JP5835456B2 - Friction material and manufacturing method thereof - Google Patents

Friction material and manufacturing method thereof Download PDF

Info

Publication number
JP5835456B2
JP5835456B2 JP2014500967A JP2014500967A JP5835456B2 JP 5835456 B2 JP5835456 B2 JP 5835456B2 JP 2014500967 A JP2014500967 A JP 2014500967A JP 2014500967 A JP2014500967 A JP 2014500967A JP 5835456 B2 JP5835456 B2 JP 5835456B2
Authority
JP
Japan
Prior art keywords
mass
friction material
metal phase
friction
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014500967A
Other languages
Japanese (ja)
Other versions
JPWO2013125717A1 (en
Inventor
陽介 鍵本
陽介 鍵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2014500967A priority Critical patent/JP5835456B2/en
Publication of JPWO2013125717A1 publication Critical patent/JPWO2013125717A1/en
Application granted granted Critical
Publication of JP5835456B2 publication Critical patent/JP5835456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0069Materials; Production methods therefor containing fibres or particles being characterised by their size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0073Materials; Production methods therefor containing fibres or particles having lubricating properties

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Powder Metallurgy (AREA)
  • Mechanical Operated Clutches (AREA)

Description

本発明は、工作機械、建設機械、農業機械、自動車、二輪車、鉄道、航空機および船舶などの、各種機械の回転あるいは移動を任意に制御する手段、いわゆるクラッチあるいはブレーキに使用する摩擦材に関するものである。   The present invention relates to a means for arbitrarily controlling the rotation or movement of various machines such as machine tools, construction machines, agricultural machines, automobiles, two-wheeled vehicles, railways, aircrafts and ships, so-called friction materials used for clutches or brakes. is there.

クラッチやブレーキの小型化や軽量化の要求から摩擦係数の高い摩擦材が求められている。摩擦係数が高い摩擦材としては、金属成分として銅とニッケルを含む摩擦材が知られている。その従来技術として、マトリックス内の重量%で、Niを10〜70%、Cuを30〜80%含む摩擦材料組成物がある(例えば、特許文献1参照。)。   A friction material having a high coefficient of friction is demanded in order to reduce the size and weight of clutches and brakes. As a friction material having a high friction coefficient, a friction material containing copper and nickel as metal components is known. As the prior art, there is a friction material composition containing 10% to 70% Ni and 30% to 80% Cu by weight% in the matrix (for example, see Patent Document 1).

特開昭63−30617号公報JP 63-30617 A

クラッチあるいはブレーキに使用される摩擦材は、金属粉末と摩擦調整剤粉末を混合した混合物を焼結して製造される。近年、環境保護を目的とした化学物質排出把握管理促進法(以下、PRTR法という。)が制定され、従来、摩擦材の原料粉末として用いられてきたニッケル、クロム、鉛、バナジウム化合物、マンガンおよびモリブデンがPRTR法の平成20年度政令改正後の第一種指定化学物質に含まれることになった。   A friction material used for a clutch or a brake is manufactured by sintering a mixture of a metal powder and a friction modifier powder. In recent years, the Chemical Substance Emission Control Management Promotion Law (hereinafter referred to as the PRTR Law) has been enacted for the purpose of environmental protection, and nickel, chromium, lead, vanadium compounds, manganese, and so Molybdenum is now included in the Class 1 Designated Chemical Substances after the 2008 revision of the PRTR Law.

第一種指定化学物質はPRTR法の管理対象であるので、管理コストや環境負荷の観点から、PRTR法における第一種指定化学物質を原料粉末として使用しない摩擦材が望ましい。また、二輪車の摩擦材に含まれる銅を規制対象に加える議論がなされている。   Since the first-class designated chemical substance is a management target of the PRTR method, a friction material that does not use the first-class designated chemical substance in the PRTR method as a raw material powder is desirable from the viewpoint of management cost and environmental load. In addition, discussions have been made to add copper contained in the friction material of motorcycles to the subject of regulation.

本発明は、上記のような背景事情から、環境への負荷が少ない原料粉末を使用して、従来のニッケルや銅などの金属を原料粉末として使用して得られる摩擦材と同等またはそれ以上の、摩擦係数の高い摩擦材を提供することを目的とする。   The present invention uses a raw material powder that has a low environmental load from the background as described above, and is equivalent to or more than a friction material obtained by using a conventional metal such as nickel or copper as a raw material powder. An object of the present invention is to provide a friction material having a high friction coefficient.

本発明の要旨は次の通りである。
(1)Fe及びSiを含む金属相に摩擦調整剤が含有されてなる摩擦材であって、前記金属相において、Fe元素は金属相全体に対して70〜98質量%含まれ、Si元素は金属相全体に対して2〜30質量%含まれる(ただし、Fe元素の含有量とSi元素の含有量の合計は100質量%以下である)、摩擦材。
The gist of the present invention is as follows.
(1) A friction material in which a friction modifier is contained in a metal phase containing Fe and Si, and in the metal phase, Fe element is contained in an amount of 70 to 98% by mass with respect to the entire metal phase, A friction material that is contained in an amount of 2 to 30% by mass with respect to the entire metal phase (however, the total content of Fe element and Si element is 100% by mass or less).

(2)前記金属相の含有量が、前記摩擦材全体に対して55〜70質量%であり、前記摩擦調整剤の含有量が、前記摩擦材全体に対して30〜45質量%であり、前記金属相及び摩擦調整剤の含有量の合計が100質量%である、(1)の摩擦材。   (2) The content of the metal phase is 55 to 70 mass% with respect to the entire friction material, and the content of the friction modifier is 30 to 45 mass% with respect to the entire friction material, The friction material according to (1), wherein the total content of the metal phase and the friction modifier is 100% by mass.

(3)前記金属相におけるFe元素の含有量が70〜98質量%であり、前記金属相におけるSi元素の含有量が2〜30質量%であり、Fe元素とSi元素の含有量の合計が100質量%である、(1)または(2)の摩擦材。   (3) The content of Fe element in the metal phase is 70 to 98% by mass, the content of Si element in the metal phase is 2 to 30% by mass, and the total content of Fe element and Si element is The friction material according to (1) or (2), which is 100% by mass.

(4)前記金属相が、該金属相に含まれるFe元素の一部に換えて、P元素を金属相全体に対して15質量%以下含有する、(1)〜(3)のいずれかの摩擦材。   (4) In any one of (1) to (3), the metal phase contains 15% by mass or less of P element with respect to the entire metal phase in place of part of the Fe element contained in the metal phase. Friction material.

(5)前記摩擦調整剤が、硬質粒子と潤滑性物質とを含有する、(1)〜(4)のいずれかの摩擦材。   (5) The friction material according to any one of (1) to (4), wherein the friction modifier contains hard particles and a lubricating substance.

(6)前記硬質粒子の含有量が、前記摩擦材全体に対して10〜20質量%であり、前記潤滑性物質の含有量が、前記摩擦材全体に対して20〜28質量%であり、前記摩擦調整剤の含有量が、前記摩擦材全体に対して30〜45質量%である、(5)の摩擦材。   (6) The content of the hard particles is 10 to 20% by mass with respect to the entire friction material, and the content of the lubricating substance is 20 to 28% by mass with respect to the entire friction material, The friction material according to (5), wherein the content of the friction modifier is 30 to 45 mass% with respect to the entire friction material.

(7)前記潤滑性物質が、黒鉛およびフッ化カルシウムを含有する、(5)または(6)の摩擦材。   (7) The friction material according to (5) or (6), wherein the lubricating substance contains graphite and calcium fluoride.

(8)前記金属相の含有量が、前記摩擦材全体に対して58〜68質量%であり、前記摩擦調整剤の含有量が、前記摩擦材全体に対して32〜42質量%であり、前記金属相及び摩擦調整剤の含有量の合計が100質量%である、(1)〜(7)のいずれかの摩擦材。   (8) The content of the metal phase is 58 to 68 mass% with respect to the entire friction material, and the content of the friction modifier is 32 to 42 mass% with respect to the entire friction material, The friction material according to any one of (1) to (7), wherein the total content of the metal phase and the friction modifier is 100% by mass.

(9)前記金属相が、該金属相に含まれるFe元素の一部に換えて、P元素を金属相全体に対して10質量%以下含有する、(1)〜(8)のいずれかの摩擦材。   (9) Any one of (1) to (8), wherein the metal phase contains 10% by mass or less of the P element with respect to the entire metal phase in place of a part of the Fe element contained in the metal phase. Friction material.

(10)前記硬質粒子が、シリカ(SiO)、アルミナ(Al)、マグネシア(MgO)、チタニア(TiO)、ジルコニア(ZrO)、イットリア(Y)、ムライト(AlSiO)、ジルコンサンド(ZrSiO)、タングステン鋼(Fe−W)、炭化タングステン(WC)及び炭化ケイ素(SiC)からなる群より選ばれる少なくとも一種である、(5)〜(9)のいずれかの摩擦材。(10) The hard particles are silica (SiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), titania (TiO 2 ), zirconia (ZrO 2 ), yttria (Y 2 O 3 ), mullite (Al 2 SiO 5 ), zircon sand (ZrSiO 4 ), tungsten steel (Fe—W), tungsten carbide (WC), and silicon carbide (SiC). Any friction material.

(11)Fe 70〜98質量%及びSi 2〜30質量%を含有する金属粉末55〜70質量%と(ただし、Fe元素の含有量とSi元素の含有量の合計は100質量%以下である)、摩擦調整剤粉末30〜45質量%とを混合する工程1と(ただし、前記金属粉末及び摩擦調整剤粉末の合計は100質量%である)、工程1で得られた混合物を焼結する工程2とを有する、摩擦材の製造方法。   (11) 55 to 70% by mass of metal powder containing 70 to 98% by mass of Fe and 2 to 30% by mass of Si (however, the total of the content of Fe element and the content of Si element is 100% by mass or less) ), The step 1 of mixing the friction modifier powder 30 to 45% by mass (however, the total of the metal powder and the friction modifier powder is 100% by mass), and the mixture obtained in the step 1 is sintered. A method for producing a friction material, comprising: step 2.

(12)前記金属粉末におけるFeが、カルボニル鉄粉法およびアトマイズ法のいずれか一方または両方により製造されたFe元素を85質量%以上含有する鉄基金属粉末である、(11)の摩擦材の製造方法。   (12) The friction material according to (11), wherein Fe in the metal powder is an iron-based metal powder containing 85% by mass or more of an Fe element produced by one or both of a carbonyl iron powder method and an atomization method. Production method.

本発明の摩擦材は、その製造原料として環境への負荷が少ない原料粉末を使用するので、環境への負荷が少ない。さらに本発明の摩擦材は、従来のニッケルや銅などの金属を原料粉末として使用して得られる摩擦材と同等またはそれ以上の、高い摩擦係数を有している。   The friction material of the present invention uses a raw material powder with a low environmental load as its production raw material, and therefore has a low environmental load. Furthermore, the friction material of the present invention has a high friction coefficient equal to or higher than that of a friction material obtained by using a conventional metal such as nickel or copper as a raw material powder.

以下、本発明を詳細に説明する。
本発明の摩擦材は、Fe及びSiを含む金属相に摩擦調整剤が含有されてなるものである。前記金属相は、Feを主成分とする金属からなり、Fe元素は金属相全体(100質量%)に対して70〜98質量%含まれる。またSi元素は金属相全体(100質量%)に対して2〜30質量%含まれる。
Hereinafter, the present invention will be described in detail.
The friction material of the present invention is formed by containing a friction modifier in a metal phase containing Fe and Si. The said metal phase consists of a metal which has Fe as a main component, and Fe element is contained 70-98 mass% with respect to the whole metal phase (100 mass%). Moreover, Si element is contained 2-30 mass% with respect to the whole metal phase (100 mass%).

前記金属相に含まれるFe元素の量が70質量%未満であると摩擦材の強度が著しく低下し、一方金属相に含まれるFe元素量が98質量%を超えると、高い摩擦係数の維持と摩擦材および相手材の摩耗量の抑制が難しくなる。以上から、Fe元素量を70〜98質量%とした。その中でもFe元素量(含有量)は90〜98質量%であることが好ましい。   When the amount of Fe element contained in the metal phase is less than 70% by mass, the strength of the friction material is remarkably lowered. On the other hand, when the amount of Fe element contained in the metal phase exceeds 98% by mass, a high friction coefficient is maintained. It becomes difficult to suppress the wear amount of the friction material and the counterpart material. From the above, the amount of Fe element was set to 70 to 98% by mass. Among them, the amount of Fe element (content) is preferably 90 to 98% by mass.

また、前記金属相に含まれるSi元素量が2質量%未満であると高い摩擦係数の維持と摩擦材および相手材の摩耗量の抑制とが難しくなり、一方金属相に含まれるSi元素量が30質量%を超えると摩擦材の強度が著しく低下する。以上から、Si元素量を2〜30質量%とした。その中でも、Si元素量(含有量)は2〜10質量%であることが好ましい。   Further, if the amount of Si element contained in the metal phase is less than 2% by mass, it becomes difficult to maintain a high friction coefficient and suppress the wear amount of the friction material and the counterpart material, while the amount of Si element contained in the metal phase is small. If it exceeds 30% by mass, the strength of the friction material is significantly reduced. From the above, the amount of Si element was set to 2 to 30% by mass. Among these, it is preferable that Si element amount (content) is 2-10 mass%.

なお、本発明の摩擦材における金属相はFe及びSiを含むものであり、Fe元素の含有量とSi元素の含有量の合計は金属相全体に対して100質量%以下であるが、これらの合計が100質量%であるとさらに好ましい。   The metal phase in the friction material of the present invention contains Fe and Si, and the total content of the Fe element and the Si element is 100% by mass or less with respect to the entire metal phase. The total is more preferably 100% by mass.

本発明の摩擦材における金属相に含まれるFe元素量とSi元素量は、エネルギー分散型X線分析(EDX)または波長分散型X線分析(WDX)などで測定することができる。   The amount of Fe element and the amount of Si element contained in the metal phase in the friction material of the present invention can be measured by energy dispersive X-ray analysis (EDX) or wavelength dispersive X-ray analysis (WDX).

一般的に、摩擦材と接触する相手材の主成分はFe元素である場合が多く、本発明のように摩擦材の主成分がFe元素であると、相手材と摩擦材の親和性が高くなるので凝着を起こしやすくなり、結果として摩擦材と相手材の両方の摩耗量が増加することがある。   In general, the main component of the counterpart material in contact with the friction material is often Fe element, and when the main component of the friction material is Fe element as in the present invention, the affinity between the counterpart material and the friction material is high. Therefore, adhesion tends to occur, and as a result, the wear amount of both the friction material and the counterpart material may increase.

しかしながら、Fe元素が主成分の摩擦材の金属相にSi元素を添加することによって、摩擦材および相手材の摩耗を抑制することができた。これは、Fe元素が主成分である摩擦材の金属相にSi元素を添加することで、制動時に相手材と接触する摩擦材の摺動面に酸化皮膜が生成し、同種成分の凝着が抑制され、これにより摩耗が減少するためと考えられる。   However, by adding Si element to the metal phase of the friction material containing Fe element as a main component, it was possible to suppress wear of the friction material and the counterpart material. This is because, by adding Si element to the metal phase of the friction material mainly composed of Fe element, an oxide film is formed on the sliding surface of the friction material that comes into contact with the counterpart material at the time of braking, and the adhesion of the same kind of component occurs. This is considered to be because the wear is reduced.

また、本発明の摩擦材における金属相の主成分であるFe元素に金属のSi元素を添加することで、銅を主成分とする従来の摩擦材よりも高温における摩擦係数を高くすることができた。これは鉄の方が銅よりも融点が高いため、制動時の塑性流動が生じにくくなったためと考えられる。   Also, by adding a metallic Si element to the Fe element which is the main component of the metal phase in the friction material of the present invention, the friction coefficient at a high temperature can be made higher than that of a conventional friction material mainly composed of copper. It was. This is presumably because iron has a higher melting point than copper and plastic flow during braking is less likely to occur.

次に、本発明の摩擦材においては、金属相の含有量が摩擦材全体(100質量%)に対して55〜70質量%であり、摩擦調整剤の含有量が摩擦材全体(100質量%)に対して30〜45質量%であることが好ましい(ただし、これらの含有量の合計は100質量%である)。   Next, in the friction material of the present invention, the content of the metal phase is 55 to 70 mass% with respect to the entire friction material (100 mass%), and the content of the friction modifier is the entire friction material (100 mass%). ) To 30-45% by mass (however, the total of these contents is 100% by mass).

これは、金属相の含有量が摩擦材全体に対して55質量%未満であると摩擦係数および強度が低下し、金属相の含有量が摩擦材全体に対して70質量%を超えると、求められる摩擦特性に調整することが難しくなる傾向が見られるためである。その中でも、金属相の含有量が摩擦材全体に対して58〜68質量%であり、摩擦調整剤の含有量が摩擦材全体に対して32〜42質量%であることが好ましい(ただし、これらの含有量の合計は100質量%である)。   When the content of the metal phase is less than 55% by mass with respect to the entire friction material, the friction coefficient and the strength are reduced, and when the content of the metal phase exceeds 70% by mass with respect to the entire friction material, it is obtained. This is because it tends to be difficult to adjust the friction characteristics. Among these, it is preferable that the content of the metal phase is 58 to 68 mass% with respect to the entire friction material, and the content of the friction modifier is 32 to 42 mass% with respect to the entire friction material (however, these The total content of is 100% by mass).

本発明の摩擦材は、それを構成する金属相に含有されるFe元素の一部に換えて、P元素を金属相全体(100質量%)に対して15質量%以下の量で含有することが好ましい。これは、P元素を含有すると本発明の摩擦材の原料粉末の焼結性が向上するが、P元素が金属相全体に対して15質量%を超えて含まれると、高温環境下における本発明の摩擦材の摩耗量が増加する傾向が見られるためである。その中でも、前記金属相は、金属相に含有されるFe元素の一部に換えて、P元素を金属相全体(100質量%)に対して10質量%以下含有すると、より好ましい。   The friction material of the present invention contains P element in an amount of 15% by mass or less with respect to the entire metal phase (100% by mass) instead of a part of Fe element contained in the metal phase constituting the friction material. Is preferred. This is because when the element P is contained, the sinterability of the raw material powder of the friction material of the present invention is improved, but when the element P is contained in an amount exceeding 15% by mass with respect to the entire metal phase, the present invention in a high temperature environment This is because the wear amount of the friction material tends to increase. Among these, it is more preferable that the metal phase contains 10% by mass or less of the P element with respect to the entire metal phase (100% by mass) instead of a part of the Fe element contained in the metal phase.

なお、前記金属相に含まれるP元素量はEDXまたはWDXなどで測定することができる。また、P元素は金属元素ではないが、例えば金属相に含有されるFe元素(金属相中のFe元素の含有量が80質量%であると仮定する)の一部に換えてP元素が金属相全体に対して15質量%の量で含まれるとは、以下の意味である。すなわち、金属相全体100質量%のうち80質量%がFe元素で残りの20質量%は他の元素であったのが、金属相全体100質量%のうち65質量%がFe元素、15質量%がP元素、残りの20質量%は他の元素という組成に変更されたことを意味する。   The amount of P element contained in the metal phase can be measured by EDX or WDX. Further, although the P element is not a metal element, for example, instead of a part of the Fe element contained in the metal phase (assuming that the content of Fe element in the metal phase is 80% by mass), the P element is a metal. To be contained in an amount of 15% by mass with respect to the whole phase has the following meaning. That is, 80% by mass of 100% by mass of the entire metal phase was Fe element and the remaining 20% by mass was another element, but 65% by mass of 100% by mass of the entire metal phase was Fe element and 15% by mass. Means P element and the remaining 20% by mass is changed to the composition of other elements.

本発明の摩擦材は、原料中の不純物や製造工程から混入する不純物を含有する場合がある。本発明の摩擦材に金属として含有される不純物としては、Al元素やMg元素などが挙げられる。本発明の摩擦材に金属として含有されるAl元素やMg元素などの不純物の合計量が金属相全体に対して3質量%以下であれば、本発明の摩擦材の性能に影響を及ぼすことはない。本発明の金属相に含まれるAl元素量とMg元素量はEDXまたはWDXなどで測定することができる。   The friction material of the present invention may contain impurities in the raw materials and impurities mixed from the manufacturing process. Examples of impurities contained as metals in the friction material of the present invention include Al elements and Mg elements. If the total amount of impurities such as Al element and Mg element contained as metal in the friction material of the present invention is 3% by mass or less with respect to the entire metal phase, it will affect the performance of the friction material of the present invention. Absent. The amount of Al element and the amount of Mg element contained in the metal phase of the present invention can be measured by EDX or WDX.

本発明の摩擦材に含まれる摩擦調整剤としては、摩擦材の耐摩耗性を調整する硬質粒子、潤滑性を調整する潤滑性物質などを挙げることができる。   Examples of the friction modifier contained in the friction material of the present invention include hard particles that adjust the wear resistance of the friction material, and lubricating substances that adjust the lubricity.

前記硬質粒子として具体的には、シリカ(SiO)、アルミナ(Al)、マグネシア(MgO)、チタニア(TiO)、ジルコニア(ZrO)、イットリア(Y)、ムライト(AlSiO)、ジルコンサンド(ZrSiO)、タングステン鋼(Fe−W)、炭化タングステン(WC)、炭化ケイ素(SiC)などを挙げることができる。Specific examples of the hard particles include silica (SiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), titania (TiO 2 ), zirconia (ZrO 2 ), yttria (Y 2 O 3 ), mullite ( Al 2 SiO 5 ), zircon sand (ZrSiO 4 ), tungsten steel (Fe—W), tungsten carbide (WC), silicon carbide (SiC), and the like.

また、前記潤滑性物質として具体的には、タルク(MgSi10(OH))、焼成タルク(MgSi11)、黒鉛(C)、コークス(C)、炭酸カルシウム(CaCO)、酸化カルシウム(CaO)、フッ化カルシウム(CaF)などを挙げることができる。これらの中でも、潤滑性物質としては、黒鉛およびフッ化カルシウムが、摩擦材の潤滑性向上効果が良好であるので、好ましい。Specific examples of the lubricating substance include talc (Mg 3 Si 4 O 10 (OH) 2 ), calcined talc (Mg 3 Si 4 O 11 ), graphite (C), coke (C), calcium carbonate ( Examples include CaCO 3 ), calcium oxide (CaO), and calcium fluoride (CaF 2 ). Among these, graphite and calcium fluoride are preferable as the lubricating substance because the lubricity improvement effect of the friction material is good.

このような摩擦調整剤について、前記硬質粒子の含有量が、摩擦材全体(100質量%)に対して10〜20質量%であり、潤滑性物質の含有量が、摩擦材全体(100質量%)に対して20〜28質量%であり、摩擦調整剤の含有量が、摩擦材全体(100質量%)に対して30〜45質量%であると、摩擦材の耐摩耗性および潤滑性が良好となるので、さらに好ましい。   About such a friction modifier, content of the said hard particle is 10-20 mass% with respect to the whole friction material (100 mass%), and content of a lubricating substance is the whole friction material (100 mass%). ) And the content of the friction modifier is 30 to 45% by mass with respect to the entire friction material (100% by mass), the friction material has wear resistance and lubricity. Since it becomes favorable, it is further preferable.

以上説明した本発明の摩擦材は、Fe及びSiを含む金属粉末と摩擦調整剤粉末とからなる混合物を焼結して得られる。焼結により、金属粉末は金属相を形成し、摩擦調整剤粉末は摩擦調整剤として金属相中に分散する。本発明の摩擦材の製造方法として具体的には、以下の方法を挙げることができる。   The friction material of the present invention described above is obtained by sintering a mixture of metal powder containing Fe and Si and friction modifier powder. By sintering, the metal powder forms a metal phase, and the friction modifier powder is dispersed in the metal phase as a friction modifier. Specific examples of the method for producing the friction material of the present invention include the following methods.

本発明の摩擦材の原料粉末として、Fe 70〜98質量%及びSi 2〜30質量%を含有する金属粉末と(ただし、金属粉末におけるFe元素の含有量とSi元素の含有量の合計は100質量%以下である)、摩擦調整剤粉末とを用意する。金属粉末および摩擦調整剤粉末の平均粒径は500μmを超えて大きいと成形性が低下して摩擦材が製造しにくく、一方平均粒径が1μm未満であると均一に混合しにくい。従って、金属粉末および摩擦調整剤粉末の平均粒径は、1〜500μmであることが好ましい。なお本明細書において各原料粉末の平均粒径は、フィッシャー法により測定したものである。   As a raw material powder of the friction material of the present invention, a metal powder containing 70 to 98 mass% Fe and 2 to 30 mass% Si (provided that the total content of Fe element and Si element in the metal powder is 100) And the friction modifier powder is prepared. If the average particle size of the metal powder and the friction modifier powder exceeds 500 μm, the moldability is reduced and it is difficult to produce a friction material, whereas if the average particle size is less than 1 μm, it is difficult to mix uniformly. Therefore, the average particle size of the metal powder and the friction modifier powder is preferably 1 to 500 μm. In the present specification, the average particle diameter of each raw material powder is measured by the Fisher method.

前記金属粉末と摩擦調整剤粉末の使用量については、金属粉末55〜70質量%と、摩擦調整剤粉末30〜45質量%とを混合することが好ましい(なお、これらの合計は100質量%である)。これは、金属粉末の使用量が得られる混合物全体に対して55質量%未満であると金属相が減少して摩擦材の摩擦係数や強度が低下し、金属粉末の使用量が混合物全体に対して70質量%を超えると金属相が増加して、求められる摩擦特性に調整することが難しくなる傾向が見られるためである。   About the usage-amounts of the said metal powder and friction modifier powder, it is preferable to mix 55-70 mass% of metal powder and 30-45 mass% of friction modifier powder (In addition, these total is 100 mass%. is there). This is because when the amount of metal powder used is less than 55% by mass with respect to the total mixture obtained, the metal phase decreases, the friction coefficient and strength of the friction material decrease, and the amount of metal powder used decreases with respect to the total mixture. This is because if the amount exceeds 70% by mass, the metal phase increases and it tends to be difficult to adjust the required frictional characteristics.

このように所定の割合に配合した金属粉末及び摩擦調整剤粉末を混合する工程1と、得られた混合物を焼結する工程2とを経て、本発明の摩擦材を製造することができる。この場合の焼結温度は通常800〜1200℃である。   Thus, the friction material of this invention can be manufactured through the process 1 which mixes the metal powder and friction modifier powder which were mix | blended in the predetermined | prescribed ratio, and the process 2 which sinters the obtained mixture. The sintering temperature in this case is usually 800 to 1200 ° C.

なお、本発明の摩擦材の製造において、例えば工程1で得られた混合物を所定の形状に成形する工程3、工程2で得られた摩擦材を樹脂やろう材を用いて芯板に接合する工程4、工程2で得られた摩擦材に樹脂や防錆成分を含浸または塗布する工程5などのその他の工程を実施してもよいことはもちろんである。   In the production of the friction material of the present invention, for example, the friction material obtained in Step 3 and Step 2 of molding the mixture obtained in Step 1 into a predetermined shape is joined to the core plate using a resin or brazing material. Of course, other steps such as the step 5 of impregnating or applying the resin or the anticorrosive component to the friction material obtained in the steps 4 and 2 may be performed.

また、前記工程3を実施した場合のほか、所定の形状に成形して本発明の摩擦材を得る場合には、必要に応じて原料粉末を混合して混合物とした時点で成形したうえで、焼結時に加圧して所定の形状の焼結体を得る。この場合の加圧焼結における成形圧力は製造工程によって大きく変わるが、その範囲は0.1Pa〜980MPaである。   Further, in addition to the case where the step 3 is carried out, in the case of obtaining the friction material of the present invention by molding into a predetermined shape, the raw material powder is mixed as needed to form a mixture, Pressure is applied during sintering to obtain a sintered body having a predetermined shape. In this case, the molding pressure in the pressure sintering varies greatly depending on the production process, but the range is 0.1 Pa to 980 MPa.

本発明の摩擦材の製造に使用される金属粉末におけるFe成分として、カルボニル鉄粉法およびアトマイズ(噴霧)法のいずれか一方または両方により製造されたFe元素を85質量%以上含有する鉄基金属粉末を用いると、摩擦材の強度が向上するので、さらに好ましい。また、アトマイズ法により製造された鉄基金属粉末を使用すると成形体の強度が増加して製造しやすくなる。   As an Fe component in the metal powder used in the production of the friction material of the present invention, an iron-based metal containing 85% by mass or more of Fe element produced by one or both of the carbonyl iron powder method and the atomizing (spraying) method Use of powder is more preferable because the strength of the friction material is improved. Moreover, when the iron-based metal powder manufactured by the atomizing method is used, the strength of the molded body increases and it becomes easy to manufacture.

前記カルボニル鉄粉法により製造された鉄基金属粉末として具体的には、Fe元素(100質量%)からなるカルボニル鉄粉末を挙げることができる。また、前記アトマイズ法により製造された鉄基金属粉末として具体的には、P元素:0.3〜15質量%とFe元素:残部とからなる燐含有鉄粉末を挙げることができる。その中でも、P元素:0.5〜1.0質量%とFe元素:残部とからなる燐含有鉄粉末がさらに好ましい。   Specific examples of the iron-based metal powder produced by the carbonyl iron powder method include carbonyl iron powder composed of Fe element (100% by mass). Specific examples of the iron-based metal powder produced by the atomizing method include phosphorus-containing iron powder composed of P element: 0.3 to 15% by mass and Fe element: balance. Among these, the phosphorus containing iron powder which consists of P element: 0.5-1.0 mass% and Fe element: remainder is still more preferable.

特に、鉄基金属粉末として、鉄粉末と、P元素:0.3〜15質量%及びFe元素:残部からなる燐含有鉄粉末とからなり、鉄粉末と燐含有鉄粉末との混合比率が重量比で、鉄粉末(A):燐含有鉄粉末(B)=(3〜9):(7〜1)(但し、(A)と(B)の合計は10である。)になるように混合した混合物を用いると、成形性と焼結性が向上するので、さらに好ましい。   In particular, the iron-based metal powder is composed of iron powder and phosphorus-containing iron powder composed of P element: 0.3 to 15% by mass and Fe element: balance, and the mixing ratio of iron powder and phosphorus-containing iron powder is weight. The ratio of iron powder (A): phosphorus-containing iron powder (B) = (3-9) :( 7-1) (however, the sum of (A) and (B) is 10). It is more preferable to use a mixed mixture because the moldability and sinterability are improved.

また、本発明の摩擦材の製造に使用される金属粉末のSi成分としては、Siからなる金属粉末を使用してもよいし、Siとその他の金属元素とからなるシリコン基金属粉末(Siの含有量は通常80質量%以上である)を使用してもよい。   In addition, as the Si component of the metal powder used in the production of the friction material of the present invention, a metal powder made of Si may be used, or a silicon-based metal powder made of Si and other metal elements (Si The content is usually 80% by mass or more).

例えば、Si元素を80質量%以上含有するシリコン基金属粉末として具体的には、Si元素からなる金属シリコン粉末、Si元素80質量%以上と残部Fe元素とからなるフェロシリコン粉末、Si元素80質量%以上と残部Al元素とからなるアルミシリコン粉末、および、これらの混合物などを挙げることができる。   For example, as a silicon-based metal powder containing 80% by mass or more of Si element, specifically, a metal silicon powder composed of Si element, a ferrosilicon powder composed of 80% by mass or more of Si element and the balance Fe element, 80% of Si element % Of aluminum silicon and the balance Al element, and a mixture thereof.

以下、実施例により本発明をより詳細に説明するが、本発明はこれらにより何ら限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these.

本発明の摩擦材の製造に使用する原料粉末として、平均粒径4.4μmのカルボニル鉄粉(100質量%Fe)、平均粒径60μmの燐含有アトマイズ鉄粉(P:0.54〜0.66質量%、Fe:98.89〜99.46質量%、残部Al)、平均粒径40μmの金属シリコン粉末(Si:96.0質量%、残部:Fe、AlおよびMg)、平均粒径40μmのフェロシリコン粉末(Si:80質量%、Fe:20質量%)、摩擦調整剤粉末として平均粒径70μmの黒鉛粉末、平均粒径40μmのジルコンサンド粉末、平均粒径30μmのムライト粉末、並びに平均粒径50μmのフッ化カルシウム粉末を用意した。   As raw material powders used in the production of the friction material of the present invention, carbonyl iron powder (100 mass% Fe) having an average particle diameter of 4.4 μm and phosphorus-containing atomized iron powder having an average particle diameter of 60 μm (P: 0.54 to 0.00). 66% by mass, Fe: 98.89 to 99.46% by mass, balance Al), metal silicon powder having an average particle size of 40 μm (Si: 96.0% by mass, balance: Fe, Al and Mg), average particle size of 40 μm Ferrosilicon powder (Si: 80% by mass, Fe: 20% by mass), graphite powder having an average particle size of 70 μm, zircon sand powder having an average particle size of 40 μm, mullite powder having an average particle size of 30 μm, and an average as a friction modifier powder A calcium fluoride powder having a particle size of 50 μm was prepared.

また、比較品に使用する金属粉末として、平均粒径40μmの銅粉末、平均粒径40μmの錫粉末、平均粒径5μmのニッケル粉末を用意した。
なお、各原料粉末の平均粒径はフィッシャー法により測定した。
Moreover, copper powder with an average particle size of 40 μm, tin powder with an average particle size of 40 μm, and nickel powder with an average particle size of 5 μm were prepared as metal powders to be used as comparative products.
In addition, the average particle diameter of each raw material powder was measured by the Fisher method.

次に、前述の原料粉末を下記表1、2に示す配合組成に従って秤量し、それらを混合して、混合物を得た。得られた混合物をブレーキパッド形状に成形した後、表1、2に示す焼結温度、成形圧力にて加圧焼結した。   Next, the raw material powders described above were weighed according to the composition shown in Tables 1 and 2 below, and mixed to obtain a mixture. The resulting mixture was molded into a brake pad shape and then subjected to pressure sintering at the sintering temperature and molding pressure shown in Tables 1 and 2.

Figure 0005835456
Figure 0005835456

Figure 0005835456
Figure 0005835456

得られた摩擦材の金属相の組成をEDXで測定した。その結果を下記表3に示す。   The composition of the metal phase of the obtained friction material was measured by EDX. The results are shown in Table 3 below.

Figure 0005835456
Figure 0005835456

Figure 0005835456
Figure 0005835456

未使用の摩擦材およびサーマルショック試験後の摩擦材の常温せん断強度を測定した。せん断試験に用いるせん断治具や試験手順はJIS D 4422(2007年)に従った。サーマルショック試験は、摩擦材を600℃にて1時間保持した後に水冷する工程を3回繰り返す試験であり、摩擦材の耐熱衝撃性を評価するものである。   The room temperature shear strength of the unused friction material and the friction material after the thermal shock test was measured. The shear jig and test procedure used for the shear test were in accordance with JIS D 4422 (2007). The thermal shock test is a test in which the friction material is held at 600 ° C. for 1 hour and then cooled with water three times, and the thermal shock resistance of the friction material is evaluated.

さらに摩擦材の摩擦特性については、乗用車ブレーキ装置ダイナモメータ試験JASO C406−82に従って評価した。具体的には、相手材にはSUS(ステンレス鋼)を用い、下記表5に示す試験手順に従って摩擦試験を行った。なお、試験における車両区分はP1を選択した。その理由は、本発明の摩擦材は最高速度が140km/hを超える海外向け大型バイクや自動車のブレーキなどにも使用される可能性があるためである。   Further, the friction characteristics of the friction material were evaluated according to a passenger car brake device dynamometer test JASO C406-82. Specifically, SUS (stainless steel) was used as the counterpart material, and a friction test was performed according to the test procedure shown in Table 5 below. In addition, P1 was selected as the vehicle classification in the test. The reason for this is that the friction material of the present invention may be used for a large overseas motorcycle or a vehicle brake having a maximum speed exceeding 140 km / h.

摩擦特性は、第2効力試験の平均摩擦係数と第1フェードリカバリ試験のフェード試験での最小摩擦係数および試験後の摩擦材および相手材の摩耗量で評価した。以上の評価結果を下記表6、7にまとめる。   The friction characteristics were evaluated by the average friction coefficient in the second efficacy test, the minimum friction coefficient in the fade test in the first fade recovery test, and the wear amount of the friction material and the counterpart material after the test. The above evaluation results are summarized in Tables 6 and 7 below.

Figure 0005835456
Figure 0005835456

Figure 0005835456
Figure 0005835456

Figure 0005835456
Figure 0005835456

Figure 0005835456
Figure 0005835456

摩擦材の物性と摩擦特性を表6、7に示した。また、摩擦材に必要とされる要求性能を表8に示した。なお、表6〜8において相手材の摩耗量がマイナスの場合は、摩擦材の溶着などによって相手材の厚さが増加したことを示している。未使用の摩擦材の常温せん断強度およびサーマルショック試験後の常温せん断強度については、比較品1、2、6は要求性能を下回った。第2効力試験の平均摩擦係数および第1フェードリカバリ試験のフェード試験の最小摩擦係数については、発明品、比較品ともに要求性能を満たしている。試験後の摩擦材の摩耗量については、比較品1、3、5、9は摩擦材の摩耗量が多く、要求性能を満たしていない。相手材の摩耗量については、比較品1、4、5は相手材の摩耗量が多く、要求性能を満たしていない。従来品である比較品7〜9は銅やニッケルを含んでいるので発明品1〜9に比較して環境負荷が高い。一方、発明品は銅やニッケルを含んでいないにもかかわらず、銅やニッケルを含んでいる比較品7〜9と同等以上の性能を示した。   The physical properties and friction characteristics of the friction material are shown in Tables 6 and 7. The required performance required for the friction material is shown in Table 8. In Tables 6 to 8, when the wear amount of the counterpart material is negative, it indicates that the thickness of the counterpart material has increased due to welding of the friction material. Regarding the room temperature shear strength of the unused friction material and the room temperature shear strength after the thermal shock test, the comparative products 1, 2 and 6 were below the required performance. Regarding the average friction coefficient of the second efficacy test and the minimum friction coefficient of the fade test of the first fade recovery test, both the invention product and the comparative product satisfy the required performance. Regarding the amount of wear of the friction material after the test, Comparative Products 1, 3, 5, and 9 have a large amount of wear of the friction material and do not satisfy the required performance. Regarding the wear amount of the mating material, Comparative products 1, 4 and 5 have a large wear amount of the mating material and do not satisfy the required performance. Since the comparative products 7-9 which are conventional products contain copper and nickel, they have a higher environmental load than the inventive products 1-9. On the other hand, although the invention product did not contain copper or nickel, it showed the same or better performance as the comparative products 7 to 9 containing copper and nickel.

以上説明したとおり、本発明の摩擦材はPRTR法により第一種指定化学物質として指定されているニッケルや、規制対象に加えようと議論がなされている銅などを含まないため環境負荷が低く、さらに第一種指定化学物質に求められる管理を実施する必要がなく、その分コストに優れている。   As described above, the friction material of the present invention has low environmental impact because it does not contain nickel, which is designated as a first-class designated chemical substance by the PRTR method, or copper, which has been discussed to be subject to regulation, Furthermore, it is not necessary to carry out the management required for the first-class designated chemical substances, and the cost is improved accordingly.

さらに、実施例から明らかな通り、本発明の摩擦材は、従来摩擦材の摩擦係数を高めるために使用されていたニッケルや銅などを含まないにもかかわらず摩擦係数が従来品と同等以上であり、また高温での摩擦係数など、一部の特性については従来品を超えるものである。   Furthermore, as is clear from the examples, the friction material of the present invention has a friction coefficient equal to or higher than that of the conventional product, even though it does not contain nickel or copper, which has been used to increase the friction coefficient of the conventional friction material. In addition, some characteristics, such as the coefficient of friction at high temperatures, exceed those of conventional products.

以上から、本発明の摩擦材は、環境負荷、コスト、摩擦特性等の点から優れた摩擦材として、工作機械、建設機械、農業機械、自動車、二輪車、鉄道、航空機および船舶などの、各種機械の回転あるいは移動を任意に制御する手段において広く適用されうるものである。   From the above, the friction material of the present invention is an excellent friction material in terms of environmental load, cost, friction characteristics, and the like, and various machines such as machine tools, construction machines, agricultural machines, automobiles, two-wheeled vehicles, railways, airplanes, and ships. It can be widely applied to means for arbitrarily controlling the rotation or movement of the.

Claims (8)

Fe及びSiを含む金属相に摩擦調整剤が含有されてなる摩擦材であって、
前記摩擦調整剤は、硬質粒子と潤滑性物質とを含有し、
前記潤滑性物質が、黒鉛およびフッ化カルシウムを含有し、
前記金属相において、Fe元素は金属相全体に対して70〜98質量%含まれ、Si元素は金属相全体に対して2〜30質量%含まれる(ただし、Fe元素の含有量とSi元素の含有量の合計は100質量%以下であり、Al元素およびMg元素の合計量が、金属相全体に対して3質量%以下である)、摩擦材。
A friction material containing a friction modifier in a metal phase containing Fe and Si,
The friction modifier contains hard particles and a lubricating substance,
The lubricating substance contains graphite and calcium fluoride;
In the metal phase, the Fe element is contained in an amount of 70 to 98% by mass with respect to the entire metal phase, and the Si element is contained in an amount of 2 to 30% by mass with respect to the entire metal phase (however, the content of Fe element and the Si element The total content is 100% by mass or less, and the total amount of Al element and Mg element is 3% by mass or less based on the entire metal phase ), friction material.
前記金属相の含有量が、前記摩擦材全体に対して55〜70質量%であり、
前記摩擦調整剤の含有量が、前記摩擦材全体に対して30〜45質量%であり、
前記金属相及び摩擦調整剤の含有量の合計が100質量%である、請求項1に記載の摩擦材。
The content of the metal phase is 55 to 70% by mass with respect to the entire friction material,
The content of the friction modifier is 30 to 45% by mass with respect to the entire friction material,
The friction material according to claim 1, wherein the total content of the metal phase and the friction modifier is 100% by mass.
前記金属相におけるFe元素の含有量が70〜98質量%であり、
前記金属相におけるSi元素の含有量が2〜30質量%であり、
Fe元素とSi元素の含有量の合計が100質量%である、請求項1または請求項2に記載の摩擦材。
The content of Fe element in the metal phase is 70 to 98% by mass,
The content of Si element in the metal phase is 2 to 30% by mass,
The friction material of Claim 1 or Claim 2 whose sum total of content of Fe element and Si element is 100 mass%.
前記金属相が、該金属相に含まれるFe元素の一部に換えて、P元素を金属相全体に対して15質量%以下含有する、請求項1〜3のいずれか1項に記載の摩擦材。   The friction according to any one of claims 1 to 3, wherein the metal phase contains 15 mass% or less of a P element with respect to the entire metal phase instead of a part of the Fe element contained in the metal phase. Wood. 前記硬質粒子の含有量が、前記摩擦材全体に対して10〜20質量%であり、
前記潤滑性物質の含有量が、前記摩擦材全体に対して20〜28質量%であり、
前記摩擦調整剤の含有量が、前記摩擦材全体に対して30〜45質量%である、請求項1〜4のいずれか一項に記載の摩擦材。
The content of the hard particles is 10 to 20% by mass with respect to the entire friction material,
The content of the lubricating substance is 20 to 28% by mass with respect to the entire friction material,
The friction material according to any one of claims 1 to 4 , wherein a content of the friction modifier is 30 to 45 mass% with respect to the entire friction material.
前記金属相の含有量が、前記摩擦材全体に対して58〜68質量%であり、
前記摩擦調整剤の含有量が、前記摩擦材全体に対して32〜42質量%であり、
前記金属相及び摩擦調整剤の含有量の合計が100質量%である、請求項1〜のいずれか1項に記載の摩擦材。
The content of the metal phase is 58 to 68 mass% with respect to the entire friction material,
The content of the friction modifier is 32-42% by mass with respect to the entire friction material,
The friction material according to any one of claims 1 to 5 , wherein a total content of the metal phase and the friction modifier is 100% by mass.
前記金属相が、該金属相に含まれるFe元素の一部に換えて、P元素を金属相全体に対して10質量%以下含有する、請求項1〜のいずれか1項に記載の摩擦材。 The friction according to any one of claims 1 to 6 , wherein the metal phase contains 10 mass% or less of a P element with respect to the entire metal phase in place of a part of the Fe element contained in the metal phase. Wood. 前記硬質粒子が、シリカ(SiO)、アルミナ(Al)、マグネシア(MgO)、チタニア(TiO)、ジルコニア(ZrO)、イットリア(Y)、ムライト(AlSiO)、ジルコンサンド(ZrSiO)、タングステン鋼(Fe?W)、炭化タングステン(WC)及び炭化ケイ素(SiC)からなる群より選ばれる少なくとも一種である、請求項1〜7のいずれか1項に記載の摩擦材。 The hard particles are silica (SiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), titania (TiO 2 ), zirconia (ZrO 2 ), yttria (Y 2 O 3 ), mullite (Al 2 SiO 5). ), zircon sand (ZrSiO 4), tungsten steel (Fe? W) is at least one selected from the group consisting of tungsten carbide (WC) and silicon carbide (SiC), in any one of claims 1 to 7 The friction material described.
JP2014500967A 2012-02-24 2013-02-25 Friction material and manufacturing method thereof Active JP5835456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500967A JP5835456B2 (en) 2012-02-24 2013-02-25 Friction material and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012038103 2012-02-24
JP2012038103 2012-02-24
JP2014500967A JP5835456B2 (en) 2012-02-24 2013-02-25 Friction material and manufacturing method thereof
PCT/JP2013/054645 WO2013125717A1 (en) 2012-02-24 2013-02-25 Friction material and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2013125717A1 JPWO2013125717A1 (en) 2015-07-30
JP5835456B2 true JP5835456B2 (en) 2015-12-24

Family

ID=49005891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014500967A Active JP5835456B2 (en) 2012-02-24 2013-02-25 Friction material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5835456B2 (en)
WO (1) WO2013125717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220078795A (en) * 2020-12-03 2022-06-13 한국철도기술연구원 Friction characteristic analysis method according to the component ratio of the friction pad for railway vehicles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439914B2 (en) * 2014-09-02 2018-12-19 日産自動車株式会社 Friction material
JP6032389B1 (en) * 2015-04-02 2016-11-30 株式会社タンガロイ Friction material
CN110952043B (en) * 2019-12-28 2021-04-23 苏州再超冶金制品有限公司 SiC whisker reinforced iron-based powder metallurgy material and preparation method thereof
JP7038284B2 (en) 2020-01-27 2022-03-18 株式会社タンガロイ Friction materials and brake pads
CN115975318B (en) * 2023-03-20 2023-06-30 季华实验室 Low-abrasion self-lubricating material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215164A (en) * 1992-02-07 1993-08-24 Mitsubishi Gas Chem Co Inc Frictional material for brake
JP2008194542A (en) * 2006-04-25 2008-08-28 Toda Kogyo Corp Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2008025018A (en) * 2006-06-22 2008-02-07 Akebono Brake Ind Co Ltd Sintering friction material
JP2008138036A (en) * 2006-11-30 2008-06-19 Akebono Brake Ind Co Ltd Sintered friction material
JP2012111892A (en) * 2010-11-26 2012-06-14 Mmc Superalloy Corp Friction material for brake pad

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220078795A (en) * 2020-12-03 2022-06-13 한국철도기술연구원 Friction characteristic analysis method according to the component ratio of the friction pad for railway vehicles
KR102454674B1 (en) 2020-12-03 2022-10-18 한국철도기술연구원 Friction characteristic analysis method according to the component ratio of the friction pad for railway vehicles

Also Published As

Publication number Publication date
WO2013125717A1 (en) 2013-08-29
JPWO2013125717A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5835456B2 (en) Friction material and manufacturing method thereof
JP6032389B1 (en) Friction material
JP6923320B2 (en) Sintered metal friction material
WO2016190403A1 (en) Sintered friction material for high speed railway vehicles and method for manufacturing same
CN107523716B (en) Sintered friction material for friction linings
JP4430468B2 (en) Copper-based sintered friction material
EP3647390B1 (en) Sintered friction material and production method for sintered friction material
CN115351272A (en) Preparation method of copper-based powder metallurgy material for high-energy-load braking working condition
EP3875561B1 (en) Sintered friction material and method for producing sintered friction material
JP2019163540A (en) Sinter friction material for high speed railway vehicle
JP7401233B2 (en) Sintered friction material and method for manufacturing sintered friction material
JP2018070810A (en) Friction material
JP7038284B2 (en) Friction materials and brake pads
JP5228358B2 (en) Friction material
WO2016117677A1 (en) Friction material
JP2000355685A (en) Friction material
WO2023157637A1 (en) Sintered metal friction material, and method for manufacturing same
JP2007107661A (en) Sintered friction material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5835456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250