JP5841853B2 - Conductive laminate and organic thin solar cell element - Google Patents

Conductive laminate and organic thin solar cell element Download PDF

Info

Publication number
JP5841853B2
JP5841853B2 JP2012022129A JP2012022129A JP5841853B2 JP 5841853 B2 JP5841853 B2 JP 5841853B2 JP 2012022129 A JP2012022129 A JP 2012022129A JP 2012022129 A JP2012022129 A JP 2012022129A JP 5841853 B2 JP5841853 B2 JP 5841853B2
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
conductive laminate
coating layer
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012022129A
Other languages
Japanese (ja)
Other versions
JP2013161921A (en
Inventor
豪志 武藤
豪志 武藤
近藤 健
健 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2012022129A priority Critical patent/JP5841853B2/en
Publication of JP2013161921A publication Critical patent/JP2013161921A/en
Application granted granted Critical
Publication of JP5841853B2 publication Critical patent/JP5841853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、導電性積層体、及び該導電性積層体を有する有機光電変換素子に関する。   The present invention relates to a conductive laminate and an organic photoelectric conversion element having the conductive laminate.

有機導電性材料の応用が期待されている製品として、有機光電変換素子、有機EL素子、タッチパネル、ディスプレイ、有機トランジスタ電極等の有機デバイスが挙げられる。これらの有機デバイスの中、有機太陽電池に代表される有機光電変換素子は、地球規模での問題であるエネルギー問題を解決するためのエネルギー源の有力候補の一つであり、環境負荷が少なく、半永久的に供給される太陽光エネルギーの利用の要望が多いことから、活発に研究されている。有機光電変換素子である有機太陽電池は、軽量、安価、フレキシブルな素子の作製が可能であり、現在の主流であるシリコン半導体等の無機系材料を用いた太陽電池に代わる次世代の太陽電池として期待されている。
このような背景から、有機導電性材料を用いた有機光電変換素子の研究が全世界的に行われており、有機光電変換素子の光電変換効率向上、特に短絡電流密度を向上し得る有機光電変換素子の構造の設計技術が重要である。
Organic devices such as organic photoelectric conversion elements, organic EL elements, touch panels, displays, and organic transistor electrodes are examples of products for which applications of organic conductive materials are expected. Among these organic devices, organic photoelectric conversion elements typified by organic solar cells are one of the leading candidates for energy sources to solve energy problems that are global problems, and have a low environmental impact. Since there are many requests for the use of solar energy supplied semi-permanently, it is actively researched. Organic solar cells, which are organic photoelectric conversion elements, are capable of producing lightweight, inexpensive, and flexible elements, and are the next generation solar cells that can replace solar cells using inorganic materials such as silicon semiconductors, which are currently mainstream. Expected.
Against this background, research on organic photoelectric conversion elements using organic conductive materials has been conducted worldwide, and organic photoelectric conversion that can improve the photoelectric conversion efficiency of organic photoelectric conversion elements, in particular, the short-circuit current density. The design technology of the element structure is important.

一般的に有機デバイスは、陽極電極と陰極電極との間に、例えば、有機光電変換素子の場合は光電変換層、有機EL素子の場合は有機発光層を有する。また、光電変換層もしくは有機発光層と電極との接触抵抗を下げることを目的として、光電変換層もしくは有機発光層と電極との間に種々の有機薄膜層を設ける場合がある。   In general, an organic device has, for example, a photoelectric conversion layer in the case of an organic photoelectric conversion element and an organic light emitting layer in the case of an organic EL element, between an anode electrode and a cathode electrode. In addition, various organic thin film layers may be provided between the photoelectric conversion layer or the organic light emitting layer and the electrode for the purpose of reducing the contact resistance between the photoelectric conversion layer or the organic light emitting layer and the electrode.

例えば、このような有機薄膜層としては、PEDOT(ポリ(3,4−(エチレンジオキシ)チオフェン))とPSS(ポリスチレンスルホン酸)を水に溶解した分散液を用いて形成されたものが知られている。有機薄膜層の形成方法としては、当該分散液を陽極電極基板上に塗布し、塗布膜を形成し、加熱乾燥して塗布膜中の溶媒を除去することで、PEDOTとPSSとからなるコロイド粒子を含む有機薄膜層を形成することができる。   For example, such an organic thin film layer is known to be formed using a dispersion obtained by dissolving PEDOT (poly (3,4- (ethylenedioxy) thiophene)) and PSS (polystyrene sulfonic acid) in water. It has been. As a method of forming the organic thin film layer, the dispersion is applied onto the anode electrode substrate, a coating film is formed, and the colloidal particles composed of PEDOT and PSS are formed by removing the solvent in the coating film by heating and drying. An organic thin film layer containing can be formed.

しかしながら、このようなPEDOTとPSSとからなるコロイド粒子を含む有機薄膜層は、膜表面や層界面が平滑でなくなるため、表面抵抗が増加するという問題を有する。
例えば、特許文献1には、有機EL素子等の有機デバイスにおける有機薄膜層の形成方法に関する発明が記載されている。特許文献1には、上記問題を解決することを目的として、PEDOTとPSSを含む分散液を3000rpm以上の回転数で遠心分離処理した溶液を用いることが提案されている。
また、特許文献2には、LEDディスプレイの有機層をインクジェット方式で形成するための有機層形成用塗液に関する発明が記載されているが、当該塗液中に高沸点の有機溶媒を配合することで、有機層の表面形状を平坦化することができる旨の開示がある。
However, the organic thin film layer containing colloidal particles composed of PEDOT and PSS has a problem that the surface resistance increases because the film surface and the layer interface are not smooth.
For example, Patent Document 1 describes an invention relating to a method for forming an organic thin film layer in an organic device such as an organic EL element. Patent Document 1 proposes to use a solution obtained by centrifuging a dispersion containing PEDOT and PSS at a rotation speed of 3000 rpm or more for the purpose of solving the above-described problem.
Patent Document 2 describes an invention related to an organic layer forming coating solution for forming an organic layer of an LED display by an ink jet method, and a high-boiling organic solvent is blended in the coating solution. Thus, there is a disclosure that the surface shape of the organic layer can be flattened.

特開2010−205685号公報JP 2010-205485 A 特開2001−52861号公報JP 2001-52861 A

しかしながら、特許文献1及び2記載の方法で形成される有機薄膜層は、有機EL素子やLEDディスプレイに用いられているが、有機光電変換素子の短絡電流密度の向上に寄与し得る程、表面抵抗率及び表面粗さを抑制しているとはいえない。そのため、有機光電変換素子に適用した場合でも短絡電流密度の向上に寄与し得る、導電性積層体が求められている。   However, although the organic thin film layer formed by the method described in Patent Documents 1 and 2 is used in organic EL elements and LED displays, the surface resistance is such that it can contribute to the improvement of the short-circuit current density of the organic photoelectric conversion element. It cannot be said that the rate and the surface roughness are suppressed. Therefore, there is a demand for a conductive laminate that can contribute to an improvement in short-circuit current density even when applied to an organic photoelectric conversion element.

本発明は、表面粗さが小さく平滑性に優れ、表面抵抗が低く、有機光電変換素子に適用した場合に短絡電流密度を向上させることができる、導電性積層体及び有機光電変換素子を提供することを目的とする。   The present invention provides a conductive laminate and an organic photoelectric conversion element that have small surface roughness, excellent smoothness, low surface resistance, and can improve the short-circuit current density when applied to an organic photoelectric conversion element. For the purpose.

本発明者らは、基材上に、特定の表面抵抗を有する材料からなるバッファ層及び被覆層を設けた導電性積層体が、上記課題を解決しうることを見出し、本発明を完成させた。
すなわち、本発明は、下記[1]〜[7]を提供するものである。
[1]基板上に、厚みが10〜1000nmのバッファ層、及び厚みが1〜50nmの被覆層を順に有する導電性積層体であって、
前記バッファ層のみからなる単層の表面抵抗率が1000Ω/□以下であり、且つ、前記被覆層のみからなる単層の表面抵抗率が105〜1010Ω/□であって、
前記被覆層の算術平均粗さ(Ra)が3.00nm以下であり、前記導電性積層体の表出している前記被覆層側から測定した該導電性積層体の表面抵抗率が500Ω/□以下である、導電性積層体。
[2]前記バッファ層を形成する材料が、水系導電性ポリマーを含む、上記[1]に記載の導電性積層体。
[3]前記被覆層を形成する材料が、有機溶媒に可溶で水に不溶な硬化型導電性ポリマーを含む、上記[1]又は[2]に記載の導電性積層体。
[4]前記被覆層と前記バッファ層との厚みの比〔被覆層/バッファ層〕が、1/99〜50/50である、上記[1]〜[3]のいずれかに記載の導電性積層体。
[5]前記基板が、電極付き基板である、上記[1]〜[4]のいずれかに記載の導電性積層体。
[6]上記[1]〜[5]のいずれかに記載の導電性積層体を有する、有機光電変換素子。
The present inventors have found that a conductive laminate in which a buffer layer and a coating layer made of a material having a specific surface resistance are provided on a substrate can solve the above problems, and have completed the present invention. .
That is, the present invention provides the following [1] to [7].
[1] A conductive laminate having, on a substrate, a buffer layer having a thickness of 10 to 1000 nm and a coating layer having a thickness of 1 to 50 nm in order,
The surface resistivity of the single layer consisting only of the buffer layer is 1000 Ω / □ or less, and the surface resistivity of the single layer consisting only of the coating layer is 10 5 to 10 10 Ω / □,
The arithmetic average roughness (Ra) of the coating layer is 3.00 nm or less, and the surface resistivity of the conductive laminate measured from the exposed coating layer side of the conductive laminate is 500 Ω / □ or less. A conductive laminate.
[2] The conductive laminate according to the above [1], wherein the material forming the buffer layer includes a water-based conductive polymer.
[3] The conductive laminate according to the above [1] or [2], wherein the material forming the coating layer includes a curable conductive polymer that is soluble in an organic solvent and insoluble in water.
[4] The conductivity according to any one of [1] to [3], wherein the ratio of the thickness of the coating layer to the buffer layer [coating layer / buffer layer] is 1/99 to 50/50. Laminated body.
[5] The conductive laminate according to any one of [1] to [4], wherein the substrate is a substrate with an electrode.
[6] An organic photoelectric conversion element having the conductive laminate according to any one of [1] to [5].

本発明の導電性積層体は、表面粗さが小さく平滑性に優れ、表面抵抗率が低く、有機光電変換素子に適用した場合に短絡電流密度を向上させることができる。   The conductive laminate of the present invention has small surface roughness, excellent smoothness, low surface resistivity, and can improve the short-circuit current density when applied to an organic photoelectric conversion element.

本発明の導電性積層体の一態様を示す導電性積層体の断面図である。It is sectional drawing of the electroconductive laminated body which shows the one aspect | mode of the electroconductive laminated body of this invention. 本発明の有機光電変換素子の第1態様を示す有機光電変換素子の断面図である。It is sectional drawing of the organic photoelectric conversion element which shows the 1st aspect of the organic photoelectric conversion element of this invention. 本発明の有機光電変換素子の第2態様を示す有機光電変換素子の断面図である。It is sectional drawing of the organic photoelectric conversion element which shows the 2nd aspect of the organic photoelectric conversion element of this invention.

〔導電性積層体〕
図1は、本発明の導電性積層体の一態様を示す導電性積層体の断面図である。
図1にあるとおり、本発明の導電性積層体1は、基板11上に、厚みが10〜1000nmのバッファ層12、及び厚みが1〜50nmの被覆層13を順に有する。なお、本発明の導電性積層体は、効果を損なわない範囲において、上記以外の層を有していてもよい。
[Conductive laminate]
FIG. 1 is a cross-sectional view of a conductive laminate showing one embodiment of the conductive laminate of the present invention.
As shown in FIG. 1, the conductive laminate 1 of the present invention has a buffer layer 12 having a thickness of 10 to 1000 nm and a coating layer 13 having a thickness of 1 to 50 nm on a substrate 11 in this order. In addition, the conductive laminated body of this invention may have layers other than the above in the range which does not impair an effect.

本発明の導電性積層体1において、バッファ層12のみからなる単層の表面抵抗率が1000Ω/□以下、被覆層13のみからなる単層の表面抵抗率が105〜1010Ω/□である。
つまり、本発明の導電性積層体は、基材上に、表面抵抗率が低い、厚み10〜1000nmのバッファ層、さらにその上に、表面抵抗率が高い、厚み1〜50nmの被覆層を設けた構成を有する。
このような構成を有することで、単にバッファ層もしくは被覆層のみを積層した場合に比べて、導電性積層体の表面粗さを小さくすることができ、導電性積層体の表面の平滑性が向上する。また、導電性積層体の表出している被覆層側から測定した該導電性積層体の表面抵抗率(以下、単に「導電性積層体の表面抵抗率」ともいう)を、バッファ層のみからなる単層の場合よりも低下させることができる。
すなわち、導電性積層体の表面の平滑性が向上することで、電極間のリーク電流が減少し、それと共に導電性積層体の表面抵抗率の低下するため、当該導電性積層体を有機光電変換素子に適用した場合に、有機光電変換素子の短絡電流密度が向上すると考えられる。
In the conductive laminate 1 of the present invention, the surface resistivity of a single layer consisting only of the buffer layer 12 is 1000 Ω / □ or less, and the surface resistivity of a single layer consisting only of the coating layer 13 is 10 5 to 10 10 Ω / □. is there.
That is, the conductive laminate of the present invention is provided with a buffer layer having a low surface resistivity and a thickness of 10 to 1000 nm on the substrate, and a coating layer having a high surface resistivity and a thickness of 1 to 50 nm on the substrate. Have a configuration.
By having such a configuration, the surface roughness of the conductive laminate can be reduced and the smoothness of the surface of the conductive laminate can be improved as compared to the case where only the buffer layer or the coating layer is laminated. To do. Further, the surface resistivity of the conductive laminate measured from the exposed coating layer side of the conductive laminate (hereinafter also simply referred to as “surface resistivity of the conductive laminate”) is composed of only the buffer layer. It can be reduced as compared with the case of a single layer.
That is, by improving the smoothness of the surface of the conductive laminate, the leakage current between the electrodes decreases, and at the same time the surface resistivity of the conductive laminate decreases. When applied to an element, it is considered that the short circuit current density of the organic photoelectric conversion element is improved.

一方、基板上に表面抵抗率が低い材料から形成された層のみを積層した導電性積層体の場合、その形成された層の表面粗さは、比較的大きくなる傾向がある。その結果、このような電極間のリーク電流を抑制できず、また、導電性積層体の表面抵抗率を十分に低下させることができないため、当該導電性積層体を有機光電変換素子に適用した場合に、有機光電変換素子の短絡電流密度を十分に向上させることができないと考えられる。
また、導電性積層体が、基板上に表面抵抗率が高い材料から形成された層のみを積層している場合、形成された層は比較的表面粗さが小さくなる傾向があるが、表面抵抗率が高い点が問題となる。そのため、当該導電性積層体を有機光電変換素子に適用したとしても、有機光電変換素子の短絡電流密度は低下すると考えられる。
On the other hand, in the case of a conductive laminate in which only a layer formed from a material having a low surface resistivity is laminated on a substrate, the surface roughness of the formed layer tends to be relatively large. As a result, when the leakage current between the electrodes cannot be suppressed and the surface resistivity of the conductive laminate cannot be sufficiently reduced, the conductive laminate is applied to an organic photoelectric conversion element. Further, it is considered that the short circuit current density of the organic photoelectric conversion element cannot be sufficiently improved.
In addition, when the conductive laminate has only a layer formed of a material having a high surface resistivity on the substrate, the formed layer tends to have a relatively small surface roughness. The high rate is a problem. Therefore, even if the conductive laminate is applied to an organic photoelectric conversion element, the short-circuit current density of the organic photoelectric conversion element is considered to decrease.

なお、本発明において、導電性積層体の表面抵抗率は、被覆層のみの単層の表面抵抗率とは異なる値を示す。それは、バッファ層及び被覆層の厚みが、上述のとおり数nmのレベルであるため、前記被覆層を測定した場合でも、バッファ層の特性も影響して、表面抵抗率の値は、被覆層形成材料の表面抵抗率に比べて格段に低下する。また、理由は定かではないが、被覆層を設けたことで、導電性積層体の表面抵抗率は、バッファ層のみの単層の表面抵抗率の値に比べて、格段に低下させることができる。   In the present invention, the surface resistivity of the conductive laminate shows a value different from the surface resistivity of a single layer having only a coating layer. Because the thickness of the buffer layer and the coating layer is several nanometers as described above, even when the coating layer is measured, the characteristics of the buffer layer also affect the surface resistivity value. Compared to the surface resistivity of the material, it is significantly reduced. Although the reason is not clear, by providing the coating layer, the surface resistivity of the conductive laminate can be significantly reduced as compared to the value of the surface resistivity of a single layer of only the buffer layer. .

以下、本発明の導電性積層体1を構成する基板11、バッファ層12、及び被覆層13について説明する。
[基板]
本発明で用いる基板としては、導電性積層体の用途に応じて適宜選択されるが、例えば、無アルカリガラス、石英ガラス、ホウケイ酸ガラス等のガラスを含む無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂、フッ素系樹脂等の有機材料から選択され任意の方法で作製されたフィルムや板等が挙げられる。本発明で用いる基板としては、導電性積層体を有機光電変換素子に適用する観点から、透明基板であることが好ましい。
Hereinafter, the substrate 11, the buffer layer 12, and the coating layer 13 that constitute the conductive laminate 1 of the present invention will be described.
[substrate]
The substrate used in the present invention is appropriately selected according to the use of the conductive laminate. For example, inorganic materials containing glass such as alkali-free glass, quartz glass, borosilicate glass, polyester, polycarbonate, polyolefin, polyamide Examples thereof include films and plates selected from organic materials such as polyimide, polyphenylene sulfide, polyparaxylene, epoxy resin, and fluorine resin, and produced by an arbitrary method. As a board | substrate used by this invention, it is preferable that it is a transparent substrate from a viewpoint which applies an electroconductive laminated body to an organic photoelectric conversion element.

また、本発明で用いる基板としては、導電性積層体を有機光電変換素子に適用する観点から、上記の無機材料、有機材料から作製されたフィルムや板等に電極が形成された電極付き基板や、電極のみからなる基板であってもよい。
形成される電極の材料としては、スズドープ酸化インジウム(ITO)、IrO2、In23、SnO2、酸化インジウム−酸化亜鉛(IZO)、ZnO(Ga、Alドープ)、MoO3等の材料が挙げられる。これらの中でも、透明性、導電性の観点から、ITOが好ましい。なお、電極の形成は、通常、スパッタリング、蒸着等の乾式法で行われるが、ディップコート法、スピンコート法等の湿式法でもよく、限定されるものではない。
基板11の厚みは、特に制限はないが、通常0.1〜10mmである。
基板11の波長550nmにおける可視光線透過率は、導電性積層体を有機光電変換素子に適用する観点から、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上である。
Moreover, as a board | substrate used by this invention, from a viewpoint which applies a conductive laminated body to an organic photoelectric conversion element, the board | substrate with an electrode in which the electrode was formed in said inorganic material, the film produced from an organic material, etc. A substrate made of only electrodes may be used.
Examples of the electrode material to be formed include tin-doped indium oxide (ITO), IrO 2 , In 2 O 3 , SnO 2 , indium oxide-zinc oxide (IZO), ZnO (Ga, Al-doped), and MoO 3. Can be mentioned. Among these, ITO is preferable from the viewpoints of transparency and conductivity. In addition, although formation of an electrode is normally performed by dry methods, such as sputtering and vapor deposition, wet methods, such as a dip coat method and a spin coat method, may be sufficient and it is not limited.
The thickness of the substrate 11 is not particularly limited, but is usually 0.1 to 10 mm.
The visible light transmittance at a wavelength of 550 nm of the substrate 11 is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more from the viewpoint of applying the conductive laminate to an organic photoelectric conversion element.

[バッファ層]
本発明の導電性積層体におけるバッファ層のみからなる単層の表面抵抗率は1000Ω/□以下であり、好ましくは850Ω/□以下、より好ましくは700Ω/□以下、更に好ましくは550Ω/□以下である。当該表面抵抗率が1000Ω/□を超えると、導電性積層体全体の表面抵抗率が高くなり、有機光電変換素子に適用した場合に短絡電流密度が低下するため好ましくない。
なお、「バッファ層のみからなる単層の表面抵抗率」とは、基板上にバッファ層のみを積層した試験サンプルにおいて、該試験サンプルのバッファ層の表面抵抗率を意味し、当該試験サンプルのバッファ層の厚みは、対象としている導電性積層体が有する被覆層の厚みと同じである。
また、表面抵抗率の値は、JIS K7194で規定された四端子法に基づき測定される値であり、より具体的には実施例に記載の方法で測定された値を意味する。
[Buffer layer]
The surface resistivity of the single layer consisting only of the buffer layer in the conductive laminate of the present invention is 1000Ω / □ or less, preferably 850Ω / □ or less, more preferably 700Ω / □ or less, and even more preferably 550Ω / □ or less. is there. When the surface resistivity exceeds 1000 Ω / □, the surface resistivity of the entire conductive laminate is increased, which is not preferable because the short-circuit current density is reduced when applied to an organic photoelectric conversion element.
The “surface resistivity of a single layer consisting only of the buffer layer” means the surface resistivity of the buffer layer of the test sample in a test sample in which only the buffer layer is laminated on the substrate, and the buffer of the test sample. The thickness of the layer is the same as the thickness of the coating layer of the target conductive laminate.
Moreover, the value of surface resistivity is a value measured based on the four probe method prescribed | regulated by JISK7194, More specifically, the value measured by the method as described in an Example is meant.

本発明において、バッファ層の形成に用いる材料(以下、「バッファ層形成材料」ともいう)は、形成されるバッファ層の表面抵抗率の値が上記範囲に属するように調整可能な材料であればよく、材料の化合物の構造や種類等の制限はない。
ただし、バッファ層形成材料として、水系導電性ポリマーが含まれていることが好ましい。本発明において、水系導電性ポリマーとは、水溶性の導電性ポリマー又は水分散可能な導電性ポリマーのことを意味する。当該水系導電性ポリマーを含むことで、形成されるバッファ層の表面抵抗率を上記範囲に属するように調整することが容易となる。なお、本発明で用いる水系導電性ポリマーは、親水性であり、コロイド粒子として水分散体となり得るポリマーで、表面抵抗率が上記範囲を満たすものである。
In the present invention, the material used for forming the buffer layer (hereinafter also referred to as “buffer layer forming material”) may be any material that can be adjusted so that the surface resistivity value of the formed buffer layer falls within the above range. There are no restrictions on the structure and type of the compound of the material.
However, it is preferable that a water-based conductive polymer is included as the buffer layer forming material. In the present invention, the water-based conductive polymer means a water-soluble conductive polymer or a water-dispersible conductive polymer. By including the water-based conductive polymer, it is easy to adjust the surface resistivity of the formed buffer layer so as to belong to the above range. The aqueous conductive polymer used in the present invention is hydrophilic and can be a water dispersion as colloidal particles, and the surface resistivity satisfies the above range.

このような水系導電性ポリマーとしては、例えば、ポリチオフェン又はドーピングされたポリチオフェン、ポリピロール又はドーピングされたポリピロール、ポリアニリン又はドーピングされたポリアニリン、ポリアセチレン類等が挙げられる。
これらの中でも、分散性に優れ、塗膜の形成が容易であり、高透明性、及び導電性に優れるという観点から、ポリチオフェン又はドーピングされたポリチオフェン、ポリアニリン又はドーピングされたポリアニリンが好ましい。
ドーピングされたポリチオフェンとしては、例えば、ポリ(3,4)−エチレンジオキシチオフェン/ポリスチレンスルフォネート(PEDOT/PSS)等が挙げられる。
また、ドーピングされたポリアニリンとしては、例えば、ポリアニリン/カンファースルホン酸(PANI/CSA)等が挙げられる。
具体的な市販品としては、日本アグフアマテリアルズ社製の「HBS5」、AGFA社の「EL−P3040」等のポリチオフェンの水分散液、日産化学工業(株)のORMECOND1033W等のポリアニリンの水分散液が挙げられる。
Examples of such a water-based conductive polymer include polythiophene or doped polythiophene, polypyrrole or doped polypyrrole, polyaniline or doped polyaniline, polyacetylenes, and the like.
Among these, polythiophene, doped polythiophene, polyaniline, or doped polyaniline are preferable from the viewpoints of excellent dispersibility, easy formation of a coating film, high transparency, and excellent conductivity.
Examples of the doped polythiophene include poly (3,4) -ethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS).
Examples of the doped polyaniline include polyaniline / camphorsulfonic acid (PANI / CSA).
Specific examples of commercially available products include aqueous dispersions of polythiophene such as “HBS5” manufactured by Agfa Materials, Inc., “EL-P3040” manufactured by AGFA, and aqueous dispersions of polyaniline such as ORMECOND1033W manufactured by Nissan Chemical Industries, Ltd. Is mentioned.

水系導電性ポリマーの含有量は、バッファ層形成材料中、好ましくは70〜100質量%、より好ましくは85〜100質量%、更に好ましくは95〜100質量%、より更に好ましくは実質100質量%である。   The content of the aqueous conductive polymer is preferably 70 to 100% by mass, more preferably 85 to 100% by mass, further preferably 95 to 100% by mass, and still more preferably substantially 100% by mass in the buffer layer forming material. is there.

バッファ層は、上述のバッファ層形成材料を水に溶かして水分散液とし、当該水分散液をスピンコート法等の公知の塗布法により基板上に塗布して塗膜を形成し、該塗膜を加熱乾燥させることで形成することができる。   The buffer layer is obtained by dissolving the above buffer layer forming material in water to form an aqueous dispersion, and coating the aqueous dispersion on a substrate by a known coating method such as a spin coating method to form a coating film. Can be formed by heat drying.

バッファ層12の厚みとしては、10〜1000nmであるが、好ましくは30〜700nm、より好ましくは50〜500nm、更に好ましくは70〜250nmである。10nm以上であればバッファ層の均一性維持のうえで好ましく、1000nm以下であれば光透過率を高く保持できるため好ましい。   The buffer layer 12 has a thickness of 10 to 1000 nm, preferably 30 to 700 nm, more preferably 50 to 500 nm, and still more preferably 70 to 250 nm. If it is 10 nm or more, it is preferable for maintaining the uniformity of the buffer layer, and if it is 1000 nm or less, it is preferable because the light transmittance can be kept high.

[被覆層]
本発明の導電性積層体における被覆層のみからなる単層の表面抵抗率は105〜1010Ω/□であり、好ましくは106〜1010Ω/□、より好ましくは107〜1010Ω/□、更に好ましくは108〜1010Ω/□である。
該表面抵抗率が上記範囲内であれば、バッファ層上に被覆層を形成した場合に、導電性積層体の表面抵抗率を、バッファ層のみからなる単層の表面抵抗率よりも低下させることができる。その結果、有機光電変換素子に適用した場合に、短絡電流密度を十分に向上させることができる。
なお、「被覆層のみからなる単層の表面抵抗率」とは、基板上にバッファ層を形成せずに被覆層のみを積層した試験サンプルにおいて、該試験サンプルの被覆層の表面抵抗率を意味し、当該試験サンプルの被覆層の厚みは、対象としている導電性積層体が有する被覆層の厚みと同じである。
[Coating layer]
The surface resistivity of the single layer consisting only of the coating layer in the conductive laminate of the present invention is 10 5 to 10 10 Ω / □, preferably 10 6 to 10 10 Ω / □, more preferably 10 7 to 10 10. Ω / □, more preferably 10 8 to 10 10 Ω / □.
If the surface resistivity is within the above range, when a coating layer is formed on the buffer layer, the surface resistivity of the conductive laminate is made lower than the surface resistivity of a single layer consisting only of the buffer layer. Can do. As a result, when applied to an organic photoelectric conversion element, the short-circuit current density can be sufficiently improved.
“Surface resistivity of a single layer consisting only of the coating layer” means the surface resistivity of the coating layer of the test sample in a test sample in which only the coating layer is laminated without forming a buffer layer on the substrate. And the thickness of the coating layer of the said test sample is the same as the thickness of the coating layer which the electroconductive laminated body made into object has.

本発明において、被覆層の形成に用いる材料(以下、「被覆層形成材料」ともいう)は、形成される被覆層の表面抵抗率の値が上記範囲に属するように調整可能な材料であり、且つ、有機溶媒に可溶で水に不溶なものであればよく、材料の化合物の構造や種類等の制限はない。
ただし、被覆層形成材料として、有機溶媒に可溶で水に不溶な硬化型導電性ポリマーが含まれていることが好ましい。硬化型導電性ポリマーとしては、熱硬化型導電性ポリマー、紫外線硬化型導電性ポリマー等が挙げられる。
このような硬化型導電性ポリマーを被覆層形成材料として含むことで、形成される被覆層の表面抵抗率を上記範囲に属するように調整することが容易となる。
また、有機溶媒に可溶で水に不溶な硬化型導電性ポリマーを被覆層形成材料として含むことで、バッファ層上に被覆層を形成する際に、バッファ層を溶解してしまうことを防止することができ、得られる導電性積層体の表面粗さを小さくすることができる。その結果、有機光電変換素子に適用した場合、電極間のリーク電流が減少するため、効果的に短絡電流密度を向上させることができる。
In the present invention, the material used for forming the coating layer (hereinafter also referred to as “coating layer forming material”) is a material that can be adjusted so that the surface resistivity value of the coating layer to be formed belongs to the above range, And what is necessary is just a thing soluble in an organic solvent, and insoluble in water, and there is no restriction | limiting in the structure of a compound of a material, a kind, etc.
However, the coating layer forming material preferably contains a curable conductive polymer that is soluble in an organic solvent and insoluble in water. Examples of the curable conductive polymer include a thermosetting conductive polymer and an ultraviolet curable conductive polymer.
By including such a curable conductive polymer as the coating layer forming material, it becomes easy to adjust the surface resistivity of the coating layer to be formed so as to belong to the above range.
Further, by containing a curable conductive polymer that is soluble in an organic solvent and insoluble in water as a coating layer forming material, the buffer layer is prevented from being dissolved when the coating layer is formed on the buffer layer. And the surface roughness of the obtained conductive laminate can be reduced. As a result, when applied to an organic photoelectric conversion element, the leakage current between the electrodes decreases, so that the short-circuit current density can be effectively improved.

熱硬化型導電性ポリマーとしては、例えば、ポリチオフェン、ポリピロール、ポリアニリン等の有機溶媒に可溶で水に不溶な導電性ポリマーを変性して得られる導電性ポリマー等が挙げられる。
紫外線硬化型導電性ポリマーとしては、例えば、ポリチオフェン、ポリピロール、ポリアニリン等の有機溶媒に可溶で水に不溶な導電性ポリマーの側鎖に、ビニル基、(メタ)アクリロイル基等の重合性不飽和基を有する導電性ポリマー等が挙げられる。この紫外線硬化型導電性ポリマーは、例えば、有機溶媒に可溶で水に不溶な導電性ポリマーのポリマー鎖に、−COOH、−NCO、エポキシ基、−OH、−NH2等の官能基を導入し、この活性点と重合性不飽和基を有する化合物を反応させて得ることができる。
Examples of the thermosetting conductive polymer include a conductive polymer obtained by modifying a conductive polymer that is soluble in an organic solvent such as polythiophene, polypyrrole, polyaniline, and insoluble in water.
Examples of the ultraviolet curable conductive polymer include polymerizable unsaturated groups such as vinyl groups and (meth) acryloyl groups on the side chains of conductive polymers that are soluble in organic solvents such as polythiophene, polypyrrole, and polyaniline and are insoluble in water. Examples thereof include a conductive polymer having a group. This UV curable conductive polymer, for example, introduces functional groups such as —COOH, —NCO, epoxy group, —OH, and —NH 2 into the polymer chain of the conductive polymer that is soluble in organic solvents and insoluble in water. The compound can be obtained by reacting this active site with a compound having a polymerizable unsaturated group.

具体的な有機溶媒に可溶で水に不溶な硬化型導電性ポリマーとしては、下記一般式(1a)〜(1c)、一般式(2a)〜(2c)、一般式(3a)〜(3c)で表されるモノマーに重合開始剤を配合して重合して得られるポリマーが挙げられる。   Specific examples of the curable conductive polymer that is soluble in an organic solvent and insoluble in water include the following general formulas (1a) to (1c), general formulas (2a) to (2c), and general formulas (3a) to (3c). ), And a polymer obtained by blending a polymerization initiator with the monomer represented by polymerization.

上記一般式(1a)〜(3c)のそれぞれにおいて、R1は、それぞれ独立に、ビニル基、(メタ)アクリロイル基を示す。R2は、それぞれ独立に、水素原子、炭素数1〜6のアルキル基を示し、炭素数1〜3のアルキル基が好ましい。R3は、それぞれ独立に、炭素数1〜6のアルキル基を示す。また、xは、1〜6の整数であり、好ましくは2〜6の整数である。mは0〜12の整数であり、好ましくは4〜12の整数である。nは1〜12の整数であり、好ましくは4〜12の整数である。aは1〜2の整数、b及びcは1〜4の整数である。
なお、R2、R3が示す炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、ペンチル基、ヘキシル基等が挙げられる。
In each of the general formulas (1a) to (3c), each R 1 independently represents a vinyl group or a (meth) acryloyl group. R < 2 > shows a hydrogen atom and a C1-C6 alkyl group each independently, and a C1-C3 alkyl group is preferable. R < 3 > shows a C1-C6 alkyl group each independently. Moreover, x is an integer of 1-6, Preferably it is an integer of 2-6. m is an integer of 0-12, preferably an integer of 4-12. n is an integer of 1 to 12, and preferably an integer of 4 to 12. a is an integer of 1-2, b and c are integers of 1-4.
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 2 and R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a pentyl group, A hexyl group etc. are mentioned.

硬化型導電性ポリマーの含有量は、被覆層形成材料中、好ましくは70〜100質量%、より好ましくは85〜100質量%、更に好ましくは95〜100質量%、より更に好ましくは95〜99.9質量%である。なお、被覆層形成材料は、本発明の効果が損なわれない範囲で、所望により、重合開始剤等のその他の添加剤を含んでいてもよい。   The content of the curable conductive polymer is preferably 70 to 100% by mass, more preferably 85 to 100% by mass, still more preferably 95 to 100% by mass, and still more preferably 95 to 99.% in the coating layer forming material. 9% by mass. In addition, the coating layer forming material may contain other additives such as a polymerization initiator as desired as long as the effects of the present invention are not impaired.

被覆層は、上述の被覆層形成材料を有機溶媒に溶かした溶液を、スピンコート法等の公知の塗布法によりバッファ層上に塗布して塗膜を形成し、該塗膜を加熱乾燥させることで形成することができる。   The coating layer is formed by applying a solution obtained by dissolving the above-described coating layer forming material in an organic solvent onto the buffer layer by a known coating method such as a spin coating method, and then heating and drying the coating film. Can be formed.

被覆層13の厚みとしては、平滑性の向上及び導電性積層体の表面抵抗率を低下させる観点から、1〜50nmであるが、好ましくは3〜45nm、より好ましくは5〜40nm、更に好ましくは7〜30nmである。1nm未満であると、形成される被覆層の算術平均粗さ(Ra)が大きくなり平滑性が劣る。一方、50nmを超えると、導電性積層体の表面抵抗率が上昇してしまう。
また、被覆層とバッファ層との厚みの比〔被覆層/バッファ層〕は、表面粗さを小さくすると共に、導電性積層体の表面抵抗率を低下させる観点から、好ましくは1/99〜50/50、より好ましくは3/97〜30/70、更に好ましくは5/95〜23/77である。
The thickness of the coating layer 13 is 1 to 50 nm, preferably 3 to 45 nm, more preferably 5 to 40 nm, and still more preferably from the viewpoint of improving smoothness and reducing the surface resistivity of the conductive laminate. 7-30 nm. If it is less than 1 nm, the arithmetic average roughness (Ra) of the coating layer to be formed becomes large and the smoothness is inferior. On the other hand, when it exceeds 50 nm, the surface resistivity of the conductive laminate is increased.
The ratio of the thickness of the coating layer to the buffer layer [coating layer / buffer layer] is preferably 1/99 to 50 from the viewpoint of reducing the surface roughness and reducing the surface resistivity of the conductive laminate. / 50, more preferably 3/97 to 30/70, still more preferably 5/95 to 23/77.

[導電性積層体の特性]
本発明において、導電性積層体の表面粗さは、導電性積層体の被覆層13の算術平均粗さ(Ra)で評価している。算術平均粗さ(Ra)の値は、JIS B 0601:2001の規定に基づき測定される値であり、より具体的には実施例に記載の方法で測定された値を意味する。
被覆層の算出平均粗さ(Ra)は、3.00nm以下であり、好ましくは2.60nm以下、より好ましくは2.30nm以下、更に好ましくは2.00nm以下である。当該被覆層の算出平均粗さ(Ra)が3.00nmを超えると、有機光電変換素子に適用した場合に、電極間でリーク電流が発生し、短絡電流密度を十分に向上させることができない。
[Characteristics of conductive laminate]
In the present invention, the surface roughness of the conductive laminate is evaluated by the arithmetic average roughness (Ra) of the coating layer 13 of the conductive laminate. The value of arithmetic average roughness (Ra) is a value measured based on JIS B 0601: 2001, and more specifically means a value measured by the method described in the examples.
The calculated average roughness (Ra) of the coating layer is 3.00 nm or less, preferably 2.60 nm or less, more preferably 2.30 nm or less, and still more preferably 2.00 nm or less. When the calculated average roughness (Ra) of the coating layer exceeds 3.00 nm, when applied to an organic photoelectric conversion element, a leak current is generated between the electrodes, and the short-circuit current density cannot be sufficiently improved.

また、本発明の導電性積層体の表出している被覆層側から測定した導電性積層体の表面抵抗率は、500Ω/□以下であり、好ましくは350Ω/□以下、より好ましくは280Ω/□以下、更に好ましくは235Ω/□以下である。導電性積層体の表面抵抗率が500Ω/□を超えると、有機光電変換素子に適用した場合に短絡電流密度が低下するため好ましくない。   Further, the surface resistivity of the conductive laminate measured from the exposed coating layer side of the conductive laminate of the present invention is 500Ω / □ or less, preferably 350Ω / □ or less, more preferably 280Ω / □. Hereinafter, it is more preferably 235Ω / □ or less. When the surface resistivity of the conductive laminate exceeds 500 Ω / □, it is not preferable because the short-circuit current density decreases when applied to an organic photoelectric conversion element.

本発明の導電性積層体は、上述のように、表面の平滑性に優れ、且つ、表面抵抗率が低いため、電極間に、例えば、有機光電変換素子の場合は光電変換層、有機EL素子の場合は有機発光層を有する有機デバイスにおいて、光電変換層もしくは有機発光層と電極との接触抵抗を下げることを目的として用いることができる。なかでも、短絡電流密度を向上させることができため有機光電変換素子に好適に用いることができる。   As described above, the conductive laminate of the present invention has excellent surface smoothness and low surface resistivity. Therefore, for example, in the case of an organic photoelectric conversion element, a photoelectric conversion layer or an organic EL element is used between the electrodes. In the case of, an organic device having an organic light emitting layer can be used for the purpose of reducing the contact resistance between the photoelectric conversion layer or the organic light emitting layer and the electrode. Especially, since a short circuit current density can be improved, it can use suitably for an organic photoelectric conversion element.

[有機光電変換素子]
次に、本発明の導電性積層体の被覆層上に、さらに光電変換層を有する、有機光電変換素子について説明する。
有機光電変換素子とは、光エネルギー照射によって起電力を発生する素子のことであり、一般的には光エネルギーを電気的なエネルギーに変換する素子で光電変換層に電荷を取り出すための電極を設けたものである。有機光電変換素子としては、有機太陽電池、フォトダイオード等の種々の有機半導体デバイス用途が挙げられる。これらの中でも、本発明の有機光電変換素子の用途としては、有機太陽電池が適している。また、光電変換層とは、有機光電変換素子の中心をなす光電効果を受ける層であり、単層からなってもよいし、複数層からなってもよい。
[Organic photoelectric conversion element]
Next, the organic photoelectric conversion element which has a photoelectric converting layer further on the coating layer of the electroconductive laminated body of this invention is demonstrated.
An organic photoelectric conversion element is an element that generates an electromotive force when irradiated with light energy. In general, an element that converts light energy into electrical energy is provided with an electrode for extracting charges from the photoelectric conversion layer. It is a thing. Examples of organic photoelectric conversion elements include various organic semiconductor device applications such as organic solar cells and photodiodes. Among these, an organic solar cell is suitable for the use of the organic photoelectric conversion element of the present invention. Moreover, a photoelectric converting layer is a layer which receives the photoelectric effect which makes the center of an organic photoelectric conversion element, may consist of a single layer, and may consist of multiple layers.

図2及び3は、本発明の有機光電変換素子の一つの態様を示した有機光電変換素子の断面図である。
図2に示された有機光電変換素子2aは、導電性積層体1の被覆層13上に、光電変換層14及び電極15を順に有する。光電変換層14は、有機光電変換素子の中心をなす光電効果を受ける層である。図2の有機光電変換素子2aの光電変換層14は、p型半導体材料(電子供与性材料)及びn型半導体材料(電子受容性材料)の混合材料から形成された層であり、単層から構成されている。
一方、図3に示された有機光電変換素子2bの光電変換層14は、p型半導体材料からなるp型半導体層14aと、n型半導体材料からなるn型半導体層14bの複数層から構成されている。
2 and 3 are cross-sectional views of the organic photoelectric conversion element showing one embodiment of the organic photoelectric conversion element of the present invention.
The organic photoelectric conversion element 2 a shown in FIG. 2 has a photoelectric conversion layer 14 and an electrode 15 in this order on the coating layer 13 of the conductive laminate 1. The photoelectric conversion layer 14 is a layer that receives the photoelectric effect that forms the center of the organic photoelectric conversion element. The photoelectric conversion layer 14 of the organic photoelectric conversion element 2a in FIG. 2 is a layer formed from a mixed material of a p-type semiconductor material (electron-donating material) and an n-type semiconductor material (electron-accepting material). It is configured.
On the other hand, the photoelectric conversion layer 14 of the organic photoelectric conversion element 2b shown in FIG. 3 includes a plurality of layers of a p-type semiconductor layer 14a made of a p-type semiconductor material and an n-type semiconductor layer 14b made of an n-type semiconductor material. ing.

光電変換層が単層の場合には、光電変換層14は、通常、真性半導体層から形成される。真性半導体層とは、p型半導体材料(電子供与性材料)及びn型半導体材料(電子受容性材料)よりなるp−n接合界面を持つ有機層のことである。
光電変換層が複数層の場合には、光電変換層14は、p型半導体材料(電子供与性材料)からなるp型半導体層14aと、n型半導体材料(電子受容性材料)からなるn型半導体層14bからなるp−n接合界面を持つ有機層より構成される。
When the photoelectric conversion layer is a single layer, the photoelectric conversion layer 14 is usually formed from an intrinsic semiconductor layer. The intrinsic semiconductor layer is an organic layer having a pn junction interface made of a p-type semiconductor material (electron-donating material) and an n-type semiconductor material (electron-accepting material).
When there are a plurality of photoelectric conversion layers, the photoelectric conversion layer 14 includes a p-type semiconductor layer 14a made of a p-type semiconductor material (electron-donating material) and an n-type made of an n-type semiconductor material (electron-accepting material). The semiconductor layer 14b is composed of an organic layer having a pn junction interface.

真性半導体層において、p型半導体材料とn型半導体材料の質量比(p型半導体材料/n型半導体材料)は、高い光電変換効率が得る観点から、好ましくは1/10〜10/1、より好ましくは1/5〜5/1、更に好ましくは1/5〜1/1である。   In the intrinsic semiconductor layer, the mass ratio of the p-type semiconductor material to the n-type semiconductor material (p-type semiconductor material / n-type semiconductor material) is preferably 1/10 to 10/1 from the viewpoint of obtaining high photoelectric conversion efficiency. Preferably it is 1/5 to 5/1, more preferably 1/5 to 1/1.

光電変換層における、p型半導体材料としては、特に限定されず、例えば、銅フタロシアニン等の縮合多環芳香族低分子化合物、ポリ−3−ヘキシルチオフェン(P3HT)等のポリチオフェン誘導体の共役系ポリマーもしくはオリゴマー等が挙げられる。   The p-type semiconductor material in the photoelectric conversion layer is not particularly limited. For example, a condensed polycyclic aromatic low molecular compound such as copper phthalocyanine, a conjugated polymer of a polythiophene derivative such as poly-3-hexylthiophene (P3HT), or the like An oligomer etc. are mentioned.

一方、n型半導体材料としては、特に限定されず、例えば、[6,6]−フェニルC61ブチリックアシッドメチルエステル([6,6]−PCBM、又は[60]PCBM)等のフラーレン化合物、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、カーボンナノチューブ(CNT)、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)等が挙げられる。これらの中でも、安定でキャリア移動度の高いn型半導体材料であることから、フラーレン化合物が好ましい。
なお、これらのp型半導体材料及びn型半導体材料は、それぞれ単独で又は2種以上を組み合わせて用いることができる。
On the other hand, the n-type semiconductor material is not particularly limited. For example, fullerene compounds such as [6,6] -phenyl C61 butyric acid methyl ester ([6,6] -PCBM or [60] PCBM), triazole Derivatives, phenanthroline derivatives, phosphine oxide derivatives, carbon nanotubes (CNT), derivatives obtained by introducing a cyano group into a poly-p-phenylene vinylene polymer (CN-PPV), and the like. Among these, a fullerene compound is preferable because it is an n-type semiconductor material that is stable and has high carrier mobility.
These p-type semiconductor material and n-type semiconductor material can be used alone or in combination of two or more.

また、真性半導体層、p型半導体層及びn型半導体層等の光電変換層の形成方法としては、特に限定されないが、例えは、スピンコート及びバーコート等の塗布法、真空蒸着法等が挙げられる。これらの中でも、真性半導体層の形成方法としては、p型半導体材料及びn型半導体材料を溶媒に溶かした溶液を上記塗布法により塗布する方法が好ましい。この溶液に含まれる溶媒としては、特に限定されず、例えば、クロロベンゼン、オルトジクロロベンゼン、クロロホルム、ジクロロメタン、トルエン、テトラヒドロフラン等を用いることができる。   In addition, the method for forming a photoelectric conversion layer such as an intrinsic semiconductor layer, a p-type semiconductor layer, and an n-type semiconductor layer is not particularly limited, and examples thereof include a coating method such as spin coating and bar coating, and a vacuum deposition method. It is done. Among these, as a method for forming the intrinsic semiconductor layer, a method in which a solution in which a p-type semiconductor material and an n-type semiconductor material are dissolved in a solvent is applied by the above-described application method is preferable. The solvent contained in this solution is not particularly limited, and for example, chlorobenzene, orthodichlorobenzene, chloroform, dichloromethane, toluene, tetrahydrofuran and the like can be used.

本発明の有機光電変換素子の電極15の材料としては、特に限定されないが、陰極電極の材料としては、電子受容性材料のLUMOレベルに対してエネルギー障壁が小さく、仕事関数が比較的小さなものが好ましく、例えば、Ag、Al、Pt,Ir、Cr、ZnO、CNT、及びそれらの合金、複合体等が挙げられる。
一方、陽極電極の材料としては、電子供与性材料のHOMOレベルとエネルギー障壁が小さく、比較的仕事関数が大きなものが好ましく、透明なものがより好ましい。例えば、スズドープ酸化インジウム(ITO)、IrO2、In23、SnO2、酸化インジウム−酸化亜鉛(IZO)、ZnO(Ga、Alドープ)、MoO3等の材料が挙げられる。
電極の形成方法としては、特に制限はされず、例えば、真空蒸着、各種スパッタリング等の方法が挙げられる。
The material of the electrode 15 of the organic photoelectric conversion element of the present invention is not particularly limited, but the cathode electrode material has a small energy barrier and a relatively small work function with respect to the LUMO level of the electron-accepting material. Preferable examples include Ag, Al, Pt, Ir, Cr, ZnO, CNT, and alloys and composites thereof.
On the other hand, the material of the anode electrode is preferably an electron donating material having a small HOMO level and energy barrier, a relatively large work function, and more preferably a transparent material. Examples thereof include materials such as tin-doped indium oxide (ITO), IrO 2 , In 2 O 3 , SnO 2 , indium oxide-zinc oxide (IZO), ZnO (Ga, Al doped), and MoO 3 .
The method for forming the electrode is not particularly limited, and examples thereof include vacuum deposition and various sputtering methods.

なお、図3の有機光電変換素子2bのように、光電変換層14と電極15との間にブロッキング層16を設けてもよい。ブロッキング層を形成する材料としては、例えば、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソクプロイン;BCP)、ビス(2−メチル−8−ヒドロキシキノリノエート)−アルミニウム(III)フェノレート(Alq2OPH)等が挙げられる。 In addition, you may provide the blocking layer 16 between the photoelectric converting layer 14 and the electrode 15 like the organic photoelectric conversion element 2b of FIG. Examples of the material for forming the blocking layer include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine; BCP), bis (2-methyl-8-hydroxyquinolinoate) -aluminum ( III) Phenolate (Alq 2 OPH) and the like.

[製造例1]
(下記式(1A)で表される化合物(1A)の合成)
[Production Example 1]
(Synthesis of Compound (1A) Represented by Formula (1A) below)

はじめに、公知の方法により下記式(a)で表される化合物を合成した。
First, a compound represented by the following formula (a) was synthesized by a known method.

上記式(a)で表される化合物1.08g(2.09mmol)を、室温でジクロロメタン190mL中に分散させ、メタクリル酸(東京化成製)0.9g、4−N,N−ジメチルアミノピリジン1.28g、及びジシクロヘキシルカルボキシジイミド(DCC)2.16gを加え、12時間攪拌して反応させた。
得られた反応混合物を、セライトでろ過して固形分を除去した後、減圧濃縮を行った。そして、得られた濃縮物を、シリカゲルカラム(和光純薬製、製品名「C−200」)を用いてカラムクロマトグラフィー(展開溶媒:ジクロロメタン/n−ヘキサン=1/1)で精製し、上記式(1A)で表される化合物(1A)(有機溶媒に可溶で水に不溶なポリチオフェン骨格を有する硬化型導電性ポリマー)を0.9624g(収率67%)得た。
1.08 g (2.09 mmol) of the compound represented by the above formula (a) is dispersed in 190 mL of dichloromethane at room temperature, 0.9 g of methacrylic acid (manufactured by Tokyo Chemical Industry), 4-N, N-dimethylaminopyridine 1 .28 g and 2.16 g of dicyclohexylcarboxydiimide (DCC) were added and reacted with stirring for 12 hours.
The resulting reaction mixture was filtered through celite to remove solids, and then concentrated under reduced pressure. The resulting concentrate was purified by column chromatography (developing solvent: dichloromethane / n-hexane = 1/1) using a silica gel column (manufactured by Wako Pure Chemicals, product name “C-200”). 0.9624 g (yield 67%) of the compound (1A) represented by the formula (1A) (a curable conductive polymer having a polythiophene skeleton soluble in an organic solvent and insoluble in water) was obtained.

得られた化合物(1A)の分析結果を以下に示す。
1H−NMR(500MHz、TMS内部標準、ppm表示、溶媒:重クロロホルム中、25℃);7.03(2H,d)、6.99(4H,br)、6.67(2H,d)、6.09(1H,d)、5.55(1H,d)、4.14(2H,t)、2.80(4H,br)、1.95(3H,t)、1.68(6H,br)、1.42〜1.30(10H,br)、0.90(3H,t)。質量分析(EI−MS);m/Z=584(M+)。
The analysis results of the obtained compound (1A) are shown below.
1 H-NMR (500 MHz, TMS internal standard, ppm display, solvent: deuterated chloroform, 25 ° C.); 7.03 (2H, d), 6.99 (4H, br), 6.67 (2H, d) 6.09 (1H, d), 5.55 (1H, d), 4.14 (2H, t), 2.80 (4H, br), 1.95 (3H, t), 1.68 ( 6H, br), 1.42-1.30 (10H, br), 0.90 (3H, t). Mass spectrometry (EI-MS); m / Z = 584 (M +).

[製造例2]
(化合物(1A)含有塗布液の調整)
製造例1で合成した上記式(1A)で表される化合物(1A)を、クロロベンゼン(シグマアルドリッチ製)に溶解し、濃度1質量%の溶液を調製した。当該溶液に、光開始剤として、2,2−ジメトキシ−1,2ジフェニルエタン−1−オン(長瀬産業製、製品名「イルガキュア651」)を、化合物(1A)100質量部に対して、1質量部添加して、化合物(1A)含有塗布液を調製した。なお、得られた塗布液は、室温、暗所で保管した。
[Production Example 2]
(Preparation of compound (1A) -containing coating solution)
The compound (1A) represented by the above formula (1A) synthesized in Production Example 1 was dissolved in chlorobenzene (manufactured by Sigma-Aldrich) to prepare a solution having a concentration of 1% by mass. To the solution, 2,2-dimethoxy-1,2-diphenylethane-1-one (manufactured by Nagase Sangyo Co., Ltd., product name “Irgacure 651”) was added as a photoinitiator to 100 parts by mass of the compound (1A). A part by mass was added to prepare a coating solution containing compound (1A). The obtained coating solution was stored at room temperature in a dark place.

[実施例1]
(1)導電性積層体の作製
以下の手順で、図1に示す構成を有する導電性積層体を作製した。
透明電極付き基板11として、UV−オゾンクリーナー「UV253E」(製品名、フィルジェン株式会社製)により洗浄処理を行ったITOガラス基板(ガラス基板に、透明電極としてスズドープ酸化インジウム膜を形成したもの)を使用した。このITOガラス基板上に、PEDOT/PSS(日本アグフアマテリアルズ製、商品名「HBS5」、水系導電性ポリマー、表1及び2では「水系導電性ポリマー1」と記す)の水分散液(固形分濃度:2.0質量%)を用いて、乾燥後の厚みが110nmとなるように塗布し塗膜を形成し、加熱乾燥して該塗膜を硬化させ、厚み110nmのバッファ層12を基板11上に形成した。
そして、このバッファ層12上に、硬化型導電性ポリマー(日産化学工業製、有機溶媒に可溶で水に不溶なポリアニリン骨格を有する熱硬化型導電性ポリマー、表1及び2では「硬化型導電性ポリマー1」と記す)の溶液(溶媒:ジメチルアセトアミド、固形分濃度:1.0質量%)を用いて、乾燥後の厚みが25nmとなるように塗布し塗膜を形成し、加熱乾燥して該塗膜を硬化させ、厚み25nmの被覆層13をバッファ層12上に形成し、導電性積層体1を作製した。
[Example 1]
(1) Production of Conductive Laminate A conductive laminate having the configuration shown in FIG. 1 was produced according to the following procedure.
As a substrate 11 with a transparent electrode, an ITO glass substrate subjected to a cleaning treatment using a UV-ozone cleaner “UV253E” (product name, manufactured by Filgen Co., Ltd.) (a glass substrate formed with a tin-doped indium oxide film as a transparent electrode) It was used. On this ITO glass substrate, an aqueous dispersion (solid content) of PEDOT / PSS (manufactured by Japan Agfa Materials, trade name “HBS5”, water-based conductive polymer, described as “water-based conductive polymer 1” in Tables 1 and 2). (Concentration: 2.0% by mass) is applied to form a coating film having a thickness of 110 nm after drying, and is heated and dried to cure the coating film. Formed on top.
And on this buffer layer 12, a curable conductive polymer (manufactured by Nissan Chemical Industries, a thermosetting conductive polymer having a polyaniline skeleton soluble in an organic solvent and insoluble in water, in Tables 1 and 2, "curable conductive" Coating solution is formed using a solution (solvent: dimethylacetamide, solid content concentration: 1.0% by mass), and a coating film is formed by heating to a thickness of 25 nm. Then, the coating film was cured, and a coating layer 13 having a thickness of 25 nm was formed on the buffer layer 12 to produce the conductive laminate 1.

(2)有機光電変換素子の作製
以下の手順で、図2に示す構成を有する有機光電変換素子を作製した。
p型半導体材料として、ポリ−3−ヘキシルチオフェン(P3HT)(Merck社製、製品名「SP001」)69mg、n型半導体材料として、フェニルC61酪酸メチルエステル(PCBM)(フロンティアカーボン社製)51mgを用い、脱水クロロベンゼン(3.0ml)に溶解させ、真性半導体層である光電変換層形成用の塗布液を調製した。
そして、乾燥窒素で置換したグローブボックス中で、上述の導電性積層体の被覆層上に、調整した塗布液を乾燥後の厚みが150nmとなるように、被覆層13上に塗布し塗膜を形成し、ホットプレートにより150℃で10分間加熱乾燥して該塗膜を硬化させ、厚み150nmの光電変換層14を形成した。
次いで、該積層体を大気に曝すことなく真空蒸着機(ALSテクノロジー社製)に移し、真空度3×10-4Pa以下で、光電変換層14上に、電極15としてアルミニウム層(厚さ100nm、面積0.55cm2)を真空蒸着により積層し、有機光電変換素子を作製した。
(2) Production of Organic Photoelectric Conversion Element An organic photoelectric conversion element having the configuration shown in FIG. 2 was produced by the following procedure.
As a p-type semiconductor material, poly-3-hexylthiophene (P3HT) (manufactured by Merck, product name “SP001”) 69 mg, and as an n-type semiconductor material, 51 mg of phenyl C61 butyric acid methyl ester (PCBM) (manufactured by Frontier Carbon Co., Ltd.) Used and dissolved in dehydrated chlorobenzene (3.0 ml) to prepare a coating liquid for forming a photoelectric conversion layer which is an intrinsic semiconductor layer.
Then, in the glove box substituted with dry nitrogen, the coating solution prepared by applying the coating solution prepared on the coating layer of the conductive laminate described above onto the coating layer 13 so that the thickness after drying becomes 150 nm. Then, the coating film was cured by heating and drying at 150 ° C. for 10 minutes using a hot plate to form a photoelectric conversion layer 14 having a thickness of 150 nm.
Next, the laminate was transferred to a vacuum deposition machine (manufactured by ALS Technology) without being exposed to the atmosphere, and an aluminum layer (thickness: 100 nm) was formed as an electrode 15 on the photoelectric conversion layer 14 at a degree of vacuum of 3 × 10 −4 Pa or less. , An area of 0.55 cm 2 ) was laminated by vacuum vapor deposition to produce an organic photoelectric conversion element.

[実施例2]
被覆層の厚みを10nmとした以外は、実施例1と同様の方法で導電性積層体及び有機光電変換素子を作製した。
[Example 2]
A conductive laminate and an organic photoelectric conversion element were produced in the same manner as in Example 1 except that the thickness of the coating layer was 10 nm.

[実施例3]
ドーピングされたポリアニリン(日産化学工業製、商品名「D1033W」、水系導電性ポリマー、表1及び2では「水系導電性ポリマー2」と記す)の水分散液(固形分濃度:2.5質量%)を用いて、厚み110nmのバッファ層を形成した以外は、実施例1と同様の方法で導電性積層体及び有機光電変換素子を作製した。
[Example 3]
An aqueous dispersion (solid content concentration: 2.5 mass%) of doped polyaniline (manufactured by Nissan Chemical Industries, trade name “D1033W”, aqueous conductive polymer, described as “aqueous conductive polymer 2” in Tables 1 and 2) ) Was used to produce a conductive laminate and an organic photoelectric conversion element in the same manner as in Example 1 except that a buffer layer having a thickness of 110 nm was formed.

[実施例4]
製造例2で調製した、化合物(1A)含有塗布液(溶媒:クロロベンゼン、固形分濃度:1.0質量%)を用いて、乾燥後の厚みが25nmとなるように塗布し塗膜を形成し、大気中120℃で加熱乾燥後、キセノンランプ光を大気中で5分間照射し、光重合して、該塗膜を硬化させて、有機溶媒に可溶で水に不溶なポリチオフェン骨格を有する硬化型導電性ポリマー(表1及び2では「硬化型導電性ポリマー2」と記す)からなる厚み25nmの被覆層をバッファ層上に形成した以外は、実施例1と同様の方法で導電性積層体及び有機光電変換素子を作製した。
[Example 4]
Using the compound (1A) -containing coating solution prepared in Production Example 2 (solvent: chlorobenzene, solid content concentration: 1.0% by mass), a coating film is formed by coating so that the thickness after drying is 25 nm. After heating and drying at 120 ° C. in the atmosphere, xenon lamp light is irradiated in the atmosphere for 5 minutes, photopolymerized to cure the coating film, and has a polythiophene skeleton that is soluble in organic solvents and insoluble in water A conductive laminate in the same manner as in Example 1 except that a coating layer having a thickness of 25 nm made of a conductive polymer (referred to as “curable conductive polymer 2” in Tables 1 and 2) is formed on the buffer layer. And the organic photoelectric conversion element was produced.

[比較例1]
被覆層を形成せず、PEDOT/PSS(エイチ・シー・スタルク製、商品名「Clevios P AI4083」、水系導電性ポリマー、表1及び2では「水系導電性ポリマー3」と記す)の水分散液(固形分濃度:1.0質量%)を用いて、厚み40nmのバッファ層を基板上に形成した以外は、実施例1と同様の方法で、被覆層が形成されていない導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 1]
An aqueous dispersion of PEDOT / PSS (trade name “Clevios P AI4083”, water-based conductive polymer, referred to as “water-based conductive polymer 3” in Tables 1 and 2) without forming a coating layer (Solid content concentration: 1.0% by mass), except that a 40 nm thick buffer layer was formed on the substrate, a conductive laminate in which a coating layer was not formed in the same manner as in Example 1 and An organic photoelectric conversion element was produced.

[比較例2]
被覆層を形成せず、PEDOT/PSS(日本アグフアマテリアルズ製、商品名「HBS5」、水系導電性ポリマー(水系導電性ポリマー1))の水分散液(固形分濃度:2.0質量%)を用いて、厚み110nmのバッファ層を基板上に形成した以外は、実施例1と同様の方法で、被覆層が形成されていない導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 2]
Without forming a coating layer, PEDOT / PSS (Nippon Agfa Materials, trade name “HBS5”, aqueous conductive polymer (aqueous conductive polymer 1)) aqueous dispersion (solid content concentration: 2.0 mass%) A conductive laminate and an organic photoelectric conversion element in which a coating layer was not formed were produced in the same manner as in Example 1 except that a buffer layer having a thickness of 110 nm was formed on the substrate.

[比較例3]
被覆層を形成せず、硬化型導電性ポリマー(日産化学工業製、有機溶媒に可溶で水に不溶なポリアニリン骨格を有する熱硬化型導電性ポリマー(硬化型導電性ポリマー1))の溶液(溶媒:ジメチルアセトアミド、固形分濃度:1.0質量%)を用いて、厚み25nmのバッファ層を基板上に形成した以外は、実施例1と同様の方法で、被覆層が形成されていない導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 3]
A solution of a curable conductive polymer (manufactured by Nissan Chemical Industries, Ltd., a thermosetting conductive polymer having a polyaniline skeleton soluble in an organic solvent and insoluble in water (curable conductive polymer 1)) without forming a coating layer ( The conductive layer with no coating layer formed in the same manner as in Example 1 except that a 25 nm thick buffer layer was formed on the substrate using a solvent: dimethylacetamide (solid content concentration: 1.0 mass%). Conductive laminate and organic photoelectric conversion element were prepared.

[比較例4]
被覆層を形成せず、ドーピングされたポリアニリン(日産化学工業製、製品名「D1033W」、水系導電性ポリマー(水系導電性ポリマー2))の水分散液(固形分濃度:2.5質量%)を用いて、厚み110nmのバッファ層を基板上に形成した以外は、実施例1と同様の方法で、被覆層が形成されていない導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 4]
An aqueous dispersion (solid content concentration: 2.5% by mass) of doped polyaniline (manufactured by Nissan Chemical Industries, product name “D1033W”, aqueous conductive polymer (aqueous conductive polymer 2)) without forming a coating layer A conductive laminate and an organic photoelectric conversion element in which a coating layer was not formed were produced in the same manner as in Example 1 except that a buffer layer having a thickness of 110 nm was formed on the substrate.

[比較例5]
被覆層を形成せず、製造例2で調整した、化合物(1A)含有塗工液(溶媒:クロロベンゼン、固形分濃度:1.0質量%)を用いて、乾燥後の厚みが25nmとなるように塗布し塗膜を形成し、大気中120℃で加熱乾燥後、キセノンランプ光を大気中で5分間照射し、光重合して、該塗膜を硬化させ、有機溶媒に可溶で水に不溶なポリチオフェン骨格を有する硬化型導電性ポリマー(硬化型導電性ポリマー2)からなる厚み25nmのバッファ層を基板上に形成した以外は、実施例1と同様の方法で、被覆層が形成されていない導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 5]
Using the compound (1A) -containing coating solution (solvent: chlorobenzene, solid content concentration: 1.0% by mass) prepared in Production Example 2 without forming a coating layer, the thickness after drying is 25 nm. After coating with heat and drying at 120 ° C. in the air, it is irradiated with xenon lamp light in the air for 5 minutes, photopolymerized to cure the coating, soluble in organic solvents and dissolved in water. The coating layer was formed in the same manner as in Example 1 except that a 25 nm thick buffer layer made of a curable conductive polymer (curable conductive polymer 2) having an insoluble polythiophene skeleton was formed on the substrate. A conductive laminate and an organic photoelectric conversion element were prepared.

[比較例6]
PEDOT/PSS(エイチ・シー・スタルク製、商品名「Clevios P AI4083」、水系導電性ポリマー(水系導電性ポリマー3))の水分散液(固形分濃度:1.0質量%)を用いて、厚み70nmの被覆層をバッファ層上に形成した以外は、実施例1と同様の方法で導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 6]
Using an aqueous dispersion (solid content concentration: 1.0% by mass) of PEDOT / PSS (manufactured by HC Starck, trade name “Clevios P AI4083”, aqueous conductive polymer (aqueous conductive polymer 3)), A conductive laminate and an organic photoelectric conversion element were produced in the same manner as in Example 1 except that a coating layer having a thickness of 70 nm was formed on the buffer layer.

[比較例7]
PEDOT/PSS(エイチ・シー・スタルク製、商品名「Clevios P AI4083」、水系導電性ポリマー(水系導電性ポリマー3))の水分散液(固形分濃度:1.0質量%)を用いて、厚み40nmの被覆層をバッファ層上に形成した以外は、実施例1と同様の方法で導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 7]
Using an aqueous dispersion (solid content concentration: 1.0% by mass) of PEDOT / PSS (manufactured by HC Starck, trade name “Clevios P AI4083”, aqueous conductive polymer (aqueous conductive polymer 3)), A conductive laminate and an organic photoelectric conversion element were produced in the same manner as in Example 1 except that a coating layer having a thickness of 40 nm was formed on the buffer layer.

[比較例8]
硬化型導電性ポリマー(日産化学工業製、有機溶剤に可溶で水に不溶なポリアニリン骨格を有する熱硬化型導電性ポリマー(硬化型導電性ポリマー1))の溶液(溶媒:ジメチルアセトアミド、固形分濃度:1.0質量%)を用いて、厚み25nmのバッファ層を基板上に形成し、PEDOT/PSS(日本アグフアマテリアルズ製、商品名「HBS5」、水系導電性ポリマー(水系導電性ポリマー1))の水分散液(固形分濃度:2.0質量%)を用いて、厚み110nmの被覆層をバッファ層上に形成した以外は、実施例1と同様の方法で導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 8]
A solution (solvent: dimethylacetamide, solid content) of a curable conductive polymer (manufactured by Nissan Chemical Industries, a thermosetting conductive polymer having a polyaniline skeleton soluble in an organic solvent and insoluble in water (curable conductive polymer 1)) A buffer layer having a thickness of 25 nm was formed on the substrate using a concentration of 1.0% by mass), and PEDOT / PSS (trade name “HBS5” manufactured by Japan Agfa Materials Co., Ltd.), water-based conductive polymer (water-based conductive polymer 1). )) In the same manner as in Example 1 except that a coating layer having a thickness of 110 nm was formed on the buffer layer using an aqueous dispersion (solid content concentration: 2.0% by mass). A photoelectric conversion element was produced.

[比較例9]
PEDOT/PSS(エイチ・シー・スタルク製、商品名「Clevios P AI4083」、水系導電性ポリマー(水系導電性ポリマー3))の水分散液(固形分濃度:1.0質量%)を用いて、厚み40nmのバッファ層を基板上に形成し、PEDOT/PSS(日本アグフアマテリアルズ製、商品名「HBS5」、水系導電性ポリマー(水系導電性ポリマー1))の水分散液(固形分濃度:2.0質量%)を用いて、厚み110nmの被覆層をバッファ層上に形成した以外は、実施例1と同様の方法で導電性積層体及び有機光電変換素子を作製した。
[Comparative Example 9]
Using an aqueous dispersion (solid content concentration: 1.0% by mass) of PEDOT / PSS (manufactured by HC Starck, trade name “Clevios P AI4083”, aqueous conductive polymer (aqueous conductive polymer 3)), A buffer layer having a thickness of 40 nm is formed on the substrate, and an aqueous dispersion (solid content concentration: 2) of PEDOT / PSS (product name “HBS5”, water-based conductive polymer (water-based conductive polymer 1) manufactured by Japan Agfa Materials). 0.0 mass%), a conductive laminate and an organic photoelectric conversion element were produced in the same manner as in Example 1 except that a coating layer having a thickness of 110 nm was formed on the buffer layer.

[実施例5]
以下の手順で、図3に示す構成を有する有機光電変換素子を作製した。
実施例1で作製した導電性積層体の被覆層上に、蒸着機(ALSテクノロジー社製)により、p型半導体材料として、銅フタロシアニン(東京化成製、商品名「P1005」)60nm、n型半導体材料として、C60フラーレン(フロンティアカーボン製、商品名「Nanom Purple SU」)60nmを用い、この順で蒸着し、p型半導体層14a及びn型半導体層14bからなる光電変換層14を形成した。さらに、ブロッキング層16(バソクプロイン(Lumitec製))を10nm、電極15として、銀を100nm積層し、有機光電変換素子を作製した。
[Example 5]
The organic photoelectric conversion device having the configuration shown in FIG. 3 was produced by the following procedure.
Copper phthalocyanine (trade name “P1005”, manufactured by Tokyo Chemical Industry Co., Ltd.) 60 nm, n-type semiconductor as a p-type semiconductor material on the coating layer of the conductive laminate produced in Example 1 by a vapor deposition machine (manufactured by ALS Technology). As a material, C60 fullerene (manufactured by Frontier Carbon, trade name “Nanom Purple SU”) of 60 nm was used, and vapor deposition was performed in this order to form a photoelectric conversion layer 14 including a p-type semiconductor layer 14a and an n-type semiconductor layer 14b. Furthermore, 100 nm of silver was laminated | stacked as 10 nm and the electrode 15 with the blocking layer 16 (Basocproine (product made from Lumitec)), and the organic photoelectric conversion element was produced.

[実施例6]
実施例3で作製した導電性積層体の被覆層上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、有機光電変換素子を作製した。
[Example 6]
On the coating layer of the conductive laminate produced in Example 3, a photoelectric conversion layer, a blocking layer, and an electrode were sequentially formed in the same manner as in Example 5 to produce an organic photoelectric conversion element.

[実施例7]
実施例4で作製した導電性積層体の被覆層上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、有機光電変換素子を作製した。
[Example 7]
On the coating layer of the conductive laminate produced in Example 4, a photoelectric conversion layer, a blocking layer, and an electrode were sequentially formed in the same manner as in Example 5 to produce an organic photoelectric conversion element.

[比較例10]
比較例1で作製した導電性積層体のバッファ層上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、有機光電変換素子を作製した。
[Comparative Example 10]
On the buffer layer of the conductive laminate produced in Comparative Example 1, a photoelectric conversion layer, a blocking layer, and an electrode were sequentially formed in the same manner as in Example 5 to produce an organic photoelectric conversion element.

[比較例11]
比較例2で作製した導電性積層体のバッファ層上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、有機光電変換素子を作製した。
[Comparative Example 11]
On the buffer layer of the conductive laminate produced in Comparative Example 2, a photoelectric conversion layer, a blocking layer, and an electrode were formed in this order by the same method as in Example 5 to produce an organic photoelectric conversion element.

[比較例12]
比較例3で作製した導電性積層体のバッファ層上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、有機光電変換素子を作製した。
[Comparative Example 12]
On the buffer layer of the conductive laminate produced in Comparative Example 3, a photoelectric conversion layer, a blocking layer, and an electrode were sequentially formed in the same manner as in Example 5 to produce an organic photoelectric conversion element.

[比較例13]
比較例4で作製した導電性積層体のバッファ層上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、有機光電変換素子を作製した。
[Comparative Example 13]
On the buffer layer of the conductive laminate produced in Comparative Example 4, a photoelectric conversion layer, a blocking layer, and an electrode were sequentially formed in the same manner as in Example 5 to produce an organic photoelectric conversion element.

[比較例14]
比較例5で作製した導電性積層体のバッファ層上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、有機光電変換素子を作製した。
[Comparative Example 14]
On the buffer layer of the conductive laminate produced in Comparative Example 5, a photoelectric conversion layer, a blocking layer, and an electrode were formed in this order by the same method as in Example 5 to produce an organic photoelectric conversion element.

[比較例15]
透明電極付き基板として、実施例1で用いたITOガラス基板を使用し、このITOガラス基板上に、実施例5と同様の方法にて、光電変換層、ブロッキング層、及び電極を順に形成し、バッファ層及び被覆層が形成されていない有機光電変換素子を作製した。
[Comparative Example 15]
As a substrate with a transparent electrode, the ITO glass substrate used in Example 1 was used, and a photoelectric conversion layer, a blocking layer, and an electrode were formed on the ITO glass substrate in the same manner as in Example 5, An organic photoelectric conversion element in which a buffer layer and a coating layer were not formed was produced.

以上のようにして作製した導電性積層体及び有機光電変換素子の各種物性値を表1及び2に示す。なお、表1、2における、各層の厚み、バッファ層、被覆層及び導電性積層体の表面抵抗率、算術平均粗さ(Ra)、並びに有機光電変換素子の短絡電流密度(Jsc)は、以下の方法に基づいて測定した値である。   Tables 1 and 2 show various physical property values of the conductive laminate and the organic photoelectric conversion element produced as described above. In Tables 1 and 2, the thickness of each layer, the surface resistivity of the buffer layer, the coating layer, and the conductive laminate, the arithmetic average roughness (Ra), and the short-circuit current density (Jsc) of the organic photoelectric conversion element are as follows: It is a value measured based on the method.

(1)導電性積層体の各層の厚み
段差計「Dektak150」(製品名、日本ビーコ社製)を用いて測定した。
(1) Thickness of each layer of the conductive laminate The thickness was measured using a step meter “Dektak 150” (product name, manufactured by Nippon Bico Co., Ltd.).

(2)バッファ層、被覆層、及び導電性積層体の表面抵抗率
バッファ層、被覆層、及び導電性積層体の表面抵抗率の値は、下記の試験サンプルを作製し、JIS K7194で規定された四端子法に基づき、抵抗率計「ロレスタGP MCP−T600」(製品名、三菱化学社製)を用いて測定した。
なお、比較例15は、基板のみであるため、この表面抵抗率の測定は行っていない。また、比較例1〜5及び10〜15の導電性積層体は、被覆層を有していないため、被覆層の表面抵抗率の測定をしておらず、バッファ層の試験サンプルと導電性積層体の試験サンプルは同一のものであるため、バッファ層と導電性積層体の表面抵抗率の値は同じである。
(バッファ層の試験サンプル)
厚さ50μmのPETフィルム(東洋紡社製、製品名「PET−A4300」)上に、下記の各実施例及び比較例に記載の形成方法に従い、同じ材料を用いて、同じ膜厚となるように、バッファ層のみからなる単層を形成し、試験サンプルを作製した。
(被覆層の試験サンプル)
厚さ50μmのPETフィルム(東洋紡社製、製品名「PET−A4300」)上に、下記の各実施例及び比較例に記載の被覆層の形成方法に従い、同じ材料を用いて、同じ膜厚となるように、被覆層のみからなる単層を形成し、試験サンプルを作製した。
(導電性積層体の試験サンプル)
厚さ50μmのPETフィルム(東洋紡社製、製品名「PET−A4300」)上に、下記の各実施例及び比較例に記載の形成方法に従い、同じ材料を用いて、同じ膜厚となるように、バッファ層、及び該バッファ層上に被覆層を形成し、試験サンプルを作製した。
(2) Surface resistivity of buffer layer, coating layer, and conductive laminate The values of the surface resistivity of the buffer layer, coating layer, and conductive laminate are defined in JIS K7194 by preparing the following test samples. Based on the four-terminal method, the resistivity was measured using a “Loresta GP MCP-T600” (product name, manufactured by Mitsubishi Chemical Corporation).
In addition, since the comparative example 15 is only a board | substrate, this surface resistivity is not measured. Moreover, since the conductive laminates of Comparative Examples 1 to 5 and 10 to 15 do not have a coating layer, the surface resistivity of the coating layer is not measured, and the buffer layer test sample and the conductive laminate are not measured. Since the body test samples are the same, the surface resistivity values of the buffer layer and the conductive laminate are the same.
(Buffer layer test sample)
On the PET film (product name “PET-A4300”, manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm, according to the forming method described in each of the following Examples and Comparative Examples, using the same material, the same film thickness is obtained. A single layer consisting only of the buffer layer was formed to prepare a test sample.
(Coating layer test sample)
On the PET film (product name “PET-A4300” manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm, according to the method for forming a coating layer described in each of the following examples and comparative examples, the same film thickness is used. Thus, a single layer consisting only of the coating layer was formed to prepare a test sample.
(Test sample of conductive laminate)
On the PET film (product name “PET-A4300”, manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm, according to the forming method described in each of the following Examples and Comparative Examples, using the same material, the same film thickness is obtained. A buffer layer and a coating layer were formed on the buffer layer to prepare a test sample.

(3)算術平均粗さ(Ra)
作製した導電性積層体の表出している被覆層(被覆層が形成されていない導電性積層体については、バッファ層)の算術平均粗さ(Ra)を、JIS B 0601:2001の規定に基づき、走査型プローブ顕微鏡「SPI3800N」(製品名、セイコーインスツル製)を用いて測定した。
(3) Arithmetic mean roughness (Ra)
The arithmetic average roughness (Ra) of the covering layer (the buffer layer in the case of the conductive laminate in which the covering layer is not formed) exposed from the produced conductive laminate is determined based on the provisions of JIS B 0601: 2001. , Using a scanning probe microscope “SPI3800N” (product name, manufactured by Seiko Instruments Inc.).

(4)有機光電変換素子の短絡電流密度(Jsc)
作製した有機光電変換素子について、ソーラーシミュレータ(ワコム電創社製、製品名「WXS−50S−1.5」)、及び電圧−電流発生器(ADC社製、製品名「R6243」)を用いて測定した。なお、作製した有機光電変換素子の有効面積は、いずれも0.055cm2であった。
(4) Short-circuit current density (Jsc) of organic photoelectric conversion element
About the produced organic photoelectric conversion element, using a solar simulator (manufactured by Wacom Denso, product name “WXS-50S-1.5”) and a voltage-current generator (manufactured by ADC, product name “R6243”). It was measured. The effective area of the produced organic photoelectric conversion elements was 0.055 cm 2 in all cases.

表1及び2から、本発明の導電性積層体は、表面粗さが小さく、表面抵抗率が低く抑えられている。そのため、当該導電性積層体を用いた有機光電変換素子は、光電変換層を塗布法並びに低分子蒸着法のいずれの方法で形成しても、短絡電流密度が向上している。
一方、本発明の実施例に比べ、比較例の導電性積層体を用いた有機光電変換素子は、いずれも短絡電流密度が十分に向上していないことがわかる。なお、比較例6、7及び9の導電性積層体は、被覆層形成材料として水系導電性ポリマーを用いて被覆層を形成したため、該被覆層を形成の際に、同じく水系導電性ポリマーから形成されたバッファ層が溶解したため、表面層の算術平均粗さ(Ra)が大きくなってしまい、結果として短絡電流密度が十分に向上しなかったと考えられる。
From Tables 1 and 2, the conductive laminate of the present invention has a small surface roughness and a low surface resistivity. Therefore, the organic photoelectric conversion element using the conductive laminate has an improved short-circuit current density regardless of whether the photoelectric conversion layer is formed by a coating method or a low molecular vapor deposition method.
On the other hand, compared with the Example of this invention, the organic photoelectric conversion element using the electroconductive laminated body of a comparative example shows that the short circuit current density has not fully improved. In addition, since the conductive laminates of Comparative Examples 6, 7, and 9 were formed using a water-based conductive polymer as a coating layer-forming material, they were similarly formed from the water-based conductive polymer when the coating layer was formed. Since the buffer layer was dissolved, the arithmetic average roughness (Ra) of the surface layer was increased, and as a result, the short-circuit current density was not sufficiently improved.

本発明の導電性積層体は、有機太陽電池に代表される有機光電変換素子の部材として適用し得る。   The conductive laminate of the present invention can be applied as a member of an organic photoelectric conversion element typified by an organic solar battery.

1 導電性積層体
2a、2b 有機光電変換素子
11 基板(透明電極付き基板)
12 バッファ層
13 被覆層
14 光電変換層
14a p型半導体層
14b n型半導体層
15 電極
16 ブロッキング層
DESCRIPTION OF SYMBOLS 1 Conductive laminated body 2a, 2b Organic photoelectric conversion element 11 Substrate (substrate with transparent electrode)
DESCRIPTION OF SYMBOLS 12 Buffer layer 13 Covering layer 14 Photoelectric conversion layer 14a p-type semiconductor layer 14b n-type semiconductor layer 15 Electrode 16 Blocking layer

Claims (7)

基板上に、厚みが10〜1000nmのバッファ層、及び厚みが1〜50nmの被覆層を順に有する導電性積層体であって、
前記バッファ層のみからなる単層の表面抵抗率が1000Ω/□以下であり、且つ、前記被覆層のみからなる単層の表面抵抗率が10〜1010Ω/□であって、
前記被覆層の算術平均粗さ(Ra)が3.00nm以下であり、前記導電性積層体の表出している前記被覆層側から測定した該導電性積層体の表面抵抗率が500Ω/□以下であって、
前記被覆層を形成する材料が、有機溶媒に可溶で水に不溶な硬化型導電性ポリマーを含み、前記硬化型導電性ポリマーが、ポリチオフェン、ポリピロール、及びポリアニリンから選ばれる、有機溶媒に可溶で水に不溶な導電性ポリマーを変性して得られる熱硬化型導電性ポリマー、又は、ポリチオフェン、ポリピロール、及びポリアニリンから選ばれる、有機溶媒に可溶で水に不溶な導電性ポリマーの側鎖に、ビニル基、及び(メタ)アクリロイル基から選ばれる、重合性不飽和基を有する紫外線硬化型導電性ポリマーである、導電性積層体。
On the substrate, a conductive laminate having a buffer layer having a thickness of 10 to 1000 nm and a coating layer having a thickness of 1 to 50 nm in order,
The surface resistivity of the single layer consisting only of the buffer layer is 1000 Ω / □ or less, and the surface resistivity of the single layer consisting only of the coating layer is 10 5 to 10 10 Ω / □,
The arithmetic average roughness (Ra) of the coating layer is 3.00 nm or less, and the surface resistivity of the conductive laminate measured from the exposed coating layer side of the conductive laminate is 500 Ω / □ or less. Because
The material for forming the coating layer, soluble in organic solvents viewed contains insoluble curing conductive polymer in water, the curable conductive polymer, polythiophene, polypyrrole, and is selected from polyaniline, soluble in an organic solvent A side chain of a conductive polymer that is soluble in an organic solvent and insoluble in water, selected from a thermosetting conductive polymer obtained by modifying a soluble and insoluble conductive polymer, or polythiophene, polypyrrole, and polyaniline And a conductive laminate, which is an ultraviolet curable conductive polymer having a polymerizable unsaturated group selected from a vinyl group and a (meth) acryloyl group .
前記バッファ層を形成する材料が、水系導電性ポリマーを含む、請求項1に記載の導電性積層体。   The conductive laminate according to claim 1, wherein the material forming the buffer layer includes a water-based conductive polymer. 前記被覆層と前記バッファ層との厚みの比〔被覆層/バッファ層〕が、1/99〜50/50である、請求項1又は2に記載の導電性積層体。 The conductive laminate according to claim 1 or 2 , wherein a ratio of the thickness of the coating layer to the buffer layer (coating layer / buffer layer) is from 1/99 to 50/50. 前記基板が、電極付き基板である、請求項1〜のいずれかに記載の導電性積層体。 Wherein the substrate is an electrode-attached substrate, electroconductive laminate according to any one of claims 1-3. 請求項1〜のいずれかに記載の導電性積層体を有する、有機光電変換素子。 The organic photoelectric conversion element which has the electroconductive laminated body in any one of Claims 1-4 . 前記導電性積層体の被覆層上に光電変換層を有し、前記光電変換層上に電極を有する、請求項に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 5 , further comprising a photoelectric conversion layer on the coating layer of the conductive laminate, and an electrode on the photoelectric conversion layer. 前記光電変換層が、p型半導体材料及びn型半導体材料の混合材料から形成された単層、もしくは、p型半導体材料からなるp型半導体層と、n型半導体材料からなるn型半導体層の複数層である、請求項に記載の有機光電変換素子。 The photoelectric conversion layer includes a single layer formed of a mixed material of a p-type semiconductor material and an n-type semiconductor material, or a p-type semiconductor layer formed of a p-type semiconductor material and an n-type semiconductor layer formed of an n-type semiconductor material. The organic photoelectric conversion element according to claim 6 which is a multi-layer.
JP2012022129A 2012-02-03 2012-02-03 Conductive laminate and organic thin solar cell element Active JP5841853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022129A JP5841853B2 (en) 2012-02-03 2012-02-03 Conductive laminate and organic thin solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022129A JP5841853B2 (en) 2012-02-03 2012-02-03 Conductive laminate and organic thin solar cell element

Publications (2)

Publication Number Publication Date
JP2013161921A JP2013161921A (en) 2013-08-19
JP5841853B2 true JP5841853B2 (en) 2016-01-13

Family

ID=49173940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022129A Active JP5841853B2 (en) 2012-02-03 2012-02-03 Conductive laminate and organic thin solar cell element

Country Status (1)

Country Link
JP (1) JP5841853B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002329183A1 (en) * 2001-06-11 2002-12-23 The Trustees Of Princeton University Organic photovoltaic devices
JP2006044090A (en) * 2004-08-05 2006-02-16 Seiko Epson Corp Line head, its manufacturing method, and image forming apparatus
JP5427383B2 (en) * 2008-09-17 2014-02-26 藤森工業株式会社 Dye-sensitized solar cell with double-sided light reception
US20100327735A1 (en) * 2009-06-29 2010-12-30 General Electric Company Fluorene dimers and trimers
JP2011246395A (en) * 2010-05-27 2011-12-08 Sumitomo Chemical Co Ltd Novel compound and light emitting element using the same

Also Published As

Publication number Publication date
JP2013161921A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP6222086B2 (en) Vertically separated organic semiconductor material layer
JP5692228B2 (en) Organic photoelectric conversion device and solar cell using the same
JP6648968B2 (en) Method for manufacturing buffer layer for organic thin-film solar cell and method for manufacturing organic thin-film solar cell
JP5949335B2 (en) Tandem type photoelectric conversion element and solar cell using the same
JPWO2012111811A1 (en) Organic photoelectric conversion element and solar cell
Zhao et al. A water/alcohol-soluble copolymer based on fluorene and perylene diimide as a cathode interlayer for inverted polymer solar cells
Seo et al. Enhanced electrical properties of PEDOT: PSS films using solvent treatment and its application to ITO-free organic light-emitting diodes
JP5493465B2 (en) Organic thin film solar cell
EP3373354B1 (en) Composition for hole trapping layer of organic photoelectric conversion element
JP5853852B2 (en) Conjugated polymer compound and organic photoelectric conversion device using the same
JP2013089685A (en) Organic photoelectric conversion element and solar cell using the same
JP5593900B2 (en) Organic photoelectric conversion element
JP6135668B2 (en) Tandem organic photoelectric conversion device and solar cell using the same
JP2010182720A (en) Organic photoelectric converting element
KR101117426B1 (en) Organic solar cell and manufacturing method thereof
JP5700044B2 (en) Organic photoelectric conversion element and manufacturing method thereof
KR102494413B1 (en) Composition for hole trapping layer of organic photoelectric conversion device
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
Matsuo et al. Anthracene-based organic small-molecule electron-injecting material for inverted organic light-emitting diodes
TW201938684A (en) Hole collection layer composition for organic photoelectric conversion element
JP5841853B2 (en) Conductive laminate and organic thin solar cell element
JP2013077760A (en) Organic photoelectric conversion element and solar cell using the same
JP6003071B2 (en) Tandem organic photoelectric conversion device
WO2013176180A1 (en) Photovoltaic power element and method for manufacturing photovoltaic power element
JP2012134337A (en) Organic photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151116

R150 Certificate of patent or registration of utility model

Ref document number: 5841853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250