JP5840616B2 - Face material reinforced foam - Google Patents

Face material reinforced foam Download PDF

Info

Publication number
JP5840616B2
JP5840616B2 JP2012534019A JP2012534019A JP5840616B2 JP 5840616 B2 JP5840616 B2 JP 5840616B2 JP 2012534019 A JP2012534019 A JP 2012534019A JP 2012534019 A JP2012534019 A JP 2012534019A JP 5840616 B2 JP5840616 B2 JP 5840616B2
Authority
JP
Japan
Prior art keywords
face material
resin
glass fiber
reinforced foam
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012534019A
Other languages
Japanese (ja)
Other versions
JPWO2012036170A1 (en
Inventor
透 板谷
透 板谷
貢 才丸
貢 才丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2012534019A priority Critical patent/JP5840616B2/en
Publication of JPWO2012036170A1 publication Critical patent/JPWO2012036170A1/en
Application granted granted Critical
Publication of JP5840616B2 publication Critical patent/JP5840616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Description

本発明は、ガラス繊維と熱可塑性樹脂からなる強化面材を発泡体の両表面に積層させた、軽量であり、成形性、特に深絞り成形性に優れ、かつ、該面材強化発泡体から得られる成形体が寸法安定性に優れた面材強化発泡体、及びかかる面材強化発泡体から得られた成形体に関する。   The present invention is a lightweight, laminated face material made of glass fiber and thermoplastic resin on both surfaces of the foam, is excellent in moldability, particularly deep drawability, and from the face material reinforced foam. The obtained molded body relates to a face material reinforced foam excellent in dimensional stability, and a molded body obtained from the face material reinforced foam.

従来より、軽量な発泡体を芯材とし、その両表面に繊維素材による強化面材を熱圧着ロールにより積層させた面材強化発泡体が知られている。例えば、特許文献1では面材強化として180℃における引張弾性率4〜10kgf/mmの強化面材を使用することで、深絞り成形性や、面材強化発泡体の剛性を高め、かつ、熱寸法安定性を高めることが提案されている。Conventionally, a face-reinforced foam in which a lightweight foam is used as a core material and a reinforcing face material made of a fiber material is laminated on both surfaces by a thermocompression-bonding roll is known. For example, in Patent Document 1, by using a reinforced face material having a tensile modulus of elasticity of 4 to 10 kgf / mm 2 at 180 ° C. as the face material reinforcement, the deep drawability and the rigidity of the face material reinforced foam are increased, and It has been proposed to increase thermal dimensional stability.

また、軽量発泡体として、熱可塑性樹脂を複数の吐出孔を有するダイを通過させて発泡ストランドを形成し、これらを一体化した発泡体が知られている。例えば、特許文献2には発泡可能な溶融した熱可塑性組成物を、押出される隣接するストランド又はプロフィールが接触かつ合体するように配置された複数のオリフィス又はスリット(吐出孔)の列を有するダイを通して押出して、前記のストランド又はプロフィールが発泡体の縦軸に対して実質的に平行に配置されている構造を有する発泡体の製造方法が開示されている。   As a lightweight foam, a foam is known in which a thermoplastic strand is passed through a die having a plurality of discharge holes to form a foamed strand, and these are integrated. For example, U.S. Patent No. 6,057,033 discloses a die having a plurality of orifices or slits (ejection holes) arranged such that a foamable molten thermoplastic composition contacts and coalesces adjacent strands or profiles to be extruded. A process for the production of a foam having a structure in which the strands or profiles are arranged substantially parallel to the longitudinal axis of the foam is disclosed.

前記発泡体は一般の発泡体と比べて、構造上異方性を有しており、ストランド方向(押出方向)に対して垂直方向に対する伸び性が著しく高いことが開示されている。   It is disclosed that the foam has anisotropy in structure as compared with a general foam and has an extremely high extensibility in the direction perpendicular to the strand direction (extrusion direction).

日本特開平8−11254号公報Japanese Unexamined Patent Publication No. 8-11254 日本特表平1−502252号公報Japanese National Table 1-502252

特許文献1に記載される、強化面材を発泡体の両表面に積層した面材強化発泡体を使用し、例えば、コーナー部位のRが10mm、高さ200mm、コーナー角度60度、展開率200%という、特に絞りが深い形状に成形した場合、成形時の面材強化発泡体の伸び性が大きいため、コーナー部などの深絞り部位に破れを生じないものの、かかる面材強化発泡体からの成形体を、例えば、高温多湿環境に繰り返し曝した場合、成形歪みが緩和していき、寸法変化や形状変化が大きくなってしまうといった問題を有していた。   The face material reinforced foam described in Patent Document 1 in which reinforcing face materials are laminated on both surfaces of the foam is used. For example, the corner portion R is 10 mm, the height is 200 mm, the corner angle is 60 degrees, and the expansion rate is 200. %, Especially when molded into a deeply drawn shape, the stretchability of the face-reinforced foam at the time of molding is large, so there is no tearing in deep-drawn parts such as corners, but from this face-reinforced foam For example, when the molded body is repeatedly exposed to a high-temperature and high-humidity environment, there is a problem that molding distortion is eased and dimensional change and shape change become large.

また、特許文献2に記載されている、所謂ストランド集束発泡体のような異方性のある発泡体に、例えば、特許文献1の記載にならって、180℃における引張弾性率の高い強化面材を積層して面材強化発泡体を作製した場合、上述のような深絞りの成形体では、発泡体のストランドの垂直方向に著しい伸び性を発現するが、強化面材も変形してしまうため、面材強化発泡体の寸法や形状が変化してしまうといった問題点があった。   Further, an anisotropic foamed material such as a so-called strand converging foam described in Patent Document 2, for example, a reinforcing surface material having a high tensile elastic modulus at 180 ° C., as described in Patent Document 1. When a face material reinforced foam is produced by laminating layers, the deep drawn molded body as described above exhibits significant elongation in the vertical direction of the foam strand, but the reinforced face material is also deformed. There has been a problem that the dimensions and shape of the face material reinforced foam change.

本発明の目的は、軽量性、成形性、特に、深絞り成形においても、寸法安定性に優れた成形体が得られる面材強化発泡体、及びそれから得られる成形体を提供することにある。   An object of the present invention is to provide a face material reinforced foam from which a molded article having excellent dimensional stability can be obtained even in light weight, moldability, particularly deep drawing, and a molded article obtained therefrom.

本発明者は上記目的を達成するため、鋭意研究を進めたところ、引張弾性率が上記特許文献1などで使用されるよりもかなり小さい、0.7〜1.2kgf/mmであり、かつ、ガラス繊維の平均繊維長が15〜100mmであるガラス繊維不織布を特定範囲の量含有する、引張弾性率が0.8〜2.0kgf/mmを有する強化面材を使用して、発泡倍率が10〜40倍の非架橋の熱可塑性樹脂によるストランド集束発泡体の両表面に積層した面材強化発泡体は、軽量性と成形性に優れ、寸法安定性に優れた成形体をもたらすことができることを見出し本発明に至った。The present inventor has made extensive studies to achieve the above object, and as a result, the tensile elastic modulus is 0.7 to 1.2 kgf / mm 2 which is considerably smaller than that used in Patent Document 1 and the like, and Using a reinforcing face material having a tensile elastic modulus of 0.8 to 2.0 kgf / mm 2 , containing a glass fiber nonwoven fabric having an average fiber length of 15 to 100 mm in a specific range, and having an expansion ratio of 0.8 to 2.0 kgf / mm 2 The face material reinforced foam laminated on both surfaces of the strand bundling foam made of 10 to 40 times uncrosslinked thermoplastic resin is excellent in light weight and moldability, and leads to a molded article excellent in dimensional stability. It has been found that this can be done, and has led to the present invention.

本発明は、上記の新規な知見に基づくものであり、以下の要旨からなるものである。
1.ガラス繊維不織布と熱可塑性樹脂からなる強化面材を、ストランド連続押出法による発泡倍率10〜40倍の非架橋の熱可塑性樹脂によるストランド集束発泡体の両表面に積層した面材強化発泡体であって、前記ガラス繊維不織布の引張弾性率が0.7〜1.2kgf/mmであり、該ガラス繊維不織布を構成するガラス繊維の平均繊維長が15〜100mmであり、前記強化面材中のガラス繊維の含有量が25〜40質量%であり、かつ、強化面材の引張弾性率が0.8〜2.0kgf/mmであることを特徴とする面材強化発泡体。
This invention is based on said novel knowledge, and consists of the following summaries.
1. It is a face material reinforced foam in which a reinforced face material composed of a glass fiber nonwoven fabric and a thermoplastic resin is laminated on both surfaces of a strand bundling foam made of a non-crosslinked thermoplastic resin having a foaming ratio of 10 to 40 times by a continuous strand extrusion method. The tensile elastic modulus of the glass fiber nonwoven fabric is 0.7 to 1.2 kgf / mm 2 , the average fiber length of the glass fibers constituting the glass fiber nonwoven fabric is 15 to 100 mm, A face material-reinforced foam having a glass fiber content of 25 to 40% by mass and a tensile modulus of the reinforcing face material of 0.8 to 2.0 kgf / mm 2 .

2.前記ガラス繊維不織布は、ガラス繊維不織布中のバインダーが固形分として5〜20質量%である上記1に記載の面材強化発泡体。
3.前記バインダーの固形分中に0.1〜3.0質量%の架橋樹脂を含有する上記1又は2に記載の面材強化発泡体。
4.面材強化発泡体におけるガラス繊維の含有量が、10〜20質量%である上記1〜3のいずれかに記載の面材強化発泡体。
5.前記ストランド集束発泡体を形成する熱可塑性樹脂が、非架橋のポリオレフィン樹脂である上記1〜4のいずれかに記載の面材強化発泡体。
2. The said glass fiber nonwoven fabric is a face material reinforcement | strengthening foam of said 1 whose binder in a glass fiber nonwoven fabric is 5-20 mass% as solid content.
3. 3. The face material reinforced foam according to 1 or 2 above, which contains 0.1 to 3.0% by mass of a crosslinked resin in the solid content of the binder.
4). 4. The face material-reinforced foam according to any one of 1 to 3, wherein the glass fiber content in the face material-reinforced foam is 10 to 20% by mass.
5. 5. The face material reinforced foam according to any one of 1 to 4 above, wherein the thermoplastic resin forming the strand converging foam is a non-crosslinked polyolefin resin.

6.前記非架橋のポリオレフィン樹脂が、メルトフローレート(230℃)が5〜30g/10minのポリプロピレン系樹脂である上記5に記載の面材強化発泡体。
7.前記強化面材における熱可塑性樹脂が、密度が900〜930kg/mの、直鎖状の低密度ポリエチレンである上記1〜6のいずれかに記載の面材強化発泡体。
8.前記バインダーが、ウレタン樹脂、アクリル樹脂及び酢酸ビニル樹脂からなる群から選ばれる少なくとも1種の樹脂である請求項2〜7のいずれかに記載の面材強化発泡体。
9.前記架橋樹脂が、ポリビニルアルコール又は多官能型アクリルポリオールである上記3〜8のいずれかに記載の面材強化発泡体。
10.上記1〜9のいずれかに記載の面材強化発泡体から得られる成形体。

6). 6. The face material reinforced foam according to 5 above, wherein the non-crosslinked polyolefin resin is a polypropylene resin having a melt flow rate (230 ° C.) of 5 to 30 g / 10 min.
7). 7. The face material reinforced foam according to any one of 1 to 6, wherein the thermoplastic resin in the reinforced face material is a linear low density polyethylene having a density of 900 to 930 kg / m 3 .
8). The face material reinforced foam according to any one of claims 2 to 7, wherein the binder is at least one resin selected from the group consisting of a urethane resin, an acrylic resin, and a vinyl acetate resin.
9. The face material reinforced foam according to any one of the above 3 to 8, wherein the crosslinked resin is polyvinyl alcohol or a polyfunctional acrylic polyol.
10. The molded object obtained from the face material reinforcement | strengthening foam in any one of said 1-9.

本発明によれば、軽量性、成形性、特に、深絞り成形においても、寸法安定性に優れた成形体が得られる面材強化発泡体、及びそれから得られる成形体が提供される。
例えば、面材強化発泡体からの成形体を自動車内装部品として使用する場合は、温度が90℃から−40℃、95%の相対湿度(RH)の多湿度の環境に繰り返し曝されるが、この場合でも、成形体の寸法変化は初期の寸法1000mmに対して2mm未満(寸法変化=2/1000未満)であることが要求され、また、自動車の内装天井部品のような条件の厳しい環境で使用される場合は、初期寸法1000mmに対して寸変化1mm未満(寸法変化1/1000未満)であることが要求されるが、本発明により、これらを満足しうる面材強化発泡体が提供される。
ADVANTAGE OF THE INVENTION According to this invention, the surface material reinforcement | strengthening foam which can obtain the molded object excellent in lightweight property, moldability, especially deep drawing molding, and the dimensional stability is provided, and a molded object obtained therefrom.
For example, when a molded product from a face material reinforced foam is used as an automobile interior part, it is repeatedly exposed to a high humidity environment with a temperature of 90 ° C. to −40 ° C. and 95% relative humidity (RH). Even in this case, the dimensional change of the molded body is required to be less than 2 mm (dimensional change = 2/1000) with respect to the initial dimension of 1000 mm, and in a severe environment such as an automobile interior ceiling part. When used, it is required to have a dimensional change of less than 1 mm (dimensional change of less than 1/1000) with respect to an initial dimension of 1000 mm, but the present invention provides a face material-reinforced foam that can satisfy these requirements. The

(ガラス繊維不織布)
ガラス繊維不織布を構成するガラス繊維の平均繊維長が15〜100mm、好ましくは20〜85mmであることを必須とする。ガラス繊維長が15mmより短い場合は、成形時に裂けやすくなり好ましくない。一方、ガラス繊維長が100mmを超える場合、不織布の目付けのバラツキが大きくなったり、不織布を取り扱うときにガラス繊維が脱落しやすいため加工性が低下したり、不織布に熱可塑性樹脂を含浸させる際に不織布からの樹脂の染み出しが多くなるため好ましくない。
(Glass fiber nonwoven fabric)
It is essential that the average fiber length of the glass fibers constituting the glass fiber nonwoven fabric is 15 to 100 mm, preferably 20 to 85 mm. When the glass fiber length is shorter than 15 mm, it is not preferable because it easily tears during molding. On the other hand, when the glass fiber length exceeds 100 mm, the variation in the fabric weight of the nonwoven fabric increases, the glass fiber tends to drop off when handling the nonwoven fabric, the workability decreases, and the nonwoven fabric is impregnated with a thermoplastic resin. This is not preferable because the resin oozes out from the nonwoven fabric.

本発明に用いるガラス繊維不織布は、引張弾性率が0.7〜1.2kgf/mmであることが必要である。ガラス繊維材料の180℃における引張弾性率が0.7kgf/mmより小さい場合、不織布の加工性や、面材強化発泡体の寸法安定性が優れるものの、成形時に絞り部位の伸び性が不足して破れてしまうため好ましくない。The glass fiber nonwoven fabric used in the present invention needs to have a tensile modulus of 0.7 to 1.2 kgf / mm 2 . When the tensile elastic modulus at 180 ° C. of the glass fiber material is less than 0.7 kgf / mm 2 , the processability of the nonwoven fabric and the dimensional stability of the face material reinforced foam are excellent, but the stretchability of the drawn part is insufficient during molding. It is not preferable because it breaks.

一方、引張弾性率が1.2kgf/mmより大きい場合、成形性は極めて良好となるが、不織布のガラス繊維の脱落が生じやすく、取扱い性・加工性が悪化したり、成形時に必要以上に材料が伸ばされることで残留歪みが大きくなり、場合によっては、高温(低温)、多湿の環境で成形品を扱う場合、成形時の歪みが緩和することにより、面材強化発泡体の寸法安定性が損なわれたり、成形品の表面平滑性が損なわれてしまうことがあるため好ましくない。
なかでも、引張弾性率が0.9〜1.15kgf/mmがより好ましく、特に、0.9〜1.1kgf/mmが好ましい。
On the other hand, when the tensile elastic modulus is larger than 1.2 kgf / mm 2 , the moldability is very good, but the glass fiber of the nonwoven fabric is likely to drop off, and the handleability and workability are deteriorated. Residual strain increases as the material is stretched. In some cases, when handling molded products in high-temperature (low-temperature) and high-humidity environments, the strain at the time of molding is alleviated to reduce the dimensional stability of the face-reinforced foam. Is not preferable because the surface smoothness of the molded product may be impaired.
Of these, the tensile elastic modulus is more preferably 0.9 to 1.15 kgf / mm 2 , and particularly preferably 0.9 to 1.1 kgf / mm 2 .

本発明に用いるガラス繊維不織布はバインダーを含有していることが好ましい。バインダーのイグロス(強熱減量)は、ガラス繊維不織布中に固形分で5〜20質量%、より好ましくは7〜16質量%含有される。バインダー樹脂の含有量が5質量%よりも小さいとガラス繊維の結束力が弱まるため加工時の繊維の脱落が増えてしまい、加工性が損なわれたり、所望の補強効果が弱まって成形時の裂けや寸法変化が大きくなり、逆に20質量%より大きいとガラス繊維同士の結束力が強くなるため、強化面材の引張り弾性率が低下して成形し難くなったり、不織布が高価になり好ましくない。
使用されるバインダー樹脂は、特に限定されるものではなく、ウレタン樹脂、アクリル樹脂、酢酸ビニル樹脂、でんぷん(スターチ)系などの種々のバインダー樹脂を用いることができる。なかでも、バインダー樹脂としては、酢酸ビニル樹脂又はでんぷん(スターチ)系が好ましい。
It is preferable that the glass fiber nonwoven fabric used for this invention contains the binder. The gloss (ignition loss) of the binder is contained in the glass fiber nonwoven fabric in a solid content of 5 to 20% by mass, more preferably 7 to 16% by mass. If the content of the binder resin is less than 5% by mass, the binding force of the glass fibers will be weakened, resulting in an increase in fiber dropping during processing, impairing workability, and weakening the desired reinforcing effect, resulting in tearing during molding. On the other hand, if the dimensional change is large, and if it is larger than 20% by mass, the binding force between the glass fibers becomes strong, the tensile elastic modulus of the reinforcing face material is lowered, making it difficult to mold, and the nonwoven fabric becomes expensive, which is not preferable. .
The binder resin used is not particularly limited, and various binder resins such as a urethane resin, an acrylic resin, a vinyl acetate resin, and a starch (starch) can be used. Especially, as a binder resin, a vinyl acetate resin or a starch (starch) type | system | group is preferable.

また、ガラス繊維不織布の取扱いや加工性を考慮したとき、上記引張弾性率になるようにバインダー樹脂に架橋樹脂を含有してもよい。架橋樹脂の含有量は、バインダーの固形分に対して、好ましくは0.1〜3質量%、特に好ましくは0.2〜2質量%である。
バインダー樹脂中の架橋樹脂としては、特に限定されないが、コストや加工性の面で、ポリビニルアルコール(PVA)、又は多官能型アクリルポリオールを用いることが好ましく、ポリビニルアルコールが特に好ましい。
Moreover, when the handling and workability of the glass fiber nonwoven fabric are taken into consideration, the binder resin may contain a cross-linked resin so as to have the tensile elastic modulus. The content of the crosslinked resin is preferably 0.1 to 3% by mass, particularly preferably 0.2 to 2% by mass, based on the solid content of the binder.
The cross-linked resin in the binder resin is not particularly limited, but polyvinyl alcohol (PVA) or polyfunctional acrylic polyol is preferably used, and polyvinyl alcohol is particularly preferable in terms of cost and processability.

(熱可塑性樹脂)
上記ガラス繊維不織布は、ガラス繊維の隙間が熱可塑性樹脂により含浸されている。本発明において、ガラス繊維不織布と複合する熱可塑性樹脂としては、不織布への含浸がし易く発泡樹脂との接着性の高い樹脂であることが好ましい。
発泡体と強化面材の接着性が不足していると、面材強化発泡体の強度が低下したり、成形時に剥離して裂けたり、また、得られる成形体が十分な寸法安定性を有しなくなり好ましくない。発泡体と強化面材の接着強度は、180度剥離において、好ましくは0.05kgf/mm以上、より好ましくは0.1〜5kgf/mmである。
(Thermoplastic resin)
As for the said glass fiber nonwoven fabric, the clearance gap between glass fibers is impregnated with the thermoplastic resin. In the present invention, the thermoplastic resin combined with the glass fiber nonwoven fabric is preferably a resin that is easily impregnated into the nonwoven fabric and has high adhesion to the foamed resin.
If the adhesiveness between the foam and the reinforced face material is insufficient, the strength of the face material reinforced foam will decrease, it will peel off during molding, and the resulting molded product will have sufficient dimensional stability. This is not preferable. The adhesive strength of the reinforcing face material and foam in 180 degree peel, preferably 0.05 kgf / mm 2 or more, more preferably 0.1~5kgf / mm 2.

熱可塑性樹脂は、特に限定されないが、例えば、メルトフローレート(MFR、230℃)は、好ましくは5〜50g/10min、より好ましくは8〜45g/10minである。
熱可塑性樹脂に特に制限はないが、コスト、耐熱性、及び加工のし易さの点から、オレフィン樹脂、EVA(エチレンー酢酸ビニル共重合体)のようなエチレン樹脂との共重合体、又はそれら混合物を使用することが好ましい。なかでも、密度が900〜930kg/mの低密度ポリエチレンが好ましく、直鎖状のポリエチレンを用いることが、不織布内部への浸透性、加工性、コストの点で好ましい。
Although a thermoplastic resin is not specifically limited, For example, a melt flow rate (MFR, 230 degreeC) becomes like this. Preferably it is 5-50 g / 10min, More preferably, it is 8-45 g / 10min.
The thermoplastic resin is not particularly limited, but from the viewpoint of cost, heat resistance, and ease of processing, an olefin resin, a copolymer with an ethylene resin such as EVA (ethylene-vinyl acetate copolymer), or those It is preferred to use a mixture. Among these, low density polyethylene having a density of 900 to 930 kg / m 3 is preferable, and use of linear polyethylene is preferable in terms of permeability into the nonwoven fabric, processability, and cost.

(強化面材)
前記ガラス繊維不織布と前記熱可塑性樹脂からなる強化面材は、強化面材中のガラス繊維の含有量が25〜40質量%、特には30〜35質量%含まれることが好ましい。強化面材中のガラス繊維の含有量が40質量%を超えると、強化面材の引張弾性率が低下して成形時の伸び性が不足し、成形体に裂けが生じたりするため好ましくない。一方、ガラス繊維含有量を減らして樹脂含有量を増やすほど強化面材の引張弾性率が上がり、伸び性が高くなるが、ガラス繊維の含有量が25質量%未満の場合は、製品重量が増えたり価格が上がったりするため好ましくない。
(Reinforced face material)
The reinforcing face material composed of the glass fiber nonwoven fabric and the thermoplastic resin preferably contains 25 to 40% by mass, particularly 30 to 35% by mass of glass fiber in the reinforcing face material. If the glass fiber content in the reinforcing face material exceeds 40% by mass, the tensile elastic modulus of the reinforcing face material is lowered, the elongation at the time of molding is insufficient, and the molded body is torn, which is not preferable. On the other hand, as the resin content is increased by decreasing the glass fiber content, the tensile modulus of the reinforcing face material increases and the extensibility increases. However, if the glass fiber content is less than 25% by mass, the product weight increases. Or increase in price.

また、ガラス繊維不織布に対して熱可塑性樹脂を含浸させる場合、特に限定されないが、ガラス繊維不織布がシート状の場合、シートの両表面上に含浸させるのが好ましい。ただし、加工に適した温度や適度の粘度特性を有する熱可塑性樹脂と、ガラス繊維不織布の厚み方向において含浸させる熱可塑性樹脂の不均一性を少なくし得る場合は、ガラス繊維不織布の一方の側の表面から含浸させるだけでも構わない。   Moreover, when impregnating a thermoplastic resin with respect to a glass fiber nonwoven fabric, it is although it does not specifically limit, When a glass fiber nonwoven fabric is a sheet form, it is preferable to make it impregnate on both surfaces of a sheet | seat. However, if it is possible to reduce the non-uniformity between the thermoplastic resin having a temperature suitable for processing and appropriate viscosity characteristics and the thermoplastic resin impregnated in the thickness direction of the glass fiber nonwoven fabric, You may just impregnate from the surface.

深絞り成形などで優れた伸び性を有する強化面材を求める場合は、ガラス繊維不織布中に均質に熱可塑性樹脂が存在するように含浸させることが好ましい。
さらに、ガラス繊維不織布への熱可塑性樹脂の含浸方法として、溶融した熱可塑性樹脂を直接含浸させることができる装置であればいずれも使用できる。例えば、ホットメルト樹脂のスプレー式ホットメルトラミネート法や押出ラミネート法などの連続積層加工により、被接着体であるガラス繊維不織布に熱可塑性樹脂を複合させる方法がより好ましい。
When a reinforcing surface material having excellent extensibility by deep drawing or the like is desired, it is preferable to impregnate the glass fiber nonwoven fabric so that the thermoplastic resin is present uniformly.
Furthermore, as a method for impregnating the thermoplastic resin into the glass fiber nonwoven fabric, any apparatus that can directly impregnate the molten thermoplastic resin can be used. For example, a method in which a thermoplastic resin is combined with a glass fiber nonwoven fabric, which is an adherend, by a continuous lamination process such as a spray-type hot-melt laminating method or an extrusion laminating method of a hot-melt resin is more preferable.

ガラス繊維不織布に含浸する、溶融した熱可塑性樹脂の粘度が高すぎる場合は、繊維素材内部まで十分樹脂が浸透せず、強化面材に十分な伸び性を付与できなくなるため好ましくない。一方、溶融した熱可塑性樹脂の粘度が低すぎると、ガラス繊維不織布に溶融した熱可塑性樹脂を含浸せしめた後に、樹脂がガラス繊維不織布から染み出すため加工が困難となり好ましくない。   When the viscosity of the molten thermoplastic resin impregnated into the glass fiber nonwoven fabric is too high, the resin does not sufficiently penetrate into the fiber material, and it is not preferable because sufficient stretchability cannot be imparted to the reinforcing face material. On the other hand, if the viscosity of the molten thermoplastic resin is too low, the glass fiber nonwoven fabric is impregnated with the molten thermoplastic resin, and the resin oozes out from the glass fiber nonwoven fabric, which makes it difficult to process.

強化面材は、雰囲気温度180℃に設定した高温引張試験における引張弾性率が0.8〜2.0kgf/mmであることを必要とし、特に、0.9〜1.5kgf/mmであるのが好ましい。The reinforced face material requires a tensile elastic modulus in a high temperature tensile test set at an atmospheric temperature of 180 ° C. to be 0.8 to 2.0 kgf / mm 2 , particularly 0.9 to 1.5 kgf / mm 2 . Preferably there is.

強化面材の180℃における引張弾性率が0.8kgf/mm未満の場合、成形性の剛性や寸法安定性は良好となるが、成形時の強化面材の伸び性が低下して成形時に裂けが生じやすくなり好ましくない。
一方、強化面材の引張弾性率が2.0kgf/mmを超える場合、成形性は良好になるが、成形歪みが時間とともに緩和する過程における成形体の寸法変化や形状崩れが大きくなるため好ましくない。
When the tensile modulus at 180 ° C. of the reinforced face material is less than 0.8 kgf / mm 2 , the rigidity and dimensional stability of the moldability are good, but the extensibility of the reinforced face material at the time of molding is reduced and at the time of molding. It is not preferable because tearing tends to occur.
On the other hand, when the tensile elastic modulus of the reinforcing face material exceeds 2.0 kgf / mm 2 , the moldability is good, but it is preferable because the dimensional change and shape deformation of the molded body increase in the process in which the molding strain relaxes with time. Absent.

(発泡体)
本発明で発泡体を形成する樹脂としては、特に限定されず、熱可塑性樹脂材料が使用される。コストや深絞り成形をするという点から、非架橋性のポリオレフィン系の樹脂を使用することが好ましい。ポリオレフィン系の樹脂のなかでも、耐熱性や剛性が高く、安価であるポリプロピレン系の樹脂を使用することが特に好ましい。ポリプロピレン系樹脂としては、メルトフローレート(MFR、230℃)は好ましくは5〜30g/10min、より好ましくは5〜20g/10minである。
(Foam)
The resin for forming the foam in the present invention is not particularly limited, and a thermoplastic resin material is used. From the viewpoint of cost and deep drawing, it is preferable to use a non-crosslinkable polyolefin resin. Among polyolefin-based resins, it is particularly preferable to use a polypropylene-based resin that has high heat resistance and rigidity and is inexpensive. As the polypropylene resin, the melt flow rate (MFR, 230 ° C.) is preferably 5 to 30 g / 10 min, more preferably 5 to 20 g / 10 min.

本発明におけるストランド集束発泡体は、特に限定されないが、複数のダイノズルから吐出されたストランド連続押出発泡法により得ることができる。例えば、発泡体は、開口直径が0.5〜3mmであり、開口数が50〜5000である多ホール型ダイスを有する押出し機を使用し、160〜250℃の溶融押出し温度にて、ダイスの一開口当りの吐出量Vが0.03〜0.5kg/hとして、ダイス開口部の直近樹脂圧力を3〜20MPaにて大気下に放出して押出発泡する方法により得られる。   Although the strand bundling body in this invention is not specifically limited, It can be obtained by the strand continuous extrusion foaming method discharged from the several die nozzle. For example, the foam uses an extruder having a multi-hole die having an opening diameter of 0.5 to 3 mm and a numerical aperture of 50 to 5000, and at a melt extrusion temperature of 160 to 250 ° C. The discharge amount V per opening is 0.03 to 0.5 kg / h, and it is obtained by a method of extrusion foaming by releasing the nearest resin pressure of the die opening to 3-20 MPa in the atmosphere.

しかしながら、発泡体にストランド収束発泡体を使用した場合、発泡体の押出方向への引張伸び性に対して、その垂直方向への引張伸び性のほうが高い、異方性を有する材料となる。   However, when a strand converging foam is used for the foam, the material has anisotropy in which the tensile elongation in the vertical direction is higher than the tensile elongation in the extrusion direction of the foam.

本発明で発泡体の発泡倍率としては、10〜40倍、好ましくは、13〜30倍であることが好ましい。発泡倍率が10倍未満の場合、面材強化発泡体の剛性は良好だが、軽量性が損なわれるため好ましくない。発泡倍率が40倍を超える場合、面材強化発泡体の軽量性やコストの面では良好だが、剛性が付与できず、寸法安定性が損なわれてしまうため好ましくない。   In the present invention, the expansion ratio of the foam is 10 to 40 times, preferably 13 to 30 times. When the expansion ratio is less than 10 times, the rigidity of the face material-reinforced foam is good, but it is not preferable because the lightness is impaired. When the expansion ratio exceeds 40 times, it is favorable in terms of lightness and cost of the face material-reinforced foam, but it is not preferable because rigidity cannot be imparted and dimensional stability is impaired.

(面材強化発泡体)
本発明における面材強化発泡体は、発泡体の両表面に強化面材を積層することにより製造され、その形状は、ボード状、又はシート状のものを採用することもできる。
発泡体と強化面材との積層方法は、特に限定されないが、ガラス繊維不織布に熱可塑性樹脂を含浸させながら、ガラス繊維不織布の裏面まで熱可塑性樹脂を適度に染み出させることで、熱可塑性樹脂の接着性を使用して強化面材と発泡体とを積層する方法や、ガラス繊維不織布に熱可塑性樹脂を含浸させた強化面材と、これに積層する発泡体とを予めを用意しておき、次工程において熱ロールによる両者を積層する方法や、両者を熱風式ラミネートによる貼り合せる方法などがある。
(Face material reinforced foam)
The face material reinforced foam in the present invention is produced by laminating a reinforced face material on both surfaces of the foam, and the shape of the face material reinforced foam may be a board shape or a sheet shape.
The method of laminating the foam and the reinforced face material is not particularly limited, but the thermoplastic resin is appropriately exuded to the back surface of the glass fiber nonwoven fabric while impregnating the glass fiber nonwoven fabric with the thermoplastic resin. A method of laminating a reinforcing face material and a foam using the adhesive property of the above, a reinforcing face material obtained by impregnating a glass fiber nonwoven fabric with a thermoplastic resin, and a foam to be laminated thereon are prepared in advance. In the next step, there are a method of laminating both by a hot roll, a method of laminating both by hot air laminating, and the like.

熱可塑性樹脂を不織布に複合させつつ発泡体と積層する方法として、押出ラミネート法と、スプレー式ホットメルトラミネート法がある。押出ラミネート法は、装置が大きく広い場所を必要とし、装置価格が非常に高いデメリットはあるが、高い目付量の熱可塑性樹脂を比較的均質な目付けで容易に塗布することができるメリットがある。スプレー式ホットメルトラミネート法は、比較的安価に加工することができるが、熱可塑性樹脂の目付けが不均質になったり、高い目付けの樹脂の塗布に向かないといったデメリットがある。   As a method of laminating a foam with a thermoplastic resin combined with a nonwoven fabric, there are an extrusion laminating method and a spray hot melt laminating method. The extrusion laminating method has a disadvantage that the apparatus is large and requires a wide space, and the apparatus cost is very high, but there is an advantage that a high basis weight thermoplastic resin can be easily applied with a relatively uniform basis weight. The spray-type hot melt laminating method can be processed at a relatively low cost, but has a demerit that the basis weight of the thermoplastic resin is not uniform or is not suitable for application of a high basis weight resin.

また、強化面材を予め用意する場合も、上記押出ラミネート法やスプレー式ホットメルトラミネート法により好適に加工することができる。
また、予め用意された強化面材を、熱ロールにより貼り合せる方法とは、発泡体の両表面に強化面材を重ねた状態で、加熱したロールで押さえつけることで貼り合せる方法である。
Also, when the reinforcing face material is prepared in advance, it can be suitably processed by the above extrusion laminating method or spray hot melt laminating method.
Moreover, the method of bonding the reinforcement surface material prepared beforehand by a hot roll is the method of bonding by pressing with the heated roll in the state which accumulated the reinforcement surface material on both surfaces of the foam.

熱ロールによる貼り合せの場合、加工方法が簡易であるといったメリットはあるが、強化面材の厚みが厚いとき、発泡体に十分接着できるだけの熱可塑性樹脂を溶融するためには多量の熱をかけることが必要となる。その結果、熱ロールの熱量を上げたり、熱ロールの大きさを大きくしたり、熱ロールを複数必要としたり、加工スピードを下げる必要がある、といったデメリットがある。   In the case of bonding with a hot roll, there is a merit that the processing method is simple, but when the thickness of the reinforced face material is thick, a large amount of heat is applied to melt the thermoplastic resin that can sufficiently adhere to the foam. It will be necessary. As a result, there are disadvantages such as increasing the amount of heat of the heat roll, increasing the size of the heat roll, requiring a plurality of heat rolls, and reducing the processing speed.

予め用意された強化面材を、熱風式ラミネートにより貼り合せる方法とは、発泡体と強化面材に同時に熱風を吹きつけ、それぞれの表面の樹脂を軟化溶融させた後、それぞれの界面を冷却ロールで押し冷やしながら貼り合せる方法である。
熱風式ラミネートの場合、設計上装置が複雑で、材料を十分軟化溶融させるためには高温の熱風を吹きつけなければならないデメリットがある。しかし、装置が安価で場所をとらず、製品幅方向の加熱温度を均質化したい場合は、比較的こまやかに制御しやすく、発泡体と強化面材に含浸されている熱可塑性樹脂を同時に加熱溶融させて貼り合わせることができるため、加工速度が速い場合でも十分に貼り合せ加工できるといったメリットがある。
The method of pasting together the prepared reinforcing face material by hot air laminating is to blow hot air simultaneously on the foam and the reinforcing face material to soften and melt the resin on each surface, and then to cool the respective interfaces with a cooling roll It is the method of pasting together while pushing and cooling.
In the case of a hot-air laminate, the apparatus is complicated in design, and there is a demerit that high-temperature hot air must be blown to sufficiently soften and melt the material. However, when the equipment is inexpensive and does not take up space, and it is desired to homogenize the heating temperature in the product width direction, it is relatively easy to control and the thermoplastic resin impregnated in the foam and reinforced face material is heated and melted simultaneously. Therefore, even when the processing speed is high, there is an advantage that the bonding can be sufficiently performed.

前述のようにして得られた面材強化発泡体は、後工程においてさらに、スタンピング成形や、真空成形することができる。
スタンピング成形の場合、予備加熱により基材を軟化溶融させ、冷却プレスによりある特定形状に成形するが、予め成形体の表面に接着層を積層させておき、プレスと同時に、基材の表面に、フェルトやエチレン−プロピレン−ジエンゴム(EPDM)、エチレン−プロピレンゴム(EPR)、ブチルゴムグラフトポリエチレン等に代表されるオレフィン系エラストマー(TPO)シートなどの化粧材を貼り合せることができる。また、予め、強化面材の加工工程において、ポリプロピレンやポリエチレンなどのオレフィン系樹脂や、前述のオレフィン系エラストマーなど、転写性の高い樹脂を溶融させ、ガラス繊維不織布表面に、キャストし強化面材を作製し、これを用いて面材強化発泡体とし、プレス成形時に成形品表面に金型の凹凸形状を転写させ、意匠をつけることもできる。
The face material reinforced foam obtained as described above can be further subjected to stamping molding or vacuum molding in a subsequent step.
In the case of stamping molding, the base material is softened and melted by preheating and formed into a specific shape by a cooling press, but an adhesive layer is previously laminated on the surface of the molded body, and simultaneously with the press, on the surface of the base material, Cosmetic materials such as felt, ethylene-propylene-diene rubber (EPDM), ethylene-propylene rubber (EPR), olefin-based elastomer (TPO) sheets represented by butyl rubber grafted polyethylene and the like can be bonded together. In addition, in the process of processing the reinforcing face material, a highly transferable resin such as olefin resin such as polypropylene or polyethylene or the above-mentioned olefin elastomer is melted and cast on the surface of the glass fiber non-woven fabric. It is also possible to produce a face material reinforced foam by using this, and to transfer the uneven shape of the mold onto the surface of the molded product during press molding to give a design.

真空成形の場合も前述のとおり、成形と同時に成形品に化粧材を貼り合せたり、予め強化面材の加工工程で転写性の高い樹脂を複合することで、金型形状の転写を行い、意匠をつけることができる。
面材強化発泡体は、ガラス繊維の含有量が、面材強化発泡体の全質量中に10〜20質量%であることが好ましく、更には12〜18質量%であることが好ましい。ガラス繊維の含有量が10質量%未満になると、成形品の熱寸法安定性が損なわれ、例えば自動車の内装材などの温湿度環境が苛酷な状況でそれを使用した場合、面材強化発泡体の寸法が縮んだり、形状が崩れてしまうといった不具合を生じるため好ましくない。特に成形歪みの大きな深絞り成形品の場合、残留応力が大きくなるため、寸法形状安定性や形状安定性が著しく損なわれてしまう。
In the case of vacuum molding as well, as described above, the mold shape is transferred by pasting the decorative material on the molded product at the same time as molding, or by combining a resin with high transferability in the process of processing the reinforcing face material in advance. You can turn on.
In the face material reinforced foam, the content of glass fiber is preferably 10 to 20% by mass, more preferably 12 to 18% by mass, based on the total mass of the face material reinforced foam. When the glass fiber content is less than 10% by mass, the thermal dimensional stability of the molded product is impaired. For example, when it is used in a severe temperature and humidity environment such as an automobile interior material, the face material reinforced foam This is not preferable because it causes problems such as shrinkage of dimensions and collapse of the shape. In particular, in the case of a deep-drawn molded product having a large molding distortion, the residual stress becomes large, so that the dimensional shape stability and shape stability are significantly impaired.

一方、ガラス繊維の含有量が20質量%を超えた場合、面材強化発泡体の寸法安定性を高めることができるが、軽量性が損なわれたり、強化面材の引張弾性率が高くなりすぎて成形時に裂けが生じるため好ましくない。   On the other hand, when the glass fiber content exceeds 20% by mass, the dimensional stability of the face material-reinforced foam can be improved, but the lightness is impaired, or the tensile elastic modulus of the reinforced face material becomes too high. This is not preferable because tearing occurs during molding.

本発明において各種物性値は以下のようにして求められたものである。
1.ガラス繊維不織布の目付
不織布を縦200mm、横200mmの寸法の板状に裁断し、その質量(g)を電子天秤により下2桁まで測定し、以下の式によりガラス繊維不織布の目付を算出した。それぞれ算出した目付けの平均値(n=5)をガラス繊維不織布の目付とした。

ガラス繊維不織布目付(g/m
=質量(g)/(200(m)/1000(m)×200(m)/1000(m))
In the present invention, various physical property values are obtained as follows.
1. The basis weight of the glass fiber nonwoven fabric was cut into a plate shape having dimensions of 200 mm in length and 200 mm in width, the mass (g) was measured with an electronic balance to the last two digits, and the basis weight of the glass fiber nonwoven fabric was calculated by the following formula. The average value (n = 5) of the calculated basis weight was used as the basis weight of the glass fiber nonwoven fabric.

Glass fiber nonwoven fabric basis weight (g / m 2 )
= Mass (g) / (200 (m) / 1000 (m) × 200 (m) / 1000 (m))

2.強化面材の目付
強化面材を縦200mm、横200mmの寸法の板状に裁断し、その質量(g)を電子天秤で下2桁まで測定し、以下の式により強化面材の目付を算出した。それぞれ算出した目付けの平均値(n=5)を強化面材目付とした。

強化面材の目付(g/m
=質量(g)/(200(m)/1000(m)×200(m)/1000(m))
2. Basis weight of reinforced face material The reinforced face material is cut into a plate shape with dimensions of 200 mm in length and 200 mm in width, the mass (g) is measured to the last two digits with an electronic balance, and the basis weight of the reinforced face material is calculated by the following formula. did. The average value (n = 5) of the calculated basis weight was used as the reinforced face material basis weight.

Reinforced face material weight (g / m 2 )
= Mass (g) / (200 (m) / 1000 (m) × 200 (m) / 1000 (m))

3.面材強化発泡体の目付
面材強化発泡体を縦200mm、横200mmの寸法の板状に裁断し、その質量(g)を電子天秤で下2桁まで測定し、以下の式により面材強化発泡体の目付を算出した。それぞれ算出した目付けの平均値(n=5)を面材強化発泡体目付とした。

面材強化発泡体目付(g/m
=質量(g)/(200/1000(m)×200/1000(m))
3. Surface material reinforced foam basis weight The face material reinforced foam is cut into a plate shape with dimensions of 200 mm in length and 200 mm in width, and its mass (g) is measured to the last two digits with an electronic balance. The basis weight of the foam was calculated. The average value (n = 5) of the calculated basis weight was defined as the face material reinforced foam basis weight.

Face material reinforced foam basis weight (g / m 2 )
= Mass (g) / (200/1000 (m) × 200/1000 (m))

4.面材強化発泡体の厚み
面材強化発泡体の平板部より、試験片を縦200mm、横200mmの板状に裁断し、その厚みをデジタルノギスにより下2桁まで測定し、厚みの平均値(n=5)を面材強化発泡体厚みとした。
4). Thickness of the face material reinforced foam From the flat part of the face material reinforced foam, the test piece was cut into a plate shape of 200 mm in length and 200 mm in width, and the thickness was measured to the last two digits with a digital caliper. n = 5) was defined as the thickness of the face material reinforced foam.

5.ガラス繊維不織布の180℃における、引張弾性率及び引張伸度
ガラス繊維不織布を縦200mm、横25mmの寸法の板状に裁断し、予め180℃に加熱した不織布を高温引張試験装置に、チャック間隔150mmで固定し、引張速度50mm/minにて試験片を引っ張ったときの最大荷重(kgf)と試験片面積(mm)を用い、以下の式により引張弾性率を算出した。得られた引張弾性率の平均値(n=5)を不織布の180℃における引張弾性率とした。

180℃引張弾性率(kgf/mm)=
((最大荷重(kgf)÷(試験片幅25(mm))×チャック間隔150(mm)×引張伸度(%))
5. Tensile modulus and tensile elongation of glass fiber non-woven fabric at 180 ° C. Glass fiber non-woven fabric is cut into a plate shape with dimensions of 200 mm length and 25 mm width, and the non-woven fabric heated to 180 ° C. in advance to a high-temperature tensile test device with a chuck interval of 150 mm The tensile modulus was calculated by the following formula using the maximum load (kgf) and the specimen area (mm) when the specimen was pulled at a tensile speed of 50 mm / min. The average value (n = 5) of the obtained tensile elastic modulus was taken as the tensile elastic modulus at 180 ° C. of the nonwoven fabric.

180 ° C. tensile modulus (kgf / mm 2 ) =
((Maximum load (kgf) / (test specimen width 25 (mm)) × chuck interval 150 (mm) × tensile elongation (%))

また、不織布の180℃引張試験において、不織布が破断するまでの変位量(mm)と試験のチャック間隔(mm)から、以下の式を用いて180℃における引張伸度を算出した。

180℃引張伸度(%)
=(不織布が破断するまでの変位量(mm)÷チャック間隔(mm))×100

得られた引張伸度の平均値(n=5)を180℃における引張伸度とした。
Moreover, in the 180 degreeC tensile test of a nonwoven fabric, the tensile elongation in 180 degreeC was computed using the following formula | equation from the displacement amount (mm) until a nonwoven fabric fractures | ruptures, and the chuck | zipper space | interval (mm) of a test.

180 ° C tensile elongation (%)
= (Displacement amount until the nonwoven fabric breaks (mm) ÷ Chuck interval (mm)) × 100

The average value (n = 5) of the obtained tensile elongation was defined as the tensile elongation at 180 ° C.

6.強化面材の180℃における引張弾性率及び引張伸度
強化面材の引張弾性率及び引張伸度も、上記5.に記載したガラス繊維不織布の180℃引張試験と同じ方法により、強化面材の180℃における引張弾性率と引張伸度を算出した。
6). The tensile modulus and tensile elongation of the reinforced face material at 180 ° C. are the same as those in 5. above. The tensile elastic modulus and tensile elongation at 180 ° C. of the reinforcing face material were calculated by the same method as the 180 ° C. tensile test of the glass fiber nonwoven fabric described in 1. above.

7.強化面材中のガラス繊維の含有量
強化面材を縦30mm、横30mmの寸法の板状に裁断し、十分水分を除いたものを試験片として使用した。かかる試験片を磁性皿(質量:W)に入れ、試験片と磁性皿との合計質量(w)を電子天秤にて下4桁まで測り、450℃に設定した電気炉中に5時間放置し、シリカゲルを入れたデシケータ中で室温まで温度を下げ、有機成分燃焼後の強化面材の残った磁性皿の質量(w)を電子天秤にて下4桁まで測定し、以下の式から強化面材のガラス繊維含有量を算出した。
強化面材の異なる場所から試験片を採取し、上記測定を5回行い、それぞれ得られたガラス繊維含有量を平均した値を、強化面材中のガラス繊維含有量とした。
強化面材中のガラス繊維含有量(質量%)

=((W−W)/(W−W))×100
7). Content of Glass Fiber in Reinforced Face Material The reinforced face material was cut into a plate shape having dimensions of 30 mm in length and 30 mm in width, and a material from which moisture was sufficiently removed was used as a test piece. This test piece is put in a magnetic dish (mass: W 0 ), and the total mass (w 1 ) of the test piece and the magnetic dish is measured to the last 4 digits with an electronic balance, and it is placed in an electric furnace set at 450 ° C. for 5 hours. Let stand, lower the temperature to room temperature in a desiccator containing silica gel, measure the mass (w 2 ) of the magnetic dish with the reinforcing face material remaining after combustion of organic components to the last 4 digits with an electronic balance, and use the following formula From this, the glass fiber content of the reinforcing face material was calculated.
Test pieces were collected from different locations of the reinforcing face material, the above measurement was performed 5 times, and the average value of the obtained glass fiber contents was taken as the glass fiber content in the reinforcing face material.
Glass fiber content (% by mass) in reinforced face material

= ((W 2 −W 0 ) / (W 1 −W 0 )) × 100

8.深絞り成形性
強化面材を、発泡体の両表面に積層した、縦2400mm、横1500mmの寸法の板状の面材強化発泡体を使用した。その端部50mmの位置で4辺をクランプ固定し、遠赤外線加熱炉において十分予備加熱することで軟化、溶融させた後、速やかに面材強化発泡体を金型内部に搬送した。
金型としては、中央部が縦1200mm、横1000mm、斜辺200mmの四角錐台形状にくぼんでいる、金型上面が凹型で下面が凸型であり、全てのコーナー部分のRが10mmで傾斜角60度である金型を使用した。金型間のクリアランスを5.5mmとして、軟化溶融した上記面材強化発泡体をクランプしたままプレスすることで、成形体を作製し、すべての深絞り(コーナー、立て壁)部位において面材強化発泡体に破れがないか評価を行った。
評価においては、面材強化発泡体の破れ方として、長さ100mm以上裂けている場合は、「裂け大」、長さ100〜10mm裂けている場合は、「裂け中程度」、強化面材及び発泡体、又は、その両方が長さ10〜5mm程度破れて穴があいている場合は「裂け小」と評価した。
8). Deep-drawing formability A plate-shaped face material reinforced foam having dimensions of 2400 mm in length and 1500 mm in width, in which reinforced face materials are laminated on both surfaces of the foam, was used. Four sides were clamped and fixed at a position of 50 mm at the end, and after sufficiently softening and melting by pre-heating in a far-infrared heating furnace, the face material-reinforced foam was quickly conveyed into the mold.
The mold has a square pyramid shape with a central part of 1200mm in length, 1000mm in width, and a hypotenuse of 200mm. The upper surface of the mold is concave and the lower surface is convex. A mold that is 60 degrees was used. The molded product is produced by pressing the above-mentioned softened and melted face material reinforced foam while clamping the clearance between the molds to 5.5 mm, and strengthens the face material at all deep drawing (corner, standing wall) sites. The foam was evaluated for tearing.
In the evaluation, as the method of tearing the face material reinforced foam, when the length is 100 mm or more, “large tear”, when the length is 100 to 10 mm, “medium torn”, When the foam or both were torn about 10 to 5 mm in length and a hole was formed, it was evaluated as “small tear”.

9.寸法安定性
まず、上記8の深絞り成形性に記載されている方法で成形した面材強化発泡体の平面部には縦3箇所に1000mm、横3箇所に750mmの直線を罫書き、立面傾斜部には縦横ともに750mm及び150mmの直線を罫書き、スケールにより直線の初期長さ(L)を、0.5mmを最小刻みとして測定した。
次に、設定温度の精度が±1℃、設定湿度の精度が±2%RHである高湿恒温槽を使用し、以下の温度湿度の条件において、湿冷熱サイクル試験を4サイクル実施した。
当該湿冷熱サイクル試験のサイクルは以下のとおりである。
まず、温度23℃湿度50%で0.5時間(以下、初期条件という。)、次いで温度90℃で11.5時間保持する。その後、初期条件を経て−40℃で7.5時間保持し、再度初期条件を経て、温度70℃湿度50%で7.5時間保持する。その後、初期条件を経て−40℃で7.5時間保持して初期条件に戻し、これを1サイクルとする
9. Dimensional stability First, the plane part of the face material reinforced foam molded by the method described in the above deep drawing moldability is marked with a straight line of 1000 mm at three vertical positions and 750 mm at three horizontal positions, On the inclined part, straight lines of 750 mm and 150 mm were written in both the vertical and horizontal directions, and the initial length (L 0 ) of the straight line was measured by a scale with a minimum step of 0.5 mm.
Next, using a high-humidity thermostatic chamber with a set temperature accuracy of ± 1 ° C. and a set humidity accuracy of ± 2% RH, four cycles of the humidity-cooling heat cycle test were performed under the following temperature and humidity conditions.
The cycle of the wet and cold heat cycle test is as follows.
First, it is maintained at a temperature of 23 ° C. and a humidity of 50% for 0.5 hours (hereinafter referred to as initial conditions), and then at a temperature of 90 ° C. for 11.5 hours. After that, it is kept at −40 ° C. for 7.5 hours through the initial conditions, and again through the initial conditions, and kept at a temperature of 70 ° C. and a humidity of 50% for 7.5 hours. After that, the initial condition is maintained at −40 ° C. for 7.5 hours to return to the initial condition, which is one cycle.

試験終了後、試験前に罫書いた直線についてそれぞれスケールを用い、試験後の長さ(L)を、0.5mmを最小刻みとして測定した。
全ての直線を評価後、以下の式により、冷熱サイクル試験後の寸法変化を算出した。

冷熱サイクル試験後の寸法変化(×1/1000)
=((L−l)÷L)×1000
After completion of the test, the length (L 1 ) after the test was measured using 0.5 mm as the minimum step for each of the straight lines marked before the test.
After evaluating all the straight lines, the dimensional change after the thermal cycle test was calculated by the following formula.

Dimensional change after cooling cycle test (× 1/1000)
= ((L 0 −l 1 ) ÷ L 0 ) × 1000

さらに、面材強化発泡体縦方向(押出発泡ライン方向;2400mm)をMD方向、横方向(押出発泡ラインに対して幅方向;1500mm)をTD方向とし、MD方向・TD方向ともに算出した寸法変化の値の平均値を算出し、これを面材強化発泡体の冷熱サイクル試験後の寸法変化とした。
なお、寸法変化の単位である×1/1000として、初期寸法1000mmの成形体が冷熱サイクル試験後に変形した変形量(mm)を意味し、寸法変化率×0.1(%)と同じ意味である。
Further, the longitudinal change (extrusion foaming line direction: 2400 mm) of the face material reinforced foam is MD direction, and the transverse direction (width direction with respect to the extrusion foaming line: 1500 mm) is TD direction, and the dimensional change calculated in both MD direction and TD direction. The average value of these values was calculated, and this was taken as the dimensional change after the thermal cycle test of the face material reinforced foam.
In addition, as a unit of dimensional change x 1/1000, it means a deformation amount (mm) in which a molded body having an initial dimension of 1000 mm is deformed after a thermal cycle test, and has the same meaning as dimensional change rate x 0.1 (%). is there.

深絞り成形した面材強化発泡体の寸法安定性の評価において、寸法変化(1.0)×1/1000未満を「◎」、(1.0〜1.5)×1/1000を「○」、(1.5〜2.0)×1/1000を「△」、寸法変化が(2.0×1)/1000を超える場合は「×」と評価した。
なお、成形体として、例えば、自動車用の内装部品などに使用しようとする場合、車内環境の苛酷な温湿度変化に対して十分な寸法安定性として、寸法変化2×1/1000未満、特に乗用車用の内装用に使用する場合は、寸法変化1×1/1000未満とする必要がある。
In the evaluation of the dimensional stability of the deep-drawn face material reinforced foam, a dimensional change of less than (1.0) × 1/1000 is “」 ”, and (1.0 to 1.5) × 1/1000 is“ ◯ ”. ”, (1.5 to 2.0) × 1/1000 was evaluated as“ Δ ”, and when the dimensional change exceeded (2.0 × 1) / 1000, it was evaluated as“ × ”.
As a molded body, for example, when it is intended to be used for automobile interior parts, the dimensional change is less than 2 × 1/1000, particularly passenger cars, as sufficient dimensional stability against severe changes in temperature and humidity in the vehicle environment. When used for interior use, the dimensional change needs to be less than 1 × 1/1000.

本発明をさらに具体的に説明する為に、以下に実施例を挙げるが、本発明はこれら実施例のみに限定されるものではない。なお、本発明において、特に断りのない限り、「%」は、質量%である。
実施例1〜7、及び比較例1〜8の面材強化発泡体の作製条件、その評価結果等については、表1、表2にまとめて示した。
In order to describe the present invention more specifically, examples are given below, but the present invention is not limited to these examples. In the present invention, “%” is mass% unless otherwise specified.
The production conditions of the face material reinforced foams of Examples 1 to 7 and Comparative Examples 1 to 8, the evaluation results, and the like are summarized in Tables 1 and 2.

実施例1
平均繊維径13μm、平均繊維長25mmのガラス繊維不織布を用い、これに対しウレタン樹脂とアクリル樹脂との混合物(質量比率80:20)からなるバインダーを、ガラス繊維の質量に対して10質量%になるように付着させ、さらに、架橋成分としてPVAをバインダーの質量に対して0.5質量%外添して、200℃にて90秒間熱処理を行って得られる、目付け50g/mで強熱減量(イグロス)10%のガラス繊維不織布を使用した。このガラス繊維不織布の180℃における引張弾性率は1.0kgf/mm、180℃における引張伸度は0.83%であった。
Example 1
A glass fiber nonwoven fabric having an average fiber diameter of 13 μm and an average fiber length of 25 mm is used. On the other hand, a binder made of a mixture of urethane resin and acrylic resin (mass ratio 80:20) is 10% by mass with respect to the mass of the glass fiber. attached is such that, further, the PVA as a crosslinking component to 0.5 wt% externally added relative to the weight of the binder, 200 ° C. at obtained by performing 90 seconds heat treatment, ignition at a basis weight 50 g / m 2 A glass fiber nonwoven fabric with 10% weight loss (igros) was used. This glass fiber nonwoven fabric had a tensile elastic modulus at 180 ° C. of 1.0 kgf / mm 2 and a tensile elongation at 180 ° C. of 0.83%.

上記ガラス繊維不織布に、熱可塑性樹脂として直鎖状低密度ポリエチレン樹脂(LLDPE、密度919kg/m MFR:8.0g/10min)を280〜290℃の溶融状態で目付量として50g/mとなるように直接塗布した。次いで、ガラス繊維不織布の裏側から更に50g/mの目付で、樹脂分の目付が合計で100g/mとなるようにLLDPE樹脂を直接塗布し、押出ラミネート法で含浸させてガラス含有量が33質量%の強化面材を作製した。
この強化面材の目付は150g/mであり、LLDPE樹脂含有量が67質量%であった。また、180℃における引張弾性率は1.1kgf/mm、180℃における引張伸度は5.7%であった。
A linear low density polyethylene resin (LLDPE, density 919 kg / m 3 MFR: 8.0 g / 10 min) as a thermoplastic resin is 50 g / m 2 as a basis weight in a molten state of 280 to 290 ° C. It applied directly so that it might become. Next, the LLDPE resin is directly applied so that the basis weight of the resin is 100 g / m 2 in total with a basis weight of 50 g / m 2 from the back side of the glass fiber nonwoven fabric, and impregnated by an extrusion laminating method to obtain a glass content. A 33% by mass reinforcing face material was produced.
The basis weight of this reinforcing face material was 150 g / m 2 and the LLDPE resin content was 67% by mass. Moreover, the tensile elasticity modulus in 180 degreeC was 1.1 kgf / mm < 2 >, and the tensile elongation in 180 degreeC was 5.7%.

一方、タンデム式押出機を使用し、230℃におけるMFRが3.3g/10minであり、230℃における溶融張力が7.9gであるホモポリプロピレン樹脂を、吐出量75kg/時間(h)で230℃の温度設定で溶融させ、ホモポリプロピレン樹脂100質量%に対して6.5質量%となるように発泡ガスである二酸化炭素を注入して十分混錬した後、2段目の押出機の温度を調整して発泡直前の樹脂温度が185℃となるように温度設定し、ホール数1332(発泡体の厚み方向に4ホール、幅方向に333ホール)でホール直径0.59mm、ホール間隔4.5mmのマルチストランドダイノズルを介して、樹脂圧力8.3MPaとなるように押出し、一気に大気圧中に圧力を開放することで、製品幅1500mm、発泡倍率26倍、厚み12mm、目付380g/mの発泡体を作製した。
次いで、連続ラインにおいて、前記のようにして予め用意した強化面材と発泡体の間に、280℃の熱風を吹きつけ、強化面材のLLDPE樹脂と発泡体表面のPP(ポリプロピレン)樹脂を溶かした後、速やかにPTFE(ポリテトラフルオロエチレン)被覆ロールで押さえることで、発泡体の両表面に強化面材を貼り合せ、面材強化発泡体を作製した。
On the other hand, using a tandem extruder, homopolypropylene resin having an MFR at 230 ° C. of 3.3 g / 10 min and a melt tension at 230 ° C. of 7.9 g was discharged at 230 ° C. at a discharge rate of 75 kg / hour (h). And melted at a temperature setting of 6.5% by mass with respect to 100% by mass of the homopolypropylene resin. The temperature is set so that the resin temperature immediately before foaming is 185 ° C., the hole diameter is 1332 (4 holes in the thickness direction of the foam, 333 holes in the width direction), the hole diameter is 0.59 mm, and the hole interval is 4.5 mm. The product is extruded through a multi-strand die nozzle so that the resin pressure becomes 8.3 MPa, and the pressure is released to atmospheric pressure at a stretch. A foam having a double size, a thickness of 12 mm, and a basis weight of 380 g / m 2 was produced.
Next, in a continuous line, hot air of 280 ° C. is blown between the reinforcing face material prepared in advance as described above and the foam to melt the LLDPE resin of the reinforcing face material and the PP (polypropylene) resin on the surface of the foam. After that, by pressing with a PTFE (polytetrafluoroethylene) coating roll promptly, a reinforcing face material was bonded to both surfaces of the foam to produce a face material reinforced foam.

得られた面材強化発泡体の目付は680g/m、厚みは11mm、面材強化発泡体中のガラス含有量は15質量%であった。
前記のようにして得られた面材強化発泡体を、設定温度280℃の遠赤外線加熱炉内に120秒間滞留させ、成形体の表面温度170〜180℃となるように加熱し、即座に前述の金型を30℃に設定し、金型クリアランス設定5.5mmの条件で深絞り成形を行った。
The weight of the obtained face material reinforced foam was 680 g / m 2 , the thickness was 11 mm, and the glass content in the face material reinforced foam was 15% by mass.
The face material reinforced foam obtained as described above is retained in a far-infrared heating furnace having a set temperature of 280 ° C. for 120 seconds and heated so that the surface temperature of the molded product becomes 170 to 180 ° C. The die was set at 30 ° C., and deep drawing was performed under the conditions of a die clearance setting of 5.5 mm.

得られた面材強化発泡体の成形体は、深絞りコーナー(立壁傾斜面)部位には裂けが無く、表面外観は端麗であった。
さらに、この成形体を使用し、前述の冷熱サイクル試験により試験前後の成形体の寸法変化を調べたところ、寸法変化0.98×1/1000(寸法変化率0.098%)であり、寸法安定性に優れることが確認できた。
The molded product of the obtained face material reinforced foam had no cracks at the deep drawing corner (standing wall inclined surface), and the surface appearance was beautiful.
Furthermore, when this molded body was used and the dimensional change of the molded body before and after the test was examined by the above-described cooling / heating cycle test, the dimensional change was 0.98 × 1/1000 (dimensional change rate 0.098%). It was confirmed that the stability was excellent.

実施例2
ガラス繊維不織布のバインダーの架橋成分であるPVAの添加量を3%にしたこと以外はすべて実施例1と同じ製造条件である、面材強化発泡体を得た。
Example 2
A face material reinforced foam having the same production conditions as Example 1 was obtained except that the amount of PVA added as a crosslinking component of the binder of the glass fiber nonwoven fabric was 3%.

実施例3
ガラス繊維不織布の目付けが適正ではあるが低い、目付40g/mの不織布を使用した以外は、実施例1と同じ製造条件である、面材強化発泡体を得た。
Example 3
A face material-reinforced foam having the same production conditions as in Example 1 was obtained except that a nonwoven fabric with a basis weight of 40 g / m 2 was used, although the basis weight of the glass fiber nonwoven fabric was appropriate.

実施例4
ガラス繊維不織布の目付けが適正ではあるが極端に高い、目付65g/mの不織布を使用した以外は実施例1と同じ製造条件である、強化面材を得た。
Example 4
A reinforced face material having the same production conditions as in Example 1 was obtained except that a nonwoven fabric with a basis weight of 65 g / m 2 was used, although the basis weight of the glass fiber nonwoven fabric was appropriate but extremely high.

実施例5、6
ガラス繊維を結束するバインダー量を15質量%及び20質量%にした以外は、実施例1と同じ製造条件である面材強化発泡体を得た。
Examples 5 and 6
A face material-reinforced foam having the same production conditions as in Example 1 was obtained except that the amount of the binder for binding the glass fibers was 15% by mass and 20% by mass.

実施例7
ガラス繊維不織布に含浸させる熱可塑性樹脂の目付(単位面積あたりの質量)を38g/mとし、強化面材中のガラス繊維含有量を40質量%にした以外は、実施例1と同じ製造条件である面材強化発泡体を得た。
Example 7
The same production conditions as in Example 1 except that the basis weight (mass per unit area) of the thermoplastic resin impregnated into the glass fiber nonwoven fabric was 38 g / m 2 and the glass fiber content in the reinforcing face material was 40% by mass. A face material reinforced foam was obtained.

比較例1
ガラス繊維不織布のバインダーの架橋成分であるPVAの添加量を5%にしたこと以外はすべて実施例1と同じ製造条件である、面材強化発泡体を得た。
Comparative Example 1
A face material reinforced foam having the same production conditions as in Example 1 was obtained except that the addition amount of PVA as a crosslinking component of the binder of the glass fiber nonwoven fabric was 5%.

比較例2
ガラス繊維不織布のバインダーの架橋成分であるPVAを添加しなかったこと以外はすべて実施例1と同じ製造条件である、面材強化発泡体を得た。
Comparative Example 2
A face material reinforced foam having the same production conditions as in Example 1 was obtained except that PVA which is a crosslinking component of the binder of the glass fiber nonwoven fabric was not added.

比較例3
ガラス繊維不織布の目付が極端に低い、目付30g/mの不織布を使用し、強化面材に含まれるガラス繊維含有量を23質量%にした以外は実施例1と同じ製造条件である、面材強化発泡体を得た。
Comparative Example 3
The surface is the same production conditions as in Example 1 except that a nonwoven fabric with a basis weight of 30 g / m 2 is used, and the glass fiber content contained in the reinforcing face material is 23 mass%. A material reinforced foam was obtained.

比較例4
平均繊維長が10mmであるガラス繊維不織布を使用したこと以外は、実施例1と同じ製造条件である面材強化発泡体を得た。
Comparative Example 4
A face material reinforced foam having the same production conditions as in Example 1 was obtained except that a glass fiber nonwoven fabric having an average fiber length of 10 mm was used.

比較例5
平均繊維長が120mmであるガラス繊維不織布を使用したこと以外は、実施例1と同じ製造条件である面材強化発泡体を得た。
Comparative Example 5
A face material reinforced foam having the same production conditions as in Example 1 was obtained except that a glass fiber nonwoven fabric having an average fiber length of 120 mm was used.

比較例6
ガラス繊維を結束するバインダー量を4質量%にした以外は、実施例1と同じである面材強化発泡体を得た。
Comparative Example 6
A face material-reinforced foam that was the same as in Example 1 was obtained except that the amount of the binder for binding glass fibers was changed to 4% by mass.

比較例7
ガラス繊維不織布に含浸させる熱可塑性樹脂の目付(単位面積あたりの質量)を25g/mとし、強化面材中のガラス繊維含有量を50質量%にした以外は、実施例1と同じである面材強化発泡体を得た。
Comparative Example 7
The same as Example 1 except that the basis weight (mass per unit area) of the thermoplastic resin impregnated into the glass fiber nonwoven fabric was 25 g / m 2 and the glass fiber content in the reinforcing face material was 50% by mass. A face material reinforced foam was obtained.

比較例8
ガラス繊維不織布に含浸させる熱可塑性樹脂の目付(単位面積あたりの質量)を110g/mとし、強化面材中のガラス繊維含有量を19質量%にした以外は、実施例1と同じである面材強化発泡体を得た。
Comparative Example 8
The same as Example 1 except that the basis weight (mass per unit area) of the thermoplastic resin impregnated into the glass fiber nonwoven fabric was 110 g / m 2 and the glass fiber content in the reinforcing face material was 19% by mass. A face material reinforced foam was obtained.

Figure 0005840616
Figure 0005840616

Figure 0005840616
Figure 0005840616

本発明により提供される面材強化発泡体は、軽量であり、成形性、特に深絞り成形性に優れ、かつ、該面材強化発泡体から得られる成形体が寸法安定性に優れるので、例えば、自動車用の天井材などの車両用の部材として広範に使用される。
なお、2010年9月14日に出願された日本特許出願2010−206018号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The face material reinforced foam provided by the present invention is lightweight, excellent in moldability, particularly deep drawability, and a molded body obtained from the face material reinforced foam is excellent in dimensional stability. It is widely used as a member for vehicles such as a ceiling material for automobiles.
It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-206018 filed on September 14, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (10)

ガラス繊維不織布と熱可塑性樹脂からなる強化面材を、ストランド連続押出法による発泡倍率10〜40倍の非架橋の熱可塑性樹脂によるストランド集束発泡体の両表面に積層した面材強化発泡体であって、前記ガラス繊維不織布の引張弾性率が0.7〜1.2kgf/mmであり、該ガラス繊維不織布を構成するガラス繊維の平均繊維長が15〜100mmであり、前記強化面材中のガラス繊維の含有量が25〜40質量%であり、かつ、強化面材の引張弾性率が0.8〜2.0kgf/mmであることを特徴とする面材強化発泡体。It is a face material reinforced foam in which a reinforced face material composed of a glass fiber nonwoven fabric and a thermoplastic resin is laminated on both surfaces of a strand bundling foam made of a non-crosslinked thermoplastic resin having a foaming ratio of 10 to 40 times by a continuous strand extrusion method. The tensile elastic modulus of the glass fiber nonwoven fabric is 0.7 to 1.2 kgf / mm 2 , the average fiber length of the glass fibers constituting the glass fiber nonwoven fabric is 15 to 100 mm, A face material-reinforced foam having a glass fiber content of 25 to 40% by mass and a tensile modulus of the reinforcing face material of 0.8 to 2.0 kgf / mm 2 . 前記ガラス繊維不織布は、ガラス繊維不織布中のバインダーが固形分として5〜20質量%である請求項1に記載の面材強化発泡体。   The face material reinforced foam according to claim 1, wherein the glass fiber nonwoven fabric has a binder in the glass fiber nonwoven fabric in a solid content of 5 to 20% by mass. 前記バインダーの固形分中に0.1〜3.0質量%の架橋樹脂を含有する請求項1又は2に記載の面材強化発泡体。   The face material reinforced foam according to claim 1 or 2, wherein the solid content of the binder contains 0.1 to 3.0% by mass of a crosslinked resin. 面材強化発泡体におけるガラス繊維の含有量が、10〜20質量%である請求項1〜3のいずれかに記載の面材強化発泡体。   The face material-reinforced foam according to any one of claims 1 to 3, wherein the glass fiber content in the face material-reinforced foam is 10 to 20% by mass. 前記ストランド集束発泡体を形成する熱可塑性樹脂が、非架橋のポリオレフィン樹脂である請求項1〜4のいずれかに記載の面材強化発泡体。 The face material reinforced foam according to any one of claims 1 to 4, wherein the thermoplastic resin forming the strand-bundled foam is a non-crosslinked polyolefin resin. 前記非架橋のポリオレフィン樹脂が、メルトフローレート(230℃)が5〜30g/10minのポリプロピレン系樹脂である請求項5に記載の面材強化発泡体。 The face material reinforced foam according to claim 5, wherein the non-crosslinked polyolefin resin is a polypropylene resin having a melt flow rate (230 ° C.) of 5 to 30 g / 10 min. 前記強化面材における熱可塑性樹脂が、密度が900〜930kg/mの、直鎖状の低密度ポリエチレンである請求項1〜6のいずれかに記載の面材強化発泡体。 The face material-reinforced foam according to any one of claims 1 to 6, wherein the thermoplastic resin in the reinforcing face material is a linear low density polyethylene having a density of 900 to 930 kg / m 3 . 前記バインダーが、ウレタン樹脂、アクリル樹脂及び酢酸ビニル樹脂からなる群から選ばれる少なくとも1種の樹脂である請求項2〜7のいずれかに記載の面材強化発泡体。   The face material reinforced foam according to any one of claims 2 to 7, wherein the binder is at least one resin selected from the group consisting of a urethane resin, an acrylic resin, and a vinyl acetate resin. 前記架橋樹脂が、ポリビニルアルコール又は多官能型アクリルポリオールである請求項3〜8のいずれかに記載の面材強化発泡体。   The face material-reinforced foam according to any one of claims 3 to 8, wherein the crosslinked resin is polyvinyl alcohol or a polyfunctional acrylic polyol. 請求項1〜9のいずれかに記載の面材強化発泡体を成形して得られる成形体。   The molded object obtained by shape | molding the face material reinforcement | strengthening foam in any one of Claims 1-9.
JP2012534019A 2010-09-14 2011-09-13 Face material reinforced foam Expired - Fee Related JP5840616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534019A JP5840616B2 (en) 2010-09-14 2011-09-13 Face material reinforced foam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010206018 2010-09-14
JP2010206018 2010-09-14
JP2012534019A JP5840616B2 (en) 2010-09-14 2011-09-13 Face material reinforced foam
PCT/JP2011/070897 WO2012036170A1 (en) 2010-09-14 2011-09-13 Surface material strengthening foam

Publications (2)

Publication Number Publication Date
JPWO2012036170A1 JPWO2012036170A1 (en) 2014-02-03
JP5840616B2 true JP5840616B2 (en) 2016-01-06

Family

ID=45831628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012534019A Expired - Fee Related JP5840616B2 (en) 2010-09-14 2011-09-13 Face material reinforced foam

Country Status (3)

Country Link
JP (1) JP5840616B2 (en)
CN (1) CN103038059A (en)
WO (1) WO2012036170A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732397A (en) * 1993-07-15 1995-02-03 Mitsui Toatsu Chem Inc Method and device for continuously manufacturing laminated molding
JPH10510494A (en) * 1995-10-04 1998-10-13 イソスポルト・フエアブントバウタイレ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Composite panel and method of manufacturing the same
JP3044570B2 (en) * 1990-11-24 2000-05-22 アルスイス エアーレックス エージー Manufacturing method for thermoplastic sandwich products
JP2008174073A (en) * 2007-01-18 2008-07-31 Sanwa Kogyo Kk Vehicular molding interior trim material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627737A (en) * 1985-07-03 1987-01-14 Ube Ind Ltd Hybrid fiber-reinforced plastic composite material
JPH06198794A (en) * 1992-12-28 1994-07-19 Mitsui Toatsu Chem Inc Composite structure
JPH06293097A (en) * 1993-04-09 1994-10-21 Toray Ind Inc Reinforced foam
JPH0826148A (en) * 1994-07-12 1996-01-30 Bitsugu:Kk Exterior material of automobile
US6030907A (en) * 1996-07-29 2000-02-29 Sowa Chemical Co., Ltd. Composite substrate for plastic reinforcement, and fiber-reinforced plastic using such composite substrate
CN101570987A (en) * 2009-05-27 2009-11-04 董升顺 Polyurethane composite insulation board and preparation method thereof
CN101736476A (en) * 2010-01-10 2010-06-16 常州同维佳业新材料科技有限公司 Foam filled stereoscopic reinforced material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044570B2 (en) * 1990-11-24 2000-05-22 アルスイス エアーレックス エージー Manufacturing method for thermoplastic sandwich products
JPH0732397A (en) * 1993-07-15 1995-02-03 Mitsui Toatsu Chem Inc Method and device for continuously manufacturing laminated molding
JPH10510494A (en) * 1995-10-04 1998-10-13 イソスポルト・フエアブントバウタイレ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Composite panel and method of manufacturing the same
JP2008174073A (en) * 2007-01-18 2008-07-31 Sanwa Kogyo Kk Vehicular molding interior trim material

Also Published As

Publication number Publication date
CN103038059A (en) 2013-04-10
JPWO2012036170A1 (en) 2014-02-03
WO2012036170A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US5300360A (en) Thermoplastic composite adhesive film
KR100699300B1 (en) Sound absorbing laminates
JP5830470B2 (en) Foam, face material reinforced foam and molded body
JP5840616B2 (en) Face material reinforced foam
US6756099B2 (en) Laminated resin material
US20170334104A1 (en) Process for Producing a Foam Film Laminate and Use Thereof
WO1999064533A1 (en) Multilayer adhesive film
JP4580066B2 (en) Fluororesin laminate and molded body comprising the same
JP2004276442A (en) Molding
JPH022586Y2 (en)
KR100755102B1 (en) An automobile interior headliner molding or forming member and an automobile interior headliner member using the same
JP3070960B2 (en) Laminates and molded articles from them
JP2006315213A (en) Base material for car trim material
JP2014069444A (en) Molding composition for automobile interior material
JP3884670B2 (en) Method for producing laminated composite
JP2018024247A (en) Decorative film and method for producing decorative molded body using the same
KR20040081343A (en) Method for producing laminated foamed sheet
JP2018009159A (en) Decorative film and method for producing decorative molded body using the same
JP6859894B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JPH0521064B2 (en)
US20140065351A1 (en) Forming cellular material by melt-stretching melt-stretchable material
JPH0698908B2 (en) Interior material for automobile and manufacturing method thereof
JP2000015729A (en) Dispersion stampable sheet and expanded molded product thereof
JP2010247387A (en) Adhesive member
JP2001328224A (en) Laminated sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R150 Certificate of patent or registration of utility model

Ref document number: 5840616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees