JP5836025B2 - Method for producing highly unsaturated fatty acid concentrated oil - Google Patents

Method for producing highly unsaturated fatty acid concentrated oil Download PDF

Info

Publication number
JP5836025B2
JP5836025B2 JP2011194873A JP2011194873A JP5836025B2 JP 5836025 B2 JP5836025 B2 JP 5836025B2 JP 2011194873 A JP2011194873 A JP 2011194873A JP 2011194873 A JP2011194873 A JP 2011194873A JP 5836025 B2 JP5836025 B2 JP 5836025B2
Authority
JP
Japan
Prior art keywords
fatty acid
oil
lipase
reaction
unsaturated fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011194873A
Other languages
Japanese (ja)
Other versions
JP2013055893A (en
Inventor
英生 池本
英生 池本
信滋 土居崎
信滋 土居崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Suisan KK
Original Assignee
Nippon Suisan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Suisan KK filed Critical Nippon Suisan KK
Priority to JP2011194873A priority Critical patent/JP5836025B2/en
Publication of JP2013055893A publication Critical patent/JP2013055893A/en
Application granted granted Critical
Publication of JP5836025B2 publication Critical patent/JP5836025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Edible Oils And Fats (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Description

本発明はリパーゼを用いた加水分解反応による高度不飽和脂肪酸(Polyunsaturated Fatty Acid、以下、PUFAと略す)を高濃度に含有する油脂の製造法に関する。   The present invention relates to a method for producing fats and oils containing polyunsaturated fatty acid (hereinafter abbreviated as PUFA) at a high concentration by a hydrolysis reaction using lipase.

n-3系PUFAであるエイコサペンタエン酸(以下、EPAと略す)やドコサヘキサエン酸(以下、DHAと略す)は様々な生理作用を持ち、医薬品、健康食品、食品素材などとして利用されている。EPAエチルエステルは動脈硬化や高脂血症の治療薬として用いられ、またEPA、DHAを含む魚油を添加した飲料は特定保健用食品としても認可されている。さらに国内外においてサプリメントとしての需要も非常に高い。
PUFAは二重結合数が多いことから、酸化に対し非常に不安定性である。したがって、PUFA含有油脂の製造工程において、常温常圧といった温和な条件で反応が進行する酵素反応を利用することは非常に望ましい。
主に微生物から得られる産業用のリパーゼ製品の中にはこうしたPUFAに作用しにくい性質があるものが知られている。こうした性質を有するリパーゼを用い炭素数の少ない脂肪酸を優先的に遊離させ、これを除去することでPUFAを濃縮した油脂を製造できる。特許文献1には、キャンディダ シリンドラセア(Candida cylindoracea)のリパーゼを用いてマグロ油を加水分解した後、遊離脂肪酸を除去することでDHAを濃縮した油脂の製造方法が開示されている。
Eicosapentaenoic acid (hereinafter abbreviated as EPA) and docosahexaenoic acid (hereinafter abbreviated as DHA), which are n-3 PUFAs, have various physiological functions and are used as pharmaceuticals, health foods, food materials, and the like. EPA ethyl ester is used as a therapeutic agent for arteriosclerosis and hyperlipidemia, and beverages containing fish oil containing EPA and DHA are also approved as food for specified health use. Furthermore, the demand for supplements in Japan and overseas is also very high.
PUFA is very unstable to oxidation due to its large number of double bonds. Therefore, it is highly desirable to use an enzyme reaction in which the reaction proceeds under mild conditions such as normal temperature and pressure in the production process of PUFA-containing fats and oils.
Some industrial lipase products obtained mainly from microorganisms are known to have such a property that they hardly act on PUFA. By using a lipase having such properties to release fatty acids with a small number of carbons preferentially and removing them, it is possible to produce oils and fats enriched in PUFA. Patent Document 1 discloses a method for producing fats and oils in which DHA is concentrated by hydrolyzing tuna oil using a lipase of Candida cylindoracea and then removing free fatty acids.

リパーゼを用いたアルコリシス反応を用いてPUFAを濃縮する方法も報告されている。特許文献2には、リパーゼを用いたアルコリシス反応の反応添加物として、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、又は水酸化カルシウムを用いる方法が開示されている。   A method of concentrating PUFA using an alcoholysis reaction using lipase has also been reported. Patent Document 2 discloses a method using magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide as a reaction additive for the alcoholysis reaction using lipase.

特開昭58-165796号JP 58-165796 WO2007/119811WO2007 / 119811

上述のようなリパーゼの性質を応用して魚油等のPUFAを濃縮した濃縮油は既に市場に出ているが、濃縮度には限界があり、高濃度の製品は得難いかまたは非常に多くの酵素を必要とする。具体的には、DHA濃縮油として販売されているのはほとんどが46%程度の濃縮品であり、50%を超えるものは、ごくわずかである。それらは、1回のリパーゼ反応で製造することはできず、反応と不要成分の除去操作を繰り返し行うなどの必要があるため、極めて高価な製品となっている。本発明は、原料油中に含まれるPUFA、特にDHA、EPA等を手間をかけずにより高度に濃縮する方法を提供することを課題とする。   Concentrated oils that have concentrated PUFA such as fish oil by applying the properties of lipase as described above are already on the market, but the concentration is limited and it is difficult to obtain high concentration products or very many enzymes. Need. Specifically, most of the products sold as DHA concentrated oil are concentrated products of about 46%, and those exceeding 50% are very few. They cannot be produced by a single lipase reaction, and are extremely expensive because they require repeated reactions and removal of unnecessary components. An object of the present invention is to provide a method for highly concentrating PUFA, particularly DHA, EPA, and the like contained in a raw material oil without much effort.

発明者らは産業用のリパーゼを用いた反応を様々な角度から研究した結果、先にアルコリシス反応においては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウムなどを少量添加することによって、リパーゼの使用量が少なくても、アルコリシス反応の効率を飛躍的に向上させることを見出した。しかも、その方法においては、目的物であるEPAやDHAなどのPUFAには作用しにくいというリパーゼの性質が、当該反応中に厳格に維持される。   The inventors have studied the reaction using lipase for industrial use from various angles. As a result, in the alcoholysis reaction, lipase is added by adding a small amount of magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, etc. It has been found that the efficiency of the alcoholysis reaction can be drastically improved even if the use amount of is small. In addition, in this method, the property of lipase, which is difficult to act on PUFAs such as EPA and DHA, which are target products, is strictly maintained during the reaction.

本発明は、アルコリシス反応ではなく、加水分解反応に関する。発明者らは、加水分解反応においては、アルコリシス反応と全く異なる傾向を示すことを見出した。すなわち、反応添加剤としてPUFAを濃縮したのは、水酸化カルシウム、塩化マグネシウム、硫酸アンモニウム、炭酸カルシウム、リン酸二水素カリウム、塩化アンモニウムのいずれかのみであり、特に水酸化カルシウムは、他の塩と比べて圧倒的な効果を示した。本発明は、水酸化カルシウム、塩化マグネシウム、硫酸アンモニウム、炭酸カルシウム、リン酸二水素カリウム、塩化アンモニウムのいずれか、特に、水酸化カルシウムの存在下でPUFA含有油脂をリパーゼにより加水分解反応させたのち、グリセリド画分を分離して得ることを特徴とするPUFA濃縮油の製造方法を要旨とする。   The present invention relates to a hydrolysis reaction, not an alcoholysis reaction. The inventors have found that the hydrolysis reaction tends to be completely different from the alcoholysis reaction. That is, PUFA was concentrated as a reaction additive only in any one of calcium hydroxide, magnesium chloride, ammonium sulfate, calcium carbonate, potassium dihydrogen phosphate, and ammonium chloride. Compared with the overwhelming effect. The present invention is any one of calcium hydroxide, magnesium chloride, ammonium sulfate, calcium carbonate, potassium dihydrogen phosphate, and ammonium chloride, in particular, after subjecting the PUFA-containing fat to hydrolysis with lipase in the presence of calcium hydroxide, The gist is a method for producing a PUFA concentrated oil, which is obtained by separating a glyceride fraction.

本発明は安価な添加剤を添加することにより酵素の反応性を高め、かつグリセリドにエステル結合するPUFAへ作用しにくいという選択性も向上させる。その結果として、PUFAを高度に含有する濃縮油を簡単な操作で安価に製造できる。   The present invention improves the selectivity of the enzyme by increasing the reactivity of the enzyme by adding an inexpensive additive and hardly acting on PUFA that is ester-bonded to glycerides. As a result, a concentrated oil containing a high content of PUFA can be produced at a low cost by a simple operation.

図1は水酸化カルシウム無添加反応でのグリセリド画分のDHA含量を示す図である。FIG. 1 is a graph showing the DHA content of a glyceride fraction in a calcium hydroxide-free reaction. 図2は水酸化カルシウム無添加反応でのグリセリド画分のDHA回収率を示す図である。FIG. 2 is a diagram showing the DHA recovery rate of the glyceride fraction in the reaction without addition of calcium hydroxide. 図3は水酸化カルシウム添加と無添加での反応のグリセリド画分中DHA含量の比較を示す図である。FIG. 3 is a diagram showing a comparison of the DHA content in the glyceride fraction of the reaction with and without the addition of calcium hydroxide. 図4は水酸化カルシウム添加、無添加反応のグリセリド画分中DHA含量と回収率を示す図である。FIG. 4 is a graph showing the DHA content and recovery rate in the glyceride fraction with and without calcium hydroxide added.

本発明において高度不飽和脂肪酸(PUFA)とは炭素数20以上、二重結合数3つ以上の脂肪酸をいう。具体的には、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)、アラキドン酸、ジホモ−γ−リノレン酸、リノレン酸等が例示される。本発明の高度不飽和脂肪酸含有油脂は、油脂を構成する脂肪酸として当該高度不飽和脂肪酸を含有する油であれば特に限定されず、PUFAを含む、魚油をはじめとする水産物油、微生物油、藻類油、植物油などが例示される。本発明の原料として用いる場合、それらの原油(抽出あるいは搾油したそのもの)でもよいし、何らかの精製工程を経たものでもよい。本発明の方法は、高度不飽和脂肪酸の中でも炭素数が20以上、二重結合数が4〜6個、特に炭素数が20〜22、二重結合が4〜6個の脂肪酸の濃縮に適している。本発明の方法に適した脂肪酸としては、EPA、DHA、アラキドン酸、ドコサペンタエン酸が例示される。
油脂は、通常脂肪酸のトリグリセリドを意味するが、本発明ではジグリセリド、モノグリセリドを含むグリセリドを意味する。本発明において、グリセリドとは、脂肪酸のトリグリセリド、ジグリセリドおよびモノグリセリドの総称である。
本発明において高度不飽和脂肪酸の濃縮とは、原料油脂の「高度不飽和脂肪酸の量/脂肪酸全量」より、反応後の「高度不飽和脂肪酸の量/脂肪酸全量」を大きくすることを意味し、原料油脂に比べて「高度不飽和脂肪酸の量/脂肪酸全量」が大きくなった油脂が高度不飽和脂肪酸濃縮油である。
本発明の方法により、油脂に含まれる脂肪酸中の高度不飽和脂肪酸が55面積%以上の油脂を得ることができる。特に、油脂に含まれる脂肪酸中のドコサヘキサエン酸が46面積%以上、好ましくは50面積%以上の油脂を得ることができる。さらに、本発明の方法を2回以上繰り返すことにより、従来方法よりも容易に脂肪酸中のドコサヘキサエン酸が70面積%以上の油脂を製造することができる。
In the present invention, polyunsaturated fatty acid (PUFA) refers to a fatty acid having 20 or more carbon atoms and 3 or more double bonds. Specific examples include eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid, dihomo-γ-linolenic acid, linolenic acid and the like. The highly unsaturated fatty acid-containing oil / fat of the present invention is not particularly limited as long as it contains the highly unsaturated fatty acid as a fatty acid constituting the oil / fat, and includes fish oils such as fish oil, microbial oil, and algae including PUFA. Examples include oil and vegetable oil. When used as a raw material of the present invention, those crude oils (extracted or squeezed themselves) may be used, or those having undergone some refining process. The method of the present invention is suitable for the concentration of fatty acids having 20 or more carbon atoms and 4 to 6 double bonds, particularly 20 to 22 carbon atoms and 4 to 6 double bonds, among highly unsaturated fatty acids. ing. Examples of fatty acids suitable for the method of the present invention include EPA, DHA, arachidonic acid, and docosapentaenoic acid.
Fats and oils usually mean triglycerides of fatty acids, but in the present invention means glycerides including diglycerides and monoglycerides. In the present invention, glyceride is a general term for triglycerides, diglycerides and monoglycerides of fatty acids.
In the present invention, the concentration of highly unsaturated fatty acid means to increase “the amount of highly unsaturated fatty acid / the total amount of fatty acid” after the reaction from “amount of highly unsaturated fatty acid / the total amount of fatty acid” of the raw oil and fat, Fats and oils whose “amount of highly unsaturated fatty acids / total amount of fatty acids” is larger than the raw oils and fats are highly unsaturated fatty acid concentrated oils.
By the method of the present invention, it is possible to obtain fats and oils whose highly unsaturated fatty acids in the fatty acids contained in the fats and oils are 55 area% or more. In particular, it is possible to obtain fats and oils in which docosahexaenoic acid in the fatty acid contained in the fats and oils is 46 area% or more, preferably 50 area% or more. Furthermore, by repeating the method of the present invention two or more times, it is possible to produce an oil having 70% by area or more of docosahexaenoic acid in the fatty acid more easily than the conventional method.

本発明で使用するリパーゼは加水分解反応を触媒し、PUFAに作用しにくい性質を有すれば特に限定されない。PUFAよりも飽和脂肪酸などと反応しやすいリパーゼや1,3位選択性のリパーゼなどが使用できる。例示すればキャンディダ シリンドラセア(Candida cylindoracea)に属する微生物から得られるリパーゼ(リパーゼOF、名糖産業(株)製)アルカリゲネス エスピー(Alcaligenes sp.)に属する微生物から得られるリパーゼ(リパーゼQLM、リパーゼQLC、リパーゼPL、いずれも名糖産業(株)製)、バークホリデリア セパシア(Burkholderia cepacia)に属する微生物から得られるリパーゼ(リパーゼPS、天野エンザイム(株)製)、シュードモナス フルオレセンス(Pseudomonas fluorescens)に属する微生物から得られるリパーゼ(リパーゼAK、天野エンザイム(株)製)、サーモマイセス ラヌギノサス(Thermomyces lanuginosa)に属する微生物から得られるリパーゼ(リポザイムTLIM、ノボザイム社製)などが挙げられる。リパーゼの使用量については特に限定されないが、粉末のリパーゼについては油脂に対して10unit/g以上、反応速度を考えた実用性を考えると30 unit/g以上用いるのが好ましく、固定化リパーゼについては油脂に対し0.01%(w/w)以上が好ましい。リパーゼOFの場合、油脂に対して、100〜2000unit/gが好ましい。   The lipase used in the present invention is not particularly limited as long as it has a property of catalyzing a hydrolysis reaction and hardly acting on PUFA. Lipases that react more easily with saturated fatty acids than PUFA and lipases with 1,3-position selectivity can be used. For example, a lipase obtained from a microorganism belonging to Candida cylindoracea (lipase OF, manufactured by Meika Sangyo Co., Ltd.), a lipase obtained from a microorganism belonging to Alcaligenes sp. (Lipase QLM, lipase QLC, Lipase PL (both manufactured by Meika Sangyo Co., Ltd.), lipase obtained from microorganisms belonging to Burkholderia cepacia (Lipase PS, manufactured by Amano Enzyme Co., Ltd.), Pseudomonas fluorescens Examples include lipases obtained from microorganisms belonging to them (Lipase AK, manufactured by Amano Enzyme Co., Ltd.), lipases obtained from microorganisms belonging to Thermomyces lanuginosa (Lipozyme TLIM, manufactured by Novozyme). The amount of lipase used is not particularly limited, but for powdered lipase, it is preferably 10 units / g or more for fats and oils, and 30 units / g or more is preferred in view of practicality considering the reaction rate. 0.01% (w / w) or more is preferable with respect to fats and oils. In the case of lipase OF, 100-2000 unit / g is preferable with respect to fats and oils.

反応添加剤としては、水酸化カルシウム、塩化マグネシウム、硫酸アンモニウム、炭酸カルシウム、リン酸二水素カリウム、塩化アンモニウムのいずれかを使用する。特に水酸化カルシウムが好ましい。粉末、細粒状、顆粒状などのものが扱いやすく、産業用に市販されているものを用いることができる。反応添加剤の添加量は特に限定されないが、好ましくは原料油脂に対して0.01%(w/w)〜15%(w/w)、より好ましくは0.05%(w/w)〜10%(w/w)の範囲で用いられる。
加水分解であるから、水も添加する。水の量は反応等量以上含有すれば特に限定されないが、油脂の量の0.1〜2倍容量、好ましくは油脂の量の0.3〜1倍程度の容量を用いるのが好ましい。
As a reaction additive, any of calcium hydroxide, magnesium chloride, ammonium sulfate, calcium carbonate, potassium dihydrogen phosphate, and ammonium chloride is used. In particular, calcium hydroxide is preferable. Powders, fine granules, granules and the like are easy to handle, and those commercially available for industrial use can be used. The addition amount of the reaction additive is not particularly limited, but is preferably 0.01% (w / w) to 15% (w / w), more preferably 0.05% (w / w) to 10% (w / w).
Since it is hydrolysis, water is also added. The amount of water is not particularly limited as long as it is equal to or greater than the reaction equivalent, but it is preferable to use a volume of 0.1 to 2 times the amount of oil or fat, preferably about 0.3 to 1 times the amount of oil or fat.

反応方法は所定量の原料油脂、水、酵素、水酸化カルシウムを混合できれば特に限定されないが、酵素の至適反応温度(例えば、20℃〜60℃)で、1時間から24時間程度の反応時間で、良く混合されるように攪拌するのが一般的である。カラム等に充填した固定化酵素を反応に使用しても良い。反応後は水酸化カルシウム及び酵素等を、ろ過及び水性溶液による洗浄等で除き、グリセリドの分離、精製を行うことでグリセリド画分としてPUFA濃縮油を得ることができる。グリセリド画分の分離方法は特に限定されないが、例えば、分子蒸留、短行程蒸留などの蒸留法や各種クロマトグラフィを用いた分離方法、溶剤を用いて遊離脂肪酸を除去する溶剤脱酸などの方法が利用できる。精製方法も通常油脂の精製に用いられる方法を用いればよく、各種クロマトグラフィ、水蒸気蒸留などが例示される。   The reaction method is not particularly limited as long as a predetermined amount of raw oil and fat, water, enzyme, and calcium hydroxide can be mixed, but the reaction time is about 1 to 24 hours at the optimal reaction temperature of the enzyme (for example, 20 ° C to 60 ° C). In general, the mixture is stirred so as to be mixed well. An immobilized enzyme packed in a column or the like may be used for the reaction. After the reaction, calcium hydroxide and enzyme are removed by filtration and washing with an aqueous solution, and glyceride is separated and purified to obtain a PUFA concentrated oil as a glyceride fraction. The separation method of the glyceride fraction is not particularly limited. For example, distillation methods such as molecular distillation and short-path distillation, separation methods using various chromatographies, and solvent deoxidation methods that remove free fatty acids using a solvent are used. it can. As a purification method, a method usually used for purification of fats and oils may be used, and various chromatography, steam distillation and the like are exemplified.

以下に実施例を示し、本発明を具体的に説明する。本発明はこれらの実施例に何ら限定されるものではない。実施例において、脂肪酸組成、酸価、脂質組成は以下の方法により測定した。   Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to these examples. In the examples, the fatty acid composition, acid value, and lipid composition were measured by the following methods.

脂肪酸組成の測定
原料に用いた魚油の脂肪酸組成は、魚油をエチルエステル化してガスクロマトグラフィーにて測定した。すなわち、魚油40μLに1Nナトリウムエチラート/エタノール溶液1mLを加え、約30秒間攪拌した。その後、1N塩酸を1mL加えて中和し、ヘキサン2mL、飽和硫酸アンモニア水溶液3mLを加え、撹拌、静置後、上層をガスクロマトグラフィーにて測定した。ピーク面積の総和に対する各ピーク面積の百分率をもって脂肪酸組成とした。
Fatty acid composition measurement The fatty acid composition of the fish oil used as a raw material was measured by gas chromatography after converting the fish oil to ethyl ester. That is, 1 mL of 1N sodium ethylate / ethanol solution was added to 40 μL of fish oil and stirred for about 30 seconds. Thereafter, 1 mL of 1N hydrochloric acid was added for neutralization, 2 mL of hexane and 3 mL of saturated aqueous ammonium sulfate solution were added, and after stirring and standing, the upper layer was measured by gas chromatography. The percentage of each peak area relative to the total peak area was taken as the fatty acid composition.

酵素反応を行った油のグリセリド画分の脂肪酸組成はグリセリド画分をエチルエステル化してから、酵素反応の副生成物である遊離脂肪酸を除去し、ガスクロマトグラフィーにて測定した。すなわち、反応油70μLに1Nナトリウムエチラート/エタノール溶液1mLを加え、約30秒間攪拌した。その後、1N塩酸を1mL加えて中和後、ヘキサン700μLおよび飽和硫酸アンモニア水溶液3mLを加え撹拌、静置後、エチルエステルと遊離脂肪酸を含有する上層を回収した。得られた上層から遊離脂肪酸を除去するために、上層250μLにトリエチルアミンを1〜2滴加えてから、シリカゲルカラム(Varian社、BOND ELUT SI、100mg、1mL)に負荷し、ヘキサンと酢酸エチルの混合溶液(ヘキサン:酢酸エチル=50:1容積比)1mLにてエチルエステルを溶出させ、ガスクロマトグラフィーにて測定した。   The fatty acid composition of the glyceride fraction of the oil subjected to the enzyme reaction was measured by gas chromatography after removing the free fatty acid, which is a byproduct of the enzyme reaction, after ethyl esterifying the glyceride fraction. That is, 1 mL of a 1N sodium ethylate / ethanol solution was added to 70 μL of the reaction oil and stirred for about 30 seconds. Thereafter, 1 mL of 1N hydrochloric acid was added to neutralize, 700 μL of hexane and 3 mL of a saturated aqueous ammonia sulfate solution were added, stirred and allowed to stand, and then the upper layer containing ethyl ester and free fatty acid was recovered. In order to remove free fatty acid from the obtained upper layer, 1-2 drops of triethylamine was added to 250 μL of the upper layer, and then loaded onto a silica gel column (Varian, BOND ELUT SI, 100 mg, 1 mL) and mixed with hexane and ethyl acetate. The ethyl ester was eluted with 1 mL of the solution (hexane: ethyl acetate = 50: 1 volume ratio) and measured by gas chromatography.

脂肪酸組成測定の際のガスクロマトグラフィー分析条件
機種;Agilent 6850 GC system (Agilent社)
カラム;DB−WAX J&W 122−7032
カラム温度;200℃
注入温度
;300℃
注入方法
;スプリット
スプリット比;50:1
検出器温度:300℃
検出器:FID
キャリアーガス:ヘリウム (2.9mL/min、コンスタントフロー)
Gas chromatographic analysis conditions for measuring fatty acid composition; Agilent 6850 GC system (Agilent)
Column; DB-WAX J & W 122-7032
Column temperature: 200 ° C
Injection temperature
; 300 ° C
Injection method
Split split ratio; 50: 1
Detector temperature: 300 ° C
Detector: FID
Carrier gas: Helium (2.9 mL / min, constant flow)

酸価(AV)の測定
油約0.5gをエタノールに溶解し、フェノールフタレイン1滴を加え、1N水酸化ナトリウム水溶液で中和滴定を行い、下式により算出した。
AV=滴定量(mL)×56.11/サンプル重量(g)
また、水酸化カルシウムを添加した反応で得られた反応油については、添加した水酸化カルシウムが油に移行していることが明らかな場合において、添加水酸化カルシウム量に相当する値の補正を行った。
AV=滴定量(mL)×56.11/サンプル重量(g)+油1gに対する水酸化カルシウム添加重量(mg)×1.515
About 0.5 g of acid value (AV) measurement oil was dissolved in ethanol, 1 drop of phenolphthalein was added, neutralization titration was performed with a 1N sodium hydroxide aqueous solution, and the following formula was calculated.
AV = titer (mL) × 56.11 / sample weight (g)
For the reaction oil obtained by the reaction with the addition of calcium hydroxide, the value corresponding to the amount of added calcium hydroxide is corrected when it is clear that the added calcium hydroxide has been transferred to the oil. It was.
AV = titer (mL) × 56.11 / sample weight (g) + calcium hydroxide added weight per 1 g of oil (mg) × 1.515

脂質組成の測定
脂質組成は薄層クロマトグラフィー/水素炎イオン化検出器(TLC/FID,イアトロスキャン、三菱化学ヤトロン株式会社)にて行った。油20μLをヘキサン1mLに溶解し、クロマロッドに0.4〜0.8μLを負荷した。混合溶液(ヘキサン:ジエチルエーテル:酢酸=65:35:1、容積比)を展開溶媒として用い、35分間展開した。これをイアトロスキャンにて分析した。
Measurement of lipid composition The lipid composition was measured by thin layer chromatography / flame ionization detector (TLC / FID, Iatroscan, Mitsubishi Chemical Yatron Corporation). 20 μL of oil was dissolved in 1 mL of hexane, and a chroma rod was loaded with 0.4 to 0.8 μL. The mixed solution (hexane: diethyl ether: acetic acid = 65: 35: 1, volume ratio) was used as a developing solvent and developed for 35 minutes. This was analyzed by Iatroscan.

[実施例1]、[比較例1]
4mLの精製魚油1(蒸留脱酸マグロ油、日本水産株式会社)に水2mLとリパーゼOF6.7mg(名糖産業株式会社、660unit/g油)を加えて、さらに水酸化カルシウムを40mg(1.1重量%対油)添加した。これを50℃の恒温槽内でマグネチックスターラーにて14時間撹拌した。14時間撹拌後、反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
比較例として、上記実施例1の条件で水酸化カルシウムを添加せずに反応を行った。
精製魚油1の脂肪酸組成(面積%)と得られた反応油の酸価、酸価から算出したグリセリド含量(%、オレイン酸換算)、グリセリド画分の脂肪酸組成(面積%)、グリセリド含量から算出したEPAとDHAの回収率(%)、グリセリド画分の脂質組成を表1に示した。ここでグリセリド含量は酸価からオレイン酸相当として遊離脂肪酸含量を算出し、反応油全体から差し引いて算出した。
[Example 1], [Comparative Example 1]
Add 4mL of purified fish oil 1 (distilled deacidified tuna oil, Nihon Suisan Co., Ltd.) with 2mL of water and 6.7mg of lipase OF (Meito Sangyo Co., Ltd., 660unit / g oil) and 40mg of calcium hydroxide (1.1wt) % To oil). This was stirred for 14 hours with a magnetic stirrer in a thermostat at 50 ° C. After stirring for 14 hours, the reaction oil was heated at 80 ° C. for 10 minutes to deactivate the lipase, and then the oil layer and the aqueous layer were separated by a centrifuge (40 ° C., 1800 g, 10 minutes) to obtain a reaction oil. .
As a comparative example, the reaction was performed without adding calcium hydroxide under the conditions of Example 1 above.
Fatty acid composition of purified fish oil 1 (area%), acid value of the reaction oil obtained, glyceride content calculated from acid value (%, oleic acid equivalent), fatty acid composition of glyceride fraction (area%), calculated from glyceride content Table 1 shows the recovery rate (%) of EPA and DHA and the lipid composition of the glyceride fraction. Here, the glyceride content was calculated by subtracting the free fatty acid content from the acid value as equivalent to oleic acid and subtracting from the whole reaction oil.

水酸化カルシウムを添加した実施例1の反応で得られた反応油のグリセリド画分中のDHA含量は51.7%であり、水酸化カルシウム無添加の比較例1の結果と比較すると、DHAの含有量が3.2%高くなった。水酸化カルシウムの添加によるDHA濃縮の効果が確認された。   The DHA content in the glyceride fraction of the reaction oil obtained by the reaction of Example 1 to which calcium hydroxide was added was 51.7%. Compared with the result of Comparative Example 1 to which no calcium hydroxide was added, the content of DHA Increased by 3.2%. The effect of DHA concentration by adding calcium hydroxide was confirmed.

Figure 0005836025
Figure 0005836025

[比較例2]
6mLの精製魚油1に水3mLとリパーゼOF10mg、20mgまたは30mg(660、1300、2000unit/g油)を加えた。これを50℃の恒温槽内でマグネチックスターラーにて撹拌した。2時間、5時間、8時間、24時間、48時間、96時間の撹拌の後に2mLをサンプリングし、反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
精製魚油1の脂肪酸組成(面積%)と得られた反応油の酸価、酸価から算出したグリセリド含量(%、オレイン酸換算)、グリセリド画分の脂肪酸組成(面積%)、グリセリド含量から算出したEPAとDHAの回収率(%)を表2に示した。DHA含量とDHA回収率の変化を図1、図2に示した。
水酸化カルシウム無添加のリパーゼ反応では、リパーゼ量を増加させても、反応時間を延長しても、グリセリド画分中のDHA含量は50%に達しなかった。
[Comparative Example 2]
To 6 mL of purified fish oil 1, 3 mL of water and 10 mg, 20 mg, or 30 mg of lipase OF (660, 1300, 2000 unit / g oil) were added. This was stirred with a magnetic stirrer in a thermostat at 50 ° C. After stirring for 2 hours, 5 hours, 8 hours, 24 hours, 48 hours, 96 hours, 2 mL was sampled, and the reaction oil was heated at 80 ° C. for 10 minutes to inactivate the lipase, and then centrifuged (40 ° C. 1800 g, 10 minutes), the oil layer and the aqueous layer were separated to obtain a reaction oil.
Fatty acid composition of purified fish oil 1 (area%), acid value of the reaction oil obtained, glyceride content calculated from acid value (%, oleic acid equivalent), fatty acid composition of glyceride fraction (area%), calculated from glyceride content Table 2 shows the EPA and DHA recovery (%). Changes in DHA content and DHA recovery are shown in FIGS.
In the lipase reaction without addition of calcium hydroxide, the DHA content in the glyceride fraction did not reach 50% even when the amount of lipase was increased or the reaction time was extended.

Figure 0005836025
Figure 0005836025

[実施例2](水酸化カルシウム量の影響)
4mLの精製魚油1に水2mLとリパーゼOF6.7mg(660unit/g油)を加えて、さらに水酸化カルシウムを4、8、20、40、60、80、120、200、320mg(0.11、0.22、0.55、1.1、1.7、2.2、3.3、5.5、8.8重量%対油)添加した。これを50℃の恒温槽内でマグネチックスターラーにて撹拌した。24時間撹拌後、反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
得られた反応油の酸価、酸価から算出したグリセリド含量(%、オレイン酸換算)、グリセリド画分の脂肪酸組成(面積%)、グリセリド含量から算出したEPAとDHAの回収率(%)、グリセリドの脂質組成を表3に示した。
水酸化カルシウムの添加量を0.11〜8.8重量%対油の範囲で変化させた結果、添加量が多いほど、DHAをより濃縮できることが示された。
[Example 2] (Influence of calcium hydroxide amount)
Add 2mL of water and 6.7mg of lipase OF (660unit / g oil) to 4mL of purified fish oil 1 and add 4, 8, 20, 40, 60, 80, 120, 200, 320mg (0.11, 0.22, 0.55, 1.1, 1.7, 2.2, 3.3, 5.5, 8.8 wt% oil). This was stirred with a magnetic stirrer in a thermostat at 50 ° C. After stirring for 24 hours, the reaction oil was heated at 80 ° C. for 10 minutes to deactivate the lipase, and then the oil layer and the aqueous layer were separated by a centrifuge (40 ° C., 1800 g, 10 minutes) to obtain a reaction oil. .
Acid value of the obtained reaction oil, glyceride content calculated from the acid value (%, oleic acid equivalent), fatty acid composition of glyceride fraction (area%), recovery rate of EPA and DHA calculated from glyceride content (%), Table 3 shows the lipid composition of glycerides.
As a result of changing the addition amount of calcium hydroxide in the range of 0.11 to 8.8% by weight with respect to oil, it was shown that the higher the addition amount, the more concentrated the DHA.

Figure 0005836025
Figure 0005836025

[実施例3](酵素量の影響)
4mLの精製魚油1に水2mLとリパーゼOF3.3、6.7、10、13.3mg(330、660、990、1300unit/g油)を加えて、さらに水酸化カルシウムを40mg(1.1重量%対油)添加した。これを50℃の恒温槽内でマグネチックスターラーにて撹拌した。24時間撹拌後、サンプリングした反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
得られた反応油の酸価、酸価から算出したグリセリド含量(%、オレイン酸換算)、グリセリド画分の脂肪酸組成(面積%)、グリセリド含量から算出したEPAとDHAの回収率(%)を表4に示した。
水酸化カルシウム量を一定とし、酵素量を変化させた場合、酵素が多いほどDHAが濃縮された。
[Example 3] (Effect of enzyme amount)
Add 4 mL of purified fish oil 1 with 2 mL of water and lipase OF 3.3, 6.7, 10, 13.3 mg (330, 660, 990, 1300 unit / g oil), and then add 40 mg of calcium hydroxide (1.1% oil by weight) did. This was stirred with a magnetic stirrer in a thermostat at 50 ° C. After stirring for 24 hours, the sampled reaction oil is heated at 80 ° C for 10 minutes to deactivate the lipase, and then the oil layer and water layer are separated by a centrifuge (40 ° C, 1800 g, 10 minutes) to remove the reaction oil. Obtained.
Acid value of the reaction oil obtained, glyceride content calculated from the acid value (%, oleic acid equivalent), fatty acid composition of glyceride fraction (area%), recovery rate of EPA and DHA calculated from glyceride content (%) It is shown in Table 4.
When the amount of calcium hydroxide was constant and the amount of enzyme was changed, DHA was concentrated as the amount of enzyme increased.

Figure 0005836025
Figure 0005836025

実施例1、3及び比較例1,2の結果を比較してみると、水酸化カルシウムを添加することにより1回のリパーゼ反応でDHAを50面積%以上に濃縮することが可能となるばかりではなく、DHA45〜50面積%の濃縮油を製造する場合でも、水酸化カルシウム無しの場合に比べて、酵素量が少なくて済む、反応時間が少なくて済む、あるいはDHAの回収量が多いなどのメリットがある。
また、リパーゼOFはDHAを濃縮する能力に優れた酵素である事から、反応が進行するとEPAの濃度が低下してしまう。しかしながら、水酸化カルシウムを添加するとでは比較例と比較して、EPA濃度も高く保てる。すなわち、実施例3のリパーゼOF330u/g oil条件ではEPA濃度が8.1%であるのに対し、比較例1、2のDHA濃度が同程度である45-49%でのEPA濃度は7%以下である。水酸化カルシウムを添加するとEPA及びDHAの合計量も高くなる傾向が認められた。
When the results of Examples 1 and 3 and Comparative Examples 1 and 2 are compared, it is not only possible to concentrate DHA to 50 area% or more by one lipase reaction by adding calcium hydroxide. Even when producing DHA45-50% concentrated oil, the amount of enzyme is less, the reaction time is shorter, or the amount of DHA recovered is higher than when there is no calcium hydroxide. There is.
In addition, since lipase OF is an enzyme with an excellent ability to concentrate DHA, the concentration of EPA decreases as the reaction proceeds. However, when calcium hydroxide is added, the EPA concentration can be kept high as compared with the comparative example. That is, while the EPA concentration in the lipase OF330u / g oil condition of Example 3 is 8.1%, the EPA concentration at 45-49% in which the DHA concentrations in Comparative Examples 1 and 2 are similar is 7% or less. is there. When calcium hydroxide was added, the total amount of EPA and DHA tended to increase.

[実施例4](反応時間の影響)
6mLの精製魚油1に水3mLとリパーゼOF15mg(990unit/g油)を加えて、さらに水酸化カルシウムを60mg(1.1重量%対油)添加した。これを50℃の恒温槽内でマグネチックスターラーにて撹拌した。2、4、8、24,48時間撹拌後、サンプリングした反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
得られた反応油の酸価、酸価から算出したグリセリド含量(%、オレイン酸換算)、グリセリド画分の脂肪酸組成(面積%)、グリセリド含量から算出したEPAとDHAの回収率(%)を表5に示した。水酸化カルシウムを添加しないで反応した比較例2の結果と比較するために、比較例2の結果と本実施例4の結果を併せて、図3にはグリセリド画分のDHA含量を、図4には、グリセリド画分中のDHA含量とDHA回収率の関係を示した。
表5に示すように、グリセリド画分のDHA含量は、反応時間24時間で最大となり、48時間ではDHAの濃縮は進まずに加水分解反応だけが進んだ。図3に示すように、水酸化カルシウム無添加の比較例2と比べて、水酸化カルシウム添加すると、DHA含量50%を容易に超えられる結果が得られた。また、DHA回収率との関係をプロットした図4からも、水酸化カルシウム添加により、同程度のリパーゼ量で、DHAの濃縮を高めることができることがわかる。
[Example 4] (Influence of reaction time)
To 6 mL of purified fish oil 1, 3 mL of water and 15 mg of lipase OF (990 unit / g oil) were added, and 60 mg of calcium hydroxide (1.1% by weight to oil) was further added. This was stirred with a magnetic stirrer in a thermostat at 50 ° C. After stirring for 2, 4, 8, 24, and 48 hours, the sampled reaction oil was heated at 80 ° C for 10 minutes to inactivate the lipase, and then the oil layer and water were centrifuged (40 ° C, 1800g, 10 minutes). The layers were separated to obtain a reaction oil.
Acid value of the reaction oil obtained, glyceride content calculated from the acid value (%, oleic acid equivalent), fatty acid composition of glyceride fraction (area%), recovery rate of EPA and DHA calculated from glyceride content (%) Table 5 shows. In order to compare with the result of Comparative Example 2 reacted without adding calcium hydroxide, the result of Comparative Example 2 and the result of Example 4 were combined, and FIG. 3 shows the DHA content of the glyceride fraction. Shows the relationship between the DHA content in the glyceride fraction and the DHA recovery rate.
As shown in Table 5, the DHA content of the glyceride fraction reached its maximum at a reaction time of 24 hours, and at 48 hours, the concentration of DHA did not proceed and only the hydrolysis reaction proceeded. As shown in FIG. 3, when calcium hydroxide was added as compared with Comparative Example 2 in which no calcium hydroxide was added, a result of easily exceeding the DHA content of 50% was obtained. Also, FIG. 4 plotting the relationship with the DHA recovery rate shows that the concentration of DHA can be increased with the same amount of lipase by adding calcium hydroxide.

Figure 0005836025
Figure 0005836025

[実施例5](温度の影響)
4mLの精製魚油1に水2mLとリパーゼOF3.3、6.7、10、13.3mg(330、660、990、1300unit/g油)を加えて、さらに水酸化カルシウムを40mg(1.1重量%対油)添加した。これを40℃または50℃の恒温槽内でマグネチックスターラーにて撹拌した。24時間撹拌後、サンプリングした反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
得られた反応油の酸価、酸価から算出したグリセリド含量(%、オレイン酸換算)、グリセリド画分の脂肪酸組成(面積%)、グリセリド含量から算出したEPAとDHAの回収率(%)を表6に示した。
反応温度40〜50℃ではほぼ同様の結果が得られることを確認した。
Example 5 (Influence of temperature)
Add 4 mL of purified fish oil 1 with 2 mL of water and lipase OF 3.3, 6.7, 10, 13.3 mg (330, 660, 990, 1300 unit / g oil), and then add 40 mg of calcium hydroxide (1.1% oil by weight) did. This was stirred with a magnetic stirrer in a constant temperature bath at 40 ° C or 50 ° C. After stirring for 24 hours, the sampled reaction oil is heated at 80 ° C for 10 minutes to deactivate the lipase, and then the oil layer and water layer are separated by a centrifuge (40 ° C, 1800 g, 10 minutes) to remove the reaction oil. Obtained.
Acid value of the reaction oil obtained, glyceride content calculated from the acid value (%, oleic acid equivalent), fatty acid composition of glyceride fraction (area%), recovery rate of EPA and DHA calculated from glyceride content (%) Table 6 shows.
It was confirmed that almost the same results were obtained at a reaction temperature of 40 to 50 ° C.

Figure 0005836025
Figure 0005836025

[実施例6](原料による影響)
4mLの精製魚油2(溶剤脱酸マグロ油、日本水産株式会社)または精製魚油3(精製(脱酸、脱ガム、脱色及び脱臭)カツオ油、日本水産株式会社)に水2mLとリパーゼOF10mg(990unit/g油)を加えて、水酸化カルシウムを40mg(1.1重量%対油)添加した。これを50℃の恒温槽内でマグネチックスターラーにて撹拌した。24時間撹拌後、サンプリングした反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
比較例として、水酸化カルシウムを無添加にした以外は同様に反応し反応油を得た。
精製魚油2、3の脂肪酸組成(面積%)と得られた反応油の酸価、酸価から算出したグリセリド含量(%、オレイン酸換算)、グリセリド画分の脂肪酸組成(面積%)、グリセリド含量から算出したEPAとDHAの回収率(%)を表7に示した。
魚油の精製方法、魚種の違いによらず、水酸化カルシウムを添加して反応させることで、グリセリド画分中のDHA含量が向上することが確認できた。
[Example 6] (Influence of raw materials)
4mL of refined fish oil 2 (solvent deacidified tuna oil, Nippon Suisan Co., Ltd.) or refined fish oil 3 (refined (deacidified, degummed, decolorized and deodorized) bonito oil, Nippon Suisan Co., Ltd.) with 2mL of water and lipase OF 10mg (990unit) / g oil) was added and 40 mg (1.1 wt% oil to oil) of calcium hydroxide was added. This was stirred with a magnetic stirrer in a thermostat at 50 ° C. After stirring for 24 hours, the sampled reaction oil is heated at 80 ° C for 10 minutes to deactivate the lipase, and then the oil layer and water layer are separated by a centrifuge (40 ° C, 1800 g, 10 minutes) to remove the reaction oil. Obtained.
As a comparative example, a reaction oil was obtained by reacting in the same manner except that calcium hydroxide was not added.
Fatty acid composition (area%) of purified fish oil 2 and 3, acid value of the reaction oil obtained, glyceride content calculated from acid value (%, oleic acid equivalent), fatty acid composition (area%) of glyceride fraction, glyceride content Table 7 shows the recovery rate (%) of EPA and DHA calculated from the above.
It was confirmed that the DHA content in the glyceride fraction was improved by adding calcium hydroxide and reacting regardless of the fish oil purification method and fish species.

Figure 0005836025
Figure 0005836025

[実施例7](他の反応添加物)
4mLの精製魚油1に水2mLとリパーゼOF6.7mg(660unit/g油)を加えて、さらに添加物1種類を40mg(1.1%対油)添加した。これを50℃の恒温槽内でマグネチックスターラーにて撹拌した。14時間撹拌後、反応油を80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
得られた反応油のグリセリド画分のDHA含量(面積%)を表8に示した。各種添加物の中で、水酸化カルシウム、塩化マグネシウム、硫酸アンモニウム、炭酸カルシウム、リン酸二水素カリウム、塩化アンモニウムが、DHA含量を濃縮することが示された。特に、水酸化カルシウムが格段の効果を有することが示された。
Example 7 (Other reaction additives)
To 4 mL of purified fish oil 1, 2 mL of water and 6.7 mg of lipase OF (660 unit / g oil) were added, and 40 mg (1.1% to oil) of one additive was further added. This was stirred with a magnetic stirrer in a thermostat at 50 ° C. After stirring for 14 hours, the reaction oil was heated at 80 ° C. for 10 minutes to deactivate the lipase, and then the oil layer and the aqueous layer were separated by a centrifuge (40 ° C., 1800 g, 10 minutes) to obtain a reaction oil. .
Table 8 shows the DHA content (area%) of the glyceride fraction of the obtained reaction oil. Among the various additives, calcium hydroxide, magnesium chloride, ammonium sulfate, calcium carbonate, potassium dihydrogen phosphate, and ammonium chloride have been shown to concentrate the DHA content. In particular, it has been shown that calcium hydroxide has a remarkable effect.

Figure 0005836025
Figure 0005836025

本発明により、EPA、DHA等のPUFAを高濃度に含む油脂を提供することができる。すなわち、健康食品等にEPA、DHA等のPUFAを一定量添加する場合に、従来よりも少ない量の油脂を添加すればよいことになる。   According to the present invention, fats and oils containing high concentrations of PUFAs such as EPA and DHA can be provided. That is, when a certain amount of PUFA such as EPA or DHA is added to health food or the like, a smaller amount of oil or fat may be added than before.

Claims (8)

油脂を構成する脂肪酸として高度不飽和脂肪酸を含有する油脂をリパーゼによる加水分解反応に付す工程、および、高度不飽和脂肪酸が濃縮されたグリセリド画分を分離する工程、を含む高度不飽和脂肪酸濃縮油の製造方法において、リパーゼによる加水分解反応の反応添加物として水酸化カルシウム、塩化マグネシウム、硫酸アンモニウム、炭酸カルシウム、リン酸二水素カリウム、塩化アンモニウムのいずれかを添加することを特徴とする高度不飽和脂肪酸濃縮油の製造方法。但し、リパーゼは、カンジダ シリンドラセア(Candida cylindoracea)に属する微生物から得られるリパーゼである。 A highly unsaturated fatty acid-enriched oil comprising: a step of subjecting a fat containing a highly unsaturated fatty acid as a fatty acid constituting a fat to a hydrolysis reaction with lipase; and a step of separating a glyceride fraction enriched in the highly unsaturated fatty acid. A highly unsaturated fatty acid, characterized in that any one of calcium hydroxide, magnesium chloride, ammonium sulfate, calcium carbonate, potassium dihydrogen phosphate, and ammonium chloride is added as a reaction additive in the hydrolysis reaction with lipase A method for producing concentrated oil. However, lipase is a lipase obtained from a microorganism belonging to Candida cylindoracea. 反応添加物が水酸化カルシウムである請求項1の方法。   The process of claim 1 wherein the reaction additive is calcium hydroxide. 高度不飽和脂肪酸が炭素数20〜22、二重結合数3〜6の脂肪酸である請求項1又は2の方法。   The method according to claim 1 or 2, wherein the highly unsaturated fatty acid is a fatty acid having 20 to 22 carbon atoms and 3 to 6 double bonds. 高度不飽和脂肪酸がドコサヘキサエン酸及び/又はエイコサペンタエン酸である請求項1又は2の方法。   The process according to claim 1 or 2, wherein the highly unsaturated fatty acid is docosahexaenoic acid and / or eicosapentaenoic acid. 高度不飽和脂肪酸含有油脂が魚油である、請求項1又は2の方法。   The method according to claim 1 or 2, wherein the highly unsaturated fatty acid-containing fat is fish oil. 反応添加物の添加量が高度不飽和脂肪酸含有油脂に対して0.01〜15重量%である、請求項1ないし5いずれかの方法。   The method according to any one of claims 1 to 5, wherein the reaction additive is added in an amount of 0.01 to 15% by weight based on the highly unsaturated fatty acid-containing fat. 反応添加物の添加量が高度不飽和脂肪酸含有油脂に対して0.05〜10重量%である、請求項6の方法。   The method of Claim 6 that the addition amount of a reaction additive is 0.05 to 10 weight% with respect to highly unsaturated fatty acid containing fats and oils. リパーゼがリパーゼOF(商品名;名糖産業(株))である請求項1ないし7いずれかの方法。
The method according to any one of claims 1 to 7 , wherein the lipase is lipase OF (trade name; Meisho Sangyo Co., Ltd.).
JP2011194873A 2011-09-07 2011-09-07 Method for producing highly unsaturated fatty acid concentrated oil Active JP5836025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194873A JP5836025B2 (en) 2011-09-07 2011-09-07 Method for producing highly unsaturated fatty acid concentrated oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194873A JP5836025B2 (en) 2011-09-07 2011-09-07 Method for producing highly unsaturated fatty acid concentrated oil

Publications (2)

Publication Number Publication Date
JP2013055893A JP2013055893A (en) 2013-03-28
JP5836025B2 true JP5836025B2 (en) 2015-12-24

Family

ID=48132376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194873A Active JP5836025B2 (en) 2011-09-07 2011-09-07 Method for producing highly unsaturated fatty acid concentrated oil

Country Status (1)

Country Link
JP (1) JP5836025B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302310B2 (en) * 2013-08-30 2018-03-28 備前化成株式会社 Production method of high purity omega-3 fatty acid ethyl ester
WO2019208803A1 (en) 2018-04-26 2019-10-31 日本水産株式会社 Microbial oil and method for producing microbial oil
JPWO2020032261A1 (en) 2018-08-10 2021-08-10 協和発酵バイオ株式会社 Microorganisms that produce eicosapentaenoic acid and methods for producing eicosapentaenoic acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165796A (en) * 1982-03-26 1983-09-30 Asahi Denka Kogyo Kk Concentration of long chain highly unsaturated fatty acid glyceride
JP3892497B2 (en) * 1996-06-25 2007-03-14 タマ生化学株式会社 Method for producing eicosapentaenoic acid ester
WO1998018952A1 (en) * 1996-10-30 1998-05-07 Nippon Suisan Kaisha, Ltd. Process for producing fats containing highly unsaturated fatty acids containing selectively concentrated docosahexaenoic acid
US9150817B2 (en) * 2006-04-13 2015-10-06 Nippon Suisan Kaisha, Ltd. Process for preparing concentrated polyunsaturated fatty acid oil
EP1978101A1 (en) * 2007-04-02 2008-10-08 Cognis IP Management GmbH Method for enriching polyunsaturated fatty acids
WO2009017102A1 (en) * 2007-07-30 2009-02-05 Nippon Suisan Kaisha, Ltd. Process for production of epa-enriched oil and dha-enriched oil

Also Published As

Publication number Publication date
JP2013055893A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5111363B2 (en) Method for producing highly unsaturated fatty acid concentrated oil
JP5204776B2 (en) Method for producing EPA concentrated oil and DHA concentrated oil
KR101943661B1 (en) Process for production of oil or fat containing highly unsaturated fatty acid using lipase
EP2585570B1 (en) Process for separating polyunsaturated fatty acids from long chain unsaturated or less saturated fatty acids
JP7365346B2 (en) Method for producing glyceride containing highly unsaturated fatty acids using lipase hydrolysis reaction
JP5416861B2 (en) Method for producing highly unsaturated fatty acid-containing fat with lipase
JP5836025B2 (en) Method for producing highly unsaturated fatty acid concentrated oil
JP6175198B2 (en) Method for producing DHA-containing glyceride-containing composition
Choi et al. Preparation of phytosteryl ester and simultaneous enrichment of stearidonic acid via lipase-catalyzed esterification
JP4310387B2 (en) Omega-3 highly unsaturated fatty acid-containing partial glyceride composition and method for producing the same
JP7382942B2 (en) Method for producing glyceride containing docosahexaenoic acid using lipase hydrolysis reaction
JP2016182046A (en) Method for manufacturing composition containing lower alcohol fatty acid esterified product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5836025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350