindrical member 1, and noise and vibration due to the Karman vortex F 11 are generated.
一方、図1〜図3に示すカルマン渦低減装置2の空気噴射部3を円柱部材1が備えている場合には、図3(A)に示すようにこの空気噴射部3が円柱部材1の最大幅部1bから接線方向に空気を噴射すると、この円柱部材1の表面1aに沿ってまとわりつくような噴流F2が生成される。このため、円柱部材1の表面1aで剥離しようとする流れF1が噴流F2に引き付けられてこの噴流F2に沿って流れ、流れF1が表面1aから剥離し難くなる。また、円柱部材1の表面1aで剥離しようとする流れF1と噴流F2とが干渉して、円柱部材1の表面1aの剥離せん断層を発生源とするカルマン渦F11の強度がこの干渉作用によって弱められる。その結果、カルマン渦F11の生成が抑制されて、このカルマン渦F11に起因する騒音や振動の発生が抑制される。 On the other hand, when the cylindrical member 1 is provided with the air injection part 3 of the Karman vortex reduction device 2 shown in FIGS. 1 to 3, the air injection part 3 is formed of the cylindrical member 1 as shown in FIG. When injecting air tangentially from the maximum width portion 1b, it is jet F 2 as clinging along the surface 1a of the columnar member 1 is produced. Accordingly, the flow F 1 to be peeled off the surface 1a of the columnar member 1 is attracted to the jet F 2 flows along the jet F 2, the flow F 1 is hardly peeled off from the surface 1a. Further, the flow F 1 to be separated from the surface 1 a of the cylindrical member 1 interferes with the jet F 2, and the strength of the Karman vortex F 11 generated from the separation shear layer on the surface 1 a of the cylindrical member 1 is this interference. It is weakened by the action. As a result, generation of the Karman vortex F 11 is suppressed, and generation of noise and vibration due to the Karman vortex F 11 is suppressed.
この発明の実施形態に係るカルマン渦低減装置には、以下に記載する効果がある。
この実施形態では、円柱部材1の表面1aの最大幅部1bから接線方向に、この円柱部材1の内部に流入した空気を上流側から下流側に向かって空気噴射部3が噴射する。このため、空気噴射部3が噴射する噴流F2によって、円柱部材1の表面1aから流れF1が剥離するのを抑制してカルマン渦F11の発生を抑制し、このカルマン渦F11に起因する騒音や振動を低減することができる。
The Karman vortex reduction device according to the embodiment of the present invention has the effects described below.
In this embodiment, the air injection part 3 injects the air which flowed into the inside of this cylindrical member 1 from the upstream side toward the downstream side in the tangential direction from the maximum width part 1b of the surface 1a of the cylindrical member 1. Therefore, the jet F 2 where the air injector 3 injects, by suppressing the flow F 1 is peeled off to suppress the generation of Karman vortices F 11 from the surface 1a of the cylindrical member 1, due to the Karman vortex F 11 Noise and vibration can be reduced.
次に、この発明の実施例について説明する。
図4(A)(C)に示す実施例は、図1〜図3に示す円柱部材1と同様の直径45mmの円柱部材の長さ方向に、隙間0.8mm×長さ30mmの長孔状の吹出し口を左右7段有する吹出し付の円柱模型の供試体である。図4(B)に示す比較例は、図4(A)(C)に示す実施例に係る円柱模型の吹出し口がアルミニウムテープによって全て塞がれている円柱模型の供試体である。吹出し口は、図4(A)(C)に示すように、円筒状部材の長さ方向に間隔をあけて13段のスリットを形成し、このスリットを1段おきにアルミテープで塞ぐことによって、円筒状部材の左右にそれぞれ7段形成されている。図4(A)(B)に示す実施例及び比較例に係る円柱模型を長さ方向が上下方向と一致するように、図5に示すように風洞試験装置の風洞測定部に垂直に設置した。風洞試験装置は、風洞測定部が開放型である公益財団法人鉄道総合技術研究所の小型低騒音風洞(開放型)を使用した。
Next, examples of the present invention will be described.
The embodiment shown in FIGS. 4 (A) and 4 (C) has a long hole shape with a gap of 0.8 mm × a length of 30 mm in the length direction of a cylindrical member having a diameter of 45 mm similar to the cylindrical member 1 shown in FIGS. It is a specimen of a cylindrical model with a blowout having seven blowout openings on the left and right. The comparative example shown in FIG. 4B is a specimen of a cylindrical model in which the outlets of the cylindrical model according to the embodiment shown in FIGS. 4A and 4C are all closed with aluminum tape. As shown in FIGS. 4 (A) and 4 (C), the outlet is formed by forming 13-stage slits at intervals in the length direction of the cylindrical member, and closing the slits with aluminum tape every other stage. Seven steps are formed on the left and right sides of the cylindrical member. As shown in FIG. 5, the cylindrical models according to the examples and comparative examples shown in FIGS. 4 (A) and 4 (B) were vertically installed in the wind tunnel measuring unit of the wind tunnel test apparatus so that the length direction coincides with the vertical direction. . The wind tunnel test equipment used was a small low-noise wind tunnel (open type) of the Railway Technical Research Institute, which has an open wind tunnel measuring section.
次に、風洞試験装置の風洞測定部に気流を流すとともに、実施例に係る円柱模型の吹出し口に向かって吹出し用送風機によって強制的に空気を送り込み、この吹出し口から吹き出す噴流の風速を測定した。図5に示すように、風洞試験装置の風洞測定部に気流を吹き出すノズルと、この風洞測定部を流れる気流を回収するコレクタとの間に、アクリル板と音響通過板とを平行に配置して風洞測定部を形成し、実施例及び比較例に係る円柱模型をこの風洞測定部に配置している。模型円柱の下端開口部には空気配管を通じて吹出し用送風機から空気が送り込まれており、この模型円柱から発生する空力騒音を騒音計によって測定している。風洞測定部を通過する気流には多数の粒子マーカが注入されおり、粒子画像流速計(Particle Image Velocimetry(PIV))のPIV用レーザから風洞測定部にレーザ光を照射し、PIV用CCDカメラによって風洞測定部を撮像して、気流の流速を測定している。 Next, while flowing an air current to the wind tunnel measuring unit of the wind tunnel test apparatus, air was forcibly sent by the blower for blowing toward the blowout port of the cylindrical model according to the example, and the wind velocity of the jet blown out from this blowout port was measured. . As shown in FIG. 5, an acrylic plate and a sound passage plate are arranged in parallel between a nozzle that blows an air current to the wind tunnel measuring unit of the wind tunnel testing apparatus and a collector that collects the air current flowing through the wind tunnel measuring unit. A wind tunnel measuring unit is formed, and the cylindrical models according to the example and the comparative example are arranged in the wind tunnel measuring unit. Air is fed into the lower end opening of the model cylinder from an air blower through an air pipe, and aerodynamic noise generated from the model cylinder is measured by a noise meter. A number of particle markers are injected into the airflow passing through the wind tunnel measurement unit, and laser light is irradiated from the PIV laser of the particle image velocimetry (PIV) to the wind tunnel measurement unit. The wind tunnel measurement unit is imaged to measure the airflow velocity.
次に、風洞測定部の気流の主流速度を0,10,20,30,40(m/s)の5段階に変化させるとともに、吹出し用送風機の動作を制御する制御インバータの周波数を各主流速度に応じて変化させて、吹出し口からの風速を測定した。図6に示す縦軸は、吹出し風速(m/s)であり、横軸は吹出し用送風機の制御インバータの周波数(Hz)である。図6に示すように、吹出し用送風機の周波数を変化させたところ、風洞測定部の気流が停止している状態だけではなく気流が流れている状態であっても、実施例に係る円柱模型の吹出し口から周波数に応じた風速によって気流を噴射可能であることが確認された。 Next, the mainstream velocity of the air current in the wind tunnel measurement unit is changed in five stages of 0, 10, 20, 30, 40 (m / s), and the frequency of the control inverter that controls the operation of the blower blower is changed to each mainstream velocity. The wind speed from the outlet was measured. The vertical axis | shaft shown in FIG. 6 is a blowing wind speed (m / s), and a horizontal axis is the frequency (Hz) of the control inverter of the blower for blowing. As shown in FIG. 6, when the frequency of the blower blower is changed, not only the state where the airflow of the wind tunnel measuring unit is stopped but also the state where the airflow is flowing, It was confirmed that the airflow can be ejected from the outlet through the wind speed according to the frequency.
次に、風洞試験装置の風洞測定部に主流速度30m/sの気流を流し、実施例及び比較例に係る円柱模型から側方に2m離して設置したマイクロホンによって、これらの円柱模型から発生する音を測定した。図7に示す縦軸は、音圧レベル(dB(F)/Hz)であり、横軸は周波数(Hz)である。ここで、図7に示す暗騒音とは、複数の音が同時に存在する場合に、ある特定の音に着目したときのそれ以外の音であり、例えば空力音を対象として考える場合に、この空力音がないときの送風機の騒音などを空力音に対する暗騒音という。図7に示すように、風洞測定部の主流速度が30m/sである場合に、吹出し用送風機の制御インバータの周波数を20Hzに調整して実施例に係る円柱模型の吹出し口から35m/s程度の気流を噴射すると、比較例に係る円柱模型に比べてこの実施例に係る円柱模型から発生する騒音が低下することが確認された。一方、制御インバータの周波数を30,40,50Hzに調整して実施例に係る円柱模型の吹出し口から気流を噴射すると、この円柱模型の吹出し口から噴射される気流の噴射音によって、1000Hz付近の音圧レベルが高くなることが確認された。 Then, passing a stream of the main flow velocity 30 m / s in wind tunnel measurement of wind tunnel test apparatus, the microphone is placed away 2m a cylindrical model according to Examples and Comparative Examples laterally sound generated from these cylindrical models Was measured. The vertical axis shown in FIG. 7 is the sound pressure level (dB (F) / Hz), and the horizontal axis is the frequency (Hz). Here, the background noise shown in FIG. 7 is a sound other than that when attention is paid to a specific sound when a plurality of sounds exist at the same time. The noise of the blower when there is no sound is called background noise against aerodynamic sound. As shown in FIG. 7, when the mainstream velocity of the wind tunnel measuring unit is 30 m / s, the frequency of the control inverter of the blower blower is adjusted to 20 Hz, and about 35 m / s from the blowout port of the cylindrical model according to the embodiment. It was confirmed that the noise generated from the cylindrical model according to this example is lower than that of the cylindrical model according to the comparative example. On the other hand, when the air current is injected from the outlet of the cylindrical model according to the embodiment by adjusting the frequency of the control inverter to 30, 40, 50 Hz, the sound of the air current injected from the outlet of the cylindrical model is about 1000 Hz. It was confirmed that the sound pressure level increased.
次に、風洞測定部の主流速度が30m/sであるときに、PIVを使用して流れ場の流速を測定し、実施例に係る円柱模型の後流の渦度の瞬間値(有効な全データ)を7.5Hz毎に測定した。その結果、図8に示すように、吹出し用送風機の制御インバータの周波数=0Hzの場合であって、実施例に係る円柱模型の吹出し口から気流を噴射していないときには、この円柱模型の後方にカルマン渦が生成されていることが確認された。一方、図9に示すように、吹出し用送風機の制御インバータの周波数=20Hzの場合であって、実施例に係る円柱模型の吹出し口から35m/s程度の気流を噴射したときには、図8に示すカルマン渦が小さくなっていることが確認された。同様に、図10に示すように、吹出し用送風機の制御インバータの周波数=40Hzの場合であって、実施例に係る円柱模型の吹出し口から60m/s程度の気流を噴射したときにも、図8に示すカルマン渦が小さくなっていることが確認された。以上より、風洞測定部の主流速度と略同じ速度で円柱模型の吹出し口から気流を噴射すると、この円柱模型から発生する騒音を低減可能であることが確認された。 Next, when the main flow velocity of the wind tunnel measurement unit is 30 m / s, the flow velocity of the flow field is measured using PIV, and the instantaneous value of the vorticity of the wake of the cylindrical model according to the embodiment (effective total Data) was measured every 7.5 Hz. As a result, as shown in FIG. 8, when the frequency of the control inverter of the blower blower is 0 Hz, and no airflow is being injected from the blowout port of the columnar model according to the embodiment, It was confirmed that Karman vortex was generated. On the other hand, as shown in FIG. 9, when the frequency of the control inverter of the blower blower is 20 Hz and the air flow of about 35 m / s is injected from the blowout port of the cylindrical model according to the embodiment, it is shown in FIG. 8. It was confirmed that the Karman vortex was getting smaller. Similarly, as shown in FIG. 10, when the frequency of the control inverter of the blower blower is 40 Hz and the air flow of about 60 m / s is injected from the blowout port of the cylindrical model according to the embodiment, It was confirmed that the Karman vortex shown in FIG. From the above, it was confirmed that the noise generated from the cylindrical model can be reduced by injecting the air flow from the outlet of the cylindrical model at the same speed as the mainstream velocity of the wind tunnel measuring unit .
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
この実施形態では、円柱部材1の断面形状が円形である場合を例に挙げて説明したが、断面形状が楕円形、四角形、多角形又は前後非対称な形状である場合についてもこの発明を適用することができる。また、この実施形態では、円柱部材1の表面1aの長さ方向に吹出し口3aを所定の間隔で配置する場合を例に挙げて説明したが、吹出し口3aの寸法、設置個数及び設置間隔を限定するものではない。例えば、吹出し口3aの寸法が異なるものを不等間隔で並べて配置したり、種々の寸法、設置個数及び設置間隔に設定したりすることもできる。
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
In this embodiment, the case where the cylindrical member 1 has a circular cross-sectional shape has been described as an example. However, the present invention is also applied to a case where the cross-sectional shape is an ellipse, a rectangle, a polygon, or a front-rear asymmetric shape. be able to. In this embodiment, the case where the outlets 3a are arranged at predetermined intervals in the length direction of the surface 1a of the cylindrical member 1 has been described as an example. However, the dimensions, the number of installations, and the installation intervals of the outlets 3a are described. It is not limited. For example, it is possible to arrange the outlets 3a having different dimensions side by side at unequal intervals, or to set various dimensions, installation numbers, and installation intervals.
1 円柱部材
1a 表面
1b 最大幅部
2 カルマン渦低減装置
3 空気噴射部
3a 吹出し口
3b ノズル部
4 空気送出部
5 管路
6 制御部
7 設定部
F1 流れ
F11 カルマン渦
F2 噴流
1 cylindrical member 1a surface 1b maximum width portion 2 Karman vortex reducing device 3 air injection unit 3a air outlet 3b nozzle unit 4 air delivery unit 5 line 6 control unit 7 setting section F 1 flows F 11 Karman vortex F 2 Jet
Claims (1)
前記円柱部材の表面の最大幅部から接線方向に、この円柱部材の内部に流入した空気を上流側から下流側に向かって噴射する空気噴射部を備え、
前記空気噴射部は、前記流れ場の空気の速度と略同じ速度で空気を噴射すること、
を特徴とするカルマン渦低減装置。 A Karman vortex reduction device that reduces Karman vortices generated by a cylindrical member having a cross-sectional shape existing in a flow field,
From the maximum width portion of the surface of the cylindrical member, in an tangential direction, provided with an air injection portion that injects air that has flowed into the cylindrical member from the upstream side toward the downstream side,
The air injection unit injects air at substantially the same speed as the air speed of the flow field;
Karman vortex reduction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012015291A JP5843377B2 (en) | 2012-01-27 | 2012-01-27 | Karman vortex reduction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012015291A JP5843377B2 (en) | 2012-01-27 | 2012-01-27 | Karman vortex reduction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013155778A JP2013155778A (en) | 2013-08-15 |
JP5843377B2 true JP5843377B2 (en) | 2016-01-13 |
Family
ID=49051187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012015291A Expired - Fee Related JP5843377B2 (en) | 2012-01-27 | 2012-01-27 | Karman vortex reduction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5843377B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104455192B (en) * | 2014-11-06 | 2016-06-15 | 中国计量学院 | A kind of method for reducing of dual cylinders vortex-induced vibration arranged side by side |
CN106917591B (en) * | 2016-04-01 | 2019-03-26 | 山东科技大学 | A kind of Puffer type active driving device for standpipe vortex-induced vibration |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6148751A (en) * | 1998-12-16 | 2000-11-21 | High Seas Engineering, Llc | Vibration and drag reduction system for fluid-submersed hulls |
JP2005003206A (en) * | 2004-08-30 | 2005-01-06 | Japan Aerospace Exploration Agency | Obtuse head object put in fluid stream |
-
2012
- 2012-01-27 JP JP2012015291A patent/JP5843377B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013155778A (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ozkan et al. | Passive flow control in the near wake of a circular cylinder using attached permeable and inclined short plates | |
Krueger et al. | Thrust augmentation and vortex ring evolution in a fully-pulsed jet | |
JPH0526762A (en) | Low noise nozzle for wind tunnel | |
JP5843377B2 (en) | Karman vortex reduction device | |
JP2019035718A (en) | Wind tunnel device | |
KR20180114089A (en) | And method for suppressing cavitation flow vibrations and acoustic loads using a curved back surface | |
Kaepernick et al. | Investigation of the unsteady flow field inside a leading edge slat cove | |
JP2012130115A (en) | Pantograph | |
CN105857576A (en) | Noise-reduction slat structure based on jet-flow opening | |
Zhang et al. | Jet direction control using circular cylinder with tangential blowing | |
KR20140029849A (en) | Wind power generator | |
Bons et al. | Turbine separation control using pulsed vortex generator jets | |
RU2536572C2 (en) | Input device of centrifugal fan | |
Bloxham et al. | Synchronizing separation flow control with unsteady wakes in a low-pressure turbine cascade | |
Russell et al. | The effect of nuclei and gap height on cavitation in tip leakage flow | |
JPH04110630A (en) | Wind-tunnel nozzle | |
Wu | Flow Separation Control Using Piezoelectric Micro-blowers | |
JP5481263B2 (en) | Wings | |
JP2011099397A (en) | Method for suppressing aerofoil trailing edge noise and low noise aerofoil | |
JP2005098566A (en) | Noise absorbing duct type silencer and manufacturing method thereof | |
Haddabi et al. | The Impact of Steady Blowing from the Leading Edge of an Open Cavity Flow. Aerospace 2021, 8, 255 | |
JP2018058097A (en) | Immersion nozzle, continuous casting machine, and continuous casting method | |
Woods et al. | Study of Separation Supression in a Low Pressure Turbine Using Pulsed Vortex Generator Jets | |
Schoon | Method for the study of unsteady cavitation observations on collapsing sheet cavities | |
Woods et al. | Study of the Effects of the Blowing Ratio of Vortex Generator Jets in a Low Pressure Turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5843377 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |