JP5842238B2 - Pulley type continuously variable transmission mechanism - Google Patents

Pulley type continuously variable transmission mechanism Download PDF

Info

Publication number
JP5842238B2
JP5842238B2 JP2011270405A JP2011270405A JP5842238B2 JP 5842238 B2 JP5842238 B2 JP 5842238B2 JP 2011270405 A JP2011270405 A JP 2011270405A JP 2011270405 A JP2011270405 A JP 2011270405A JP 5842238 B2 JP5842238 B2 JP 5842238B2
Authority
JP
Japan
Prior art keywords
driven
pulley
pulley half
axial direction
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011270405A
Other languages
Japanese (ja)
Other versions
JP2013122274A (en
Inventor
文俊 石野
文俊 石野
中川 茂明
茂明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Kokyukoki Manufacturing Co Ltd
Original Assignee
Kanzaki Kokyukoki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Kokyukoki Manufacturing Co Ltd filed Critical Kanzaki Kokyukoki Manufacturing Co Ltd
Priority to JP2011270405A priority Critical patent/JP5842238B2/en
Priority to US13/546,886 priority patent/US20130150190A1/en
Priority to EP12178658.6A priority patent/EP2602513B1/en
Publication of JP2013122274A publication Critical patent/JP2013122274A/en
Application granted granted Critical
Publication of JP5842238B2 publication Critical patent/JP5842238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Description

本発明は、駆動軸に支持された駆動側プーリーと従動軸に支持された従動側プーリーと前記両プーリーに巻き回された無端体とを備え、前記駆動側プーリー及び前記従動側プーリーに対する前記無端体の巻き掛け半径を変化させることによって無段変速するプーリー式無段変速機構に関する。   The present invention comprises a driving pulley supported by a driving shaft, a driven pulley supported by a driven shaft, and an endless body wound around the pulleys, and the endless with respect to the driving pulley and the driven pulley. The present invention relates to a pulley type continuously variable transmission mechanism that continuously changes speed by changing a winding radius of a body.

駆動軸に支持された駆動側プーリーと従動軸に支持された従動側プーリーと前記両プーリーに巻き回された無端体とを備え、前記駆動側プーリー及び前記従動側プーリーに対する前記無端体の巻き掛け半径を変化させることによって前記駆動軸から前記従動軸に伝達される回転動力の速度を無段変速させるプーリー式無段変速機構は、従来から種々提案されている(例えば下記特許文献1参照)。   A drive-side pulley supported by the drive shaft, a driven-side pulley supported by the driven shaft, and an endless body wound around the both pulleys, the endless body being wound around the drive-side pulley and the driven-side pulley Various pulley-type continuously variable transmission mechanisms that continuously change the speed of rotational power transmitted from the drive shaft to the driven shaft by changing the radius have been proposed (see, for example, Patent Document 1 below).

詳しくは、前記駆動側プーリーは、前記駆動軸に相対回転不能且つ軸線方向移動不能に支持された駆動側固定プーリー半体と、前記駆動軸に相対回転不能且つ所定量だけ軸線方向移動可能に支持された駆動側可動プーリー半体とを含んでおり、前記駆動側可動プーリー半体の軸線方向移動に応じて前記無端体の前記駆動側プーリーに対する巻き掛け半径が変化するようになっている。   More specifically, the drive pulley is supported by a drive-side fixed pulley half that is relatively non-rotatable and axially movable on the drive shaft, and is non-rotatably supported by the drive shaft and axially movable by a predetermined amount. The drive-side movable pulley half is included, and the winding radius of the endless body with respect to the drive-side pulley changes according to the axial movement of the drive-side movable pulley half.

同様に、前記従動側プーリーは、前記従動軸に相対回転不能且つ軸線方向移動不能に支持された従動側固定プーリー半体と、前記従動軸に相対回転不能且つ所定量だけ軸線方向移動可能に支持された従動側可動プーリー体とを含んでおり、前記従動側可動プーリー半体の軸線方向移動に応じて前記無端体の前記駆動従動側プーリーに対する巻き掛け半径が変化するようになっている。 Similarly, the driven pulley is supported by a driven fixed pulley half that is supported relative to the driven shaft so as not to rotate relative to the axial direction, and is not supported relative to the driven shaft so as to be movable relative to the driven shaft in the axial direction. The driven-side movable pulley half is included, and the winding radius of the endless body with respect to the drive driven-side pulley changes according to the axial movement of the driven-side movable pulley half.

しかしながら、前記特許文献1に記載のプーリー式無段変速機構においては、前記固定プーリー半体及び前記可動プーリー半体は構成部品が互いに対して全く異なっており、従って、コストの低廉化を十分には図れないという問題があった。   However, in the pulley-type continuously variable transmission mechanism described in Patent Document 1, the fixed pulley half and the movable pulley half are completely different from each other in components, so that the cost can be sufficiently reduced. There was a problem that could not be planned.

詳しく説明すると、前記各プーリー体は、筒部と前記筒部から径方向外方へ延びる本体部とを有している。
前記固定プーリー半体の筒部は対応する軸に外挿され、一方、前記可動プーリー半体の筒部は前記固定プーリー半体の筒部に外挿されている。つまり、従来構成においては、前記固定プーリー半体の筒部と前記可動プーリー半体の筒部とは内径及び外径に関し寸法が異なっている。
又、前記筒部の外径が異なることにより、前記固定プーリー体の筒部に固着される本体部と前記可動プーリー半体の筒部に固着される本体部とは内径に関し寸法が異なっている。
More specifically, each pulley half has a cylinder part and a main body part extending radially outward from the cylinder part.
The cylindrical part of the fixed pulley half is extrapolated to the corresponding shaft, while the cylindrical part of the movable pulley half is extrapolated to the cylindrical part of the fixed pulley half. That is, in the conventional configuration, the cylindrical portion of the fixed pulley half and the cylindrical portion of the movable pulley half have different dimensions with respect to the inner diameter and the outer diameter.
Further, by the outer diameter of the tubular portion are different, the main body portion which is fixed to the cylindrical portion of the fixed pulley half body and said body portion which is fixed to the cylindrical portion of the movable pulley half body different dimensions relates inner diameter Yes.

特開平01−283454号公報Japanese Patent Laid-Open No. 01-283454

本発明は、前記従来技術に鑑みなされたものであり、駆動側固定プーリー半体及び駆動側可動プーリー半体を含む駆動側プーリーと従動側固定プーリー半体及び従動側可動プーリー半体を含む従動側プーリーとを備えたプーリー無段変速機構であって、各プーリー半体の可及的な部品共通化によってコストを低減させ得るプーリー式無段変速機構の提供を、目的とする。   The present invention has been made in view of the prior art, and includes a driving side pulley including a driving side fixed pulley half and a driving side movable pulley half, a driven side fixed pulley half, and a driven side including a driven side movable pulley half. It is an object of the present invention to provide a pulley-type continuously variable transmission mechanism including a side pulley, which can reduce the cost by using as many common parts as possible for each pulley half.

本発明は、前記目的を達成する為に、駆動軸から従動軸に伝達する動力の回転速度を無段変速するプーリー式無段変速機構であって、前記駆動軸に相対回転不能且つ軸線方向移動不能に支持された駆動側固定プーリー半体と、前記駆動側固定プーリー半体と対向状態で前記駆動軸に相対回転不能且つ所定量だけ軸線方向移動可能に支持された駆動側可動プーリー半体と、前記駆動側可動プーリー半体を前記駆動側固定プーリー半体に向けて付勢する駆動側付勢部材と、前記従動軸に相対回転不能且つ軸線方向移動不能に支持された従動側固定プーリー半体と、前記従動側固定プーリー半体と対向状態で前記従動軸に相対回転不能且つ所定量だけ軸線方向移動可能に支持された従動側可動プーリー体と、前記従動側可動プーリー半体を前記従動側固定プーリー半体に向けて付勢する従動側付勢部材であって、前記駆動側付勢部材よりも付勢力が大とされた従動側付勢部材と、外部操作力に応じて前記動側付勢部材の付勢力を上昇させる変速操作機構と、前記駆動側固定プーリー半体及び可動プーリー半体に狭圧され且つ前記従動側固定プーリー半体及び可動プーリー半体に狭圧された無端体とを備え、前記各プーリー半体は、対応する軸に軸線方向移動可能に外挿される筒部と、前記筒部の軸線方向一端側から径方向外方へ延びる本体部であって、径方向内方から外方へ行くに従って前記筒部の軸線方向に関し該筒部の他端側に位置するように傾斜された円錐面を有する本体部とを含むプーリー形成体を備えている点において共通し、前記駆動側及び従動側の固定プーリー半体を形成する前記プーリー形成体の筒部には、対応する軸に設けられたピンが係入されて、前記筒部を対応する軸に対して軸線方向移動不能に固定する為の固定孔が設けられ、前記駆動側及び従動側の可動プーリー半体を形成する前記プーリー形成体の筒部には、対応する軸に設けられたピンが係入されて、前記筒部が対応する軸に対して所定距離だけ軸線方向に沿って移動することを許容する摺動溝が設けられているプーリー式無段変速機構を提供する。 In order to achieve the above object, the present invention is a pulley type continuously variable transmission mechanism that continuously changes the rotational speed of power transmitted from a drive shaft to a driven shaft, and is not relatively rotatable with respect to the drive shaft and moves in the axial direction. A drive-side fixed pulley half supported in an impossible manner, and a drive-side movable pulley half supported by the drive shaft so as to be relatively unrotatable and movable in the axial direction by a predetermined amount while facing the drive-side fixed pulley half. A drive-side biasing member that biases the drive-side movable pulley half toward the drive-side fixed pulley half, and a driven-side fixed pulley half that is supported by the driven shaft so as not to be relatively rotatable and axially movable. A driven-side movable pulley half that is supported by the driven shaft so as not to rotate relative to the driven shaft and to be movable in the axial direction by a predetermined amount in a state of being opposed to the driven-side fixed pulley half, and the driven-side movable pulley half Obedience A driven urging member for urging the side fixed pulley half body, and a driven biasing member biasing force than the driving-side biasing member is large, the drive in response to an external operation force A speed change operation mechanism for increasing the urging force of the moving-side urging member, and the pressure on the driving-side fixed pulley half and the movable pulley half, and the pressure on the driven-side fixed pulley half and the movable pulley half Each of the pulley halves is a cylindrical portion that is extrapolated to the corresponding shaft so as to be movable in the axial direction, and a main body portion that extends radially outward from one axial end side of the cylindrical portion, A pulley forming body including a main body portion having a conical surface inclined so as to be positioned on the other end side of the cylindrical portion with respect to the axial direction of the cylindrical portion as going from the radially inner side to the outer side. In common, the driving pulley and the driven pulley half The cylindrical portion of the pulley forming body formed by pins provided on the corresponding axis is engaged, fixing hole for axially immovably fixing is provided for the corresponding axis said cylindrical portion A pin provided on a corresponding shaft is engaged with a cylindrical portion of the pulley forming body that forms the movable pulley halves on the driving side and the driven side, and the cylindrical portion is predetermined with respect to the corresponding shaft. Provided is a pulley type continuously variable transmission mechanism provided with a sliding groove that allows movement along an axial direction by a distance.

好ましくは、前記駆動側及び従動側の固定プーリー半体を形成する前記プーリー形成体の筒部は、軸線方向一端側に位置し、外径が大とされた大径部と、前記大径部から段差を伴って軸線方向他端側へ延び、外径が小とされた小径部とを有し得る。   Preferably, the cylindrical portion of the pulley forming body forming the driving-side and driven-side stationary pulley halves is positioned on one end side in the axial direction, and has a large-diameter portion having a large outer diameter, and the large-diameter portion And a small-diameter portion that extends toward the other end in the axial direction with a step and has a small outer diameter.

一形態においては、前記従動側可動プーリー半体を形成する前記プーリー形成体の筒部に設けた前記摺動溝は、前記筒部が対応する前記従動軸の軸線方向一方側から他方側へ移動するに従って前記筒部を前記従動軸の軸線回り一方側から他方側へ移動させるカム領域を含み得る。   In one form, the said sliding groove provided in the cylinder part of the said pulley formation body which forms the said driven side movable pulley half body moves to the other side from the one axial direction of the said driven shaft to which the said cylinder part respond | corresponds Accordingly, a cam region may be included for moving the cylindrical portion from one side to the other side around the axis of the driven shaft.

例えば、前記本体部は本体部形成部材によって形成され、前記筒部は前記本体部形成部材とは別体とされた筒部形成部材によって形成される。
前記本体部形成部材は、所定内径の中央孔が設けられた径方向内方部と、前記径方向内方部から径方向外方へ延び且つ前記円錐面が設けられた径方向外方部とを有するものとされ、前記筒部形成部材は、前記中央孔に当接状態で内挿される内挿部と、前記内挿部の軸線方向一端側において径方向外方へ延在された鍔部とを有するものとされる。
前記径方向内方部は、軸線方向に関し前記円錐面と同一方向及び反対方向を向く外表面及び内表面を有する。
この場合、前記筒部形成部材は、前記鍔部が前記外表面に当接され且つ前記内挿部が前記貫通孔に内挿された状態で前記本体部形成部材に固着され、前記径方向内方部の内表面が、対応する前記付勢部材の一端部を直接又は間接的に係止するストッパーとして作用する。
For example, the main body portion is formed by a main body portion forming member, and the cylindrical portion is formed by a cylindrical portion forming member that is separated from the main body portion forming member.
The main body forming member includes a radially inner portion provided with a central hole having a predetermined inner diameter, and a radially outer portion extending radially outward from the radially inner portion and provided with the conical surface. The cylindrical portion forming member includes an insertion portion that is inserted in contact with the central hole, and a flange portion that extends radially outward at one axial end side of the insertion portion. It is supposed to have.
The radially inner portion has an outer surface and an inner surface facing in the same direction as the conical surface and in the opposite direction with respect to the axial direction.
In this case, the tubular portion forming member is fixed to the main body portion forming member in a state where the collar portion is in contact with the outer surface and the insertion portion is inserted into the through hole, The inner surface of the side portion acts as a stopper for directly or indirectly locking one end portion of the corresponding urging member.

好ましくは、前記径方向内方部は前記径方向外方部の径方向内端から凹まされており、前記筒部形成部材の前記鍔部は前記径方向内方部によって画される凹部内に位置される。   Preferably, the radially inner portion is recessed from a radially inner end of the radially outer portion, and the flange portion of the tubular portion forming member is in a recess defined by the radially inner portion. Be positioned.

本発明に係るプーリー式無段変速機構によれば、駆動側固定プーリー半体、駆動側可動プーリー半体、従動側固定プーリー半体及び従動側可動プーリー半体は、対応する軸に軸線方向移動可能に外挿される筒部と、前記筒部の軸線方向一端側から径方向外方へ延びる本体部であって、径方向内方から外方へ行くに従って前記筒部の軸線方向に関し該筒部の他端側に位置するように傾斜された円錐面を有する本体部とを含むプーリー形成体を備えている点において共通しており、前記駆動側及び従動側の固定プーリー半体を形成する前記プーリー形成体の筒部には固定孔が設けられ、前記駆動側及び従動側の可動プーリー半体を形成する前記プーリー形成体の筒部には前記筒部が対応する軸に対して所定距離だけ軸線方向に沿って移動することを許容する摺動溝が設けられているので、可及的な部品共通化によるコストの低廉を図ることができる。   According to the pulley type continuously variable transmission mechanism according to the present invention, the driving-side fixed pulley half, the driving-side movable pulley half, the driven-side fixed pulley half, and the driven-side movable pulley half move in the axial direction on the corresponding axes. A cylindrical portion that can be extrapolated, and a main body portion extending radially outward from one axial end side of the cylindrical portion, the cylindrical portion being directed in the axial direction of the cylindrical portion from the radially inner side to the outer side. And a pulley forming body including a main body portion having a conical surface inclined so as to be positioned on the other end side, and forming the driving-side and driven-side stationary pulley halves. A fixed hole is provided in the cylindrical portion of the pulley forming body, and the cylindrical portion of the pulley forming body forming the movable pulley halves on the driving side and the driven side is a predetermined distance from the axis corresponding to the cylindrical portion. Move along the axial direction The sliding groove tolerated is provided, it is possible to inexpensively costs by as much as possible components common.

図1は、本発明の一実施の形態に係るプーリー式無段変速機構が適用された作業車輌の側面図である。FIG. 1 is a side view of a working vehicle to which a pulley type continuously variable transmission mechanism according to an embodiment of the present invention is applied. 図2は、前記プーリー式無段変速機構の縦断側面図である。FIG. 2 is a longitudinal side view of the pulley type continuously variable transmission mechanism. 図3は、図1におけるIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 図4は、図1におけるIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 図5は、前記作業車輌における前後進切換機構の第1変形例の縦断背面図である。FIG. 5 is a longitudinal rear view of a first modified example of the forward / reverse switching mechanism in the working vehicle. 図6は、前後進切換機構の第2変形例の縦断背面図である。FIG. 6 is a longitudinal rear view of a second modification of the forward / reverse switching mechanism. 図7(a)及び(b)は、前記プーリー式無段変速機構における固定プーリー半体及び可動プーリー半体の縦断面図である。7 (a) and 7 (b) are longitudinal sectional views of a fixed pulley half and a movable pulley half in the pulley type continuously variable transmission mechanism. 図8は、プーリー形成体の縦断面図である。FIG. 8 is a longitudinal sectional view of the pulley forming body. 図9は、前記可動プーリー半体の変形例の縦断面図である。FIG. 9 is a longitudinal sectional view of a modification of the movable pulley half.

以下、本発明に係るプーリー式無段変速機構の一実施の形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of a pulley type continuously variable transmission mechanism according to the present invention will be described with reference to the accompanying drawings.

本実施の形態に係る前記プーリー式無段変速機構100は作業車輌1における走行系伝動経路に介挿されている。
まず、本実施の形態に係る前記プーリー式無段変速機構100が適用された前記作業車輌1の全体構成について説明する。
The pulley type continuously variable transmission mechanism 100 according to the present embodiment is inserted in a traveling system transmission path in the work vehicle 1.
First, the overall configuration of the working vehicle 1 to which the pulley type continuously variable transmission mechanism 100 according to the present embodiment is applied will be described.

図1に、前記作業車輌1の側面図を示す。
図1に示すように、前記作業車輌1は乗用芝刈り機の形態をなしている。
詳しくは、前記作業車輌1は、車輌フレーム10と、前記車輌フレーム10に支持された前輪15F及び後輪15Rと、前記車輌フレーム10に支持された運転席20と、前記車輌フレーム10に支持された、垂直な出力軸を有する駆動源25と、前記駆動源25から前記前輪15F及び前記後輪15Rのうち駆動輪として作用する車輪へ至る走行系伝動経路に介挿された前記プーリー式無段変速機構100と、前記駆動源25からの回転動力によって作動的に駆動される状態で前記車輌フレーム10に支持されたモア装置30と、前記運転席20の近傍に配置された変速操作部材35と、前記運転席20の近傍に配置された操舵部材40とを備えている。
FIG. 1 shows a side view of the working vehicle 1.
As shown in FIG. 1, the working vehicle 1 is in the form of a riding lawn mower.
Specifically, the working vehicle 1 is supported by a vehicle frame 10, front wheels 15 F and rear wheels 15 R supported by the vehicle frame 10, a driver seat 20 supported by the vehicle frame 10, and the vehicle frame 10. The pulley-type continuously variable drive source 25 having a vertical output shaft, and the pulley-type steplessly inserted in the traveling system transmission path from the drive source 25 to the wheels acting as drive wheels among the front wheels 15F and the rear wheels 15R. A speed change mechanism 100, a mower device 30 supported by the vehicle frame 10 in a state of being operatively driven by rotational power from the drive source 25, and a speed change operating member 35 disposed in the vicinity of the driver seat 20. And a steering member 40 disposed in the vicinity of the driver's seat 20.

図2に、前記プーリー式無段変速機構100の縦断側面図を示す。
さらに、図3及び図4に、それぞれ、図1におけるIII-III線及びIV-IV線に沿った断面図を示す。
FIG. 2 shows a longitudinal side view of the pulley type continuously variable transmission mechanism 100.
3 and 4 are cross-sectional views taken along lines III-III and IV-IV in FIG. 1, respectively.

図2及び図4に示すように、前記作業車輌1は、さらに、前記走行系伝動経路に介挿された前後進切換機構300及びデファレンシャルギヤ機構400を有している。
なお、本実施の形態においては、前記後輪15Rが駆動輪とされている。
従って、前記プーリー式無段変速機構100、前記前後進切換機構300及び前記デファレンシャルギヤ機構400は、前記駆動源25から前記後輪15Rへ至る伝動経路に介挿されている。
又、本実施の形態においては、前記前輪15Fが操舵輪とされており、前記操舵部材40への人為操作に応じて前記前輪15Fが操舵されるようになっている。
As shown in FIGS. 2 and 4, the work vehicle 1 further includes a forward / reverse switching mechanism 300 and a differential gear mechanism 400 inserted in the traveling system transmission path.
In the present embodiment, the rear wheel 15R is a drive wheel.
Accordingly, the pulley type continuously variable transmission mechanism 100, the forward / reverse switching mechanism 300, and the differential gear mechanism 400 are inserted in a transmission path from the drive source 25 to the rear wheel 15R.
Further, in the present embodiment, the front wheel 15F is a steering wheel, and the front wheel 15F is steered in response to an artificial operation on the steering member 40.

前記プーリー式無段変速機構100は、前記走行系伝動経路における垂直な駆動軸50から垂直な従動軸55へ動力を伝達しつつ、前記従動軸55に伝達される回転動力の速度を無段変速し得るように構成されている。   The pulley-type continuously variable transmission mechanism 100 continuously transmits the power from the vertical drive shaft 50 to the vertical driven shaft 55 in the traveling system transmission path, and continuously speeds the rotational power transmitted to the driven shaft 55. It is configured to be able to.

詳しくは、図2及び図3に示すように、前記プーリー式無段変速機構100は、前記駆動軸50に相対回転不能且つ軸線方向移動不能に支持された駆動側固定プーリー半体110と、前記駆動側固定プーリー半体110と対向状態で前記駆動軸50に相対回転不能且つ所定量だけ軸線方向移動可能に支持された駆動側可動プーリー半体120と、前記駆動側可動プーリー半体120を前記駆動側固定プーリー半体110に向けて付勢する駆動側付勢部材130と、前記従動軸55に相対回転不能且つ軸線方向移動不能に支持された従動側固定プーリー半体140と、前記従動側固定プーリー半体140と対向状態で前記従動軸55に相対回転不能且つ所定量だけ軸線方向移動可能に支持された従動側可動プーリー体150と、前記従動側可動プーリー半体150を前記従動側固定プーリー半体140に向けて付勢する従動側付勢部材160であって、前記駆動側付勢部材130よりも付勢力が大とされた従動側付勢部材160と、外部操作力に応じて前記従動側付勢部材130の付勢力を上昇させる変速操作機構170と、前記駆動側固定プーリー半体110及び可動プーリー半体130を含む駆動側プーリー並びに前記従動側固定プーリー半体140及び可動プーリー半体150を含む従動側プーリーに巻き回された無端体180とを備えている。 Specifically, as shown in FIGS. 2 and 3, the pulley-type continuously variable transmission mechanism 100 includes a driving-side fixed pulley half 110 supported on the driving shaft 50 so as not to be relatively rotatable and axially movable, A driving-side movable pulley half 120 supported by the driving shaft 50 so as not to rotate relative to the driving-side fixed pulley half 110 and to be movable in the axial direction by a predetermined amount. A drive-side biasing member 130 that biases the drive-side fixed pulley half 110 toward the drive-side fixed pulley half 110; a driven-side fixed pulley half 140 supported by the driven shaft 55 so as not to be relatively rotatable and axially movable; and the driven side a fixed pulley half body 140 and the relative rotation and a predetermined amount of the driven shaft 55 in the opposite state for axially movably supported driven-side movable pulley half body 150, the driven-friendly A driven-side urging member 160 that urges the pulley half 150 toward the driven-side fixed pulley half 140, wherein the urging force is larger than that of the driving-side urging member 130. 160, a speed change operation mechanism 170 that increases the biasing force of the driven-side biasing member 130 in response to an external operating force, a driving-side pulley including the driving-side fixed pulley half 110 and the movable pulley half 130, and the driven And an endless body 180 wound around a driven pulley including a side fixed pulley half 140 and a movable pulley half 150.

前記駆動軸50の上端側を支持する軸受90aと下端側を支持する軸受90bは、前記車輌フレーム10に対して固定したクロスメンバ101、102に保持される。また、前記従動軸55の上端側を支持する軸受90bも、前記車輌フレーム10に対して固定したクロスメンバ103に保持される。
前記変速操作機構170は、操作アーム部170aと支軸部170bとフォーク部170cとを備えており、前記支軸部170bが略水平に沿うように前記クロスメンバ102に支持されている。
A bearing 90 a that supports the upper end side of the drive shaft 50 and a bearing 90 b that supports the lower end side are held by cross members 101 and 102 fixed to the vehicle frame 10. The bearing 90 b that supports the upper end side of the driven shaft 55 is also held by the cross member 103 that is fixed to the vehicle frame 10.
The speed change operation mechanism 170 includes an operation arm portion 170a, a support shaft portion 170b, and a fork portion 170c, and the support shaft portion 170b is supported by the cross member 102 so as to be substantially horizontal.

前記プーリー式無段変速機構100は、以下のように作動する。
即ち、前記従動側付勢部材160の付勢力が前記駆動側付勢部材130の付勢力よりも大とされているので、前記変速操作機構170に外部操作力が付加されない初期状態においては、前記駆動側可動プーリー半体120及び前記駆動側固定プーリー体110の間の離間距離が最大となり且つ前記従動側可動プーリー半体150及び前記従動側固定プーリー半体140の間の離間力が最小となる。
The pulley type continuously variable transmission mechanism 100 operates as follows.
That is, since the urging force of the driven urging member 160 is greater than the urging force of the driving urging member 130, in the initial state where no external operating force is applied to the speed change operation mechanism 170, The separation distance between the driving side movable pulley half 120 and the driving side fixed pulley half 110 is maximized, and the separation force between the driven side movable pulley half 150 and the driven side fixed pulley half 140 is minimized. Become.

この状態においては、前記駆動側固定プーリー体110及び前記駆動側可動プーリー半体120によって形成される駆動側プーリーに対する前記無端体180の巻き掛け半径が最小で且つ前記従動側固定プーリー半体140及び前記従動側可動プーリー半体150によって形成される従動側プーリーに対する前記無端体180の巻き掛け半径が最大の最低速状態となる(図2参照)。 In this state, the winding radius of the endless body 180 with respect to the driving pulley formed by the driving-side fixed pulley half 110 and the driving-side movable pulley half 120 is minimum, and the driven-side fixed pulley half 140 is driven. In addition, the winding radius of the endless body 180 with respect to the driven pulley formed by the driven movable pulley half 150 is in the minimum speed state (see FIG. 2).

前記最低速状態から前記変速操作機構170に外部操作力が付加されると、前記変速操作機構170が前記外部操作力の上昇に応じて前記駆動側付勢部材130の付勢力を上昇させる。これにより、前記駆動側可動プーリー半体120が前記駆動側固定プーリー半体110に近接する方向へ前記駆動軸50の軸線方向に沿って移動し、同時に、前記従動側可動プーリー半体150が前記従動側固定プーリー半体140から離間する方向へ前記従動軸55の軸線方向に沿って移動する。
従って、前記駆動側プーリーに対する前記無端体180の巻き掛け半径が大きくなり、これに応じて前記従動側プーリーに対する前記無端体180の巻き掛け半径が小さくなり、前記従動軸55の回転速度が上昇する。
好ましくは、前記駆動軸50のうち前記駆動側可動プーリー半体120が移動する領域及び前記従動軸55のうち前記従動側可動プーリー半体150が移動する領域には低摩擦コーティングを施すことができる。
When an external operation force is applied to the shift operation mechanism 170 from the lowest speed state, the shift operation mechanism 170 increases the urging force of the drive-side urging member 130 in accordance with the increase in the external operation force. As a result, the drive-side movable pulley half 120 moves along the axial direction of the drive shaft 50 in the direction approaching the drive-side fixed pulley half 110, and at the same time, the driven-side movable pulley half 150 It moves along the axial direction of the driven shaft 55 in a direction away from the driven-side fixed pulley half 140.
Accordingly, the winding radius of the endless body 180 with respect to the driving pulley increases, and accordingly, the winding radius of the endless body 180 with respect to the driven pulley decreases, and the rotational speed of the driven shaft 55 increases. .
Preferably, a low-friction coating can be applied to a region of the drive shaft 50 where the driving-side movable pulley half 120 moves and a region of the driven shaft 55 where the driven-side movable pulley half 150 moves. .

本実施の形態においては、図2に示すように、前記駆動軸50には前記駆動側可動プーリー半体120の背面側(前記駆動側固定プーリー半体110とは反対側)に駆動側エンドキャップ135が支持されており、前記駆動側付勢部材130を形成するコイルバネは一端部が前記駆動側可動プーリー半体120の背面側に係合され且つ他端部が前記駆動側エンドキャップ135に係合されている。   In the present embodiment, as shown in FIG. 2, the drive shaft 50 has a drive side end cap on the back side of the drive side movable pulley half 120 (the side opposite to the drive side fixed pulley half 110). 135 is supported, one end of the coil spring forming the drive side biasing member 130 is engaged with the back side of the drive side movable pulley half 120 and the other end is engaged with the drive side end cap 135. Are combined.

なお、本実施の形態においては、前記駆動側付勢部材130の一端部は前記駆動軸50に軸線方向移動自在に外挿された当て板136(図2参照)を介して前記駆動側可動プーリー半体120の背面に係合されている。   In the present embodiment, one end of the drive side biasing member 130 is connected to the drive side movable pulley via a contact plate 136 (see FIG. 2) that is externally attached to the drive shaft 50 so as to be movable in the axial direction. The half body 120 is engaged with the back surface.

同様に、前記従動軸55には前記従動側可動プーリー半体150の背面側(前記従動側固定プーリー半体140とは反対側)に従動側エンドキャップ165が支持されており、前記従動側付勢部材160を形成するコイルバネは一端部が前記従動側可動プーリー半体150の背面側に係合され且つ他端部が前記従動側エンドキャップ165に係合されている。
前記従動側エンドキャップ165は、調整ネジ機構167(図2参照)を介して前記従動側付勢部材160からの付勢力を受止めている。
Similarly, a driven side end cap 165 is supported by the driven shaft 55 on the back side of the driven side movable pulley half 150 (the side opposite to the driven side fixed pulley half 140). One end of the coil spring forming the biasing member 160 is engaged with the back side of the driven movable pulley half 150 and the other end is engaged with the driven end cap 165.
The driven side end cap 165 receives a biasing force from the driven side biasing member 160 via an adjustment screw mechanism 167 (see FIG. 2).

なお、本実施の形態においては、前記従動側付勢部材160の一端部は前記従動軸55に軸線方向移動自在に外挿された当て板166(図2参照)を介して前記従動側可動プーリー半体150の背面に係合されている。   In the present embodiment, one end of the driven-side urging member 160 is connected to the driven-side movable pulley via a contact plate 166 (see FIG. 2) that is externally attached to the driven shaft 55 so as to be movable in the axial direction. The half body 150 is engaged with the back surface.

前記駆動側エンドキャップ135は、前記変速操作機構170からの押動力を受けない状態においては軸線方向に関し初期位置に位置し且つ前記変速操作機構170からの押動力が上昇するに従って前記駆動側固定プーリー半体110に近接する軸線方向一方側へ移動するように、前記変速操作機構170に作動連結された状態で前記駆動軸50に支持されている。   The drive-side end cap 135 is positioned at an initial position in the axial direction in a state where the drive force from the speed change operation mechanism 170 is not received, and the drive side fixed pulley as the force from the speed change operation mechanism 170 increases. It is supported by the drive shaft 50 while being operatively connected to the speed change operation mechanism 170 so as to move to one side in the axial direction close to the half body 110.

図2に示すように、前記初期位置は、前記駆動側エンドキャップ135に、プレッシャプレート137を介して当接する調整ネジ機構138によって決められている。
また、前記変速操作機構170の前記フォーク部の自由端部が前記プレッシャプレート137の背面に係合されており、前記変速操作機構170より外部操作力が伝達されると前記駆動側エンドキャップ135は前記プレッシャープレート137を介して前記付勢力に抗して前記軸線方向一方側(図2において上方側)に移動される。
As shown in FIG. 2, the initial position is determined by an adjusting screw mechanism 138 that abuts the driving side end cap 135 via a pressure plate 137.
Further, the free end portion of the fork portion of the speed change operation mechanism 170 is engaged with the back surface of the pressure plate 137, and when the external operation force is transmitted from the speed change operation mechanism 170, the drive side end cap 135 is It is moved to the one axial side (upward in FIG. 2) against the urging force via the pressure plate 137.

前記従動側エンドキャップ165は、軸線方向に関する所定位置から前記従動側固定プーリー半体140に近接する軸線方向一方側とは反対側には移動不能なように前記従動軸55に支持されている。
前記所定位置は、前記従動側エンドキャップ165に当接する前記調整ネジ機構167によって決められている。前記両調整ネジ機構138、167によって前記プーリー式無段変速機構100の、図示最大減速位置が設定される。
The driven-side end cap 165 is supported by the driven shaft 55 so as not to move from a predetermined position in the axial direction to the opposite side to the one axial side adjacent to the driven-side fixed pulley half 140.
The predetermined position is determined by the adjustment screw mechanism 167 that contacts the driven end cap 165. The illustrated maximum deceleration position of the pulley type continuously variable transmission mechanism 100 is set by the both adjusting screw mechanisms 138 and 167.

前記変速操作機構170は、前記変速操作部材35への人為操作に応じて前記従動側付勢部材130の付勢力を上昇させ得る限り種々の構成をとり得る。
本実施の形態においては、図1に示すように、前記変速操作機構170は前記変速操作部材35に機械式リンク175を介して作動連結されている。
The speed change operation mechanism 170 can have various configurations as long as the urging force of the driven side urging member 130 can be increased in response to an artificial operation on the speed change operation member 35.
In the present embodiment, as shown in FIG. 1, the speed change operation mechanism 170 is operatively connected to the speed change operation member 35 via a mechanical link 175.

これに代えて、前記作業車輌1に、前記変速操作部材35の操作量を検出するセンサ(図示せず))と、前記変速操作機構170を作動させるアクチュエータ(図示せず)と、制御装置(図示せず)とを備え、前記制御装置が前記センサからの信号に基づいて前記アクチュエータを作動させるように構成することも可能である。   Instead, the working vehicle 1 includes a sensor (not shown) that detects the operation amount of the speed change operation member 35, an actuator (not shown) that operates the speed change operation mechanism 170, and a control device ( (Not shown), and the control device can be configured to operate the actuator based on a signal from the sensor.

前記前後進切換機構300は、外部操作に応じて前記駆動輪の駆動方向を変更するように構成されている。   The forward / reverse switching mechanism 300 is configured to change the drive direction of the drive wheel in accordance with an external operation.

本実施の形態においては、図2に示すように、前記前後進切換機構300は、伝動方向に関し前記プーリー式無段変速機構100及び前記デファレンシャルギヤ機構400の間に配置されており、外部操作に応じて、前記従動軸55から前記デファレンシャルギヤ機構400へ前進方向の回転動力を伝達する前進状態、前記従動軸55から前記デファレンシャルギヤ機構400へ後進方向の回転動力を伝達する後進状態、又は、前記従動軸55から前記デファレンシャルギヤ機構400への動力伝達を遮断する中立状態を選択的に現出させ得るように構成されている。   In the present embodiment, as shown in FIG. 2, the forward / reverse switching mechanism 300 is disposed between the pulley-type continuously variable transmission mechanism 100 and the differential gear mechanism 400 in the transmission direction, and can be used for external operation. Accordingly, a forward state in which forward rotational power is transmitted from the driven shaft 55 to the differential gear mechanism 400, a reverse state in which rotational power in the reverse direction is transmitted from the driven shaft 55 to the differential gear mechanism 400, or The neutral state in which the power transmission from the driven shaft 55 to the differential gear mechanism 400 is interrupted can be selectively exhibited.

詳しくは、図2に示すように、前記前後進切換機構300は、前記従動軸55に作動連結された前後進入力軸310と、前記デファレンシャルギヤ機構400に作動連結された前後進出力軸350と、互いに対して離間された状態で前記前後進入力軸310に軸線回り相対回転自在に支持された前進側ベベルギヤ320及び後進側ベベルギヤ325と、前記前後進入力軸310に軸線回り相対回転不能で且つ外部操作に応じて前記前進ベベルギヤ320及び前記後進ベベルギヤ325の間において軸線方向移動可能に支持された切換スライダ330と、前記前進側ベベルギヤ320及び前記後進側ベベルギヤ325に噛合された状態で前記前後進出力軸350に相対回転不能に支持された従動側ベベルギヤ340とを備えている。   Specifically, as shown in FIG. 2, the forward / reverse switching mechanism 300 includes a forward / reverse input shaft 310 operatively connected to the driven shaft 55, and a forward / reverse output shaft 350 operatively connected to the differential gear mechanism 400. A forward-side bevel gear 320 and a backward-side bevel gear 325 supported on the forward / reverse input shaft 310 so as to be relatively rotatable about the axis in a state of being spaced apart from each other; The forward / backward advancement in a state of being engaged with the switching slider 330 supported so as to be movable in the axial direction between the forward bevel gear 320 and the backward bevel gear 325 according to an external operation, and the forward side bevel gear 320 and the backward side bevel gear 325. And a driven bevel gear 340 supported on the force shaft 350 so as not to rotate relative to the force shaft 350.

図2に示すように、本実施の形態においては、前記前後進入力軸310は前記従動軸55と一体形成されている。
即ち、単一の軸が前記従動軸55及び前記前後進入力軸310として作用している。
As shown in FIG. 2, in the present embodiment, the forward / reverse input shaft 310 is integrally formed with the driven shaft 55.
In other words, a single shaft acts as the driven shaft 55 and the forward / reverse input shaft 310.

前記前進ベベルギヤ320及び前記後進ベベルギヤ325は、前記切換スライダ330と対向する端面に係合突起321、326を有している。   The forward bevel gear 320 and the backward bevel gear 325 have engagement protrusions 321 and 326 on the end surfaces facing the switching slider 330.

前記切換スライダ330は、前記前進ベベルギヤ320の係合突起321と係合可能な前進側係合突起331と、前記後進ベベルギヤ325の係合突起326と係合可能な後進側係合突起332とを有している。   The switching slider 330 includes a forward-side engagement protrusion 331 that can be engaged with the engagement protrusion 321 of the forward-bevel gear 320, and a reverse-side engagement protrusion 332 that can be engaged with the engagement protrusion 326 of the backward-bevel gear 325. Have.

前記切換スライダ330は、外部操作に応じて、前記前進側係合突起331が前記前進ベベルギヤ320の係合突起321と係合せず且つ前記後進側係合突起332が前記後進ベベルギヤ325の係合突起326と係合しない中立位置(図2参照)と、前記中立位置から軸線方向一方側に位置し且つ前記前進側係合突起331が前記前進ベベルギヤ320の係合突起321と係合する前進位置と、前記中立位置から軸線方向他方側に位置し且つ前記後進側係合突起332が前記後進ベベルギヤ325の係合突起326と係合する後進位置とを選択的にとり得るように構成されている。   In the switching slider 330, the forward-side engaging protrusion 331 does not engage with the engaging protrusion 321 of the forward-bevel gear 320 and the backward-side engaging protrusion 332 engages with the backward-bevel gear 325 according to an external operation. A neutral position (see FIG. 2) that does not engage with 326, and a forward position that is located on one side in the axial direction from the neutral position and in which the forward-side engagement protrusion 331 engages with the engagement protrusion 321 of the forward-bevel gear 320. Further, it is configured to be able to selectively take a reverse position that is located on the other side in the axial direction from the neutral position and in which the reverse side engagement protrusion 332 engages with the engagement protrusion 326 of the reverse direction bevel gear 325.

なお、本実施の形態においては、前記切換スライダ330は、操作アーム335(図1参照)を介して外部操作力を入力している。   In the present embodiment, the switching slider 330 inputs an external operating force via the operating arm 335 (see FIG. 1).

好ましくは、図2に示すように、前記前後進切換機構300には、所定の大きさを越える操作力が付加された際には前記切換スライダ330が前進位置、中立位置及び後進位置間で軸線方向に移動することを許容しつつ、意に反した軸線方向移動を防止するディテント機構360が備えられる。   Preferably, as shown in FIG. 2, the forward / reverse switching mechanism 300 has an axis line between the forward position, the neutral position and the reverse position when an operating force exceeding a predetermined magnitude is applied. A detent mechanism 360 is provided that prevents unintentional axial movement while allowing movement in the direction.

当然ながら、前記前後進切換機構300に代えて、他の構成の前後進切換機構を採用することも可能である。
図5に、第1変形例に係る前後進切換機構300Bの縦断背面図を示す。
なお、図中、前記前後進切換機構300におけると同一部材については同一符号を付して、その詳細な説明を省略する。
Of course, instead of the forward / reverse switching mechanism 300, a forward / reverse switching mechanism having another configuration may be employed.
FIG. 5 shows a longitudinal rear view of the forward / reverse switching mechanism 300B according to the first modification.
In the drawing, the same members as those in the forward / reverse switching mechanism 300 are denoted by the same reference numerals, and detailed description thereof is omitted.

図5に示すように、第1変形例に係る前記前後進切換機構300Bは、前記前後進入力軸310と、前記前後進出力軸350と、互いに対して離間された状態で前記前後進入力軸310に軸線回り相対回転自在に支持された前進側ベベルギヤ320B及び後進側ベベルギヤ325Bと、前記前後進入力軸310に軸線回り相対回転不能で且つ外部操作に応じて前記前進ベベルギヤ320B及び前記後進ベベルギヤ325Bの間において軸線方向移動可能に支持された切換スライダ330Bと、前記従動側ベベルギヤ340とを備えている。   As shown in FIG. 5, the forward / reverse switching mechanism 300B according to the first modification includes the forward / reverse input shaft 310, the forward / reverse output shaft 350, and the forward / reverse input shaft that are separated from each other. 310, a forward-side bevel gear 320B and a backward-side bevel gear 325B that are rotatably supported around the axis line 310, and a forward-bevel gear 320B and a backward-bevel gear gear 325B that cannot rotate relative to the forward / backward input shaft 310 and that can be rotated according to external operations. A switching slider 330B supported so as to be movable in the axial direction in between, and the driven bevel gear 340.

前記前後進切換機構300においては、前記切換スライダ330の前記前進側係合突起331又は前記後進側係合突起332が対応する前記ベベルギヤ320,325の係合突起321,326と係合することで前記切換スライダ330を介して前記前後進入力軸310から対応する前記ベベルギヤ320,325に回転動力が伝達されるように構成されている。   In the forward / reverse switching mechanism 300, the forward engagement protrusion 331 or the reverse engagement protrusion 332 of the switching slider 330 is engaged with the corresponding engagement protrusions 321 and 326 of the bevel gears 320 and 325. Rotational power is transmitted from the forward / reverse input shaft 310 to the corresponding bevel gears 320 and 325 via the switching slider 330.

これに代えて、第1変形例に係る前記前後進切換機構300Bにおいては、前記切換スライダ330Bは、摩擦係合によって前記前進ベベルギヤ320B又は前記後進ベベルギヤ325Bに回転動力を伝達するように構成されている。   Instead, in the forward / reverse switching mechanism 300B according to the first modification, the switching slider 330B is configured to transmit rotational power to the forward bevel gear 320B or the backward bevel gear 325B by friction engagement. Yes.

詳しくは、前記前進ベベルギヤ320B及び前記後進ベベルギヤ325Bは、前記切換スライダ330Bと対向する端面に凹状の摩擦係合面321B,326Bを有している。   Specifically, the forward bevel gear 320B and the reverse bevel gear 325B have concave friction engagement surfaces 321B and 326B on the end surfaces facing the switching slider 330B.

一方、前記切換スライダ330Bは、前記前進ベベルギヤ320Bと対向する端面に凸状の前進側摩擦係合面331Bを有し、且つ、前記後進ベベルギヤ325Bと対向する端面に凸状の後進側摩擦係合面332Bを有している。   On the other hand, the switching slider 330B has a convex forward frictional engagement surface 331B on an end surface facing the forward bevel gear 320B, and a convex reverse frictional engagement on an end surface facing the reverse bevel gear 325B. It has a surface 332B.

前記切換スライダ330Bは、外部操作に応じて、 前記前進側摩擦係合面331Bが前記前進ベベルギヤ320Bの摩擦係合面321Bと係合せず且つ前記後進側摩擦係合面332Bが前記後進ベベルギヤ325Bの摩擦係合面326Bと係合しない中立位置(図5参照)と、前記中立位置から軸線方向一方側に位置し且つ前記前進側摩擦係合面331Bが前記前進ベベルギヤ320Bの摩擦係合面321Bに係合する前進位置と、前記中立位置から軸線方向他方側に位置し且つ前記後進側摩擦係合面332Bが前記後進ベベルギヤ325Bの摩擦係合面326Bと係合する後進位置とを選択的にとり得るように構成されている。   In the switching slider 330B, the forward friction engagement surface 331B does not engage with the friction engagement surface 321B of the forward bevel gear 320B and the reverse friction engagement surface 332B of the reverse bevel gear 325B in accordance with an external operation. A neutral position that does not engage with the friction engagement surface 326B (see FIG. 5), an axial direction one side from the neutral position, and the forward friction engagement surface 331B is a friction engagement surface 321B of the forward bevel gear 320B. A forward position to be engaged and a reverse position that is located on the other side in the axial direction from the neutral position and in which the reverse friction engagement surface 332B engages with the friction engagement surface 326B of the reverse bevel gear 325B can be taken selectively. It is configured as follows.

図6に、第2変形例に係る前後進切換機構300Cの縦断背面図を示す。
なお、図中、前記前後進切換機構300又は前記第1変形例300Bにおけると同一部材については同一符号を付して、その詳細な説明を省略する。
FIG. 6 shows a longitudinal rear view of the forward / reverse switching mechanism 300C according to the second modification.
In the figure, the same members as those in the forward / reverse switching mechanism 300 or the first modification 300B are denoted by the same reference numerals, and detailed description thereof is omitted.

前記前後進切換機構300及び前記第1変形例300Cにおいては、前記切換スライダ330,330Bは前記前後進入力軸310に支持されている。
これに対し、第2変形例に係る前記前後進切換機構300Cにおいては、切換スライダ330Cが前記前後進出力軸350に支持されている。
In the forward / reverse switching mechanism 300 and the first modification 300C, the switching sliders 330 and 330B are supported by the forward / reverse input shaft 310.
On the other hand, in the forward / reverse switching mechanism 300C according to the second modification, the switching slider 330C is supported by the forward / reverse output shaft 350.

詳しくは、図6に示すように、第2変形例に係る前記前後進切換機構300Cは、前記前後進入力軸310と、前記前後進出力軸350と、前記前後進入力軸310に軸線回り相対回転不能に支持された駆動側ベベルギヤ315と、前記駆動側ベベルギヤ315に噛合され且つ互いに対して離間された状態で前記前後進出力軸350に軸線回り相対回転自在に支持された前進側ベベルギヤ320C及び後進側ベベルギヤ325Cと、前記前後進出力軸350に軸線回り相対回転不能で且つ外部操作に応じて前記前進ベベルギヤ320C及び前記後進ベベルギヤ325Cの間において軸線方向移動可能に支持された前記切換スライダ330Cとを備えている。   Specifically, as shown in FIG. 6, the forward / reverse switching mechanism 300 </ b> C according to the second modification is relative to the forward / reverse input shaft 310, the forward / reverse output shaft 350, and the forward / reverse input shaft 310. A drive-side bevel gear 315 that is non-rotatably supported; a forward-side bevel gear 320C that is meshed with the drive-side bevel gear 315 and spaced apart from each other; A reverse-side bevel gear 325C, and the switching slider 330C supported by the forward / reverse output shaft 350 so as not to rotate relative to the axis and axially movable between the forward-bevel gear 320C and the reverse-bevel gear 325C in response to an external operation. It has.

前記前進ベベルギヤ320C及び前記後進ベベルギヤ325Cは、前記切換スライダ330Cと対向する端面に凹状の摩擦係合面321C,326Cを有している。   The forward bevel gear 320C and the reverse bevel gear 325C have concave frictional engagement surfaces 321C and 326C on the end surfaces facing the switching slider 330C.

一方、前記切換スライダ330Cは、前記前進ベベルギヤ320Cと対向する端面に凸状の前進側摩擦係合面331Cを有し、且つ、前記後進ベベルギヤ325Cと対向する端面に凸状の後進側摩擦係合面332Cを有している。   On the other hand, the switching slider 330C has a convex forward friction engagement surface 331C on the end surface facing the forward bevel gear 320C, and has a convex reverse friction engagement surface on the end surface facing the reverse bevel gear 325C. It has a surface 332C.

前記切換スライダ330Cは、外部操作に応じて、 前記前進側摩擦係合面331Cが前記前進ベベルギヤ320Cの摩擦係合面321Cと係合せず且つ前記後進側摩擦係合面332Cが前記後進ベベルギヤ325Cの摩擦係合面326Cと係合しない中立位置(図6参照)と、前記中立位置から軸線方向一方側に位置し且つ前記前進側摩擦係合面331Cが前記前進ベベルギヤ320Cの摩擦係合面321Cに係合する前進位置と、前記中立位置から軸線方向他方側に位置し且つ前記後進側摩擦係合面332Cが前記後進ベベルギヤ325Cの摩擦係合面326Cと係合する後進位置とを選択的にとり得るように構成されている。   In the switching slider 330C, the forward friction engagement surface 331C does not engage with the friction engagement surface 321C of the forward bevel gear 320C and the reverse friction engagement surface 332C of the reverse bevel gear 325C according to an external operation. A neutral position (see FIG. 6) that is not engaged with the friction engagement surface 326C, an axial direction one side from the neutral position, and the forward friction engagement surface 331C is a friction engagement surface 321C of the forward bevel gear 320C. A forward position to be engaged and a reverse position that is located on the other side in the axial direction from the neutral position and in which the reverse friction engagement surface 332C engages with the friction engagement surface 326C of the reverse bevel gear 325C can be taken selectively. It is configured as follows.

なお、前記第2変形例300Cにおいて、前記切換スライダ330Cが、摩擦係合に代えて、係合突起を介した係合によって前記前進ベベルギヤ320C又は前記後進ベベルギヤ325Cから回転動力を入力するように構成することも可能である。   In the second modification 300C, the switching slider 330C is configured to input rotational power from the forward bevel gear 320C or the reverse bevel gear 325C by engagement via an engagement protrusion instead of friction engagement. It is also possible to do.

ここで、前記駆動側固定プーリー半体110、前記駆動側可動プーリー半体120、前記従動側固定プーリー半体140及び前記従動側可動プーリー半体150の詳細構成について説明する。   Here, detailed configurations of the driving-side fixed pulley half 110, the driving-side movable pulley half 120, the driven-side fixed pulley half 140, and the driven-side movable pulley half 150 will be described.

図7(a)及び(b)に、前記固定プーリー半体110,140及び前記可動プーリー半体150,150の縦断面図を示す。
図7(a)に示すように、前記各プーリー半体110,120,140,150は、対応する軸に軸線方向移動可能に外挿される筒部210と、前記筒部210の軸線方向一端側から径方向外方へ延びる本体部230であって、径方向内方から外方へ行くに従って前記筒部の軸線方向に関し該筒部210の他端側に位置するように傾斜された円錐面231を有する本体部230とを含むプーリー形成体200を備えている点において共通している。
図8に、前記プーリー形成体の縦断面図を示す。
7A and 7B are longitudinal sectional views of the fixed pulley halves 110 and 140 and the movable pulley halves 150 and 150, respectively.
As shown in FIG. 7 (a), each of the pulley halves 110, 120, 140, 150 includes a cylindrical portion 210 that is externally attached to a corresponding shaft so as to be movable in the axial direction, and one axial end side of the cylindrical portion 210. A conical surface 231 that is inclined so as to be positioned on the other end side of the tubular portion 210 with respect to the axial direction of the tubular portion as it goes from the radially inward to the outward. This is common in that it includes a pulley forming body 200 including a main body portion 230 having.
FIG. 8 is a longitudinal sectional view of the pulley forming body.

図7(a)及び図8に示すように、前記駆動側及び従動側の固定プーリー半体110,140を形成する前記プーリー形成体200の筒部210には、固定孔211が設けられている。   As shown in FIG. 7A and FIG. 8, a fixing hole 211 is provided in the cylindrical portion 210 of the pulley forming body 200 that forms the driving-side and driven-side fixing pulley halves 110 and 140. .

図2及び図3に示すように、前記固定孔211には対応する軸50(55)に設けられるピン58が係入され、これにより、前記駆動側及び従動側の固定プーリー半体110,140は対応する軸50(55)に対して軸線回り相対回転不能且つ軸線方向移動不能とされる。   As shown in FIGS. 2 and 3, a pin 58 provided on the corresponding shaft 50 (55) is engaged with the fixed hole 211, whereby the driving-side and driven-side fixed pulley halves 110 and 140 are engaged. Is not rotatable relative to the corresponding shaft 50 (55) and cannot move in the axial direction.

図7(b)及び図8に示すように、前記駆動側及び従動側の可動プーリー半体120,150を形成する前記プーリー形成体200の筒部210には、当該筒部210が対応する軸50(55)に対して所定距離だけ軸線方向に沿って移動することを許容する摺動溝212が設けられている。   As shown in FIGS. 7B and 8, the cylinder portion 210 of the pulley forming body 200 that forms the movable pulley halves 120 and 150 on the driving side and the driven side corresponds to the axis corresponding to the cylinder portion 210. 50 (55) is provided with a sliding groove 212 that allows movement along the axial direction by a predetermined distance.

図2及び図3に示すように、前記摺動溝には対応する軸50(55)に設けられるピン59が係入され、これにより、前記駆動側及び従動側の可動プーリー半体120,150は対応する軸50(55)に対して軸線回り相対回転不能で且つ前記摺動溝212の軸線方向長さに応じた距離だけ軸線方向に移動可能とされる。   As shown in FIGS. 2 and 3, a pin 59 provided on the corresponding shaft 50 (55) is engaged with the sliding groove, so that the movable pulley halves 120, 150 on the driving side and the driven side are engaged. Is not rotatable relative to the corresponding shaft 50 (55) and is movable in the axial direction by a distance corresponding to the length of the sliding groove 212 in the axial direction.

このように、前記プーリー形成体200に対して前記固定孔211を形成することで前記駆動側及び従動側の固定プーリー半体110,140が得られ、且つ、前記プーリー形成体200に対して前記摺動溝212を形成することで前記駆動側及び従動側の可動プーリー半体120,150が得られる。   Thus, by forming the fixing hole 211 in the pulley forming body 200, the driving-side and driven-side fixed pulley halves 110 and 140 are obtained, and the pulley-forming body 200 is in the state described above. By forming the sliding groove 212, the movable pulley halves 120 and 150 on the driving side and the driven side are obtained.

即ち、本実施の形態に係るプーリー式無段変速機構100においては、前記駆動側プーリーを形成する前記2つのプーリー半体110,120及び前記従動側プーリーを形成する前記2つのプーリー半体140,150は全て前記プーリー形成体200を共通素材としており、これにより、部品共通化による可及的なコスト低減を図り得るようになっている。   That is, in the pulley type continuously variable transmission mechanism 100 according to the present embodiment, the two pulley halves 110 and 120 forming the driving pulley and the two pulley halves 140 forming the driven pulley. In all 150, the pulley forming body 200 is used as a common material, so that the cost can be reduced as much as possible by sharing parts.

詳しく説明すると、従来のプーリー式無段変速機構においても、駆動側固定プーリー半体、駆動側可動プーリー半体、従動側固定プーリー半体及び従動側可動プーリー半体は、筒部と前記筒部から径方向外方へ延びる本体部とを有している。   More specifically, even in the conventional pulley-type continuously variable transmission mechanism, the driving-side fixed pulley half, the driving-side movable pulley half, the driven-side fixed pulley half, and the driven-side movable pulley half include the cylindrical portion and the cylindrical portion. And a main body portion extending radially outward.

ここで、前記駆動側固定プーリー半体の前記筒部は対応する駆動軸に外挿され、前記駆動側可動プーリー半体の前記筒部は前記駆動側固定プーリー半体の前記筒部に外挿されている。同様に、前記従動側固定プーリー半体の前記筒部は対応する従動軸に外挿され、前記従動側可動プーリー半体の前記筒部は前記従動側固定プーリー半体の前記筒部に外挿されている。   Here, the cylindrical portion of the driving-side fixed pulley half is extrapolated to a corresponding driving shaft, and the cylindrical portion of the driving-side movable pulley half is extrapolated to the cylindrical portion of the driving-side fixed pulley half. Has been. Similarly, the cylindrical portion of the driven-side fixed pulley half is extrapolated to the corresponding driven shaft, and the cylindrical portion of the driven-side movable pulley half is extrapolated to the cylindrical portion of the driven-side fixed pulley half. Has been.

斯かる従来構成においては、前記固定プーリー半体の前記筒部と前記可動プーリー半体の前記筒部とは互いに対して内径及び外径に関し寸法が異なることになる。
そして、前記固定プーリー半体の筒部の外径及び前記可動プーリー半体の筒部の外径が異なる為に、前記固定プーリー半体の筒部に固着される本体部と前記可動プーリー半体の筒部に固着される本体部とは内径に関し寸法が異なることになる。
In such a conventional configuration, the cylindrical portion of the stationary pulley half and the cylindrical portion of the movable pulley half have different dimensions with respect to the inner diameter and the outer diameter.
And since the outer diameter of the cylinder part of the fixed pulley half and the outer diameter of the cylinder part of the movable pulley half are different, the main body part fixed to the cylinder part of the fixed pulley half and the movable pulley half The main body portion fixed to the cylindrical portion has a different size with respect to the inner diameter.

従って、従来構成においては、前記固定プーリー半体を形成する専用の筒部及び本体部、並びに、前記可動プーリー半体を形成する専用の筒部及び本体部が必要となり、製造コストが高騰する。   Accordingly, in the conventional configuration, a dedicated cylinder part and a main body part for forming the fixed pulley half and a dedicated cylinder part and a main body part for forming the movable pulley half are required, and the manufacturing cost increases.

これに対し、本実施の形態においては、前記駆動側固定プーリー半体110、前記駆動側可動プーリー半体120、前記従動側固定プーリー半体140及び前記従動側可動プーリー半体150は、前記筒部210及び前記本体部230を含む前記プーリー形成体200を共通素材としている。従って、可及的な部品共通化によるコスト低廉を有効に図ることができる。   On the other hand, in the present embodiment, the driving-side fixed pulley half 110, the driving-side movable pulley half 120, the driven-side fixed pulley half 140, and the driven-side movable pulley half 150 are connected to the cylinder. The pulley forming body 200 including the portion 210 and the main body portion 230 is used as a common material. Therefore, cost reduction by sharing parts as much as possible can be effectively achieved.

本実施の形態においては、図2、図3及び図7(a)に示すように、前記駆動側及び従動側の固定プーリー半体110,140を形成する前記プーリー形成体200の筒部210は、軸線方向一端側に位置し、外径が大とされた大径部220と、前記大径部220から段差226を伴って軸線方向他端側へ延び、外径が小とされた小径部225とを有している。   In the present embodiment, as shown in FIGS. 2, 3 and 7A, the cylindrical portion 210 of the pulley forming body 200 forming the fixed pulley halves 110 and 140 on the driving side and the driven side is A large-diameter portion 220 that is positioned on one end side in the axial direction and has a large outer diameter, and a small-diameter portion that extends from the large-diameter portion 220 to the other end side in the axial direction with a step 226 and has a small outer diameter. 225.

斯かる構成によれば、前記段部226をベアリング部材90(図1参照)の内輪部材が係合する係合部位として利用することができ、前記固定プーリー半体110,140を対応する軸50(55)に対して軸線回り相対回転自在としつつ前記固定プーリー半体110,140が軸線方向他方側へ移動することを有効に防止できる。   According to such a configuration, the stepped portion 226 can be used as an engagement portion with which the inner ring member of the bearing member 90 (see FIG. 1) engages, and the fixed pulley halves 110 and 140 are connected to the corresponding shaft 50. It is possible to effectively prevent the stationary pulley halves 110, 140 from moving to the other side in the axial direction while being relatively rotatable around the axis with respect to (55).

なお、前記小径部225は、例えば、前記プーリー形成体200の前記筒部210の軸線方向所定領域の外周面を切削することによって容易に形成することができる。   In addition, the said small diameter part 225 can be easily formed by cutting the outer peripheral surface of the axial direction predetermined area | region of the said cylinder part 210 of the said pulley formation body 200, for example.

好ましくは、図9に示すように、前記従動側可動プーリー半体120,150を形成する前記プーリー形成体200の筒部210には、前記摺動溝212に代えて、前記筒部210が対応する前記従動軸55の軸線方向一方側から他方側へ移動することを許容し且つ前記筒部210の軸線方向一方側から他方側への移動に従って前記筒部210を前記従動軸55の軸線回り一方側から他方側へ移動させるカム領域214を含む摺動溝213を形成することができる。   Preferably, as shown in FIG. 9, the cylindrical portion 210 of the pulley forming body 200 that forms the driven-side movable pulley halves 120 and 150 corresponds to the cylindrical portion 210 instead of the sliding groove 212. The driven shaft 55 is allowed to move from one side in the axial direction to the other side, and the cylindrical portion 210 is moved around the axial line of the driven shaft 55 in accordance with the movement of the cylindrical portion 210 from one side in the axial direction to the other side. A sliding groove 213 including a cam region 214 that moves from one side to the other can be formed.

斯かる構成によれば、前記変速操作機構170による人為操作に基づく変速に加えて、前記従動軸55に作動連結された前記駆動輪(本実施の形態においては前記後輪15R)の走行負荷に応じた自動変速を実現できる。   According to such a configuration, in addition to the shift based on the manual operation by the shift operation mechanism 170, the travel load of the drive wheel (the rear wheel 15R in the present embodiment) operatively connected to the driven shaft 55 is added. Automatic shifting can be realized.

又、本実施の形態においては、前記プーリー形成体200の前記本体部230及び前記筒部210は別部材によって形成されており、溶接等によって互いに固着されている。   Further, in the present embodiment, the main body portion 230 and the cylindrical portion 210 of the pulley forming body 200 are formed by separate members and are fixed to each other by welding or the like.

詳しくは、図7(a)及び(b)、図8並びに図9に示すように、前記本体部230は本体部形成部材235によって形成され、前記筒部210は前記本体部形成部材235とは別体とされた筒部形成部材215によって形成されている。   Specifically, as shown in FIGS. 7A and 7B, FIG. 8, and FIG. 9, the main body portion 230 is formed by a main body portion forming member 235, and the cylindrical portion 210 is different from the main body portion forming member 235. It is formed by a cylindrical part forming member 215 which is a separate body.

前記本体部形成部材235は、所定内径の中央孔が設けられた径方向内方部236と、前記径方向内方部236から径方向外方へ延び且つ前記円錐面231が設けられた径方向外方部237とを有している。   The main body forming member 235 includes a radially inner portion 236 provided with a central hole having a predetermined inner diameter, and a radially extending portion extending radially outward from the radially inner portion 236 and provided with the conical surface 231. And an outer portion 237.

前記筒部形成部材215は、前記中央孔に当接状態で内挿される内挿部216と、前記内挿部216の軸線方向一端側において径方向外方へ延在された鍔部217とを有している。
なお、前記筒部210が前記大径部220及び前記小径部225を有する構成においては、前記大径部220が前記内挿部216として作用する(図7(a)参照)。
The tubular portion forming member 215 includes an insertion portion 216 that is inserted in contact with the central hole, and a flange portion 217 that extends radially outward at one axial end side of the insertion portion 216. Have.
In the configuration in which the cylindrical portion 210 includes the large diameter portion 220 and the small diameter portion 225, the large diameter portion 220 functions as the insertion portion 216 (see FIG. 7A).

前記径方向内方部235は、軸線方向に関し前記円錐面231と同一方向及び反対方向を向く外表面236a及び内表面236bを有している。   The radially inner portion 235 has an outer surface 236a and an inner surface 236b that face the same direction as the conical surface 231 and the opposite direction with respect to the axial direction.

前記外表面236aは前記鍔部217に係合する鍔部用係合面として作用する。
即ち、前記筒部形成部材215は、前記鍔部217が前記外表面236aに当接され且つ前記内挿部216が前記貫通孔に内挿された状態で前記本体部形成部材235に溶接等によって固着される。
The outer surface 236a acts as a hook engaging surface that engages with the hook 217.
That is, the cylindrical part forming member 215 is welded to the main body forming member 235 by welding or the like in a state where the flange part 217 is in contact with the outer surface 236a and the insertion part 216 is inserted into the through hole. It is fixed.

一方、前記内表面236bは対応する前記付勢部材130,160の一端部を直接又は間接的に係止するストッパーとして作用する。
なお、本実施の形態においては、前記内表面236bは、前記当て板136,166を介して、対応する前記付勢部材130,160の一端部を係止している。
On the other hand, the inner surface 236b acts as a stopper for directly or indirectly locking one end of the corresponding biasing member 130, 160.
In the present embodiment, the inner surface 236b locks one end portion of the corresponding biasing member 130, 160 via the contact plate 136, 166.

好ましくは、前記外表面236a及び前記内表面236bは、前記筒部210の軸線方向に対して略直交するものとされる。
斯かる構成によれば、前記鍔部217及び前記外表面236aの係合、並びに、前記付勢部材130,160及び前記内表面236bの係合を安定して行うことができる。
Preferably, the outer surface 236a and the inner surface 236b are substantially orthogonal to the axial direction of the cylindrical portion 210.
According to such a configuration, the engagement of the flange portion 217 and the outer surface 236a and the engagement of the urging members 130 and 160 and the inner surface 236b can be stably performed.

又、好ましくは、図7(a)及び(b)等に示すように、前記径方向内方部236は前記径方向外方部237の径方向内端から凹まされ、前記鍔部217が前記径方向内方部236によって画される凹部内に位置するように構成される。
斯かる構成によれば、前記筒部210が前記円錐面231より外方へ突出することを防ぎつつ、前記筒部210及び前記本体部230を安定して固着させることができる。
Preferably, as shown in FIGS. 7A and 7B, the radially inner portion 236 is recessed from the radially inner end of the radially outer portion 237, and the flange portion 217 is It is configured to be located in a recess defined by the radially inner portion 236.
According to such a configuration, it is possible to stably fix the cylindrical portion 210 and the main body portion 230 while preventing the cylindrical portion 210 from protruding outward from the conical surface 231.

50 駆動軸
55 従動軸
100 プーリー式無段変速機構
110 駆動側固定プーリー半体
120 駆動側可動プーリー半体
130 駆動側付勢部材
140 従動側固定プーリー半体
150 従動側可動プーリー半体
160 従動側付勢部材
170 変速操作機構
180 無端体
200 プーリー形成体
210 筒部
211 固定孔
212 摺動溝
213 摺動溝
214 カム領域
215 筒部形成部材
216 内挿部
217 鍔部
220 大径部
225 小径部
226 段差
230 本体部
231 円錐面
235 本体部形成部材
236 径方向内方部
236a 外表面
236b 内表面
237 径方向外方部
50 driving shaft 55 driven shaft 100 pulley type continuously variable transmission mechanism 110 driving side fixed pulley half body 120 driving side movable pulley half body 130 driving side biasing member 140 driven side fixed pulley half body 150 driven side movable pulley half body 160 driven side Biasing member 170 Speed change operation mechanism 180 Endless body 200 Pulley forming body 210 Cylinder part 211 Fixing hole 212 Sliding groove 213 Sliding groove 214 Cam region 215 Cylindrical part forming member 216 Insertion part 217 Groove part 220 Large diameter part 225 Small diameter part 226 Step 230 Body portion 231 Conical surface 235 Body portion forming member 236 Radial inner portion 236a Outer surface 236b Inner surface 237 Radial outer portion

Claims (5)

駆動軸から従動軸に伝達する動力の回転速度を無段変速するプーリー式無段変速機構であって、
前記駆動軸に相対回転不能且つ軸線方向移動不能に支持された駆動側固定プーリー半体と、前記駆動側固定プーリー半体と対向状態で前記駆動軸に相対回転不能且つ所定量だけ軸線方向移動可能に支持された駆動側可動プーリー半体と、前記駆動側可動プーリー半体を前記駆動側固定プーリー半体に向けて付勢する駆動側付勢部材と、前記従動軸に相対回転不能且つ軸線方向移動不能に支持された従動側固定プーリー半体と、前記従動側固定プーリー半体と対向状態で前記従動軸に相対回転不能且つ所定量だけ軸線方向移動可能に支持された従動側可動プーリー体と、前記従動側可動プーリー半体を前記従動側固定プーリー半体に向けて付勢する従動側付勢部材であって、前記駆動側付勢部材よりも付勢力が大とされた従動側付勢部材と、外部操作力に応じて前記動側付勢部材の付勢力を上昇させる変速操作機構と、前記駆動側固定プーリー半体及び可動プーリー半体に狭圧され且つ前記従動側固定プーリー半体及び可動プーリー半体に狭圧された無端体とを備え、
前記各プーリー半体は、対応する軸に軸線方向移動可能に外挿される筒部と、前記筒部の軸線方向一端側から径方向外方へ延びる本体部であって、径方向内方から外方へ行くに従って前記筒部の軸線方向に関し該筒部の他端側に位置するように傾斜された円錐面を有する本体部とを含むプーリー形成体を備えている点において共通し、
前記駆動側及び従動側の固定プーリー半体を形成する前記プーリー形成体の筒部には、対応する軸に設けられたピンが係入されて、前記筒部を対応する軸に対して軸線方向移動不能に固定する為の固定孔が設けられ、
前記駆動側及び従動側の可動プーリー半体を形成する前記プーリー形成体の筒部には、対応する軸に設けられたピンが係入されて、前記筒部が対応する軸に対して所定距離だけ軸線方向に沿って移動することを許容する摺動溝が設けられていることを特徴とするプーリー式無段変速機構。
A pulley type continuously variable transmission mechanism that continuously changes the rotational speed of power transmitted from the drive shaft to the driven shaft,
A drive-side fixed pulley half supported by the drive shaft so as not to be rotatable relative to the drive shaft and not movable in the axial direction, and in a state of being opposed to the drive-side fixed pulley half cannot be rotated relative to the drive shaft and can move in the axial direction by a predetermined amount. A drive-side movable pulley half supported by the drive-side movable pulley half, a drive-side biasing member that biases the drive-side movable pulley half toward the drive-side fixed pulley half, and an axial direction that is relatively unrotatable to the driven shaft A driven-side fixed pulley half that is immovably supported, and a driven-side movable pulley half that is supported by the driven shaft so as not to rotate relative to the driven shaft and to move in the axial direction by a predetermined amount. A driven-side biasing member that biases the driven-side movable pulley half toward the driven-side fixed pulley half, wherein the biasing force is greater than that of the driving-side biasing member. A force member; A shift operating mechanism to increase the biasing force of the drive moving with the side biasing member in accordance with section operating force, narrow pressurized and the driven-side fixed pulley half body and movable on the drive side fixed pulley half body and the movable pulley half With an endless body that is confined to the pulley half,
Each of the pulley halves includes a cylindrical portion that is externally attached to a corresponding shaft so as to be movable in the axial direction, and a main body portion that extends radially outward from one axial end side of the cylindrical portion, and that is outward from the radially inner side. Common in that it includes a pulley forming body including a main body portion having a conical surface inclined so as to be located on the other end side of the cylindrical portion with respect to the axial direction of the cylindrical portion as going toward
Pins provided on corresponding shafts are engaged with the cylindrical portions of the pulley forming bodies forming the fixed pulley halves on the driving side and the driven side, and the cylindrical portions are axially oriented with respect to the corresponding shafts. A fixing hole is provided to fix it immovably .
A pin provided on a corresponding shaft is engaged with a cylindrical portion of the pulley forming body that forms the movable pulley halves on the driving side and the driven side, and the cylindrical portion has a predetermined distance from the corresponding shaft. A pulley-type continuously variable transmission mechanism characterized in that a sliding groove is provided that allows movement only along the axial direction.
前記駆動側及び従動側の固定プーリー半体を形成する前記プーリー形成体の筒部は、軸線方向一端側に位置し、外径が大とされた大径部と、前記大径部から段差を伴って軸線方向他端側へ延び、外径が小とされた小径部とを有していることを特徴とする請求項1に記載のプーリー式無段変速機構。   The cylinder part of the pulley forming body forming the driving and driven fixed pulley halves is located on one end side in the axial direction, and has a large diameter part with a large outer diameter, and a step from the large diameter part. The pulley-type continuously variable transmission mechanism according to claim 1, further comprising a small-diameter portion that extends toward the other end in the axial direction and has a small outer diameter. 前記従動側可動プーリー半体を形成する前記プーリー形成体の筒部に設けた前記摺動溝は、前記筒部が対応する前記従動軸の軸線方向一方側から他方側へ移動するに従って前記筒部を前記従動軸の軸線回り一方側から他方側へ移動させるカム領域を含んでいることを特徴とする請求項1又は2に記載のプーリー式無段変速機構。   The sliding groove provided in the cylindrical portion of the pulley forming body forming the driven-side movable pulley half is adapted to move as the cylindrical portion moves from one side to the other side in the axial direction of the corresponding driven shaft. The pulley-type continuously variable transmission mechanism according to claim 1 or 2, further comprising a cam region that moves the shaft from one side to the other side around the axis of the driven shaft. 前記本体部は本体部形成部材によって形成され、前記筒部は前記本体部形成部材とは別体とされた筒部形成部材によって形成されており、
前記本体部形成部材は、所定内径の中央孔が設けられた径方向内方部と、前記径方向内方部から径方向外方へ延び且つ前記円錐面が設けられた径方向外方部とを有し、
前記筒部形成部材は、前記中央孔に当接状態で内挿される内挿部と、前記内挿部の軸線方向一端側において径方向外方へ延在された鍔部とを有し、
前記径方向内方部は、軸線方向に関し前記円錐面と同一方向及び反対方向を向く外表面及び内表面を有し、
前記筒部形成部材は、前記鍔部が前記外表面に当接され且つ前記内挿部が前記貫通孔に内挿された状態で前記本体部形成部材に固着されており、
前記径方向内方部の内表面が、対応する前記付勢部材の一端部を直接又は間接的に係止するストッパーとして作用することを特徴とする請求項1から3の何れかに記載のプーリー式無段変速機構。
The main body part is formed by a main body part forming member, and the cylindrical part is formed by a cylindrical part forming member that is separate from the main body part forming member,
The main body forming member includes a radially inner portion provided with a central hole having a predetermined inner diameter, and a radially outer portion extending radially outward from the radially inner portion and provided with the conical surface. Have
The cylindrical portion forming member has an insertion portion that is inserted in contact with the central hole, and a flange portion that extends radially outward at one end side in the axial direction of the insertion portion,
The radially inner portion has an outer surface and an inner surface facing in the same direction as the conical surface and in the opposite direction with respect to the axial direction,
The cylindrical part forming member is fixed to the main body part forming member in a state where the collar part is in contact with the outer surface and the insertion part is inserted into the through hole,
The pulley according to any one of claims 1 to 3, wherein an inner surface of the radially inner portion acts as a stopper for directly or indirectly locking one end portion of the corresponding biasing member. Type continuously variable transmission mechanism.
前記径方向内方部は前記径方向外方部の径方向内端から凹まされており、前記筒部形成部材の前記鍔部は前記径方向内方部によって画される凹部内に位置されていることを特徴とする請求項4に記載のプーリー式無段変速機構。   The radially inner portion is recessed from a radially inner end of the radially outer portion, and the flange portion of the tubular portion forming member is positioned in a recess defined by the radially inner portion. The pulley type continuously variable transmission mechanism according to claim 4, wherein the pulley type continuously variable transmission mechanism is provided.
JP2011270405A 2011-12-09 2011-12-09 Pulley type continuously variable transmission mechanism Expired - Fee Related JP5842238B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011270405A JP5842238B2 (en) 2011-12-09 2011-12-09 Pulley type continuously variable transmission mechanism
US13/546,886 US20130150190A1 (en) 2011-12-09 2012-07-11 Belt Type Continuously Variable Transmission And Pulley Sheave
EP12178658.6A EP2602513B1 (en) 2011-12-09 2012-07-31 Belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270405A JP5842238B2 (en) 2011-12-09 2011-12-09 Pulley type continuously variable transmission mechanism

Publications (2)

Publication Number Publication Date
JP2013122274A JP2013122274A (en) 2013-06-20
JP5842238B2 true JP5842238B2 (en) 2016-01-13

Family

ID=48774346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270405A Expired - Fee Related JP5842238B2 (en) 2011-12-09 2011-12-09 Pulley type continuously variable transmission mechanism

Country Status (1)

Country Link
JP (1) JP5842238B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127955U (en) * 1983-02-15 1984-08-28 三ツ星ベルト株式会社 speed change pulley
JPH043146Y2 (en) * 1987-03-12 1992-01-31
JP2000154855A (en) * 1998-11-19 2000-06-06 Kanzaki Kokyukoki Mfg Co Ltd Transmission
JP4511230B2 (en) * 2004-03-31 2010-07-28 株式会社山田製作所 Variable pulley device
JP5030815B2 (en) * 2008-02-28 2012-09-19 アイシン・エィ・ダブリュ株式会社 Pulley structure and belt type continuously variable transmission
JP2011179567A (en) * 2010-02-26 2011-09-15 Nsk Ltd Belt type continuously variable transmission

Also Published As

Publication number Publication date
JP2013122274A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
US9005058B2 (en) Belt-type stepless transmission
JP5840293B2 (en) Metal belt element
US20160208892A1 (en) Torque cam device and belt-type continuously variable transmission
JP2016061308A (en) Driving torque damper structure of power unit
EP2602513B1 (en) Belt type continuously variable transmission
EP1156240B1 (en) Electric drive device for transmission
JP2013160287A (en) Differential gear device
US9279488B2 (en) Continuously variable transmission and working vehicle
JP4862194B2 (en) Axle drive
JP5842238B2 (en) Pulley type continuously variable transmission mechanism
EP3387292B1 (en) A continuously variable transmission device with gear regulation device
JP6163827B2 (en) Vehicle parking device
US20060183582A1 (en) Transmission system for a self-propelled vehicle with variable travel speed, its control device, and vehicle equipped with such a transmission system
WO2011122136A1 (en) Hybrid drive device
JP5870333B2 (en) Pulley type continuously variable transmission and pulley half
US10215279B2 (en) Automatic transmission
JP4685603B2 (en) Gearbox for work vehicle
JP2005172115A (en) Gear switch mechanism of axle shaft drive
WO2011122135A1 (en) Hybrid drive device
JP2014139471A (en) Output rotation direction switching device
JP2018155340A (en) Torque cam device and continuously variable transmission
US9889854B2 (en) Transmission assembly for a self-propelled machine, and machine fitted with such a transmission
JP2018179222A (en) Vehicular continuously variable transmission
KR100460903B1 (en) Continuously variable transmission for vehicles
JP5099154B2 (en) Conical friction wheel ring type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151022

R150 Certificate of patent or registration of utility model

Ref document number: 5842238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees