JP2005003206A - Obtuse head object put in fluid stream - Google Patents

Obtuse head object put in fluid stream Download PDF

Info

Publication number
JP2005003206A
JP2005003206A JP2004250427A JP2004250427A JP2005003206A JP 2005003206 A JP2005003206 A JP 2005003206A JP 2004250427 A JP2004250427 A JP 2004250427A JP 2004250427 A JP2004250427 A JP 2004250427A JP 2005003206 A JP2005003206 A JP 2005003206A
Authority
JP
Japan
Prior art keywords
flow
fluid
blunt
blunt body
maximum thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004250427A
Other languages
Japanese (ja)
Inventor
Naoko Tokugawa
直子 徳川
Shohei Takagi
正平 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2004250427A priority Critical patent/JP2005003206A/en
Publication of JP2005003206A publication Critical patent/JP2005003206A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pipe Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an obtuse head object placed in a fluid stream and capable of reducing drag coefficient by stopping the fluid stream caused along the wake side front surface of the object according to the peeling of a boundary layer to prevent a large-scale Karman's vortex from generating and growing. <P>SOLUTION: A plate member as a flow stopping part is installed on the wake side of the obtuse head object 1 in which an upstream side surface is formed in an obtuse head curved surface relative to the flow F of the fluid to stop the flow of the fluid along the wake side front surface. In the plate member, parallel plates 7R and 7L as stopping plates are installed on the maximum thickness part 5 of a cylindrical body 2 on both right and left sides of the stream. A reverse flow reverse to a main stream direction occurs in the slightly downstream side of the maximum thickness part of the obtuse head object 1 to generate a pressure resistance. However, since the parallel plates are installed on the maximum thickness part of the cylindrical body, the reverse flow can be streamlined by the parallel plates and the resistance can be reduced less than that of the cylindrical body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、流体流れの中に配置されたときの流体抵抗を低減させた新規な構造を有する鈍頭物体に関する。   The present invention relates to a blunt body having a novel structure with reduced fluid resistance when placed in a fluid flow.

従来、大気のような気体又は川水や海水のような液体、あるいは各種配管内を流れる流体中には、断面が円形又はそれに近い形状を持ち表面が滑らかな曲面となっている鈍頭物体が用いられている。特に、円柱体の形状のものは、製造が比較的簡単であるので製造コストが低く、あらゆる分野に用いられている。そのような鈍頭物体は、流体流れの中に置かれるとき、強い圧力勾配により鈍頭物体の表面に形成される境界層が剥離し、流体流れの下流側に大きな圧力損失が生じ、流体又は物体には圧力抵抗として作用することが知られている。   Conventionally, in a gas such as the atmosphere, a liquid such as river water or seawater, or a fluid flowing in various pipes, a blunt body having a circular cross section or a shape close to it and a smooth curved surface is present. It is used. In particular, cylinders having a cylindrical shape are relatively easy to manufacture, so the manufacturing cost is low, and they are used in various fields. When such a blunt body is placed in a fluid flow, the boundary layer formed on the surface of the blunt body is separated by a strong pressure gradient, resulting in a large pressure loss downstream of the fluid flow, It is known to act on a body as a pressure resistance.

鈍頭物体については、本来、流線形に設計されれば圧力損失に起因した流体抵抗を小さくすることができるが、そうした流線形に製造するにはコストが高くなり、現実的な対処の仕方とは言えない。しかしながら、用途によっては、鈍頭物体の圧力抵抗が無視できない程度となることがある。即ち、圧力抵抗が大きく成ると、鈍頭物体が固定側にあり流体が流れる場合には、流体を流すのに必要な動力費用が無視できなくなり、固定側の鈍頭物体に対しては圧力抵抗に伴う機械的な負荷が問題になることがある。また、鈍頭物体が流体中を移動するときには、圧力抵抗に打ち勝って鈍頭物体を移動させ続けるのに必要なエネルギーが増加することになる。   For blunt bodies, fluid resistance due to pressure loss can be reduced if designed to be streamlined. I can't say that. However, depending on the application, the pressure resistance of the blunt body may not be negligible. In other words, when the pressure resistance increases, if the blunt body is on the fixed side and the fluid flows, the power cost required to flow the fluid cannot be ignored. The mechanical load associated with can be a problem. In addition, when the blunt body moves in the fluid, the energy required to overcome the pressure resistance and continue to move the blunt body increases.

鈍頭物体の一つとして、円柱表面を有する物体に対して、軸線に直角に流体が流れる場合、物体に働く流体抵抗が実験により求められている。図3には、円柱表面を有する柱状物体がそのまま単独で配置されたときの流体抵抗係数のグラフが示されている。図3の横軸は流体の流速Uであり、縦軸は流体抵抗係数Cである。ここで、単位長さ当たりの流体抵抗係数は、良く知られているように、次の式で定義される。
=D/[ρU2・d/2]
ここで、Dは、単位長さ当たりの流体抵抗[単位、N/m]
ρは、流体の密度[単位、kg/m
dは、柱状物体直径[単位、mm]、実験例では50mm
Uは、流体の流速[単位、m/s]である。
図3に示すグラフから分かるように、流速20m/s弱から60m/s弱までの範囲にわたって、多少の変動があるが約1.3の値を示している。
As one of the blunt bodies, when a fluid flows at right angles to an axis with respect to an object having a cylindrical surface, the fluid resistance acting on the object has been experimentally determined. FIG. 3 shows a graph of the fluid resistance coefficient when a columnar object having a cylindrical surface is arranged alone as it is. The horizontal axis of FIG. 3 is a flow velocity U of the fluid, and the vertical axis represents the fluid resistance coefficient C D. Here, the fluid resistance coefficient per unit length is defined by the following equation, as is well known.
C D = D / [ρU2 · d / 2]
Here, D is fluid resistance per unit length [unit, N / m]
ρ is the density of the fluid [unit, kg / m 3 ]
d is the diameter of the columnar object [unit, mm], 50 mm in the experimental example
U is the fluid flow velocity [unit, m / s].
As can be seen from the graph shown in FIG. 3, there is a slight variation over the range from a flow velocity of 20 m / s to 60 m / s, but a value of about 1.3 is shown.

図3には、また、流れ方向への投影面積と流れに平行な断面のアスペクト比が同じであるD形柱体の抵抗係数のグラフが示されている。D形柱体は、流体流れに対する前縁側の半分は円柱と同様の表面を持つ半円柱であり、後縁側は四角柱となった柱体であり、その流体抵抗係数は、円柱状物体の場合と同様の流れの範囲にわたって約0.9の値を示しており、円柱体と比較して30〜35%小さくなっていることが知られている。   FIG. 3 also shows a graph of the resistance coefficient of a D-shaped column having the same projected area in the flow direction and the same aspect ratio of the cross section parallel to the flow. The D-shaped column is a semi-cylinder with a half of the front edge side with respect to the fluid flow having a surface similar to that of a cylinder, and the rear edge side is a column with a quadrangular column. It shows a value of about 0.9 over the same flow range, and is known to be 30-35% smaller than that of a cylindrical body.

円柱体を流れの中に置いたときの計測結果から、円柱の後流にはカルマン渦列が交互に且つ周期的に発生しており、圧力損失が大きく圧力抵抗が高いことを示している。円柱体の表面にマルチ熱膜センサを貼り付けて行った壁面剪断応力の計測結果から、カルマン渦列の周波数に同期して円柱体表面の境界層全体が振動していることが観測されており、円柱体の最大厚さ位置の前後において、境界層の剥離を示す逆流現象も観測されている。こうした計測結果、あるいは数値計算から、流れの中に置かれた円柱体については、境界層が剥離すると、円柱体の後流側表面に沿って剥離をおこした境界層の部分へ向かう流体流れが生じて、ブリッジ状の渦膜や二次渦が形成され、後流を巻き込んでの大規模な渦を形成し、それを放出するという、カルマン渦の生成過程が周期的に起きていることが判明した。従来このような円柱体の抵抗を減らすために、円柱体外周面に凸部やリブを設けることが提案されている(特許文献1、2参照)が、未だ満足すべきものではない。
登録実用新案第3063323号公報 実願昭54−114137号のマイクロフィルム
From the measurement results when the cylinder was placed in the flow, Karman vortex streets were alternately and periodically generated in the wake of the cylinder, indicating that the pressure loss was large and the pressure resistance was high. From the wall shear stress measurement results obtained by attaching a multi-heat film sensor to the surface of the cylinder, it has been observed that the entire boundary layer of the cylinder surface vibrates in synchronization with the frequency of the Karman vortex street. In addition, a backflow phenomenon indicating separation of the boundary layer is also observed before and after the maximum thickness position of the cylindrical body. From these measurement results or numerical calculations, for the cylinder placed in the flow, when the boundary layer peels, the fluid flow toward the boundary layer where the separation occurred along the downstream surface of the cylinder The formation of a Karman vortex, which forms a bridge-like vortex film and a secondary vortex, forms a large-scale vortex involving the wake, and releases it, occurs periodically. found. Conventionally, in order to reduce the resistance of such a cylindrical body, it has been proposed to provide protrusions and ribs on the outer peripheral surface of the cylindrical body (see Patent Documents 1 and 2), but this is not yet satisfactory.
Registered Utility Model No. 3063323 Microfilm of actual application No.54-114137

そこで、本発明が解決すべき課題は、境界層の剥離から大規模な渦構造への発生・成長までの一連の過程において、円柱状物体のような鈍頭物体の後流側表面に沿っての流体流れに着目し、境界層が剥離することに伴って後流側表面に沿って生じようとする流体流れを阻止することで、上記の一連の過程を分断して大規模なカルマン渦にまで成長させない工夫を図ることである。   Therefore, the problem to be solved by the present invention is that along the downstream surface of a blunt body such as a cylindrical body in a series of processes from separation of the boundary layer to generation / growth of a large-scale vortex structure. Focusing on the fluid flow, the fluid flow that is going to occur along the surface of the wake as the boundary layer separates is separated, thereby dividing the above series of processes into a large-scale Karman vortex. The idea is not to grow it.

この発明の目的は、鈍頭物体の構造を工夫して、圧力抵抗に起因した流体抵抗係数を一層小さくし、流体の流れを生じさせる場合にはそうした流れを駆動するのに要する駆動力を、また流体中で鈍頭物体を移動させる場合には移動させるための駆動力を軽減し、更には流体から鈍頭物体に働く機械的な力を軽減することを可能にする、流体流れにおかれる鈍頭物体を提供することである。   The object of the present invention is to devise the structure of the blunt body, to further reduce the fluid resistance coefficient due to pressure resistance, and to generate a fluid flow, the driving force required to drive such a flow, Also, when moving a blunt body in a fluid, the driving force to move it is reduced, and further, the mechanical force acting on the blunt body from the fluid can be reduced. It is to provide a blunt object.

上記の課題を解決するこの発明による流体流れに置かれる鈍頭物体は、流体の流れ方向に対して上流側表面が鈍頭曲面となった鈍頭本体と、前記鈍頭本体の後流側表面に沿った前記流体の流れを阻害するために前記鈍頭本体の後流側に設けられた流れ阻害部とからなり、前記鈍頭本体は、流体の流れ方向に対して軸線が交差した状態に配置された円柱表面を持つ円柱状物体であり、上記流れ阻害部は、前記円柱状物体の後流側に前記流体の主流方向で見た前記円柱状物体の投影幅内の範囲で取り付けられた板部材であり、且つ該板部材は、前記円柱状物体の前記流体の主流に対して最大厚さを示す少なくとも一方の位置から前記主流方向と平行に延びる状態に取り付けられた平行板であることを特徴とする構成を有するものである。   A blunt body placed in a fluid flow according to the present invention that solves the above problems includes a blunt body whose upstream surface is a blunt curved surface with respect to the fluid flow direction, and a downstream surface of the blunt body In order to inhibit the flow of the fluid along the flow head, the flow obstructing portion provided on the downstream side of the blunt body, the blunt body is in a state where the axis intersects the flow direction of the fluid A cylindrical object having a cylindrical surface arranged, and the flow blocking portion is attached to the wake side of the cylindrical object in a range within the projection width of the cylindrical object viewed in the main flow direction of the fluid. A plate member, and the plate member is a parallel plate attached in a state extending in parallel with the main flow direction from at least one position showing the maximum thickness with respect to the main flow of the fluid of the cylindrical object. It has the structure characterized by these.

流体流れに置かれる鈍頭物体において、鈍頭本体の流体の流れ方向に対して上流側表面は、従来と同様の鈍頭曲面となっているが、鈍頭本体の周りを流れる流体が最大厚さ付近から境界層の剥離を開始しようとしたときに、鈍頭物体の後流側表面に沿って境界層剥離領域へ向かって流れ込む流れを許容すると、大規模なカルマン渦列の発生に繋がり圧力抵抗を増すことにつながる。この発明による鈍頭物体によれば、そうした境界層の剥離に起因して鈍頭本体の後流側表面に沿って剥離領域へ向かって流れ込もうとする流体の流れを流れ阻害部によって阻害している。従って、鈍頭本体の最大厚さ付近からの境界層の剥離に応じて微小な渦が発生しても、大規模渦列としてのカルマン渦への成長が妨げられ、鈍頭本体の後流の幅や変動成分の規模は、流れ阻害部を備えない単純な鈍頭物体と比較して縮小し、鈍頭物体の圧力抵抗が軽減される。   In the blunt body placed in the fluid flow, the upstream surface with respect to the fluid flow direction of the blunt body has a blunt curved surface similar to the conventional one, but the fluid flowing around the blunt body has the maximum thickness. When the boundary layer separation starts from near the depth, allowing a flow that flows toward the boundary layer separation region along the wake surface of the blunt body leads to the generation of a large-scale Karman vortex street. This leads to increased resistance. According to the blunt body according to the present invention, the flow inhibition portion inhibits the flow of the fluid that tends to flow toward the separation region along the posterior surface of the blunt body due to the separation of the boundary layer. ing. Therefore, even if a minute vortex is generated in response to the separation of the boundary layer from the vicinity of the maximum thickness of the blunt body, growth to the Karman vortex as a large-scale vortex street is hindered, and The width and the scale of the fluctuation component are reduced as compared with a simple blunt body that does not include a flow hindrance, and the pressure resistance of the blunt body is reduced.

この流体流れに置かれる鈍頭物体において、前記鈍頭本体は、流体の流れ方向に対して軸線が交差した状態に配置された円柱表面を持つ円柱状物体とする。円柱状物体は、中実の円柱体そのものばかりでなく、円管体や円筒体のように製造が簡単であるためにあらゆる分野で利用されている物体であり、流体中で使用されることも多い。そうした円柱状物体に対して、カルマン渦発生過程で後流側表面に沿って生じようとする流体流れを阻害する流れ阻害部を設けることのみで、円柱状物体の圧力抵抗が軽減される。   In the blunt body placed in the fluid flow, the blunt body is a cylindrical body having a cylindrical surface arranged in a state where the axis intersects with the fluid flow direction. Cylindrical objects are not only solid cylinders themselves, but are also used in various fields because they are easy to manufacture, such as circular pipes and cylinders, and can also be used in fluids. Many. For such a cylindrical object, the pressure resistance of the cylindrical object can be reduced only by providing a flow inhibiting part that inhibits the fluid flow that is to occur along the wake side surface in the Karman vortex generation process.

鈍頭本体として円柱状物体を有する鈍頭物体において、前記流れ阻害部を、前記円柱状物体の後流側に前記流体の主流方向で見た前記円柱状物体の投影幅内の範囲で取り付けられた板部材とする。この鈍頭物体によれば、円柱状物体の側面から後流側表面に沿って円柱状物体の境界層の剥離部分に流れ込もうとする流体の流れが板部材によって阻害されるので、後流におけるカルマン渦のような大規模な渦の成長を弱めることができ、圧力抵抗が軽減される。また、流れ阻害部としての板部材は、円柱状物体の投影幅内の範囲で取り付けられているので、円柱状物体の周りの通常流れが板によって不必要に乱されることがない。   In a blunt body having a cylindrical object as a blunt body, the flow blocking portion is attached to the downstream side of the cylindrical object in a range within the projection width of the cylindrical object viewed in the main flow direction of the fluid. A plate member is used. According to this blunt body, the flow of the fluid that tries to flow into the separation part of the boundary layer of the cylindrical object from the side surface of the cylindrical object along the downstream surface is obstructed by the plate member. Can reduce the growth of large-scale vortices such as Karman vortices and reduce pressure resistance. In addition, since the plate member as the flow blocking portion is attached within a range within the projection width of the cylindrical object, the normal flow around the cylindrical object is not unnecessarily disturbed by the plate.

鈍頭本体を円柱状物体とした鈍頭物体において、前記板部材については、前記円柱状物体の前記流体の主流に対して最大厚さを示す少なくとも一方の位置から前記主流方向と平行に延びる状態に取り付けられた平行板とする。こうした平行板を用いると流体流れの境界層が剥離してもその影響の範囲は平行板に沿って後流側に移り、更に、平行板は、直交板と同様に、円柱状物体の後流側表面から境界層剥離を起こした部分への流体の直接の流れ込みを阻害し、境界層剥離が大規模渦に成長することを阻害する。   In the blunt body having a cylindrical body as the blunt body, the plate member extends in parallel with the main flow direction from at least one position indicating the maximum thickness with respect to the main flow of the fluid of the cylindrical body. Parallel plate attached to When such a parallel plate is used, even if the boundary layer of the fluid flow is separated, the range of the effect is shifted to the wake side along the parallel plate. The direct flow of the fluid from the side surface to the part where the boundary layer separation occurs is inhibited, and the boundary layer separation is prevented from growing into a large-scale vortex.

また、上記目的を達成する本発明の流体流れに置かれる鈍頭物体は、流体の流れ方向に対して上流側表面が鈍頭曲面となった鈍頭本体と、前記鈍頭本体の後流側表面に沿った前記流体の流れを阻害するため前記鈍頭本体の後流側に設けられた流れ阻害部とからなり、該流れ阻害部は、前記鈍頭物体の前記流体の主流に対して最大厚さを示す位置から前記主流方向と平行に延びる状態に設けられた側縁部と前記側縁部の内側で且つ前記鈍頭物体の背面側に形成された凹部とからなることを特徴とする構成を採用することによって、より効果的に達成できる。   In addition, the blunt body placed in the fluid flow of the present invention that achieves the above object includes a blunt body whose upstream surface is a blunt curved surface with respect to the fluid flow direction, and a wake side of the blunt body A flow blocking portion provided on the downstream side of the blunt body to block the flow of the fluid along the surface, the flow blocking portion being a maximum with respect to the main flow of the fluid of the blunt body It comprises a side edge provided in a state extending in parallel with the main flow direction from a position indicating a thickness, and a recess formed on the inner side of the side edge and on the back side of the blunt body. By adopting the configuration, it can be achieved more effectively.

この流体流れに置かれる鈍頭物体において、流れ阻害部は、前記鈍頭物体の前記流体の主流に対して最大厚さを示す位置から前記主流方向と平行に延びる状態に設けられた側縁部と前記側縁部の内側で且つ前記鈍頭物体の背面側に形成された凹部とすることによって、流れの逆流領域が円柱に比べて広くなるため、逆流の振幅が小さくなり、下流領域での速度勾配がさらに小さくなって、抵抗が小さくなる。   In the blunt body placed in the fluid flow, the flow blocking portion is provided at a side edge provided in a state extending in parallel with the main flow direction from a position indicating the maximum thickness with respect to the main flow of the fluid of the blunt body. And a recess formed on the inner side of the side edge and on the back side of the blunt body, the backflow region of the flow becomes wider than that of the cylinder, so that the amplitude of the backflow is reduced and the downstream region The velocity gradient is further reduced and the resistance is reduced.

この発明による流体流れに置かれる鈍頭物体によれば、鈍頭本体の周りを流れる流体が最大厚さ付近から境界層の剥離を開始しようとしたときに、鈍頭物体の後流側表面に沿って境界層剥離領域へ向かって流れ込む流れを許容すると大規模なカルマン渦列の発生に繋がり圧力抵抗を増すことにつながるが、この鈍頭本体の後流側表面に沿って剥離領域へ向かって流れ込もうとする流体の流れを阻害部によって阻害しているので、カルマン渦のような大規模渦列への成長が抑制され、鈍頭物体の圧力抵抗が軽減される。そして、圧力抵抗係数が小さいほど、流体から受ける抵抗が小さくなり、流体の流れを生じさせる場合にはそうした流れを駆動するのに要する駆動力が、また流体中で鈍頭物体を移動させる場合には移動させるための駆動力が軽減され、駆動源に求められる負荷が小さくなる。また、圧力抵抗を下げることにより、鈍頭物体やその支持構造に求められる強度を下げることができる。   According to the blunt body placed in the fluid flow according to the present invention, when the fluid flowing around the blunt body tries to start separation of the boundary layer from around the maximum thickness, Allowing the flow to flow along the boundary layer separation region leads to the generation of large-scale Karman vortex streets and increases the pressure resistance, but toward the separation region along the downstream surface of this blunt body Since the flow of the fluid to be introduced is inhibited by the inhibition part, the growth to a large-scale vortex street such as Karman vortex is suppressed, and the pressure resistance of the blunt body is reduced. The smaller the pressure resistance coefficient, the smaller the resistance received from the fluid. When a fluid flow is generated, the driving force required to drive such a flow, or when moving a blunt body in the fluid The driving force for moving is reduced, and the load required for the driving source is reduced. Further, by reducing the pressure resistance, the strength required for the blunt body and its support structure can be reduced.

まず、本発明の実施形態を説明する前に参考例について説明する。
図1は流体流れに置かれる鈍頭物体の参考例を示す斜視図、図2は図1に示す鈍頭物体の断面図、図3は流体流れに置かれる鈍頭物体の流速に対する圧力抵抗係数をプロットしたグラフである。
First, reference examples will be described before the embodiments of the present invention are described.
1 is a perspective view showing a reference example of a blunt body placed in a fluid flow, FIG. 2 is a cross-sectional view of the blunt body shown in FIG. 1, and FIG. 3 is a pressure resistance coefficient with respect to the flow velocity of the blunt body placed in a fluid flow. Is a graph in which is plotted.

図1及び図2に示す鈍頭物体1は、流体の流れ方向Fに対して軸線Lが交差して配置された鈍頭本体としての円柱状物体2と、円柱状物体2の後流側に取り付けられた流れ阻害部としての板部材3とから成る。鈍頭本体は、尖った先端部を有していなければよいが、この参考例では最もありふれており且つ最も使用されやすい形状である円柱表面と同じ上流側表面2aを持つ円柱状物体2である。このような鈍頭物体が流体流れの中に存在している例として、風洞や気体又は液体が流れる配管中に設けられる各種センサ及びその支持体、あるいは電車のパンタグラフ、飛行体に取り付けられる棒状或いはワイヤ状の物体等、縦横比を流線形に近いものに容易には変更できないものが挙げられる。   The blunt body 1 shown in FIG. 1 and FIG. 2 includes a cylindrical body 2 as a blunt body arranged with the axis L intersecting with the fluid flow direction F, and a wake side of the cylindrical body 2. It consists of a plate member 3 as an attached flow inhibiting part. The blunt body need not have a pointed tip, but is a cylindrical object 2 having the same upstream surface 2a as the cylindrical surface, which is the most common and most usable shape in this reference example. . Examples of the presence of such blunt bodies in a fluid flow include various sensors provided in wind tunnels and pipes through which gas or liquid flows, and their supports, or pantographs for trains, rods attached to flying objects, or Examples include wire-like objects whose aspect ratio cannot be easily changed to those close to streamline.

円柱状物体2は、中実の円柱体であっても、中空の円管体や円筒体であってもよいが、以下、簡単のため、円柱体2と略す。板部材3は円柱体2の直径dと同じ板幅wを有し、板部材3は板幅wの中央位置において円柱体2の最後流端部4に接線状態に取り付けられた直交板である。このような構造を有する板部材3を流体流れFの方向の投影範囲内に位置するように配置することにより、鈍頭物体1は流体流れFに対して対称な構造となり、また、鈍頭物体1の回りの流れも比較的対称的な流れとなり、板部材3が円柱体2の影からはみ出すこともなく、圧力抵抗を高めるような乱れを惹起させることが少なくなる。   The columnar body 2 may be a solid columnar body, a hollow circular tube body, or a cylindrical body. However, for the sake of simplicity, the columnar body 2 is abbreviated as a columnar body 2 hereinafter. The plate member 3 has the same plate width w as the diameter d of the cylindrical body 2, and the plate member 3 is an orthogonal plate attached tangentially to the last flow end portion 4 of the cylindrical body 2 at the center position of the plate width w. . By arranging the plate member 3 having such a structure so as to be located within the projection range in the direction of the fluid flow F, the blunt body 1 has a symmetrical structure with respect to the fluid flow F, and the blunt body The flow around 1 also becomes a relatively symmetric flow, so that the plate member 3 does not protrude from the shadow of the cylindrical body 2, and the occurrence of disturbance that increases the pressure resistance is reduced.

鈍頭物体1を流体流れFの中に置いたとき、円柱体2の表面の両側では交互に且つ周期的に境界層剥離を生じ、後流に大規模渦流としてのカルマン渦を発生・成長させやすくなるが、板部材3は、板部材3が存在しないとしたときに境界層剥離が発生する毎に円柱体2の後流側表面2bに沿って円柱体2の境界層剥離を起こした部分へ流体の巻き込みとして流れ込もうとする流れf(想像線で示す)の発生を阻害している。その結果、鈍頭物体1の後流においては、カルマン渦のような大規模渦列の発生を阻害し、たとえ発生したとしてもその成長を阻害することができるので、大規模渦列に起因した圧力損失が少なくなり、その結果、圧力抵抗が軽減される。鈍頭柱体1において、板部材3は、流体の流れ方向で見た円柱体2の投影幅内に収まった状態に配置することが好ましい。板部材3を円柱体2の投影幅の範囲内に収めた場合には、境界層外部の流体流れが不必要に板部材3によって乱されることがなく、剥離剪断層の巻込み防止の作用を効果的に発揮させることができる。   When the blunt body 1 is placed in the fluid flow F, boundary layer separation occurs alternately and periodically on both sides of the surface of the cylindrical body 2 to generate and grow a Karman vortex as a large-scale vortex in the wake. Although it becomes easy, the plate member 3 is a portion where the boundary layer separation of the cylindrical body 2 occurs along the downstream surface 2b of the cylindrical body 2 every time boundary layer separation occurs when the plate member 3 is not present. The generation of a flow f (shown by an imaginary line) that attempts to flow as a fluid entrainment is hindered. As a result, in the wake of the blunt body 1, the generation of large-scale vortex streets such as Karman vortices is inhibited, and even if they occur, their growth can be inhibited. Pressure loss is reduced, and as a result, pressure resistance is reduced. In the blunted column 1, the plate member 3 is preferably arranged in a state of being within the projected width of the cylindrical body 2 viewed in the fluid flow direction. When the plate member 3 is accommodated within the range of the projection width of the cylindrical body 2, the fluid flow outside the boundary layer is not unnecessarily disturbed by the plate member 3, and the action of preventing the peeling shear layer from being involved. Can be effectively exhibited.

鈍頭柱体1の流体の流れFに対する配置として、流体の流れFが板部材3に対して横方向から当たる成分がないようにすることが好ましく、特に、直交板として使用するように、流体流れFの方向を板部材3に正対する方向に向けることが好ましい。このように鈍頭柱体1を配置することにより、流体の流れFは、円柱体2の各側方から直接に板部材3に当たることにならず、板部材3は、円柱体2で生じやすい剥離剪断層の巻き込みに対する阻害作用を円柱体2の各側で均等に奏することになり、圧力抵抗の軽減に寄与することができる。   The arrangement of the blunt column 1 with respect to the fluid flow F is preferably such that there is no component that the fluid flow F strikes the plate member 3 from the lateral direction, and in particular, the fluid flow F It is preferable to direct the direction of the flow F in a direction facing the plate member 3. By arranging the blunted columnar body 1 in this way, the fluid flow F does not directly hit the plate member 3 from each side of the columnar body 2, and the plate member 3 is likely to be generated in the columnar body 2. An inhibitory action against the entanglement of the peeling shear layer is evenly performed on each side of the cylindrical body 2 and can contribute to the reduction of the pressure resistance.

これらの参考例による流体流れに置かれた鈍頭物体1の抵抗係数を実験で求め、流速Uに対してプロットしたグラフが図3に示されている。図3から理解されるように、鈍頭物体1の抵抗係数Cは、円柱体2と比較して0.5以上の低下が認められ、D形柱体と比較しても、略0.1以上の低下が認められ、板部材を取り付けて、鈍頭本体の後流側表面2bに沿う流体流れを阻害する効果が現れている。 FIG. 3 shows a graph in which the resistance coefficient of the blunt body 1 placed in the fluid flow according to these reference examples is experimentally obtained and plotted against the flow velocity U. As understood from FIG. 3, the drag coefficient C D of the bluff body 1, a reduction in 0.5 or more as compared to the cylindrical body 2 was observed, even in comparison with D Katachihashiratai substantially zero. One or more declines are recognized, and the effect of blocking the fluid flow along the posterior surface 2b of the blunt body appears by attaching the plate member.

図4は、これらの鈍頭物体の後流における、一様流れの流速U∞に対する流体の流速Uの比と、一様流れの流速U∞に対する変動成分u′の比とを示すグラフである。鈍頭物体の後流としては、端縁から直径Dの3倍の距離(X)だけ流体の流れ方向に離れた位置が採用されており、流れに横断する方向の地点を横軸(円柱の直径Dに対する比Y/D)として、一様流れの流速U∞に対する流体の流速Uの比(U/U∞上側のグラフ)と、一様流れの流速U∞に対する変動成分u′の比(u′/U∞下側のグラフ)とが、熱線風速計を用いた計測から求められている。この後流の測定でも、板部材を設けた鈍頭物体1は、円柱体2のみの場合との比較ではもちろんのこと、D形柱体と比較しても、後流の幅が小さく且つ変動成分も小さいことが確認された。   FIG. 4 is a graph showing the ratio of the fluid flow velocity U to the uniform flow velocity U∞ and the ratio of the fluctuation component u ′ to the uniform flow velocity U∞ in the wake of these blunt bodies. . As the wake of the blunt body, a position separated from the edge by a distance (X) three times the diameter D in the fluid flow direction is adopted. As the ratio Y / D to the diameter D, the ratio of the fluid flow velocity U to the uniform flow velocity U∞ (upper graph U / U∞) and the ratio of the fluctuation component u ′ to the uniform flow velocity U∞ ( The graph below u ′ / U∞) is obtained from measurement using a hot-wire anemometer. In the measurement of the wake, the blunt body 1 provided with the plate member is not only compared with the case of the cylindrical body 2 alone, but also the width of the wake is small and fluctuates as compared with the D-shaped column. It was confirmed that the components were also small.

以下、上記参考例を基に、本発明の実施形態に係る鈍頭物品について説明する。上記参考例と同様な個所は、同一符号を用い説明は省略する。図5は、本発明の実施形態に係る鈍頭物体20を示し、前記円柱体2に阻害板として最大厚み部5において流れに対して左右に平行板7L、7Rが取り付けられている。図6は、本発明の他の実施形態に係る鈍頭物体30を示し、本実施形態では、流れに対して最大厚さを示す鈍頭本体31の左右位置から流れに平行に延びる側縁部11L、11Rを持ち、且つ両側縁部11L、11Rの内側でかつ鈍頭本体の背面側が滑らかに湾曲した凹部12となるように構成されている。   The blunt article according to the embodiment of the present invention will be described below based on the above reference example. The same parts as those in the reference example are denoted by the same reference numerals and the description thereof is omitted. FIG. 5 shows a blunt body 20 according to an embodiment of the present invention, and parallel plates 7L and 7R are attached to the cylindrical body 2 on the left and right sides with respect to the flow in the maximum thickness portion 5 as an inhibition plate. FIG. 6 shows a blunt body 30 according to another embodiment of the present invention. In this embodiment, a side edge extending parallel to the flow from the left and right positions of the blunt body 31 showing the maximum thickness with respect to the flow. 11L and 11R are provided, and it is comprised so that it may become the recessed part 12 inside the both-sides edge part 11L and 11R, and the back side of a blunt body may be smoothly curved.

以上のように構成された本発明の鈍頭物体20、30を軸線に直角に且つ前記平行板7L、7Rに、又は両側縁部11L、11Rに平行に流れる流体流れにおいた場合の、物体に働く流体抵抗を実験により求めた。その結果を図8に示す。   When the blunt bodies 20 and 30 of the present invention configured as described above are placed in a fluid flow flowing perpendicularly to the axis and parallel to the parallel plates 7L and 7R or parallel to the side edges 11L and 11R, The working fluid resistance was determined by experiment. The result is shown in FIG.

図8は、横軸を流速U(m/s)としたときの、鈍頭物体の抵抗係数相当のものとしてストローハル数Stを縦軸としたグラフである。ストローハル数Stは、抵抗係数の逆数相当の数値である。また、このグラフには、上記実施形態に限らず、図7に示す前記参考例を含む鈍頭物体の幾つかの変形例について求めたデータも併せて記載してある。図7は、鈍頭物体の種々の変形例の断面を示し、I)は従来の円柱体、II)はD形柱体、III)は円柱体2に阻害板として放射方向に半分長さとした斜め板6L、6Rを取り付けた例、IV)は円柱体2に阻害板として最大厚み部5において流れに対して左側のみに平行板7Lを取り付けた本発明の実施形態に係る鈍頭物体、V)は円柱体2に阻害板として最後流端部4に流れに対して右側のみの直交板8Rを取り付けた例、VI)は円柱体2に阻害板として最大厚み部5において左右に平行板7L、7Rを取り付けた本発明の実施形態に係る鈍頭物体、VII)は円柱体2に阻害板として放射方向に円柱体2の投影範囲内に延びる斜め板9L、9Rを取り付けた例、VIII)は円柱体2に阻害板として最後流端部4に長さ半分の直交板10を中央にて取り付けた例、IX)は図1及び図2に示したように、阻害板として最後流端部4に直交板(板部材3)を取り付けた例である。X)は、流れに対して最大厚さを示す鈍頭本体の左右位置から流れに平行に延びる側縁部11を持ち、且つ両側縁部11の内側でかつ鈍頭本体の背面側が滑らかに湾曲した凹部12となるように構成した本発明の実施形態に係る鈍頭物体である。   FIG. 8 is a graph in which the vertical axis represents the Strouhal number St corresponding to the resistance coefficient of the blunt body when the horizontal axis is the flow velocity U (m / s). The Strouhal number St is a numerical value corresponding to the reciprocal of the resistance coefficient. In addition, the graph includes not only the above embodiment but also data obtained for several modified examples of the blunt object including the reference example shown in FIG. FIG. 7 shows cross-sections of various modifications of blunt bodies, where I) is a conventional cylinder, II) is a D-shaped cylinder, and III) is half-length in the radial direction as an obstruction plate on cylinder 2. An example in which the oblique plates 6L and 6R are attached, IV) is a blunt body according to an embodiment of the present invention in which the parallel plate 7L is attached only to the left side with respect to the flow in the maximum thickness portion 5 as the obstruction plate on the cylinder 2 ) Is an example in which an orthogonal plate 8R only on the right side with respect to the flow is attached to the cylinder body 2 as an obstruction plate, and VI) is a parallel plate 7L parallel to the left and right in the maximum thickness portion 5 as an obstruction plate to the cylinder body 2. VII) is a blunt body according to an embodiment of the present invention, to which 7R is attached, and VII) is an example in which oblique plates 9L and 9R extending in the projection range of the cylindrical body 2 in the radial direction are attached to the cylindrical body 2 as an inhibition plate, Is a half-length orthogonal to the last flow end 4 as an obstruction plate on the cylinder 2 Example in which the 10 at the center, IX), as shown in FIGS. 1 and 2, an example in which orthogonal plate (plate member 3) Finally stream end 4 as an inhibitor plate. X) has side edges 11 extending parallel to the flow from the left and right positions of the blunt body showing the maximum thickness with respect to the flow, and the back side of the blunt body is smoothly curved inside the side edges 11. It is the blunt body which concerns on embodiment of this invention comprised so that it might become the recessed part 12 which carried out.

図8から明確のように、円柱体2だけの場合の抵抗係数が最も高くなり、円柱体2以外の図7に示す鈍頭物体は何れも抵抗係数が改善されている。本発明の実施形態であるVI)に示す円柱体の両側に平行板を設けた鈍頭物体も、前記図1に示す参考例と同様に、広い流速の範囲で抵抗係数が改善され、特にX)に示す側縁部11と凹部12とを有する鈍頭物体の抵抗係数Cは、広い流速の範囲でD形物体よりも改善され、最も小さい抵抗係数Cを示していることが分かった。 As is clear from FIG. 8, the resistance coefficient in the case of only the cylindrical body 2 is the highest, and the blunt bodies shown in FIG. 7 other than the cylindrical body 2 have improved resistance coefficients. The blunt body provided with parallel plates on both sides of the cylindrical body shown in the embodiment VI) of the present invention also has an improved resistance coefficient in a wide range of flow velocity as in the reference example shown in FIG. It was found that the resistance coefficient C D of the blunt body having the side edge portion 11 and the concave portion 12 shown in FIG. 2 is improved over the D-type body in a wide flow velocity range, and shows the smallest resistance coefficient C D. .

そのような本実施形態の鈍頭物体において、抵抗係数が改善された理由としては、図9、図10に模式的に示す次のようなことが考えられる。
円柱体2を流体流れFの中に置いたとき、円柱体の表面の両側では図9に示すように(片側しか示されてない)、円柱体の最大厚さよりやや下流域の例えば図においてA点近傍の円柱寄り領域では、矢印25で示すように主流方向と逆向きの流れが生じ、結果としてこの領域ではより強い速度勾配が生じて強い渦が放出される。その結果、A点における速度分布は図9(b)に示すようになり、より大きな圧力抵抗を発生することになる。一方、本発明の実施形態のように円柱体の最大厚み部において平行板を設けることによって、図10に示すように、前進した逆流は平行板7Rと7Lによって矢印26に示すように整流され、その結果、下流域で速度勾配は円柱に比べて緩くなり、平行板の下流端Bでの速度分布は同図(b)に示すように、抵抗は明らかに小さくなると考えられる。
In such a blunt body of this embodiment, the reason why the resistance coefficient is improved may be as follows, which is schematically shown in FIGS.
When the cylinder 2 is placed in the fluid flow F, as shown in FIG. 9 on both sides of the surface of the cylinder (only one side is shown), A in the region slightly downstream from the maximum thickness of the cylinder, for example, A In the region near the cylinder in the vicinity of the point, a flow in the direction opposite to the main flow direction is generated as indicated by an arrow 25. As a result, a stronger velocity gradient is generated in this region and a strong vortex is released. As a result, the velocity distribution at the point A becomes as shown in FIG. 9B, and a larger pressure resistance is generated. On the other hand, by providing a parallel plate in the maximum thickness portion of the cylindrical body as in the embodiment of the present invention, the forward flow that has advanced is rectified as shown by the arrow 26 by the parallel plates 7R and 7L, as shown in FIG. As a result, in the downstream region, the velocity gradient becomes gentler than that of the cylinder, and the velocity distribution at the downstream end B of the parallel plate is considered to have a clearly reduced resistance as shown in FIG.

さらに、鈍頭物体を図6に示すように、流れに対して最大厚さを示す鈍頭本体の左右位置から流れに平行に延びる側縁部11L、11Rを持ち、且つ両側縁部11L、11Rの内側でかつ鈍頭本体の背面側が滑らかに湾曲した凹部12を有する断面形状にすると、流れの逆流領域が円柱状に比べてさらに広くなるために、逆流の振幅が小さくなり、両側縁部11L、11Rで整流された流れも小さくなる。したがって、両側縁部11L、11Rの下流領域では、速度勾配が左右に平行板7L、7Rを取り付けた形状よりさらに小さくなって、抵抗はさらに小さくなるものと解される。   Further, as shown in FIG. 6, the blunt body has side edges 11L, 11R extending parallel to the flow from the left and right positions of the blunt body showing the maximum thickness with respect to the flow, and both side edges 11L, 11R. If the cross-sectional shape has the concave portion 12 that is smoothly curved on the back side of the blunt body, the backflow region of the flow is further widened compared to the cylindrical shape, so that the amplitude of the backflow is reduced and both side edges 11L , The flow rectified by 11R is also reduced. Therefore, in the downstream region of the side edge portions 11L and 11R, it is understood that the velocity gradient is further smaller than the shape in which the parallel plates 7L and 7R are attached to the left and right, and the resistance is further reduced.

この発明による流体流れに置かれる鈍頭物体の参考例を示す斜視図である。It is a perspective view which shows the reference example of the blunt body placed on the fluid flow by this invention. 図1に示す鈍頭物体の断面図である。It is sectional drawing of the blunt body shown in FIG. 流体流れに置かれる鈍頭物体の流速に対する圧力抵抗係数をプロットしたグラフである。It is the graph which plotted the pressure resistance coefficient with respect to the flow velocity of the blunt body placed on the fluid flow. 参考例による鈍頭物体の後流において、一様流れの流速U∞に対する流体の流速Uの比と、一様流れの流速U∞に対する変動成分u′とを示すグラフである。In the wake of the blunt body by a reference example, it is a graph which shows the ratio of the flow velocity U of the fluid with respect to the flow velocity U∞ of a uniform flow, and the fluctuation component u 'with respect to the flow velocity U∞ of a uniform flow. この発明の実施形態に係る鈍頭物体の斜視図である。1 is a perspective view of a blunt object according to an embodiment of the present invention. この発明の他の実施形態に係る鈍頭物体の斜視図である。It is a perspective view of the blunt head object concerning other embodiments of this invention. 鈍頭物体の幾つかの変形例を示す断面図である。It is sectional drawing which shows some modifications of a blunt body. 図7に示す各種の鈍頭物体のストロール数STをレイノルズ数に対して求めたグラフである。It is the graph which calculated | required the Stroll number ST of various blunt bodies shown in FIG. 7 with respect to the Reynolds number. (a)は円柱体の流体流れ場における圧力抵抗発生原理を示す模式図であり、(b)はそのA点における速度分布を示す。(A) is a schematic diagram which shows the pressure resistance generation | occurrence | production principle in the fluid flow field of a cylindrical body, (b) shows the velocity distribution in the A point. (a)は本発明の円柱体の最大厚み部において平行板を設け鈍頭物体の流体流れ場における圧力抵抗の発生原理を示す模式図であり、(b)はその平行板先端B点における速度分布を示す。(A) is a schematic diagram showing the principle of generation of pressure resistance in a fluid flow field of a blunt body provided with a parallel plate in the maximum thickness portion of the cylindrical body of the present invention, and (b) is a velocity at the point B of the parallel plate tip. Show the distribution.

符号の説明Explanation of symbols

1,20,30 鈍頭物体
2 円柱状物体
3,10 板部材(直交板)
4 最後流端部
5 最大厚み部
6L,6R,9L,9R 斜め板
7L,7R 平行板
11L、11R 側縁部
12 凹部
1,20,30 Blunt object 2 Cylindrical object 3,10 Plate member (orthogonal plate)
4 Last flow end 5 Maximum thickness 6L, 6R, 9L, 9R Diagonal plate 7L, 7R Parallel plate 11L, 11R Side edge 12 Recess

Claims (3)

流体の流れ方向に対して上流側表面が鈍頭曲面となった鈍頭本体と、前記鈍頭本体の後流側表面に沿った前記流体の流れを阻害するために前記鈍頭本体の後流側に設けられた流れ阻害部とからなり、
前記鈍頭本体は、流体の流れ方向に対して軸線が交差した状態に配置された円柱表面を持つ円柱状物体であり、
前記流れ阻害部は、前記円柱状物体の後流側に前記流体の主流方向で見た前記円柱状物体の投影幅内の範囲で取り付けられた板部材であり、且つ該板部材は、前記円柱状物体の前記流体の主流に対して最大厚さを示す少なくとも一方の位置から前記主流方向と平行に延びる状態に取り付けられた平行板であることを特徴とする流体流れに置かれる鈍頭物体。
A blunt body whose upstream surface is a blunt curved surface with respect to the flow direction of the fluid, and a wake flow of the blunt body to inhibit the flow of the fluid along the posterior surface of the blunt body It consists of a flow blocking part provided on the side,
The blunt body is a cylindrical object having a cylindrical surface arranged in a state where the axis intersects the flow direction of the fluid,
The flow blocking portion is a plate member attached to the wake side of the cylindrical object in a range within the projection width of the cylindrical object viewed in the main flow direction of the fluid, and the plate member is the circle A blunt body placed in a fluid flow, wherein the columnar body is a parallel plate attached in a state extending in parallel with the main flow direction from at least one position showing a maximum thickness with respect to the main flow of the fluid.
前記平行板は、前記円柱状物体の最大厚み部において左右から主流方向と平行に延びる平行板である請求項1に記載の鈍頭物体。   2. The blunt body according to claim 1, wherein the parallel plate is a parallel plate extending in parallel with the main flow direction from the left and right in the maximum thickness portion of the cylindrical object. 流体の流れ方向に対して上流側表面が鈍頭曲面となった鈍頭本体と、前記鈍頭本体の後流側表面に沿った前記流体の流れを阻害するため前記鈍頭本体の後流側に設けられた流れ阻害部とからなり、該流れ阻害部は、前記鈍頭物体の前記流体の主流に対して最大厚さを示す位置から前記主流方向と平行に延びる状態に設けられた側縁部と前記側縁部の内側で且つ前記鈍頭物体の背面側に形成された凹部とから構成されていることからなることを特徴とする流体流れに置かれる鈍頭物体。   A blunt body whose upstream surface is a blunt curved surface with respect to the flow direction of the fluid, and a downstream side of the blunt body to inhibit the flow of the fluid along the downstream side surface of the blunt body The flow inhibition portion is provided on the side edge provided in a state extending in parallel with the main flow direction from a position showing the maximum thickness with respect to the main flow of the fluid of the blunt body. A blunt body placed in a fluid flow, characterized in that the blunt body is composed of a recess and a recess formed on the back side of the blunt body and inside the side edge.
JP2004250427A 2004-08-30 2004-08-30 Obtuse head object put in fluid stream Pending JP2005003206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250427A JP2005003206A (en) 2004-08-30 2004-08-30 Obtuse head object put in fluid stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250427A JP2005003206A (en) 2004-08-30 2004-08-30 Obtuse head object put in fluid stream

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001230517A Division JP3632075B2 (en) 2001-07-30 2001-07-30 Blunt object placed in fluid flow

Publications (1)

Publication Number Publication Date
JP2005003206A true JP2005003206A (en) 2005-01-06

Family

ID=34101470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250427A Pending JP2005003206A (en) 2004-08-30 2004-08-30 Obtuse head object put in fluid stream

Country Status (1)

Country Link
JP (1) JP2005003206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002932A (en) * 2005-06-24 2007-01-11 Mitsubishi Heavy Ind Ltd Swirl excitation suppressing structure
WO2010129222A2 (en) * 2009-04-28 2010-11-11 Shell Oil Company Systems and methods for reducing drag and/or vortex induced vibration
JP2011235720A (en) * 2010-05-10 2011-11-24 ▲彦▼豪金属工業股▲ふん▼有限公司 Rear mount brake device for reducing air resistance
JP2013155778A (en) * 2012-01-27 2013-08-15 Railway Technical Research Institute Karman vortex reducing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107631A (en) * 1982-12-10 1984-06-21 Matsushita Electric Ind Co Ltd Driving circuit of switching transistor
JPS6138240A (en) * 1984-07-31 1986-02-24 Sumitomo Metal Ind Ltd Preventing method of vortex excitation of columnar body
JPS63109653A (en) * 1986-10-27 1988-05-14 Sharp Corp Information registering and retrieving device
JPH0363323U (en) * 1989-10-23 1991-06-20
JPH068870A (en) * 1990-12-10 1994-01-18 Look Sa Front fork for bicycle use
JP2000280825A (en) * 1999-03-31 2000-10-10 Toyota Central Res & Dev Lab Inc Outdoor mirror device for car

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107631A (en) * 1982-12-10 1984-06-21 Matsushita Electric Ind Co Ltd Driving circuit of switching transistor
JPS6138240A (en) * 1984-07-31 1986-02-24 Sumitomo Metal Ind Ltd Preventing method of vortex excitation of columnar body
JPS63109653A (en) * 1986-10-27 1988-05-14 Sharp Corp Information registering and retrieving device
JPH0363323U (en) * 1989-10-23 1991-06-20
JPH068870A (en) * 1990-12-10 1994-01-18 Look Sa Front fork for bicycle use
JP2000280825A (en) * 1999-03-31 2000-10-10 Toyota Central Res & Dev Lab Inc Outdoor mirror device for car

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002932A (en) * 2005-06-24 2007-01-11 Mitsubishi Heavy Ind Ltd Swirl excitation suppressing structure
WO2010129222A2 (en) * 2009-04-28 2010-11-11 Shell Oil Company Systems and methods for reducing drag and/or vortex induced vibration
WO2010129222A3 (en) * 2009-04-28 2011-04-07 Shell Oil Company Systems and methods for reducing drag and/or vortex induced vibration
JP2011235720A (en) * 2010-05-10 2011-11-24 ▲彦▼豪金属工業股▲ふん▼有限公司 Rear mount brake device for reducing air resistance
JP2013155778A (en) * 2012-01-27 2013-08-15 Railway Technical Research Institute Karman vortex reducing device

Similar Documents

Publication Publication Date Title
Sumner et al. Flow-pattern identification for two staggered circular cylinders in cross-flow
Ozono Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a cylinder
US20090114001A1 (en) Enhancement of vortex induced forces and motion through surface roughness control
JP5476639B2 (en) Flow resistance reduction structure
US9109466B2 (en) Diffuser with backward facing step having varying step height
Amini et al. Mitigating tip vortex cavitation by a flexible trailing thread
JP2013155725A (en) Steam turbine and stationary blade of steam turbine
CN101092974B (en) Spiral case of centrifugal type fluids machinery
JP2005003206A (en) Obtuse head object put in fluid stream
Jiang et al. Wake behind a concave curved cylinder
JP3632075B2 (en) Blunt object placed in fluid flow
JP2013130075A (en) Flow straightener and water stream cone body with built-in underwater power generator
TWI550161B (en) Eddy current elimination structure
JP4886095B1 (en) Water cone body with built-in rectifier
EP2083168B1 (en) Draft tube of hydraulic machinery
EP3276312B1 (en) Liquid meter having flow-stabilizing fins
JP5624312B2 (en) Flow sensor
CN217603063U (en) Pipeline for weakening pressure resistance of vortex street
JP2009215717A (en) Ocean current regulating pipe installed on the seabed
CN106051359B (en) Riser bottom elbow
CN212903369U (en) Anti-blocking vortex street flow meter
Nakamura Vortex shedding suppression for a circular cylinder by attaching cylindrical rings (a consideration of the mechanism)
JP2004239661A (en) Flow indicator
CN206986713U (en) Appendice cylindrical formula vortex shedding restraining device in front of a kind of side
RU41499U1 (en) SWEEPER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A977 Report on retrieval

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111005