JP5842935B2 - Vehicle control apparatus and vehicle control method - Google Patents
Vehicle control apparatus and vehicle control method Download PDFInfo
- Publication number
- JP5842935B2 JP5842935B2 JP2013555269A JP2013555269A JP5842935B2 JP 5842935 B2 JP5842935 B2 JP 5842935B2 JP 2013555269 A JP2013555269 A JP 2013555269A JP 2013555269 A JP2013555269 A JP 2013555269A JP 5842935 B2 JP5842935 B2 JP 5842935B2
- Authority
- JP
- Japan
- Prior art keywords
- control
- frequency
- control amount
- vehicle
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 37
- 230000008859 change Effects 0.000 claims description 50
- 230000001133 acceleration Effects 0.000 claims description 40
- 239000006096 absorbing agent Substances 0.000 claims description 11
- 230000005484 gravity Effects 0.000 claims description 11
- 230000035939 shock Effects 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000035807 sensation Effects 0.000 claims 1
- 238000013016 damping Methods 0.000 description 176
- 238000010586 diagram Methods 0.000 description 31
- 230000008569 process Effects 0.000 description 30
- 230000001629 suppression Effects 0.000 description 27
- 230000033001 locomotion Effects 0.000 description 23
- 238000012545 processing Methods 0.000 description 23
- 244000309464 bull Species 0.000 description 19
- 238000009826 distribution Methods 0.000 description 11
- 241000282373 Panthera pardus Species 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 10
- 238000003805 vibration mixing Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 7
- 230000036461 convulsion Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
- B60G17/0165—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0195—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/06—Characteristics of dampers, e.g. mechanical dampers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/80—Exterior conditions
- B60G2400/82—Ground surface
- B60G2400/821—Uneven, rough road sensing affecting vehicle body vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/90—Other conditions or factors
- B60G2400/91—Frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2500/00—Indexing codes relating to the regulated action or device
- B60G2500/10—Damping action or damper
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Vehicle Body Suspensions (AREA)
Description
本発明は、車両の状態を制御する車両の制御装置および車両の制御方法に関する。 The present invention relates to a vehicle control device and a vehicle control method for controlling the state of a vehicle.
車両の制御装置に関する技術として、特許文献1に記載の技術が開示されている。この公報には、減衰力を変更可能なサスペンション制御装置を用いて車体姿勢を制御する技術が開示されている。
As a technique related to a vehicle control device, a technique described in
しかしながら、路面側から高周波振動が入力された場合に、スカイフック制御のようにストローク速度とばね上速度の符号の関係(位相等)が重要となるベクトル制御では僅かな位相ずれによって適正な制御が困難となる場合があり、乗員に違和感を与えるおそれがあった。 However, when high-frequency vibration is input from the road surface side, the vector control in which the relationship (phase, etc.) of the sign of the stroke speed and the sprung speed is important, such as skyhook control, can be controlled appropriately with a slight phase shift. This may be difficult and may cause a sense of discomfort to the passengers.
本発明は、上記問題に着目してなされたもので、乗員への違和感を低減しつつ、車体姿勢を制御可能な車両の制御装置および車両の制御方法を提供することを目的とする。 The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a vehicle control device and a vehicle control method capable of controlling the vehicle body posture while reducing a sense of discomfort to the occupant.
上記目的を達成するため、本発明の車両の制御装置では、ショックアブソーバのストローク速度を検出するストローク速度検出手段と、前記ストローク速度検出手段により検出されたストローク速度の任意の周波数帯の振幅の大きさを周波数スカラー量として求める周波数スカラー量演算手段と、乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域である0.5〜3Hzに相当する周波数スカラー量と他の周波数帯の周波数スカラー量との比率を求める比率演算手段と、前記比率演算手段により求められた前記比率に応じて車体の姿勢を目標姿勢とするアクチュエータの制御量を演算する制御量演算手段と、前記比率演算手段により求められた前記比率の変化速度が高いほど、前記制御量演算手段において演算した前記制御量の変化速度を抑制するように補正し、補正した前記制御量を前記ショックアブソーバに対して出力する姿勢制御手段と、を備えた。
In order to achieve the above object, in the vehicle control apparatus of the present invention, the stroke speed detection means for detecting the stroke speed of the shock absorber, and the amplitude of an arbitrary frequency band of the stroke speed detected by the stroke speed detection means. Frequency scalar quantity calculation means to calculate the height as a frequency scalar quantity, and the frequency scalar quantity corresponding to 0.5 to 3 Hz , which is the frequency range that brings about the feeling that the gravitational acceleration acting on the occupant is reduced, and the frequency scalar quantity in other frequency bands a ratio calculation means for calculating a ratio between a control quantity calculating means for calculating a control amount of the target posture and to luer actuator the attitude of the vehicle body in response to the ratio determined by the ratio calculation means, said ratio calculating means The higher the rate of change of the ratio obtained by the above, the more the change in the control amount calculated in the control amount calculation means. Correction so as to suppress the rate, and the corrected said control amount and a posture control means for outputting to the shock absorber.
すなわち、路面の状況を表すストローク速度の周波数スカラー量の比率に応じてアクチュエータ制御量を設定することで、高周波振動が入力された場合であっても、スカイフック制御のようなベクトル制御に伴う位相ずれを起こす懸念が無く、滑らかな乗り心地が得られるため、乗員への違和感を低減することができる。 In other words, by setting the actuator control amount in accordance with the ratio of the frequency scalar amount of the stroke speed representing the road surface condition, even when high-frequency vibration is input, the phase associated with vector control such as skyhook control Since there is no fear of causing a shift and a smooth ride is obtained, it is possible to reduce a sense of discomfort to the occupant.
1 エンジン
1a エンジンコントローラ(エンジン制御部)
2 ブレーキコントロールユニット
2a ブレーキコントローラ(ブレーキ制御部)
3 S/A(減衰力可変ショックアブソーバ)
3a S/Aコントローラ
5 車輪速センサ
6 一体型センサ
7 舵角センサ
8 車速センサ
20 ブレーキ
31 ドライバ入力制御部
32 走行状態推定部
33 ばね上制振制御部
33a スカイフック制御部
33b 周波数感応制御部
34 ばね下制振制御部
35 減衰力制御部
331 第1目標姿勢制御量演算部
332 エンジン姿勢制御量演算部
333 第2目標姿勢制御量演算部
334 ブレーキ姿勢制御量演算部
335 第3目標姿勢制御量演算部
336 ショックアブソーバ姿勢制御量演算部1
2
3 S / A (Damping force variable shock absorber)
3a S /
[実施例1]
図1は実施例1の車両の制御装置を表すシステム概略図である。車両には、動力源であるエンジン1と、各輪に摩擦力による制動トルクを発生させるブレーキ20(以下、個別の輪に対応するブレーキを表示するときには右前輪ブレーキ:20FR、左前輪ブレーキ:20FL、右後輪ブレーキ:20RR、左後輪ブレーキ:20RLと記載する。)と、各輪と車体との間に設けられ減衰力を可変に制御可能なショックアブソーバ3(以下、S/Aと記載する。個別の輪に対応するS/Aを表示するときには右前輪S/A:3FR、左前輪S/A:3FL、右後輪S/A:3RR、左後輪S/A:3RLと記載する。)と、を有する。[Example 1]
FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to the first embodiment. The vehicle includes an
エンジン1は、エンジン1から出力されるトルクを制御するエンジンコントローラ(以下、エンジン制御部とも言う。動力源制御手段に相当。)1aを有し、エンジンコントローラ1aは、エンジン1のスロットルバルブ開度や、燃料噴射量、点火タイミング等を制御することで、所望のエンジン運転状態(エンジン回転数やエンジン出力トルク)を制御する。
The
また、ブレーキ20は、各輪のブレーキ液圧を走行状態に応じて制御可能なブレーキコントロールユニット2から供給される液圧に基づいて制動トルクを発生する。ブレーキコントロールユニット2は、ブレーキ20の発生する制動トルクを制御するブレーキコントローラ(以下、ブレーキ制御部とも言う。ブレーキ制御手段に相当。)2aを有し、運転者のブレーキペダル操作によって発生するマスタシリンダ圧、もしくは内蔵されたモータ駆動ポンプにより発生するポンプ圧を液圧源とし、複数の電磁弁の開閉動作によって各輪のブレーキ20に所望の液圧を発生させる。
Further, the
S/A3は、車両のばね下(アクスルや車輪等)とばね上(車体等)との間に設けられたコイルスプリングの弾性運動を減衰する減衰力発生装置であり、アクチュエータの作動により減衰力を可変に構成されている。S/A3は、流体が封入されたシリンダと、このシリンダ内をストロークするピストンと、このピストンの上下に形成された流体室の間の流体移動を制御するオリフィスとを有する。更に、このピストンには複数種のオリフィス径を有するオリフィスが形成され、S/Aアクチュエータの作動時には、複数種のオリフィスから制御指令に応じたオリフィスが選択される。これにより、オリフィス径に応じた減衰力を発生することができる。例えば、オリフィス径が小さければピストンの移動は制限されやすいため、減衰力が高くなり、オリフィス径が大きければピストンの移動は制限されにくいため、減衰力は小さくなる。
S / A3 is a damping force generator that attenuates the elastic motion of a coil spring provided between a vehicle unsprung (axle, wheel, etc.) and a sprung (vehicle body, etc.). It is configured to be variable. The S /
尚、オリフィス径の選択以外にも、例えばピストンの上下に形成された流体を接続する連通路上に電磁制御弁を配置し、この電磁制御弁の開閉量を制御することで減衰力を設定してもよく、特に限定しない。S/A3は、S/A3の減衰力を制御するS/Aコントローラ3aを有し、S/Aアクチュエータによりオリフィス径を動作させて減衰力を制御する。
In addition to the selection of the orifice diameter, for example, an electromagnetic control valve is arranged on the communication path connecting fluids formed above and below the piston, and the damping force is set by controlling the opening / closing amount of the electromagnetic control valve. There is no particular limitation. The S /
また、各輪の車輪速を検出する車輪速センサ5(以下、個別の輪に対応する車輪速を表示するときには右前輪車輪速:5FR、左前輪車輪速:5FL、右後輪車輪速:5RR、左後輪車輪速:5RLと記載する。)と、車両の重心点に作用する前後加速度、ヨーレイト及び横加速度を検出する一体型センサ6と、運転者のステアリング操作量である操舵角を検出する舵角センサ7と、車速を検出する車速センサ8と、エンジントルクを検出するエンジントルクセンサ9と、エンジン回転数を検出するエンジン回転数センサ10と、マスタシリンダ圧を検出するマスタ圧センサ11と、ブレーキペダル操作が行なわれるとオン状態信号を出力するブレーキスイッチ12と、アクセルペダル開度を検出するアクセル開度センサ13と、を有する。これら各種センサの信号は、S/Aコントローラ3aに入力される。尚、一体型センサ6の配置は車両の重心位置でもよいし、それ以外の場所であっても、重心位置における各種値が推定可能な構成であればよく、特に限定しない。また、一体型である必要は無く、個別にヨーレイト、前後加速度及び横加速度を検出する構成としてもよい。
Further, a
図2は実施例1の車両の制御装置の制御構成を表す制御ブロック図である。実施例1では、コントローラとして、エンジンコントローラ1aと、ブレーキコントローラ2aと、S/Aコントローラ3aとの3つで構成されている。
S/Aコントローラ3a内には、運転者の操作(ステアリング操作、アクセル操作及びブレーキペダル操作等)に基づいて所望の車両姿勢を達成するドライバ入力制御を行うドライバ入力制御部31と、各種センサの検出値に基づいて走行状態を推定する走行状態推定部32と、推定された走行状態に基づいてばね上の振動状態を制御するばね上制振制御部33と、推定された走行状態に基づいてばね下の振動状態を制御するばね下制振制御部34と、ドライバ入力制御部31から出力されたショックアブソーバ姿勢制御量と、ばね上制振制御部33から出力されたばね上制振制御量と、ばね下制振制御部34から出力されたばね下制振制御量とに基づいて、S/A3に設定すべき減衰力を決定し、S/Aの減衰力制御を行う減衰力制御部35(減衰力制御手段に相当。)とを有する。FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control apparatus according to the first embodiment. In the first embodiment, the controller is composed of an
Within the S /
実施例1では、コントローラとして、3つのコントローラを備えた構成を示したが、例えば、減衰力制御部35をS/Aコントローラ3aから除外して姿勢制御コントローラとし、減衰力制御部35をS/Aコントローラとして4つのコントローラを備えた構成としてもよいし、各コントローラを全て一つの統合コントローラから構成してもよく特に限定しない。尚、実施例1においてこのように構成したのは、既存の車両におけるエンジンコントローラとブレーキコントローラをそのまま流用してエンジン制御部1a及びブレーキ制御部2aとし、別途S/Aコントローラ3aを搭載することで実施例1の車両の制御装置を実現することを想定したものである。
In the first embodiment, a configuration including three controllers as the controller is shown. However, for example, the damping
(車両の制御装置の全体構成)
実施例1の車両の制御装置にあっては、ばね上に生じる振動状態を制御するために、3つのアクチュエータを使用する。このとき、それぞれの制御がばね上状態を制御するため、相互干渉が問題となる。また、エンジン1によって制御可能な要素と、ブレーキ20によって制御可能な要素と、S/A3によって制御可能な要素はそれぞれ異なり、これらをどのように組み合わせて制御するべきかが問題となる。(Overall configuration of vehicle control device)
In the vehicle control apparatus of the first embodiment, three actuators are used to control the vibration state generated on the spring. At this time, since each control controls the sprung state, mutual interference becomes a problem. In addition, the elements that can be controlled by the
例えば、ブレーキ20はバウンス運動とピッチ運動の制御が可能であるが、両方を行なうと減速感が強く運転者に違和感を与えやすい。また、S/A3はロール運動とバウンス運動とピッチ運動の全てを制御可能であるが、S/A3によって全ての制御を行う場合、S/A3の製造コストの上昇を招き、また、減衰力が高くなる傾向があることから路面側からの高周波振動が入力されやすく、やはり運転者に違和感を与えやすい。言い換えると、ブレーキ20による制御は高周波振動の悪化を招くことは無いが減速感の増大を招き、S/A3による制御は減速感を招くことは無いが高周波振動の入力を招くというトレードオフが存在する。
For example, the
そこで、実施例1の車両の制御装置にあっては、これらの課題を総合的に判断し、それぞれの制御特性として有利な点を活かしつつ、相互の弱点を補完しあう制御構成を実現することで、安価でありながらも制振能力に優れた車両の制御装置を実現するために、主に、以下に列挙する点を考慮して全体の制御システムを構築した。
(1)エンジン1及びブレーキ20による制御を優先的に行うことで、S/A3による制御量を抑制する。
(2)ブレーキ20の制御対象運動をピッチ運動に限定することで、ブレーキ20による制御での減速感を解消する。
(3)エンジン1及びブレーキ20による制御量を実際に出力可能な制御量よりも制限して出力することで、S/A3での負担を低減しつつ、エンジン1やブレーキ20の制御に伴って生じる違和感を抑制する。
(4)全てのアクチュエータによりスカイフック制御を行う。このとき、一般にスカイフック制御に必要とされるストロークセンサやばね上上下加速度センサ等を使用することなく、全ての車両に搭載されている車輪速センサを利用して安価な構成でスカイフック制御を実現する。
(5)S/A3によるばね上制御を行なう際、スカイフック制御のようなベクトル制御では対応が困難な高周波振動の入力に対し、新たにスカラー制御(周波数感応制御)を導入する。
(6)走行状態に応じて、S/A3が実現する制御状態を適宜選択することで、走行状況に応じた適切な制御状態を提供する。
以上が、実施例において構成した全体の制御システムの概要である。以下、これらを実現する個別の内容について、順次説明する。Therefore, in the vehicle control apparatus of the first embodiment, it is possible to comprehensively judge these problems and realize a control configuration that complements each other's weak points while taking advantage of the advantages as the respective control characteristics. Therefore, in order to realize a vehicle control apparatus that is inexpensive but has excellent vibration control capability, an overall control system was constructed mainly considering the points listed below.
(1) The control amount by the S /
(2) By limiting the control target motion of the
(3) The control amount by the
(4) Skyhook control is performed by all actuators. At this time, without using a stroke sensor or a sprung vertical acceleration sensor generally required for skyhook control, the skyhook control can be performed with an inexpensive configuration using wheel speed sensors mounted on all vehicles. Realize.
(5) When performing sprung control by S / A3, scalar control (frequency sensitive control) is newly introduced for the input of high frequency vibration that is difficult to cope with by vector control such as skyhook control.
(6) By appropriately selecting the control state realized by the S /
The above is the outline of the entire control system configured in the embodiment. Hereinafter, individual contents for realizing these will be sequentially described.
(ドライバ入力制御部について)
まず、ドライバ入力制御部について説明する。ドライバ入力制御部31は、エンジン1のトルク制御によって運転者の要求する車両姿勢を達成するエンジン側ドライバ入力制御部31aと、S/A3の減衰力制御によって運転者の要求する車両姿勢を達成するS/A側ドライバ入力制御部31bと、を有する。エンジン側ドライバ入力制御部31a内では、前輪と後輪の接地荷重変動を抑制する接地荷重変動抑制制御量、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するヨー応答制御量を演算し、エンジン制御部1aに対して出力する。(About the driver input controller)
First, the driver input control unit will be described. The driver
S/A側ドライバ入力制御部31bでは、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するドライバ入力減衰力制御量を演算し、減衰力制御部35に対して出力する。例えば、運転者が旋回中において、車両のノーズ側が浮き上がると、運転者の視界が路面から外れやすくなることから、この場合にはノーズ浮き上がりを防止するように4輪の減衰力をドライバ入力減衰力制御量として出力する。また、旋回時に発生するロールを抑制するドライバ入力減衰力制御量を出力する。
The S / A-side driver
〔S/A側ドライバ入力制御によるロール制御について〕
ここで、S/A側ドライバ入力制御によって行われるロール抑制制御について説明する。図3は実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。横加速度推定部31b1では、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車速センサ8により検出された車速VSPに基づいて横加速度Ygを推定する。この横加速度Ygは、ヨーレイト推定値γを用いて以下の式により算出される。
Yg=VSP・γ
なおヨーレイト推定値γは以下の式により算出される。
[Roll control by S / A side driver input control]
Here, the roll suppression control performed by the S / A side driver input control will be described. FIG. 3 is a control block diagram illustrating a configuration of roll rate suppression control according to the first embodiment. In the lateral acceleration estimation unit 31b1, the front wheel rudder angle δf detected by the rudder angle sensor 7 and the rear wheel rudder angle δr (the actual rear wheel rudder angle if a rear wheel steering device is provided, and 0 in other cases as appropriate) The lateral acceleration Yg is estimated based on the vehicle speed VSP detected by the vehicle speed sensor 8. This lateral acceleration Yg is calculated by the following equation using the yaw rate estimated value γ.
Yg = VSP ・ γ
The yaw rate estimated value γ is calculated by the following equation.
90°位相進み成分作成部31b2では、推定された横加速度Ygを微分して横加速度微分値dYgを出力する。90°位相遅れ成分作成部31b3では、横加速度微分値dYgの位相を90°遅らせた成分F(dYg)を出力する。成分F(dYg)は、90°位相進み成分作成部31b2において低周波領域が除去された成分の位相を横加速度Ygの位相に戻したものであって、横加速度YgのDCカット成分、つまり横加速度Ygの過渡成分である。90°位相遅れ成分作成部31b4では、推定された横加速度Ygの位相を90°遅らせた成分F(Yg)を出力する。
ゲイン乗算部31b5では、横加速度Yg、横加速度微分値dYg、横加速度DCカット成分F(dYg)、90°位相遅れ成分F(Yg)にそれぞれゲインを乗算する。各ゲインは、操舵角に対するロールレイト伝達関数に基づいて設定する。また各ゲインは、後述する4つの制御モードに応じて調整しても良い。二乗演算部31b6では、ゲインを乗算した各成分の二乗して出力する。合成部31b7では、二乗演算部31b6が出力した値を足し合わせる。ゲイン乗算部31b8では、足し合わせた各成分の二乗の値にゲインを乗算して出力する。平方根演算部31b9は、ゲイン乗算部31b7が出力した値の平方根を演算することで、ロールレイト抑制制御用のドライバ入力姿勢制御量を演算し、減衰力制御部35に対して出力する。
90°位相進み成分作成部31b2、90°位相遅れ成分作成部31b3、90°位相遅れ成分作成部31b4、ゲイン乗算部31b5、二乗演算部31b6、合成部31b7、ゲイン乗算部31b8、平方根演算部31b9は、ヒルベルト変換を利用した包絡波形を生成するヒルベルト変換部31b10に相当する。The 90 ° phase advance component creation unit 31b2 differentiates the estimated lateral acceleration Yg and outputs a lateral acceleration differential value dYg. The 90 ° phase delay component creation unit 31b3 outputs a component F (dYg) obtained by delaying the phase of the lateral acceleration differential value dYg by 90 °. The component F (dYg) is obtained by returning the phase of the component from which the low-frequency region has been removed by the 90 ° phase advance component creation unit 31b2 to the phase of the lateral acceleration Yg. It is a transient component of acceleration Yg. The 90 ° phase delay component creation unit 31b4 outputs a component F (Yg) obtained by delaying the phase of the estimated lateral acceleration Yg by 90 °.
The gain multiplication unit 31b5 multiplies the lateral acceleration Yg, the lateral acceleration differential value dYg, the lateral acceleration DC cut component F (dYg), and the 90 ° phase delay component F (Yg) by a gain. Each gain is set based on a roll rate transfer function with respect to the steering angle. Each gain may be adjusted according to four control modes described later. The square calculator 31b6 squares and outputs each component multiplied by the gain. The combining unit 31b7 adds the values output from the square calculation unit 31b6. The gain multiplication unit 31b8 multiplies the square value of each added component by the gain and outputs the result. The square root calculation unit 31b9 calculates a driver input attitude control amount for roll rate suppression control by calculating the square root of the value output from the gain multiplication unit 31b7, and outputs the calculated value to the damping
90 ° phase advance component creation unit 31b2, 90 ° phase lag component creation unit 31b3, 90 ° phase lag component creation unit 31b4, gain multiplication unit 31b5, square operation unit 31b6, synthesis unit 31b7, gain multiplication unit 31b8, square root operation unit 31b9 Corresponds to the Hilbert transform unit 31b10 that generates an envelope waveform using the Hilbert transform.
図4は実施例1のロールレイト抑制制御の包絡波形形成処理を表すタイムチャートである。
時刻t1において、運転者が操舵を開始すると、ロールレイトが徐々に発生し始める。このとき、90°位相進み成分dYgを加算して包絡波形を形成し、包絡波形に基づくスカラー量に基づいてドライバ入力姿勢制御量を演算することで、操舵初期におけるロールレイトの発生を抑制することができる。さらに、横加速度DCカット成分F(dYg)を加算して包絡波形を形成することで、運転者が操舵を開始もしくは終了する際の過渡的な状態において発生するロールレイトを効率的に抑制することができる。言い換えると、ロールの発生が安定している定常旋回状態では、過度に減衰力を高めることがなく、乗り心地の悪化を回避できる。
次に、時刻t2において、運転者が保舵状態となると、90°位相進み成分dYgおよび横加速度DCカット成分F(dYg)は無くなり、今度は90°位相遅れ成分F(Yg)が加算される。このとき、定常旋回状態でロールレイト自体の変化はさほどない場合であっても、一旦ロールした後に、ロールの揺り返しに相当するロールレイト共振成分が発生する。仮に、位相遅れ成分F(Yg)が加算されていないと、時刻t2から時刻t3における減衰力は小さな値に設定されてしまい、ロールレイト共振成分による車両挙動の不安定化を招くおそれがある。このロールレイト共振成分を抑制するために90°位相遅れ成分F(Yg)を付与するものである。FIG. 4 is a time chart showing an envelope waveform forming process of roll rate suppression control according to the first embodiment.
When the driver starts steering at time t1, roll rate begins to gradually occur. At this time, the 90 ° phase advance component dYg is added to form an envelope waveform, and the driver input attitude control amount is calculated based on the scalar amount based on the envelope waveform, thereby suppressing the occurrence of roll rate in the initial stage of steering. Can do. Furthermore, by adding the lateral acceleration DC cut component F (dYg) to form an envelope waveform, it effectively suppresses the roll rate that occurs in a transitional state when the driver starts or ends steering. Can do. In other words, in a steady turning state in which the generation of rolls is stable, the damping force is not excessively increased, and deterioration in riding comfort can be avoided.
Next, when the driver is in the steered state at time t2, the 90 ° phase advance component dYg and the lateral acceleration DC cut component F (dYg) disappear, and this time, the 90 ° phase delay component F (Yg) is added. . At this time, even if the roll rate itself does not change much in the steady turning state, a roll rate resonance component corresponding to the roll back is generated after the roll once. If the phase delay component F (Yg) is not added, the damping force from the time t2 to the time t3 is set to a small value, which may cause the vehicle behavior to become unstable due to the roll rate resonance component. In order to suppress this roll rate resonance component, a 90 ° phase delay component F (Yg) is added.
時刻t3において、運転者が保舵状態から直進走行状態に移行すると、横加速度Ygは小さくなり、ロールレイトも小さな値に収束する。ここでも90°位相遅れ成分F(Yg)の作用によってしっかりと減衰力を確保しているため、ロールレイト共振成分による不安定化を回避することができる。 When the driver shifts from the steered state to the straight traveling state at time t3, the lateral acceleration Yg decreases and the roll rate converges to a small value. Again, since the damping force is firmly secured by the action of the 90 ° phase delay component F (Yg), instability due to the roll rate resonance component can be avoided.
(走行状態推定部について)
次に、走行状態推定部について説明する。図5は実施例1の走行状態推定部の構成を表す制御ブロック図である。実施例1の走行状態推定部32では、基本的に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部33のスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを算出する。まず、各輪の車輪速センサ5の値がストローク速度演算部321に入力され、ストローク速度演算部321において演算された各輪のストローク速度からばね上速度を演算する。(About the running state estimation unit)
Next, the traveling state estimation unit will be described. FIG. 5 is a control block diagram illustrating the configuration of the traveling state estimation unit according to the first embodiment. In the traveling
図6は実施例1のストローク速度演算部における制御内容を表す制御ブロック図である。ストローク速度演算部321は、各輪に個別に設けられており、図6に示す制御ブロック図は、ある輪に着目した制御ブロック図である。
ストローク速度演算部321内には、車輪速センサ5の値と、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車体横速度と、一体型センサ6により検出された実ヨーレイトとに基づいて基準となる車輪速を演算する基準車輪速演算部300と、演算された基準車輪速に基づいてタイヤ回転振動周波数を演算するタイヤ回転振動周波数演算部321aと、基準車輪速と車輪速センサ値との偏差(車輪速変動)を演算する偏差演算部321bと、偏差演算部321bにより演算された偏差をサスペンションストローク量に変換するGEO変換部321cと、変換されたストローク量をストローク速度に校正するストローク速度校正部321dと、ストローク速度校正部321dにより校正された値にタイヤ回転振動周波数演算部321aにより演算された周波数に応じたバンドエリミネーションフィルタを作用させてタイヤ回転一次振動成分を除去し、最終的なストローク速度を算出する信号処理部321eとを有する。FIG. 6 is a control block diagram illustrating control contents in the stroke speed calculation unit according to the first embodiment. The stroke
In the stroke
〔基準車輪速演算部について〕
ここで、基準車輪速演算部300について説明する。図7は実施例1の基準車輪速演算部の構成を表すブロック図である。基準車輪速とは、各車輪速のうち、種々の外乱が除去された値を指すものである。言い換えると、車輪速センサ値と基準車輪速との差分は、車体のバウンス挙動、ロール挙動、ピッチ挙動又はばね下上下振動によって発生したストロークに応じて変動した成分と関連がある値であり、実施例では、この差分に基づいてストローク速度を推定する。[Regarding the reference wheel speed calculation unit]
Here, the reference wheel
平面運動成分抽出部301では、車輪速センサ値を入力として車体プランビューモデルに基づいて各輪の基準車輪速となる第1車輪速V0を演算する。ここで、車輪速センサ5により検出された車輪速センサ値をω(rad/s)、舵角センサ7により検出された前輪実舵角をδf(rad)、後輪実舵角をδr(rad)、車体横速度をVx、一体型センサ6により検出されたヨーレイトをγ(rad/s)、算出される基準車輪速ω0から推定される車体速をV(m/s)、算出すべき基準車輪速をVFL、VFR、VRL、VRL、前輪のトレッドをTf、後輪のトレッドをTr、車両重心位置から前輪までの距離をLf、車両重心位置から後輪までの距離をLrとする。以上を用いて、車体プランビューモデルは以下のように表される。
In the plane motion
(式1)
VFL=(V−Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V−Tr/2・γ)cosδr+(Vx−Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx−Lr・γ)sinδr
尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RL(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL−Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR−Lf・γsinδf}/cosδf−Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VFL+Lf・γsinδf}/cosδr−Tr/2・γ(Formula 1)
VFL = (V−Tf / 2 ・ γ) cosδf + (Vx + Lf ・ γ) sinδf
VFR = (V + Tf / 2 ・ γ) cosδf + (Vx + Lf ・ γ) sinδf
VRL = (V−Tr / 2 ・ γ) cosδr + (Vx−Lr ・ γ) sinδr
VRR = (V + Tr / 2 ・ γ) cosδr + (Vx−Lr ・ γ) sinδr
If it is assumed that the vehicle is traveling normally without skidding, 0 may be input as the vehicle body lateral velocity Vx. When this is rewritten to a value based on V in each equation, it is expressed as follows. In this rewriting, V is described as V0FL, V0FR, V0RL, V0RL (corresponding to the first wheel speed) as a value corresponding to each wheel.
(Formula 2)
V0FL = {VFL−Lf · γsinδf} / cosδf + Tf / 2 · γ
V0FR = {VFR−Lf · γsinδf} / cosδf−Tf / 2 · γ
V0RL = {VRL + Lr · γsinδr} / cosδr + Tr / 2 · γ
V0RR = {VFL + Lf · γsinδf} / cosδr-Tr / 2 · γ
ロール外乱除去部302では、第1車輪速V0を入力として車体フロントビューモデルに基づいて前後輪の基準車輪速となる第2車輪速V0F、V0Rを演算する。車体フロントビューモデルとは、車両を前方から見たときに、車両重心点周りに発生するロール運動によって生じる車輪速差を除去するものであり、以下の式で表される。
V0F=(V0FL+V0FR)/2
V0R=(V0RL+V0RR)/2
これにより、ロールに基づく外乱を除去した第2車輪速V0F、V0Rが得られる。The roll
V0F = (V0FL + V0FR) / 2
V0R = (V0RL + V0RR) / 2
As a result, the second wheel speeds V0F and V0R from which disturbance based on the roll is removed are obtained.
ピッチ外乱除去部303では、第2車輪速V0F、V0Rを入力として車体サイドビューモデルに基づいて全輪の基準車輪速となる第3車輪速VbFL、VbFR、VbRL、VbRRを演算する。ここで、車体サイドビューモデルとは、車両を横方向から見たときに、車両重心点周りに発生するピッチ運動によって生じる誤差を除去するものであり、以下の式で表される。
(式3)
VbFL=VbRL=VbRL=VbRR={Lr/(Lf+Lr)}V0F+{Lf/(Lf+Lr)}V0R
基準車輪速再配分部304では、(式1)に示す車体プランビューモデルのVにVbFL(=VbRL=VbRL=VbRR)をそれぞれ代入し、最終的な各輪の基準車輪速VFL、VFR、VRL、VRLを算出し、それぞれタイヤ半径r0で除算して基準車輪速ω0を算出する。The pitch
(Formula 3)
VbFL = VbRL = VbRL = VbRR = {Lr / (Lf + Lr)} V0F + {Lf / (Lf + Lr)} V0R
In the reference wheel
上述の処理により、各輪における基準車輪速ω0が算出されると、この基準車輪速ω0と車輪速センサ値との偏差が演算され、この偏差がサスペンションストロークに伴う車輪速変動であることから、ストローク速度Vz_sに変換される。基本的に、サスペンションは、各輪を保持する際、上下方向にのみストロークするのではなく、ストロークに伴って車輪回転中心が前後に移動すると共に、車輪速センサ5を搭載したアクスル自身も傾きを持ち、車輪との回転角差を生じる。この前後移動に伴って車輪速が変化するため、基準車輪速と車輪速センサ値との偏差がこのストロークに伴う変動として抽出できるのである。尚、どの程度の変動が生じるかはサスペンションジオメトリに応じて適宜設定すればよい。
When the reference wheel speed ω0 for each wheel is calculated by the above processing, a deviation between the reference wheel speed ω0 and the wheel speed sensor value is calculated, and this deviation is a wheel speed variation associated with the suspension stroke. Converted to stroke speed Vz_s. Basically, the suspension does not stroke only in the vertical direction when holding each wheel, but the wheel rotation center moves back and forth with the stroke, and the axle itself equipped with the
ストローク速度演算部321において、上述の処理により各輪におけるストローク速度Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRが算出されると、ばね上速度演算部322においてスカイフック制御用のバウンスレイト、ロールレイト及びピッチレイトが演算される。
When the stroke
〔推定モデルについて〕
スカイフック制御とは、S/A3のストローク速度とばね上速度の関係に基づいて減衰力を設定し、ばね上を姿勢制御することでフラットな走行状態を達成するものである。ここで、スカイフック制御によってばね上の姿勢制御を達成するには、ばね上速度をフィードバックする必要がある。今、車輪速センサ5から検出可能な値はストローク速度であり、ばね上に上下加速度センサ等を備えていないことから、ばね上速度は推定モデルを用いて推定する必要がある。以下、推定モデルの課題及び採用すべきモデル構成について説明する。[About estimation model]
Skyhook control is to achieve a flat running state by setting a damping force based on the relationship between the S / A3 stroke speed and the sprung speed, and controlling the posture on the sprung. Here, in order to achieve the posture control on the spring by the skyhook control, it is necessary to feed back the sprung speed. Now, the value that can be detected from the
図8は車体振動モデルを表す概略図である。図8(a)は、減衰力が一定のS/Aを備えた車両(以下、コンベ車両と記載する。)のモデルであり、図8(b)は、減衰力可変のS/Aを備え、スカイフック制御を行う場合のモデルである。図8中、Msはばね上の質量を表し、Muはばね下の質量を表し、Ksはコイルスプリングの弾性係数を表し、CsはS/Aの減衰係数を表し、Kuはばね下(タイヤ)の弾性係数を表し、Cuはばね下(タイヤ)の減衰係数を表し、Cvは可変とされた減衰係数を表す。また、z2はばね上の位置を表し、z1はばね下の位置を表し、z0は路面位置を表す。 FIG. 8 is a schematic diagram showing a vehicle body vibration model. FIG. 8A is a model of a vehicle (hereinafter referred to as a “convex vehicle”) having an S / A having a constant damping force, and FIG. 8B has an S / A having a variable damping force. This is a model for performing skyhook control. In FIG. 8, Ms represents the mass above the spring, Mu represents the mass below the spring, Ks represents the elastic coefficient of the coil spring, Cs represents the damping coefficient of S / A, and Ku represents the unsprung (tire). , Cu represents an unsprung (tire) damping coefficient, and Cv represents a variable damping coefficient. Z2 represents a position on the spring, z1 represents a position under the spring, and z0 represents a road surface position.
図8(a)に示すコンベ車両モデルを用いた場合、ばね上に対する運動方程式は以下のように表される。なお、z1の1回微分(即ち速度)をdz1で、2回微分(即ち加速度)をddz1で表す。
(推定式1)
Ms・ddz2=−Ks(z2−z1)−Cs(dz2−dz1)
この関係式をラプラス変換して整理すると下記のように表される。
(推定式2)
dz2=−(1/Ms)・(1/s2)・(Cs・s+Ks)(dz2−dz1)
ここで、dz2−dz1はストローク速度(Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRR)であることから、ばね上速度はストローク速度から算出できる。しかし、スカイフック制御によって減衰力が変更されると、推定精度が著しく低下するため、コンベ車両モデルでは大きな姿勢制御力(減衰力変更)を与えられないという問題が生じる。When the conveyor vehicle model shown in FIG. 8A is used, the equation of motion for the sprung is expressed as follows. Note that the first derivative (ie, speed) of z1 is represented by dz1, and the second derivative (ie, acceleration) is represented by ddz1.
(Estimation formula 1)
Ms · ddz2 = −Ks (z2−z1) −Cs (dz2−dz1)
When this relational expression is rearranged by Laplace transform, it is expressed as follows.
(Estimation formula 2)
dz2 =-(1 / Ms). (1 / s2). (Cs.s + Ks) (dz2-dz1)
Here, since dz2-dz1 is a stroke speed (Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR), the sprung speed can be calculated from the stroke speed. However, when the damping force is changed by the skyhook control, the estimation accuracy is remarkably lowered, and therefore, there is a problem that a large attitude control force (attenuating force change) cannot be given in the convex vehicle model.
そこで、図8(b)に示すようなスカイフック制御による車両モデルを用いることが考えられる。減衰力を変更するとは、基本的にサスペンションストロークに伴ってS/A3のピストン移動速度を制限する力を変更することである。ピストンを積極的に望ましい方向に移動することはできないセミアクティブなS/A3を用いるため、セミアクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。
(推定式3)
dz2=−(1/Ms)・(1/s2)・{(Cs+Cv)・s+Ks}(dz2−dz1)
ただし、
dz2・(dz2−dz1)≧0のとき Cv=Csky・{dz2/(dz2−dz1)}
dz2・(dz2−dz1)<0のとき Cv=0
すなわち、Cvは不連続な値となる。Therefore, it is conceivable to use a vehicle model based on skyhook control as shown in FIG. Changing the damping force basically means changing the force that limits the piston moving speed of S /
(Estimation formula 3)
dz2 =-(1 / Ms). (1 / s2). {(Cs + Cv) .s + Ks} (dz2-dz1)
However,
When dz2 · (dz2−dz1) ≧ 0 Cv = Csky · {dz2 / (dz2−dz1)}
When dz2 · (dz2−dz1) <0, Cv = 0
That is, Cv has a discontinuous value.
今、簡単なフィルタを用いてばね上速度の推定を行いたいと考えた場合、セミアクティブスカイフックモデルでは、本モデルをフィルタとして見た場合、各変数はフィルタ係数に相当し、擬似微分項{(Cs+Cv)・s+Ks}に不連続な可変減衰係数Cvが含まれるため、フィルタ応答が不安定となり、適切な推定精度が得られない。特に、フィルタ応答が不安定となると、位相がずれてしまう。ばね上速度の位相と符号との対応関係が崩れると、スカイフック制御を達成することはできない。そこで、セミアクティブなS/A3を用いる場合であっても、ばね上速度とストローク速度の符号関係に依存せず、安定的なCskyを直接用いることが可能なアクティブスカイフックモデルを用いてばね上速度を推定することとした。アクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。 Now, if you want to estimate the sprung speed using a simple filter, in the semi-active skyhook model, when this model is viewed as a filter, each variable corresponds to a filter coefficient, and the pseudo-differential term { Since (Cs + Cv) · s + Ks} includes a discontinuous variable attenuation coefficient Cv, the filter response becomes unstable and appropriate estimation accuracy cannot be obtained. In particular, when the filter response becomes unstable, the phase shifts. If the correspondence between the phase of the sprung speed and the sign is broken, the skyhook control cannot be achieved. Therefore, even when a semi-active S / A3 is used, it is not dependent on the sign relationship between the sprung speed and the stroke speed, and the sprung is performed using an active skyhook model that can directly use stable Csky. The speed was estimated. When the active sky hook model is adopted and the sprung speed is obtained, it is expressed as follows.
(推定式4)
dz2=−(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}(dz2−dz1)
この場合、擬似微分項{(Cs/Ms)s+(Ks/Ms)}には不連続性が生じず、{1/(s+Csky/Ms)}の項はローパスフィルタで構成できる。よって、フィルタ応答が安定し、適切な推定精度を得ることができる。尚、ここで、アクティブスカイフックモデルを採用しても、実際にはセミアクティブ制御しかできないことから、制御可能領域が半分となる。よって、推定されるばね上速度の大きさはばね上共振以下の周波数帯で実際よりも小さくなるが、スカイフック制御において最も重要なのは位相であり、位相と符号との対応関係が維持できればスカイフック制御は達成され、ばね上速度の大きさは他の係数等によって調整可能であることから問題はない。(Estimation formula 4)
dz2 =-(1 / s). {1 / (s + Csky / Ms)}. {(Cs / Ms) s + (Ks / Ms)} (dz2-dz1)
In this case, discontinuity does not occur in the pseudo differential term {(Cs / Ms) s + (Ks / Ms)}, and the {1 / (s + Csky / Ms)} term can be configured by a low-pass filter. Therefore, the filter response is stable and appropriate estimation accuracy can be obtained. Here, even if the active sky hook model is adopted, only semi-active control is actually possible, so the controllable area is halved. Therefore, the magnitude of the estimated sprung speed is smaller than the actual value in the frequency band below the sprung resonance, but the most important in skyhook control is the phase. If the correspondence between the phase and the sign can be maintained, the skyhook can be maintained. Since control is achieved and the magnitude of the sprung speed can be adjusted by other factors, there is no problem.
以上の関係によって、各輪のストローク速度が分かれば、ばね上速度を推定できることが理解できる。次に、実際の車両は1輪ではなく4輪であるため、これら各輪のストローク速度を用いてばね上の状態を、ロールレイト、ピッチレイト及びバウンスレイトにモード分解して推定することを検討する。今、4輪のばね上速度から上記3つの成分を算出する場合、対応する成分が一つ足りず、解が不定となるため、対角輪の動きを表すワープレイトを導入することとした。ストローク量のバウンス項をxsB、ロール項をxsR、ピッチ項をxsP、ワープ項をxsWとし、Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRに対応するストローク量をz_sFL、z_sFR、z_sRL、z_sRRとすると、以下の式が成り立つ。 From the above relationship, it can be understood that the sprung speed can be estimated if the stroke speed of each wheel is known. Next, since the actual vehicle is four wheels instead of one wheel, it is considered to estimate the state of the spring by mode decomposition into roll rate, pitch rate and bounce rate using the stroke speed of each wheel. To do. Now, when calculating the above three components from the sprung speed of four wheels, since there is not one corresponding component and the solution becomes indefinite, a war plate representing the movement of the diagonal wheels is introduced. If the stroke amount bounce term is xsB, the roll term is xsR, the pitch term is xsP, the warp term is xsW, and the stroke amount corresponding to Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR is z_sFL, z_sFR, z_sRL, z_sRR, Holds.
(式1)
以上の関係式から、xBの微分dxsBは以下の式で表される。
dxsB=1/4(Vz_sFL+Vz_sFR+Vz_sRL+Vz_sRR)
dxsR=1/4(Vz_sFL−Vz_sFR+Vz_sRL−Vz_sRR)
dxsP=1/4(−Vz_sFL−Vz_sFR+Vz_sRL+Vz_sRR)
dxsW=1/4(−Vz_sFL+Vz_sFR+Vz_sRL−Vz_sRR)(Formula 1)
From the above relational expression, the differential dxsB of xB is expressed by the following expression.
dxsB = 1/4 (Vz_sFL + Vz_sFR + Vz_sRL + Vz_sRR)
dxsR = 1/4 (Vz_sFL−Vz_sFR + Vz_sRL−Vz_sRR)
dxsP = 1/4 (−Vz_sFL−Vz_sFR + Vz_sRL + Vz_sRR)
dxsW = 1/4 (−Vz_sFL + Vz_sFR + Vz_sRL−Vz_sRR)
ここで、ばね上速度とストローク速度との関係は上記推定式4より得られているため、推定式4のうち、−(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}部分をGと記載し、それぞれCsky,Cs及びKsのバウンス項、ロール項、ピッチ項に応じたモーダルパラメータ(CskyB,CskyR,CskyP,CsB,CsR,CsP,KsB,KsR,KsP)を考慮した値をGB,GR,GPとし、各バウンスレイトをdB、ロールレイトをdR、ピッチレイトをdPとすると、以下の値として算出できる。
dB=GB・dxsB
dR=GR・dxsR
dP=GP・dxsP
以上から、各輪のストローク速度に基づいて、実際の車両におけるばね上の状態推定が達成できる。Here, since the relationship between the sprung speed and the stroke speed is obtained from the
dB = GB · dxsB
dR = GR · dxsR
dP = GP · dxsP
From the above, the state estimation on the spring in the actual vehicle can be achieved based on the stroke speed of each wheel.
(ばね上制振制御部)
次に、ばね上制振制御部33の構成について説明する。図2に示すように、ばね上制振制御部33は、上述のばね上速度推定値に基づいて姿勢制御を行うスカイフック制御部33aと、路面入力周波数に基づきばね上振動を抑制する周波数感応制御部33bとを有する。(Spring control unit)
Next, the configuration of the sprung mass damping
〔スカイフック制御部の構成〕
実施例1の車両の制御装置にあっては、ばね上姿勢制御を達成するアクチュエータとして、エンジン1と、ブレーキ20と、S/A3の三つを備えている。このうち、スカイフック制御部33aでは、S/A3についてはバウンスレイト、ロールレイト、ピッチレイトの3つを制御対象とし、エンジン1についてはバウンスレイト及びピッチレイトを制御対象とし、ブレーキ20についてはピッチレイトを制御対象とする。ここで、作用の異なる複数のアクチュエータに対して制御量を割り付けてばね上状態を制御するには、それぞれに共通の制御量を用いる必要がある。実施例1では、上述の走行状態推定部32により推定されたばね上速度を用いることで、各アクチュエータに対する制御量を決定することができる。[Configuration of Skyhook Control Unit]
The vehicle control apparatus according to the first embodiment includes the
バウンス方向のスカイフック制御量は、
FB=CskyB・dB
ロール方向のスカイフック制御量は、
FR=CskyR・dR
ピッチ方向のスカイフック制御量は、
FP=CskyP・dP
となる。FBはエンジン1及びS/A3にバウンス姿勢制御量として送信され、FRはS/A3においてのみ実施される制御であることから、ロール姿勢制御量として減衰力制御部35に送信される。The amount of skyhook control in the bounce direction is
FB = CskyB · dB
The amount of skyhook control in the roll direction is
FR = CskyR · dR
The amount of skyhook control in the pitch direction is
FP = CskyP · dP
It becomes. FB is transmitted to the
次に、ピッチ方向のスカイフック制御量FPについて説明する。ピッチ制御は、エンジン1,ブレーキ20及びS/A3により行なわれる。
図9は実施例1のピッチ制御を行う際の各アクチュエータ制御量算出処理を表す制御ブロック図である。スカイフック制御部33aは、全てのアクチュエータに共通して使用可能な制御量である第1目標姿勢制御量である目標ピッチレイトを演算する第1目標姿勢制御量演算部331と、エンジン1によって達成するエンジン姿勢制御量を演算するエンジン姿勢制御量演算部332と、ブレーキ20によって達成するブレーキ姿勢制御量を演算するブレーキ姿勢制御量演算部334と、S/A3によって達成するS/A姿勢制御量を演算するS/A姿勢制御量演算部336とを有する。Next, the skyhook control amount FP in the pitch direction will be described. The pitch control is performed by the
FIG. 9 is a control block diagram illustrating actuator control amount calculation processing when performing pitch control according to the first embodiment. The
本システムのスカイフック制御では、ピッチレイトを抑制するように作動することを第一優先としていることから、第1目標姿勢制御量演算部331ではピッチレイトをそのまま出力する(以下、このピッチレイトを第1目標姿勢制御量と記載する。)。エンジン姿勢制御量演算部332では、入力された第1目標姿勢制御量に基づいてエンジン1が達成可能な制御量であるエンジン姿勢制御量を演算する。
In the skyhook control of this system, since the first priority is to operate so as to suppress the pitch rate, the first target attitude control
エンジン姿勢制御量演算部332内には、運転者に違和感を与えないためにエンジン姿勢制御量を制限する制限値が設定されている。これにより、エンジン姿勢制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、第1目標姿勢制御量に基づいてエンジン姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なエンジン姿勢制御量を出力する。エンジン姿勢制御量演算部332から出力されるエンジン姿勢制御量は、エンジン1によって抑制されるピッチレイトにCskyPを乗算した値として出力される。なお、後述する第2目標姿勢制御量演算部333に対しては換算部332aにおいてエンジン姿勢制御量をピッチレイトに換算した値が出力される。また、エンジン制御部1aでは、制限値に対応するエンジン姿勢制御量に基づいてエンジントルク制御量が演算され、エンジン1に対して出力される。
A limit value for limiting the engine attitude control amount is set in the engine attitude control
第2目標姿勢制御量演算部333では、第1目標姿勢制御量と換算部332aにおいてエンジン姿勢制御量をピッチレイトに換算した値(以下、この値も単にエンジン姿勢制御量と呼ぶ)との偏差である第2目標姿勢制御量が演算され、ブレーキ姿勢制御量演算部334に出力される。
ブレーキ姿勢制御量演算部334内には、エンジン1と同様に運転者に違和感を与えないためにブレーキ姿勢制御量を制限する制限値が設定されている。これにより、ブレーキ姿勢制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、第2目標姿勢制御量に基づいてブレーキ姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なブレーキ姿勢制御量を出力する。ブレーキ姿勢制御量演算部334から出力されるブレーキ姿勢制御量は、ブレーキ20によって抑制されるピッチレイトにCskyPを乗算した値として出力される。なお、後述する第3目標姿勢制御量演算部335に対しては換算部334aにおいてブレーキ姿勢制御量をピッチレイトに換算した値が出力される。また、ブレーキ制御部2aでは、制限値に対応するブレーキ姿勢制御量に基づいて制動トルク制御量が演算され、ブレーキコントロールユニット2に対して出力される。In the second target attitude control
In the brake attitude control
第3目標姿勢制御量演算部335では、第2目標姿勢制御量と換算部334aにおいてエンジン姿勢制御量をピッチレイトに換算した値(以下、この値も単にエンジン姿勢制御量と呼ぶ。)との偏差である第3目標姿勢制御量が演算され、S/A姿勢制御量演算部336に出力される。S/A姿勢制御量演算部336では、第3目標姿勢制御量に応じたピッチ姿勢制御量を出力する。また、減衰力制御部35では、バウンス姿勢制御量,ロール姿勢制御量及びピッチ姿勢制御量(以下、これらを総称してS/A姿勢制御量と記載する。)に基づいて減衰力制御量が演算され、S/A3に対して出力される。
In the third target attitude control
以上のように、ピッチレイトについては、第1目標姿勢制御量を演算し、次に、エンジン姿勢制御量を演算し、第1目標姿勢制御量とエンジン姿勢制御量との偏差である第2目標姿勢制御量からブレーキ姿勢制御量を演算し、第2姿勢制御量とブレーキ姿勢制御量との偏差である第3目標姿勢制御量からS/A姿勢制御量を演算する。これにより、S/A3が行なうピッチレイト制御量を、エンジン1及びブレーキ20の制御によって減少させることができるため、S/A3の制御可能領域を比較的狭くすることができ、安価なS/A3によりばね上姿勢制御を達成することができる。
As described above, for the pitch rate, the first target attitude control amount is calculated, then the engine attitude control amount is calculated, and the second target that is the deviation between the first target attitude control amount and the engine attitude control amount is calculated. A brake posture control amount is calculated from the posture control amount, and an S / A posture control amount is calculated from a third target posture control amount that is a deviation between the second posture control amount and the brake posture control amount. As a result, the pitch rate control amount performed by the S /
また、S/A3による制御量を増大させると、基本的に減衰力が増大する。減衰力の増大とは、硬いサスペンション特性となることを意味するため、路面側から高周波振動が入力された場合、高周波入力を伝達しやすくなり、乗員の快適性を損なう(以下、高周波振動特性の悪化と記載する。)。これに対し、エンジン1及びブレーキ20といった路面入力による振動伝達特性に影響を及ぼさないアクチュエータによってピッチレイトを抑制し、S/A3の制御量を低下させることで高周波振動特性の悪化を回避することができる。以上の効果は、S/A3より先にブレーキ20の制御量を決めること、S/A3より先にエンジン1の制御量を決めることによって得られる。
Further, when the control amount by S / A3 is increased, the damping force basically increases. An increase in damping force means a hard suspension characteristic, so when high-frequency vibration is input from the road surface, it becomes easy to transmit high-frequency input and impairs passenger comfort (hereinafter referred to as high-frequency vibration characteristics). Described as worse.) On the other hand, it is possible to avoid the deterioration of the high-frequency vibration characteristics by suppressing the pitch rate by the actuator that does not affect the vibration transmission characteristics by the road surface input such as the
〔ブレーキピッチ制御〕
ここで、ブレーキピッチ制御について説明する。一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低い方向にも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。図10は実施例1のブレーキピッチ制御を表す制御ブロック図である。車体の質量をm、前輪の制動力をBFf、後輪の制動力をBFr、車両重心点と路面との間の高さをHcg、車両の加速度をa、ピッチモーメントをMp、ピッチレイトをVpとすると、以下の関係式が成立する。[Brake pitch control]
Here, the brake pitch control will be described. In general, it can be said that it is preferable to perform both of the
BFf+BFr=m・a
m・a・Hcg=Mp
Mp=(BFf+BFr)・Hcg
ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチレイトを助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。以上から、
Vp>0(前輪沈み込み)のとき Mp=0
Vp≦0(前輪浮き上がり)のとき Mp=CskyP・Vp
の制御量を与えるものである。これにより、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。BFf + BFr = m · a
m · a · Hcg = Mp
Mp = (BFf + BFr) · Hcg
Here, when the pitch rate Vp is positive, that is, when the braking force is applied when the front wheel side is depressed, the front wheel side is further depressed and the pitch rate is promoted. In this case, no braking force is applied. On the other hand, when the pitch rate Vp is negative, that is, when the front wheel side is lifted, the braking pitch moment gives a braking force to suppress the front wheel side lift. This contributes to improving the sense of security and flatness by ensuring the driver's field of view and making it easier to see the front. From the above
When Vp> 0 (front wheel sinks) Mp = 0
When Vp ≦ 0 (front wheel lift) Mp = CskyP · Vp
The amount of control is given. Accordingly, since the braking torque is generated only when the vehicle body is lifted up on the front side, the generated deceleration can be reduced as compared with the case where the braking torque is generated in both the lifting and sinking. Moreover, since the actuator operation frequency is only half, a low-cost actuator can be employed.
以上の関係に基づいて、ブレーキ姿勢制御量演算部334内は、以下の制御ブロックから構成される。不感帯処理符号判定部3341では、入力されたピッチレイトVpの符号を判定し、正のときは制御不要であるため減速感低減処理部3342に0を出力し、負のときは制御可能と判断して減速感低減処理部3342にピッチレイト信号を出力する。
Based on the above relationship, the brake attitude control
〈減速感低減処理〉
次に、減速感低減処理について説明する。この処理は、ブレーキ姿勢制御量演算部334内で行なわれる上記制限値による制限に対応する処理である。2乗処理部3342aでは、ピッチレイト信号を2乗処理する。これにより符号を反転させると共に、制御力の立ち上がりを滑らかにする。ピッチレイト2乗減衰モーメント演算部3342bでは、2乗処理されたピッチレイトに2乗処理を考慮したピッチ項のスカイフックゲインCskyPを乗算してピッチモーメントMpを演算する。目標減速度算出部3342cでは、ピッチモーメントMpを質量m及び車両重心点と路面との間の高さHcgにより除算して目標減速度を演算する。<Deceleration reduction processing>
Next, the deceleration feeling reduction process will be described. This process is a process corresponding to the limit by the limit value performed in the brake attitude control
ジャーク閾値制限部3342dでは、算出された目標減速度の変化率、すなわちジャークが予め設定された減速ジャーク閾値と抜きジャーク閾値の範囲内であるか否か、及び目標減速度が前後加速度制限値の範囲内であるか否かを判断し、いずれかの閾値を越える場合は、目標減速度をジャーク閾値の範囲内となる値に補正し、また、目標減速度が制限値を超える場合は、制限値内に設定する。これにより、運転者に違和感を与えないように減速度を発生させることができる。
In the jerk
目標ピッチモーメント変換部3343では、ジャーク閾値制限部3342dにおいて制限された目標減速度に質量mと高さHcgとを乗算して目標ピッチモーメントを算出し、ブレーキ制御部2a及び目標ピッチレイト変換部334aに対して出力する。目標ピッチレイト変換部334aでは、目標ピッチモーメントをピッチ項のスカイフックゲインCskyPで除算して目標ピッチレイト(ブレーキ姿勢制御量に相当)に変換し、第3目標姿勢制御量演算部335に対して出力する。
The target pitch
〔周波数感応制御部〕
次に、ばね上制振制御部内における周波数感応制御処理について説明する。実施例1では、基本的に車輪速センサ5の検出値に基づいてばね上速度を推定し、それに基づくスカイフック制御を行うことでばね上制振制御を達成する。しかしながら、車輪速センサ5では十分に推定精度が担保出来ないと考えられる場合や、走行状況や運転者の意図によっては積極的に快適な走行状態(車体フラット感よりも柔らかな乗り心地)を担保したい場合もある。このような場合には、スカイフック制御のようにストローク速度とばね上速度の符号の関係(位相等)が重要となるベクトル制御では僅かな位相ずれによって適正な制御が困難となる場合があることから、振動特性のスカラー量に応じたばね上制振制御である周波数感応制御を導入することとした。[Frequency-sensitive control unit]
Next, frequency sensitive control processing in the sprung mass damping control unit will be described. In the first embodiment, the sprung speed is estimated based on the detection value of the
図11は車輪速センサにより検出された車輪速周波数特性と、実施例では搭載していないストロークセンサのストローク周波数特性とを同時に書き表した図である。ここで、周波数特性とは、周波数に対する振幅の大きさをスカラー量として縦軸に取った特性である。車輪速センサ5の周波数成分とストロークセンサの周波数成分とを見比べると、ばね上共振周波数成分からばね下共振周波数成分にかけて概ね同じようなスカラー量を取ることが理解できる。そこで、車輪速センサ5の検出値のうち、この周波数特性に基づいて減衰力を設定することとした。ここで、ばね上共振周波数成分が存在する領域を、乗員の体全体が振れることで乗員が空中に放り投げらたような感覚、更に言い換えると、乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域としてフワ領域(0.5〜3Hz)とし、ばね上共振周波数成分とばね下共振周波数成分との間の領域を、重力加速度が減少するような感覚ではないが、乗馬で速足(trot)を行う際に人体が小刻みに跳ね上がるような感覚、更に言い換えると、体全体が追従可能な上下動をもたらす周波数領域としてヒョコ領域(3〜6Hz)とし、ばね下共振周波数成分が存在する領域を、人体の質量が追従するまでの上下動ではないが、乗員の太ももといった体の一部に対して小刻みな振動が伝達されるような周波数領域としてブル領域(6〜23Hz)と定義する。
FIG. 11 is a diagram in which a wheel speed frequency characteristic detected by the wheel speed sensor and a stroke frequency characteristic of a stroke sensor not mounted in the embodiment are simultaneously written. Here, the frequency characteristic is a characteristic in which the vertical axis represents the magnitude of the amplitude with respect to the frequency as a scalar quantity. Comparing the frequency component of the
図12は実施例1のばね上制振制御における周波数感応制御を表す制御ブロック図である。バンドエリミネーションフィルタ350では、車輪速センサ値のうち、本制御に使用する振動成分以外のノイズをカットする。所定周波数領域分割部351では、フワ領域、ヒョコ領域及びブル領域のそれぞれの周波数帯に分割する。ヒルベルト変換処理部352では、分割された各周波数帯をヒルベルト変換し、周波数の振幅に基づくスカラー量(具体的には、振幅と周波数帯により算出される面積)に変換する。
車両振動系重み設定部353では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が実際に車両に伝播される重みを設定する。人間感覚重み設定部354では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が乗員に伝播される重みを設定する。FIG. 12 is a control block diagram illustrating frequency sensitive control in the sprung mass damping control according to the first embodiment. The
The vehicle vibration system
ここで、人間感覚重みの設定について説明する。図13は周波数に対する人間感覚特性を表す相関図である。図13に示すように、低周波数領域であるフワ領域にあっては、比較的周波数に対して乗員の感度が低く、高周波数領域に移行するに従って徐々に感度が増大していく。尚、ブル領域以上の高周波領域は乗員に伝達されにくくなっていく。以上から、フワ領域の人間感覚重みWfを0.17に設定し、ヒョコ領域の人間感覚重みWhをWfより大きな0.34に設定し、ブル領域の人間感覚重みWbをWf及びWhより更に大きな0.38に設定する。これにより、各周波数帯のスカラー量と実際に乗員に伝播される振動との相関をより高めることができる。尚、これら二つの重み係数は、車両コンセプトや、乗員の好みにより適宜変更してもよい。 Here, the setting of human sense weight will be described. FIG. 13 is a correlation diagram showing human sensory characteristics with respect to frequency. As shown in FIG. 13, in the waving region, which is a low frequency region, the occupant's sensitivity is relatively low with respect to the frequency, and the sensitivity gradually increases as the frequency shifts to the high frequency region. Note that the high frequency region above the bull region becomes difficult to be transmitted to the occupant. From the above, the human sense weight Wf of the wafe area is set to 0.17, the human sense weight Wh of the leopard area is set to 0.34 which is larger than Wf, and the human sense weight Wb of the bull area is larger than Wf and Wh. Set to 0.38. Thereby, the correlation between the scalar quantity in each frequency band and the vibration actually propagated to the occupant can be further increased. These two weighting factors may be changed as appropriate according to the vehicle concept and the passenger's preference.
重み決定手段355では、各周波数帯の重みのうち、それぞれの周波数帯の重みが占める割合を算出する。フワ領域の重みをa、ヒョコ領域の重みをb、ブル領域の重みをcとすると、フワ領域の重み係数は(a/(a+b+c))であり、ヒョコ領域の重み係数は(b/(a+b+c))であり、ブル領域の重み係数は(c/(a+b+c))である。
スカラー量演算部356では、ヒルベルト変換処理部352により算出された各周波数帯のスカラー量に重み決定手段355において算出された重みを乗算し、最終的なスカラー量を出力する。ここまでの処理は、各輪の車輪速センサ値に対して行なわれる。The
The scalar
最大値選択部357では、4輪においてそれぞれ演算された最終的なスカラー量のうち最大値を選択する。尚、下部における0.01は、後の処理において最大値の合計を分母とすることから、分母が0になることを回避するために設定したものである。比率演算部358では、各周波数帯のスカラー量最大値の合計を分母とし、フワ領域に相当する周波数帯のスカラー量最大値を分子として比率を演算する。言い換えると、全振動成分に含まれるフワ領域の混入比率(以下、単に比率と記載する。)を演算するものである。ばね上共振フィルタ359では、算出された比率に対してばね上共振周波数の1.2Hz程度のフィルタ処理を行い、算出された比率からフワ領域を表すばね上共振周波数帯の成分を抽出する。言い換えると、フワ領域は1.2Hz程度に存在することから、この領域の比率も1.2Hz程度で変化すると考えられるからである。そして、最終的に抽出された比率を減衰力制御部35に対して出力し、比率に応じた周波数感応減衰力制御量を出力する。
The maximum
図14は実施例1の周波数感応制御によるフワ領域の振動混入比率と減衰力との関係を表す特性図である。図14に示すように、フワ領域の比率が大きいときには減衰力を高く設定することで、ばね上共振の振動レベルを低減する。このとき、減衰力を高く設定しても、ヒョコ領域やブル領域の比率は小さいため、乗員に高周波振動やヒョコヒョコと動くような振動を伝達することはない。一方、フワ領域の比率が小さいときには減衰力を低く設定することで、ばね上共振以上の振動伝達特性が減少し、高周波振動が抑制され、滑らかな乗り心地が得られる。 FIG. 14 is a characteristic diagram illustrating the relationship between the vibration mixing ratio of the wafer region and the damping force by the frequency sensitive control according to the first embodiment. As shown in FIG. 14, the vibration level of sprung resonance is reduced by setting the damping force high when the ratio of the wing area is large. At this time, even if the damping force is set high, the ratio of the leopard area and the bull area is small, so that high frequency vibration or vibration that moves with the leopard is not transmitted to the occupant. On the other hand, when the ratio of the wing region is small, the damping force is set low, so that the vibration transmission characteristic more than the sprung resonance is reduced, the high frequency vibration is suppressed, and a smooth riding comfort is obtained.
図15は実施例1の周波数感応制御によるフワ領域の振動混入比率の変化速度と減衰力制御量の変化速度との関係を表す図である。図15に示すように、比率の変化速度が高いときには減衰力制御量の変化速度を低くしている。
図16はフワ領域の振動混入比率の変化速度に応じて減衰力制御量の変化速度を設定したときのタイムチャートである。図16(a)は比率の変化速度が高いときの例を、図16(b)は比率の変化速度が低いときの例を示している。図16では実線は比率に応じた減衰力を示し、点線は出力される減衰力制御量を示す。FIG. 15 is a diagram illustrating the relationship between the change rate of the vibration mixing ratio in the wafer region and the change rate of the damping force control amount by the frequency sensitive control according to the first embodiment. As shown in FIG. 15, when the rate of change of the ratio is high, the rate of change of the damping force control amount is lowered.
FIG. 16 is a time chart when the changing speed of the damping force control amount is set in accordance with the changing speed of the vibration mixture ratio in the wing region. FIG. 16A shows an example when the rate of change of the ratio is high, and FIG. 16B shows an example of when the rate of change of the ratio is low. In FIG. 16, the solid line indicates the damping force corresponding to the ratio, and the dotted line indicates the output damping force control amount.
図14を用いて前述した通り、実施例1の周波数感応制御では、フワ領域の振動混入比率に応じて減衰力を設定している。つまり、比率の変化に応じて減衰力も変化することとなる。しかしながら、路面状況が急変すると比率も急変することとなり、それに伴い、減衰力も急変することとなる。これにより、急にS/A3が固くなったり柔らかくなったりするため、乗員に違和感を与えるおそれがあった。
実施例1では比率の変化速度が高いときには減衰力制御量の変化速度を低くするようにしているため、図16に示すように、比率の変化速度に関わらず、減衰力制御量の変化速度を同程度にすることができ、乗員への違和感を抑制することができる。As described above with reference to FIG. 14, in the frequency sensitive control of the first embodiment, the damping force is set according to the vibration mixing ratio in the wafer region. That is, the damping force changes according to the change in the ratio. However, when the road surface condition changes suddenly, the ratio also changes suddenly, and accordingly, the damping force also changes suddenly. As a result, the S /
In the first embodiment, when the rate of change of the ratio is high, the rate of change of the damping force control amount is decreased. Therefore, as shown in FIG. 16, the rate of change of the damping force control amount is set regardless of the rate of change of the ratio. It can be set to the same level, and an uncomfortable feeling to the passenger can be suppressed.
ここで、周波数感応制御とスカイフック制御とを対比した場合における周波数感応制御の利点について説明する。図17はある走行条件において車輪速センサ5により検出された車輪速周波数特性を表した図である。これは、特に石畳のような小さな凹凸が連続するような路面を走行した場合に表れる特性である。このような特性を示す路面を走行中にスカイフック制御を行うと、スカイフック制御では振幅のピークの値で減衰力を決定するため、仮に高周波振動の入力に対して位相の推定が悪化すると、誤ったタイミングで非常に高い減衰力を設定してしまい、高周波振動が悪化するという問題がある。
Here, an advantage of the frequency sensitive control when the frequency sensitive control is compared with the skyhook control will be described. FIG. 17 is a diagram showing the wheel speed frequency characteristics detected by the
これに対し、周波数感応制御のようにベクトルではなくスカラー量に基づいて制御する場合、図17に示すような路面にあってはフワ領域の比率が小さいことから低い減衰力が設定されることになる。これにより、ブル領域の振動の振幅が大きい場合であっても十分に振動伝達特性が減少するため、高周波振動の悪化を回避することができるものである。以上から、例え高価なセンサ等を備えてスカイフック制御を行ったとしても位相推定精度が悪化することで制御が困難な領域では、スカラー量に基づく周波数感応制御によって高周波振動を抑制できるものである。 On the other hand, when the control is based on the scalar quantity instead of the vector as in the frequency sensitive control, a low damping force is set on the road surface as shown in FIG. Become. As a result, even if the amplitude of the vibration in the bull region is large, the vibration transfer characteristic is sufficiently reduced, so that deterioration of high-frequency vibration can be avoided. From the above, high-frequency vibration can be suppressed by frequency-sensitive control based on the scalar amount in a region where control is difficult due to deterioration in phase estimation accuracy even if skyhook control is performed using an expensive sensor or the like. .
(ばね下制振制御部)
次に、ばね下制振制御部の構成について説明する。図8(a)のコンベ車両において説明したように、タイヤも弾性係数と減衰係数を有することから共振周波数帯が存在する。ただし、タイヤの質量はばね上の質量に比べて小さく、弾性係数も高いため、ばね上共振よりも高周波数側に存在する。このばね下共振成分により、ばね下においてタイヤがバタバタ動いてしまい、接地性が悪化するおそれがある。また、ばね下でのバタつきは乗員に不快感を与えるおそれもある。そこで、ばね下共振によるバタつきを抑制するために、ばね下共振成分に応じた減衰力を設定するものである。(Unsprung vibration control unit)
Next, the configuration of the unsprung vibration suppression control unit will be described. As described in the conveyor vehicle of FIG. 8A, since the tire also has an elastic coefficient and a damping coefficient, a resonance frequency band exists. However, since the mass of the tire is smaller than the mass on the spring and the elastic coefficient is high, it exists on the higher frequency side than the resonance on the spring. Due to this unsprung resonance component, the tire may flutter under the unsprung mass, which may deteriorate the ground contact property. In addition, fluttering under the spring may cause discomfort to the occupant. Therefore, in order to suppress the flutter due to unsprung resonance, a damping force corresponding to the unsprung resonance component is set.
図18は実施例1のばね下制振制御の制御構成を表すブロック図である。ばね下共振成分抽出部341では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出する。ばね下共振成分は車輪速周波数成分のうち概ね10〜20Hzの領域から抽出される。包絡波形成形部342では、抽出されたばね下共振成分をスカラー化し、EnvelopeFilterを用いて包絡波形を成形する。ゲイン乗算部343では、スカラー化されたばね下共振成分にゲインを乗算し、ばね下制振減衰力制御量を算出し、減衰力制御部35に対して出力する。尚、実施例1では、車輪速センサ検出値にバンドパスフィルタを作用させてばね下共振成分を抽出することとしたが、走行状態推定部32において、ばね上速度に併せてばね下速度を推定演算し、ばね下共振成分を抽出するようにしてもよい。
FIG. 18 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment. The unsprung resonance
(減衰力制御部の構成について)
次に、減衰力制御部35の構成について説明する。図19は実施例1の減衰力制御部の制御構成を表す制御ブロック図である。等価粘性減衰係数変換部35aでは、ドライバ入力制御部31から出力されたドライバ入力減衰力制御量と、スカイフック制御部33aから出力されたS/A姿勢制御量と、周波数感応制御部33bから出力された周波数感応減衰力制御量と、ばね下制振制御部34から出力されたばね下制振減衰力制御量と、走行状態推定部32により演算されたストローク速度が入力され、これらの値を等価粘性減衰係数に変換する。(Configuration of damping force control unit)
Next, the configuration of the damping
減衰係数調停部35bでは、等価粘性減衰係数変換部35aにおいて変換された減衰係数(以下、それぞれの減衰係数をドライバ入力減衰係数k1、S/A姿勢減衰係数k2、周波数感応減衰係数k3、ばね下制振減衰係数k4と記載する。)のうち、どの減衰係数に基づいて制御するのかを調停し、最終的な減衰係数を出力する。制御信号変換部35cでは、減衰係数調停部35bで調停された減衰係数とストローク速度に基づいてS/A3に対する制御信号(指令電流値)に変換し、S/A3に対して出力する。
In the damping
〔減衰係数調停部〕
次に、減衰係数調停部35bの調停内容について説明する。実施例1の車両の制御装置にあっては、4つの制御モードを有する。第1に一般的な市街地などを走行しつつ適度な旋回状態が得られる状態を想定したスタンダードモード、第2にワインディングロードなどを積極的に走行しつつ安定した旋回状態が得られる状態を想定したスポーツモード、第3に低車速発進時など、乗り心地を優先して走行する状態を想定したコンフォートモード、第4に直線状態の多い高速道路等を高車速で走行する状態を想定したハイウェイモードである。[Attenuation coefficient mediation section]
Next, the contents of arbitration by the attenuation
スタンダードモードでは、スカイフック制御部33aによるスカイフック制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
スポーツモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御とばね下制振制御部34によるばね下制振制御とを実施する。
コンフォートモードでは、周波数感応制御部33bによる周波数感応制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
ハイウェイモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御にばね下制振制御部34によるばね下制振制御の制御量を加算する制御を実施する。
以下、これら各モードにおける減衰係数の調停について説明する。In the standard mode, priority is given to unsprung vibration suppression control by the unsprung vibration
In the sport mode, priority is given to driver input control by the driver
In the comfort mode, the control for giving priority to the unsprung vibration damping control by the unsprung vibration damping
In the highway mode, priority is given to driver input control by the driver
Hereinafter, the adjustment of the attenuation coefficient in each mode will be described.
〈スタンダードモードにおける調停〉
図20は実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。
ステップS1では、S/A姿勢減衰係数k2がばね下制振減衰係数k4より大きいか否かを判断し、大きいときはステップS4に進んで減衰係数としてk2を設定する。
ステップS2では、周波数感応制御部33bにおいて説明したフワ領域、ヒョコ領域及びブル領域のスカラー量に基づいて、ブル領域のスカラー量比率を演算する。
ステップS3では、ブル領域の比率が所定値以上か否かを判断し、所定値以上の場合は高周波振動による乗り心地悪化が懸念されることからステップS4に進み、減衰係数として低い値であるk2を設定する。一方、ブル領域の比率が上記所定値未満の場合は減衰係数を高く設定しても高周波振動による乗り心地悪化の心配が少ないことからステップS5に進んでk4を設定する。<Arbitration in standard mode>
FIG. 20 is a flowchart illustrating the attenuation coefficient arbitration process in the standard mode according to the first embodiment.
In step S1, it is determined whether or not the S / A attitude damping coefficient k2 is larger than the unsprung damping damping coefficient k4. If larger, the process proceeds to step S4 and k2 is set as the damping coefficient.
In step S2, a scalar amount ratio of the bull region is calculated based on the scalar amounts of the fur region, the leopard region, and the bull region described in the frequency
In step S3, it is determined whether or not the ratio of the bull area is equal to or greater than a predetermined value. If the ratio is greater than or equal to the predetermined value, there is a concern about deterioration of riding comfort due to high-frequency vibration. Set. On the other hand, if the ratio of the bull area is less than the predetermined value, even if the damping coefficient is set high, there is little fear of deterioration in riding comfort due to high-frequency vibration, so the routine proceeds to step S5 and k4 is set.
上述のように、スタンダードモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ばね下制振制御が要求する減衰力よりスカイフック制御が要求する減衰力が低く、かつ、ブル領域の比率が大きいときには、スカイフック制御の減衰力を設定し、ばね下制振制御の要求を満たすことに伴う高周波振動特性の悪化を回避する。これにより、走行状態に応じて最適な減衰特性を得ることができ、車体のフラット感を達成しつつ、高周波振動に対する乗り心地悪化を同時に回避できる。 As described above, in the standard mode, in principle, priority is given to unsprung vibration suppression control that suppresses unsprung resonance. However, when the damping force required by skyhook control is lower than the damping force required by unsprung vibration suppression control and the ratio of the bull area is large, the damping force of skyhook control is set and Avoid the deterioration of high-frequency vibration characteristics that accompanies the requirements. As a result, it is possible to obtain optimum damping characteristics according to the running state, and at the same time, it is possible to avoid a deterioration in riding comfort against high-frequency vibrations while achieving a flat feeling of the vehicle body.
〈スポーツモードにおける調停〉
図21は実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。
ステップS11では、ドライバ入力制御により設定された4輪のドライバ入力減衰係数k1に基づいて4輪減衰力配分率を演算する。右前輪のドライバ入力減衰係数をk1fr、左前輪のドライバ入力減衰係数をk1fl、右後輪のドライバ入力減衰係数をk1rr、左後輪のドライバ入力減衰係数をk1rl、各輪の減衰力配分率をxfr、xfl、xrr、xrlとすると、
xfr=k1fr/(k1fr+k1fl+k1rr+k1rl)
xfl=k1fl/(k1fr+k1fl+k1rr+k1rl)
xrr=k1rr/(k1fr+k1fl+k1rr+k1rl)
xrl=k1rl/(k1fr+k1fl+k1rr+k1rl)
により算出される。<Mediation in sport mode>
FIG. 21 is a flowchart showing attenuation coefficient arbitration processing in the sport mode of the first embodiment.
In step S11, the four-wheel damping force distribution ratio is calculated based on the four-wheel driver input damping coefficient k1 set by the driver input control. The right front wheel driver input damping coefficient is k1fr, the left front wheel driver input damping coefficient is k1fl, the right rear wheel driver input damping coefficient is k1rr, the left rear wheel driver input damping coefficient is k1rl, and the damping force distribution ratio of each wheel is If xfr, xfl, xrr, xrl,
xfr = k1fr / (k1fr + k1fl + k1rr + k1rl)
xfl = k1fl / (k1fr + k1fl + k1rr + k1rl)
xrr = k1rr / (k1fr + k1fl + k1rr + k1rl)
xrl = k1rl / (k1fr + k1fl + k1rr + k1rl)
Is calculated by
ステップS12では、減衰力配分率xが所定範囲内(αより大きくβより小さい)か否かを判断し、所定範囲内の場合は各輪に対する配分はほぼ均等であると判断してステップS13に進み、いずれか1つでも所定範囲外の場合はステップS16に進む。
ステップS13では、ばね下制振減衰係数k4がドライバ入力減衰係数k1より大きいか否かを判断し、大きいと判断した場合はステップS15に進み、第1減衰係数kとしてk4を設定する。一方、ばね下制振減衰係数k4がドライバ入力減衰係数k1以下であると判断した場合はステップS14に進み、第1減衰係数kとしてk1を設定する。In step S12, it is determined whether or not the damping force distribution ratio x is within a predetermined range (greater than α and smaller than β). If it is within the predetermined range, it is determined that the distribution to each wheel is substantially equal, and the process proceeds to step S13. If any one is out of the predetermined range, the process proceeds to step S16.
In step S13, it is determined whether or not the unsprung damping damping coefficient k4 is larger than the driver input damping coefficient k1. If it is determined that the unsprung damping damping coefficient k4 is larger, the process proceeds to step S15 and k4 is set as the first damping coefficient k. On the other hand, if it is determined that the unsprung damping damping coefficient k4 is equal to or less than the driver input damping coefficient k1, the process proceeds to step S14, and k1 is set as the first damping coefficient k.
ステップS16では、ばね下制振減衰係数k4がS/A3の設定可能な最大値maxか否かを判断し、最大値maxと判断した場合はステップS17に進み、それ以外の場合はステップS18に進む。
ステップS17では、4輪のドライバ入力減衰係数k1の最大値がばね下制振減衰係数k4となり、かつ、減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、減衰力配分率を満たしつつ減衰係数が最も高くなる値を演算する。
ステップS18では、4輪のドライバ入力減衰係数k1がいずれもk4以上となる範囲で減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、ドライバ入力制御によって設定される減衰力配分率を満たし、かつ、ばね下制振制御側の要求をも満たす値を演算する。In step S16, it is determined whether or not the unsprung damping damping coefficient k4 is the maximum value max that S / A3 can be set. If it is determined that the maximum value is max, the process proceeds to step S17, and otherwise, the process proceeds to step S18. move on.
In step S17, the maximum value of the four-wheel driver input damping coefficient k1 is the unsprung damping damping coefficient k4, and the damping coefficient that satisfies the damping force distribution ratio is calculated as the first damping coefficient k. In other words, a value that maximizes the damping coefficient while satisfying the damping force distribution rate is calculated.
In step S18, a damping coefficient that satisfies the damping force distribution ratio in a range where all the four-wheel driver input damping coefficients k1 are equal to or greater than k4 is calculated as the first damping coefficient k. In other words, a value that satisfies the damping force distribution ratio set by the driver input control and also satisfies the requirements of the unsprung vibration suppression control side is calculated.
ステップS19では、上記各ステップにより設定された第1減衰係数kがスカイフック制御により設定されるS/A姿勢減衰係数k2より小さいか否かを判断し、小さいと判断された場合はスカイフック制御側の要求する減衰係数のほうが大きいためステップS20に進んでk2を設定する。一方、kがk2以上であると判断された場合はステップS21に進んでkを設定する。 In step S19, it is determined whether or not the first attenuation coefficient k set in each of the above steps is smaller than the S / A attitude attenuation coefficient k2 set by skyhook control. Since the damping coefficient requested on the side is larger, the process proceeds to step S20 and k2 is set. On the other hand, if it is determined that k is equal to or greater than k2, the process proceeds to step S21 and k is set.
上述のように、スポーツモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ドライバ入力制御側から要求される減衰力配分率は、車体姿勢と密接に関連し、特にロールモードによるドライバの視線変化との関連も深いことから、ドライバ入力制御側から要求された減衰係数そのものではなく、減衰力配分率の確保を最優先事項とする。また、減衰力配分率が保たれた状態で車体姿勢に姿勢変化をもたらす動きについてはスカイフック制御をセレクトハイで選択することで、安定した車体姿勢を維持することができる。 As described above, in the sport mode, priority is given to unsprung vibration suppression control that suppresses unsprung resonance in principle. However, the damping force distribution rate required from the driver input control side is closely related to the vehicle body posture, and particularly because it is closely related to the driver's line-of-sight change due to the roll mode. The highest priority is to secure the damping force distribution ratio. In addition, with respect to the movement that causes the posture change in the vehicle body posture while the damping force distribution ratio is maintained, the sky vehicle body posture can be maintained by selecting Skyhook control with select high.
〈コンフォードモードにおける調停〉
図22は実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。
ステップS30では、周波数感応減衰係数k3がばね下制振減衰係数k4より大きいか否かを判断し、大きいと判断した場合はステップS32に進んで周波数感応減衰係数k3を設定する。一方、周波数感応減衰係数k3がばね下制振減衰係数k4以下であると判断した場合はステップS32に進んでばね下制振減衰係数k4を設定する。<Conciliation in Conford mode>
FIG. 22 is a flowchart illustrating the attenuation coefficient arbitration process in the comfort mode according to the first embodiment.
In step S30, it is determined whether or not the frequency sensitive damping coefficient k3 is larger than the unsprung damping damping coefficient k4. If it is determined that the frequency sensitive damping coefficient k3 is larger, the process proceeds to step S32 and the frequency sensitive damping coefficient k3 is set. On the other hand, if it is determined that the frequency sensitive damping coefficient k3 is equal to or less than the unsprung damping damping coefficient k4, the process proceeds to step S32 to set the unsprung damping damping coefficient k4.
上述のように、コンフォートモードでは、基本的にばね下の共振を抑制するばね下共振制御を優先する。もともとばね上制振制御として周波数感応制御を行い、これにより路面状況に応じた最適な減衰係数を設定しているため、乗り心地を確保した制御を達成でき、ばね下がばたつくことによる接地感不足をばね下制振制御で回避することができる。尚、コンフォートモードにおいても、スタンダードモードと同様に、周波数スカラー量のブル比率に応じて減衰係数を切り替えるように構成してもよい。これにより、スーパーコンフォートモードとして更に乗り心地を確保することができる。 As described above, in the comfort mode, priority is given to unsprung resonance control that basically suppresses unsprung resonance. Originally frequency sensitive control was performed as sprung mass damping control, and the optimum damping coefficient was set according to the road surface condition, so it was possible to achieve control that ensured riding comfort and lack of grounding feeling due to fluttering under the spring. Can be avoided by unsprung vibration suppression control. In the comfort mode, as in the standard mode, the attenuation coefficient may be switched according to the bull ratio of the frequency scalar quantity. As a result, the ride comfort can be further ensured in the super comfort mode.
〈ハイウェイモードにおける調停〉
図23は実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。尚、ステップS11からS18までは、スポーツモードにおける調停処理と同じであるため、説明を省略する。
ステップS40では、ステップS18までで調停された第1減衰係数kにスカイフック制御によるS/A姿勢減衰係数k2を加算して出力する。<Arbitration in highway mode>
FIG. 23 is a flowchart illustrating attenuation coefficient arbitration processing in the highway mode according to the first embodiment. Since steps S11 to S18 are the same as the arbitration process in the sport mode, the description thereof is omitted.
In step S40, the S / A attitude attenuation coefficient k2 by the skyhook control is added to the first attenuation coefficient k that has been adjusted up to step S18, and is output.
上述のように、ハイウェイモードでは、調停された第1減衰係数kにS/A姿勢減衰係数k2を加算した値を用いて減衰係数を調停する。ここで、図を用いて作用を説明する。
図24はうねり路面及び凹凸路面を走行する際の減衰係数変化を表すタイムチャートである。例えば高車速走行時にわずかな路面のうねり等の影響で車体がゆらゆらと動くような動きを抑制しようとした場合、スカイフック制御のみで達成しようとすると、僅かな車輪速変動を検知する必要があることから、スカイフック制御ゲインをかなり高く設定する必要がある。この場合、ゆらゆらと動くような動きを抑制することはできるが、路面の凹凸などが発生した場合、制御ゲインが大き過ぎて過剰な減衰力制御を行うおそれがある。これにより、乗り心地の悪化や車体姿勢の悪化が懸念される。As described above, in the highway mode, the attenuation coefficient is adjusted using a value obtained by adding the S / A attitude attenuation coefficient k2 to the adjusted first attenuation coefficient k. Here, the operation will be described with reference to the drawings.
FIG. 24 is a time chart showing a change in attenuation coefficient when traveling on a wavy road surface and an uneven road surface. For example, when trying to suppress the movement of the vehicle body to fluctuate due to slight road surface undulations when driving at high vehicle speeds, it is necessary to detect slight fluctuations in the wheel speed when trying to achieve only with the skyhook control. Therefore, it is necessary to set the skyhook control gain to be quite high. In this case, the movement that fluctuates can be suppressed, but if the road surface is uneven, the control gain is too large and excessive damping force control may be performed. As a result, there is a concern about deterioration in ride comfort and vehicle body posture.
これに対し、ハイウェイモードのように第1減衰係数kを常時設定しているため、ある程度の減衰力は常時確保されることになり、スカイフック制御による減衰係数が小さくても車体がゆらゆらと動くような動きを抑制できる。また、スカイフック制御ゲインを上昇させる必要がないため、路面凹凸に対しても通常の制御ゲインにより適切に対処できる。加えて、第1減衰係数kが設定された状態でスカイフック制御が行われるため、セミアクティブ制御領域内において、減衰係数制限とは異なり、減衰係数の減少工程の動作が可能となり、高速走行時において安定した車両姿勢を確保することができる。 On the other hand, since the first damping coefficient k is always set as in the highway mode, a certain amount of damping force is always secured, and the vehicle body fluctuates even when the damping coefficient by the skyhook control is small. Such movement can be suppressed. Further, since it is not necessary to increase the skyhook control gain, it is possible to appropriately deal with road surface irregularities by using a normal control gain. In addition, since the skyhook control is performed with the first damping coefficient k set, unlike the damping coefficient limit, the damping coefficient decreasing process can be performed in the semi-active control region, and at the time of high-speed traveling It is possible to ensure a stable vehicle posture.
〈モード選択処理〉
次に、上記各走行モードを選択するモード選択処理について説明する。図25は実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。
ステップS50では、舵角センサ7の値に基づいて直進走行状態か否かを判断し、直進走行状態と判断された場合にはステップS51に進み、旋回状態と判断された場合にはステップS54に進む。
ステップS51では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS52に進んでスタンダードモードを選択する。一方、VSP1未満と判断された場合にはステップS53に進んでコンフォートモードを選択する。
ステップS54では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS55に進んでハイウェイモードを選択する。一方、VSP1未満と判断された場合にはステップS56に進んでスポーツモードを選択する。<Mode selection processing>
Next, a mode selection process for selecting each travel mode will be described. FIG. 25 is a flowchart illustrating a mode selection process based on the running state in the attenuation coefficient arbitration unit of the first embodiment.
In step S50, it is determined whether or not the vehicle is in the straight traveling state based on the value of the steering angle sensor 7. If it is determined that the vehicle is traveling straight, the process proceeds to step S51. If it is determined that the vehicle is turning, the process proceeds to step S54. move on.
In step S51, it is determined based on the value of the vehicle speed sensor 8 whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state. If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S52 and the standard mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S53 and the comfort mode is selected.
In step S54, based on the value of the vehicle speed sensor 8, it is determined whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S56 to select the sport mode.
すなわち、直進走行状態において、高車速走行する場合にはスタンダードモードを選択することで、スカイフック制御による車体姿勢の安定化を図り、かつ、ヒョコやブルといった高周波振動を抑制することで乗り心地を確保し、更に、ばね下の共振を抑制することができる。また、低車速走行する場合にはコンフォートモードを選択することで、ヒョコやブルといった振動の乗員への入力を極力抑えながら、ばね下の共振を抑制することができる。 In other words, when driving at a high vehicle speed in a straight running state, the standard mode is selected to stabilize the vehicle body posture by skyhook control and to suppress the high frequency vibration such as leopard and bull. In addition, unsprung resonance can be suppressed. Further, when traveling at a low vehicle speed, by selecting the comfort mode, it is possible to suppress unsprung resonance while suppressing the input of vibrations such as leopard and bull to the occupant as much as possible.
一方、旋回走行状態において、高車速走行する場合にはハイウェイモードを選択することで、減衰係数を加算した値によって制御されるため、基本的に高い減衰力が得られる。これにより、高車速であってもドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、ばね下共振を抑制することができる。また、低車速走行する場合にはスポーツモードを選択することで、ドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、スカイフック制御が適宜行われながら、ばね下共振を抑制することができ、安定した車両姿勢で走行できる。 On the other hand, when the vehicle is traveling at a high vehicle speed in a turning traveling state, by selecting the highway mode, control is performed by a value obtained by adding a damping coefficient, so that basically a high damping force can be obtained. As a result, even when the vehicle speed is high, unsprung resonance can be suppressed while positively securing the vehicle body posture during turning by driver input control. In addition, when driving at low vehicle speeds, the sport mode is selected, so that the vehicle posture during turning is positively secured by driver input control, and unsprung resonance is suppressed while skyhook control is performed as appropriate. Can travel in a stable vehicle posture.
尚、モード選択処理については、実施例1では走行状態を検知して自動的に切り替える制御例を示したが、例えば運転者が操作可能な切換スイッチ等を設け、これにより走行モードを選択するように制御してもよい。これにより、運転者の走行意図に応じた乗り心地や旋回性能が得られる。 As for the mode selection process, the control example in which the driving state is detected and automatically switched is shown in the first embodiment. However, for example, a changeover switch that can be operated by the driver is provided to select the driving mode. You may control to. As a result, ride comfort and turning performance according to the driving intention of the driver can be obtained.
(効果)
実施例1にあっては下記に列挙する作用効果を奏する。
(1)S/A3(ショックアブソーバ)のストローク速度を検出する状態推定部32(ストローク速度検出手段)と、状態推定部32により検出されたストローク速度の任意の周波数帯の振幅の大きさを周波数スカラー量として求めるヒルベルト変換処理部352(周波数スカラー量演算手段)と、所定の周波数帯の周波数スカラー量と他の周波数帯の周波数スカラー量との比率を求める比率演算部358(比率演算手段)と、比率演算部358により求められた比率に応じて車体の姿勢を目標姿勢とするS/A3(アクチュエータ)の制御量を演算し、比率の変化速度が高いほど制御量の変化速度を抑制するように補正し、補正した制御量をS/A3に対して出力する周波数感応制御部33b(制御量演算手段、姿勢制御手段)と、を備えた。(effect)
In Example 1, the following effects are listed.
(1) A state estimation unit 32 (stroke speed detection means) that detects the stroke speed of S / A3 (shock absorber), and the amplitude of an arbitrary frequency band of the stroke speed detected by the
すなわち、路面の状況を表すストローク速度の周波数スカラー量の比率に応じて減衰力を設定することで、高周波振動が入力された場合であっても、スカイフック制御のようなベクトル制御に伴う位相ずれを起こす懸念が無く、滑らかな乗り心地が得られるため、乗員への違和感を低減することができる。
また、フワ領域の振動混入比率の変化速度が高いときには減衰力制御量の変化速度を低くするようにしているため、比率の変化速度に関わらず、減衰力制御量の変化速度を同程度にすることができ、乗員への違和感を抑制することができる。That is, by setting the damping force according to the ratio of the frequency scalar quantity of the stroke speed that represents the road surface condition, even when high-frequency vibration is input, the phase shift associated with vector control such as skyhook control Since there is no fear of causing a smooth ride and a sense of incongruity to the occupant can be reduced.
In addition, since the change rate of the damping force control amount is lowered when the change rate of the vibration mixing ratio in the wafer region is high, the change rate of the damping force control amount is made similar regardless of the change rate of the ratio. It is possible to suppress a sense of discomfort to the occupant.
(2)周波数感応制御部33bは、所定の周波数帯の乗員への振動伝達特性に基づいて周波数感応減衰力制御量を演算することとした。
すなわち、低周波数領域であるフワ領域にあっては、比較的周波数に対して乗員の感度が低く、高周波数領域に移行するに従って徐々に感度が増大していく。尚、ブル領域以上の高周波領域は乗員に伝達されにくくなっていく。これらの特性に応じて、各周波数帯のスカラー量に重み付けすることで、各周波数帯のスカラー量と実際に乗員に伝播される振動との相関をより高めることができる。(2) The frequency
That is, in the waft region, which is a low frequency region, the occupant's sensitivity is relatively low with respect to the frequency, and the sensitivity gradually increases as the frequency shifts to the high frequency region. Note that the high frequency region above the bull region becomes difficult to be transmitted to the occupant. By weighting the scalar quantity in each frequency band according to these characteristics, the correlation between the scalar quantity in each frequency band and the vibration actually propagated to the occupant can be further enhanced.
(3)周波数感応制御部33bは、低周波数側の周波数スカラー量に人間感覚重みWf(第一ゲイン)を乗算し、高周波数側の周波数スカラー量にWfよりも大きなWh,Wb(第二ゲイン)を乗算して比率を演算することとした。
これにより、乗員にとって違和感となりやすい高周波数側の振動を効果的に抑制することができる。(3) The frequency
As a result, it is possible to effectively suppress vibrations on the high frequency side that are likely to cause discomfort to the passenger.
(4)周波数感応制御部33bは、比率にばね上共振周波数の1.2Hz程度の(所定の周波数帯に対応した)ばね上共振フィルタ359(周波数フィルタ)を施すこととした。
すなわち、フワ領域は1.2Hz程度に存在することから、この領域の比率も1.2Hz程度で変化すると考えられるため、このフィルタ処理によりノイズを効果的に除去することができる。(4) The frequency
In other words, since the wafer region exists at about 1.2 Hz, the ratio of this region is considered to change at about 1.2 Hz. Therefore, noise can be effectively removed by this filter processing.
(5)状態推定部32は、車輪速の変化に基づいてストローク速度を推定することとした。
これにより、ばね上上下加速度センサや、ストロークセンサといった高価なセンサを備える必要がなく、一般的にどの車両にも搭載されている車輪速センサ5から全ての状態を推定することで、部品点数の削減及びコストの削減を図ることができ、車両搭載性を向上できる。また、車輪速センサ5を使用してストローク速度やばね上速度の推定を行い、スカイフック制御を行うにあたり、ベクトル制御に伴う位相ずれが懸念される場面(例えば、低車速時等、ストロークに伴う車輪速変動が検知しにくい領域)において、周波数感応制御を実施することは特に有利である。尚、実施例1では、ストローク速度検出手段として車輪速センサ5を用いたが、ストロークセンサやばね上上下加速度センサ等を採用して走行状態を検出しても良い。(5) The
Thereby, it is not necessary to provide an expensive sensor such as a sprung vertical acceleration sensor or a stroke sensor. Generally, by estimating all the states from the
(6)S/A3(ショックアブソーバ)のストローク速度の任意の周波数帯の振幅の大きさを周波数スカラー量としたとき、所定の周波数帯の周波数スカラー量と他の周波数帯の周波数スカラー量との比率に応じて車体の姿勢を目標姿勢とするS/A3(アクチュエータ)の制御量を演算し、比率の変化速度が高いほど制御量の変化速度を抑制する周波数感応制御部33b(コントローラ)と、制御量に応じた制御力を発生するS/A3(アクチュエータ)と、を備えた。
よって、フワ領域の振動混入比率の変化速度が高いときには減衰力制御量の変化速度を低くするようにしているため、比率の変化速度に関わらず、減衰力制御量の変化速度を同程度にすることができ、乗員への違和感を抑制することができる。(6) When the amplitude of an arbitrary frequency band of the stroke speed of S / A3 (shock absorber) is defined as a frequency scalar quantity, the frequency scalar quantity of a predetermined frequency band and the frequency scalar quantity of another frequency band A frequency-
Therefore, when the change rate of the vibration mixing ratio in the waving region is high, the change rate of the damping force control amount is lowered, so that the change rate of the damping force control amount is made the same regardless of the change rate of the ratio. It is possible to suppress a sense of discomfort to the occupant.
(7)周波数感応制御部33b(コントローラ)が、ストローク速度の任意の周波数帯の振幅の大きさを周波数スカラー量としたとき、所定の周波数帯の周波数スカラー量と他の周波数帯の周波数スカラー量との比率に応じて車体の姿勢を目標姿勢とするアクチュエータの制御量を演算し、比率の変化速度が高いほど制御量の変化速度を抑制するように演算し、制御量をS/A3(アクチュエータ)の制御力で制御する。
よって、フワ領域の振動混入比率の変化速度が高いときには減衰力制御量の変化速度を低くするようにしているため、比率の変化速度に関わらず、減衰力制御量の変化速度を同程度にすることができ、乗員への違和感を抑制することができる。(7) When the frequency
Therefore, when the change rate of the vibration mixing ratio in the waving region is high, the change rate of the damping force control amount is lowered, so that the change rate of the damping force control amount is made the same regardless of the change rate of the ratio. It is possible to suppress a sense of discomfort to the occupant.
Claims (7)
前記ストローク速度検出手段により検出されたストローク速度の任意の周波数帯の振幅の大きさを周波数スカラー量として求める周波数スカラー量演算手段と、
乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域である0.5〜3Hzに相当する周波数スカラー量と他の周波数帯の周波数スカラー量との比率を求める比率演算手段と、
前記比率演算手段により求められた前記比率に応じて車体の姿勢を目標姿勢とするアクチュエータの制御量を演算する制御量演算手段と
前記比率演算手段により求められた前記比率の変化速度が高いほど、前記制御量演算手段において演算した前記制御量の変化速度を抑制するように補正し、補正した前記制御量を前記ショックアブソーバに対して出力する姿勢制御手段と、
を備えたことを特徴とする車両の制御装置。 Stroke speed detecting means for detecting the stroke speed of the shock absorber;
A frequency scalar quantity computing means for obtaining the amplitude magnitude of an arbitrary frequency band of the stroke speed detected by the stroke speed detecting means as a frequency scalar quantity;
A ratio calculation means for obtaining a ratio between a frequency scalar amount corresponding to 0.5 to 3 Hz , which is a frequency region that brings about a sense that the gravitational acceleration acting on the occupant is reduced, and a frequency scalar amount in another frequency band;
Rate of change of the ratio obtained is higher by the control amount calculating means and the ratio calculation means of the vehicle body posture calculating a control amount of the target posture and to luer actuator in response to the ratio determined by the ratio calculation means The posture control means for correcting the control amount calculated by the control amount calculation means so as to suppress the change speed and outputting the corrected control amount to the shock absorber;
A vehicle control device comprising:
前記制御量演算手段は、前記乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域に相当する周波数帯の乗員への振動伝達特性に基づいて前記制御量を演算することを特徴とする車両の制御装置。 The vehicle control device according to claim 1 ,
The control amount calculation means calculates the control amount based on a vibration transmission characteristic to an occupant in a frequency band corresponding to a frequency range that brings about a feeling that gravity acceleration acting on the occupant is reduced. Vehicle control device.
前記制御量演算手段は、前記乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域に相当する前記周波数スカラー量に第一ゲインを乗算し、前記乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域よりも高周波数側の周波数帯の前記周波数スカラー量に前記第一ゲインよりも大きな第二ゲインを乗算して前記比率を演算することを特徴とする車両の制御装置。 The vehicle control device according to claim 2 ,
The control amount calculation means multiplies the frequency scalar corresponding to the frequency region that brings about a feeling that the gravitational acceleration acting on the occupant is reduced by a first gain, and the gravitational acceleration acting on the occupant is reduced. A vehicle control device, wherein the ratio is calculated by multiplying the frequency scalar quantity in a frequency band higher than a frequency region that brings a sense of sensation by a second gain larger than the first gain.
前記制御量演算手段は、前記比率に前記乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域に相当する周波数帯に対応した周波数フィルタを施すことを特徴とする車両の制御装置。 The vehicle control device according to any one of claims 1 to 3 ,
The control device for a vehicle according to claim 1, wherein the control amount calculation means applies a frequency filter corresponding to a frequency band corresponding to a frequency region that brings about a feeling that the gravitational acceleration acting on the occupant is reduced to the ratio.
前記ストローク速度検出手段は、車輪速の変化に基づいてストローク速度を推定することを特徴とする車両の制御装置。 The vehicle control device according to any one of claims 1 to 4 ,
The vehicle speed control means for estimating a stroke speed based on a change in wheel speed.
前記制御量に応じた制御力を発生するアクチュエータと、
を備える車両の制御装置。 Frequency scalar amount corresponding to 0.5 to 3 Hz , which is a frequency range that brings about the feeling that the acceleration of gravity acting on the occupant is reduced when the magnitude of the amplitude of the shock absorber stroke speed in any frequency band is defined as the frequency scalar amount. A controller that calculates a control amount of an actuator having the posture of the vehicle body as a target posture in accordance with a ratio between the frequency scalar quantity in another frequency band and a controller that suppresses the change rate of the control amount as the change rate of the ratio increases. ,
An actuator that generates a control force according to the control amount;
A vehicle control apparatus comprising:
ストローク速度の任意の周波数帯の振幅の大きさを周波数スカラー量としたとき、乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域である0.5〜3Hzに相当する周波数スカラー量と他の周波数帯の周波数スカラー量との比率に応じて車体の姿勢を目標姿勢とするアクチュエータの制御量を演算し、
前記比率の変化速度が高いほど前記制御量の変化速度を抑制するように演算し、
前記制御量をアクチュエータの制御力で制御することを特徴とする車両の制御方法。 The controller
When the magnitude of the amplitude of an arbitrary frequency band of the stroke speed is defined as the frequency scalar quantity, the frequency scalar quantity corresponding to 0.5 to 3 Hz , which is the frequency range that brings about the feeling that the gravitational acceleration acting on the occupant is reduced, and other Calculate the control amount of the actuator with the body posture as the target posture according to the ratio to the frequency scalar amount in the frequency band,
The higher the rate of change of the ratio, the higher the rate of change of the control amount.
A control method for a vehicle, wherein the control amount is controlled by a control force of an actuator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013555269A JP5842935B2 (en) | 2012-01-25 | 2013-01-22 | Vehicle control apparatus and vehicle control method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012012597 | 2012-01-25 | ||
JP2012012597 | 2012-01-25 | ||
PCT/JP2013/051182 WO2013111742A1 (en) | 2012-01-25 | 2013-01-22 | Vehicle control system and vehicle control method |
JP2013555269A JP5842935B2 (en) | 2012-01-25 | 2013-01-22 | Vehicle control apparatus and vehicle control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013111742A1 JPWO2013111742A1 (en) | 2015-05-11 |
JP5842935B2 true JP5842935B2 (en) | 2016-01-13 |
Family
ID=48873462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013555269A Active JP5842935B2 (en) | 2012-01-25 | 2013-01-22 | Vehicle control apparatus and vehicle control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5842935B2 (en) |
WO (1) | WO2013111742A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220234408A1 (en) * | 2021-01-28 | 2022-07-28 | Volvo Car Corporation | Limiting vehicle damper jerk |
US12128726B2 (en) | 2021-01-28 | 2024-10-29 | Volvo Car Corporation | Rear damper adjustment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6259944B1 (en) | 2017-07-07 | 2018-01-10 | 株式会社ショーワ | Control device and suspension system for suspension system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2917652B2 (en) * | 1991-06-10 | 1999-07-12 | 株式会社デンソー | Suspension control device |
JPH0680007A (en) * | 1992-09-03 | 1994-03-22 | Omron Corp | Vehicle control device |
JPH06227228A (en) * | 1993-02-03 | 1994-08-16 | Nippondenso Co Ltd | Suspension control device |
JP3093567B2 (en) * | 1994-05-23 | 2000-10-03 | 株式会社デンソー | Electronic suspension system |
JPH08238915A (en) * | 1995-03-06 | 1996-09-17 | Nippondenso Co Ltd | Vehicle body behavior controller |
JPH1134631A (en) * | 1997-07-24 | 1999-02-09 | Mitsubishi Electric Corp | Electronically controlled suspension device |
JP5224039B2 (en) * | 2008-03-31 | 2013-07-03 | 日立オートモティブシステムズ株式会社 | Suspension control device |
JP5121686B2 (en) * | 2008-12-15 | 2013-01-16 | 日本車輌製造株式会社 | Railway vehicle vibration control device |
-
2013
- 2013-01-22 WO PCT/JP2013/051182 patent/WO2013111742A1/en active Application Filing
- 2013-01-22 JP JP2013555269A patent/JP5842935B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220234408A1 (en) * | 2021-01-28 | 2022-07-28 | Volvo Car Corporation | Limiting vehicle damper jerk |
US12005752B2 (en) * | 2021-01-28 | 2024-06-11 | Volvo Car Corporation | Limiting vehicle damper jerk |
US12128726B2 (en) | 2021-01-28 | 2024-10-29 | Volvo Car Corporation | Rear damper adjustment |
Also Published As
Publication number | Publication date |
---|---|
WO2013111742A1 (en) | 2013-08-01 |
JPWO2013111742A1 (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5733431B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5668873B2 (en) | Vehicle control device | |
JP5741719B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5668872B2 (en) | Vehicle control device | |
JP5741718B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5783270B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5733430B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5804088B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5998492B2 (en) | Vehicle control device | |
JP5842935B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5737432B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5817849B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5737433B2 (en) | Vehicle control device | |
JP5928484B2 (en) | Vehicle control device | |
JP5858054B2 (en) | Vehicle control device | |
JP5862685B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5858053B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5804091B2 (en) | Vehicle control device | |
JP5929923B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5737430B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5807684B2 (en) | Vehicle control apparatus and vehicle control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151020 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151102 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5842935 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |