JP5834308B2 - Line constant measuring method and protection control measuring device for two parallel transmission lines - Google Patents

Line constant measuring method and protection control measuring device for two parallel transmission lines Download PDF

Info

Publication number
JP5834308B2
JP5834308B2 JP2010197397A JP2010197397A JP5834308B2 JP 5834308 B2 JP5834308 B2 JP 5834308B2 JP 2010197397 A JP2010197397 A JP 2010197397A JP 2010197397 A JP2010197397 A JP 2010197397A JP 5834308 B2 JP5834308 B2 JP 5834308B2
Authority
JP
Japan
Prior art keywords
line
phase
constant
transmission line
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010197397A
Other languages
Japanese (ja)
Other versions
JP2012052979A (en
Inventor
尚史 久門
尚史 久門
雅大 加藤
雅大 加藤
小林 健太郎
健太郎 小林
鏡 敏朗
敏朗 鏡
寛之 梅崎
寛之 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kyoto University
Original Assignee
Toshiba Corp
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kyoto University filed Critical Toshiba Corp
Priority to JP2010197397A priority Critical patent/JP5834308B2/en
Publication of JP2012052979A publication Critical patent/JP2012052979A/en
Application granted granted Critical
Publication of JP5834308B2 publication Critical patent/JP5834308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、平行2回線送電線の両端子に設置した保護制御計測装置において、取り込んだ電気量を用いて送電線の線路定数を推定する方法、およびこれを組込んだ保護制御計測装置に関するものである。   TECHNICAL FIELD The present invention relates to a method for estimating a line constant of a transmission line using the amount of electricity taken in a protection control measurement apparatus installed at both terminals of a parallel two-line transmission line, and a protection control measurement apparatus incorporating the same. It is.

正確な線路定数を得ることは、保護リレーの整定、事故点標定、系統運用では重要なことである。そのために多くの方法が提案されてきている。よく使われているのは、Carson-Polarczhek法であり、線路の幾何学的な構造、大地からの距離など各種パラメータを入力してコンピュータで計算を行う。しかしながら、この方法は多数のパラメータを必要とすること、ねん架の有無、各相の対象性の有無を実際の送電線と合致させる労力が多大であり、精度も場合により低いという問題がある。   Obtaining accurate line constants is important for protection relay setting, fault location, and system operation. Many methods have been proposed for this purpose. The Carson-Polarczhek method, which is often used, is a computer that inputs various parameters such as the geometric structure of the track and the distance from the ground. However, this method has a problem that a large number of parameters are required, labor for matching the presence / absence of a bridge and the presence / absence of each phase with an actual transmission line is great, and the accuracy is sometimes low.

他の方法として、送電線の建設時に試験電圧を各相ごとに入力し、その際の電流電圧からインピーダンス、アドミッタンスを求める方法である。この方法は正確に線路定数を求めることができるが、労力、コストがかかるという点、および線路停止時に計測を行う必要があるという点、測定精度をあげるには試験電圧を高くする必要がありコスト、安全面での問題もある。   As another method, a test voltage is input for each phase when a transmission line is constructed, and the impedance and admittance are obtained from the current voltage at that time. Although this method can accurately determine the line constant, it requires labor and cost, requires measurement when the line is stopped, and requires higher test voltage to increase measurement accuracy. There are also safety issues.

上述したCarson-Polarczhek法や試験電圧を印加する方法の問題点を解決するために、GPSを利用して同時刻の送電線両端の電圧電流を得て、これから送電線線路定数を求め、これを用いて事故点標定を行うという提案が以下に行われている。   In order to solve the problems of the Carson-Polarczhek method and the method of applying the test voltage described above, the voltage current at both ends of the transmission line at the same time is obtained using GPS, and the transmission line constant is obtained from this. The following proposals have been made to use it for accident location.

特開2003−270285号公報JP 2003-270285 A 特開2004−12292号公報JP 2004-12292 A

「事故点標定のための不平衡平行2回線送電線の線路定数計算方法」:平成22年電気学会全国大会発表“Method for calculating line constants of unbalanced parallel two-line transmission lines for fault location”: Announcement of the 2010 IEEJ National Conference

これらの文献で提案されている方法は、送電線を集中定数回路あるいは分布定数回路としてモデル化し、送電線事故時の両端の電圧、電流から、線路定数を求めている。   In the methods proposed in these documents, the transmission line is modeled as a lumped constant circuit or a distributed constant circuit, and the line constant is obtained from the voltage and current at both ends at the time of the transmission line fault.

上記特許文献1,2で紹介されている技術は、送電線の事故点標定のための線路定数を求める方法であり、該当送電線内部に事故が発生することを条件に、両端の電気量と線路定数の関係を定式化している。したがって、送電線内部事故が発生しないかぎり該当送電線の線路定数が求められないことになる。   The techniques introduced in Patent Documents 1 and 2 above are methods for obtaining a line constant for fault point location of a transmission line, on the condition that an accident occurs inside the corresponding transmission line, The relationship between line constants is formulated. Therefore, the line constant of the corresponding transmission line cannot be obtained unless a transmission line internal accident occurs.

これは、距離リレーの整定値を決めるために線路定数が必要な場合には不適当である。なぜならば、系統事故発生時点で正確な線路定数が必要となるためである。また、系統運用全般、たとえば潮流の推定などに利用する場合も、送電線内部事故が発生しない場合は、線路定数を求めることができないため不都合である。   This is not appropriate when line constants are required to determine the distance relay settling value. This is because an accurate line constant is required at the time of occurrence of a system fault. In addition, it is also inconvenient when it is used for system operation in general, for example, estimation of tidal currents, because the line constant cannot be obtained if a power line internal accident does not occur.

本発明は上記事情に鑑みてなされたものであり、平行2回線送電線において、簡易かつ高精度に送電線の定数を求めることの可能な線路定数測定方法およびこれを組み込んだ保護制御計測装置を提供することを目的としている。特に、本発明は、特許文献1や特許文献2に記載された発明のような送電線内部事故を必ずしも必要とせずに、常時の潮流を利用して高精度に線路定数を求めることができる汎用的な線路定数測定方法と保護制御計測装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a parallel two-line transmission line, a line constant measurement method capable of easily and accurately obtaining a transmission line constant, and a protection control measurement apparatus incorporating the same. It is intended to provide. In particular, the present invention does not necessarily require a power line internal accident as in the inventions described in Patent Document 1 and Patent Document 2, and can obtain a line constant with high accuracy using a normal power flow. It is an object of the present invention to provide a typical line constant measuring method and protection control measuring device.

本発明は、回線に分岐がなく、第1の送電線と第2の送電線が鉄塔の左右に対称配置された平行2回線の送電線路の定数を測定する線路定数測定方法において、次の処理を行うことを特徴とする。
(1)平行2回線の送電線路のそれぞれについて、定常運用における少なくとも2つ以上の異なる時点で取り込んだ電気量、少なくとも1つの時点の零相成分の電気量とを線路定数算出手段の入力とする。
(2) 線路定数算出手段において、第1の送電線と第2の送電線の全ての相配置が一致する場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa相を含む欠相とb相を含む欠相とc相を含む欠相とする条件と、数3、数4及び数6に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置が不一致の場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa、b、cいずれかの相を含む欠相とする条件と、数3、数4及び数6に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置のうち1相のみ相配置が一致する場合、コモンラインの条件を零相電圧とa又はc相を含む欠相とし、ディファレンシャルラインの条件をa又はc相を含む欠相とc相を含む欠相とする条件と、数3、数4及び数6に示す式とに基づいて、平行2回線の送電線路をコモンモードとディファレンシャルモードにモード分解することで1回線の送電線路モデルとして取り扱い、2つの1回線送電線モデルとして算出した線路定数を、モード合成によって平行2回線送電線モデルに復元することで、平行2回線送電線の線路定数を算出する。
The present invention relates to a line constant measuring method for measuring a constant of a parallel two-line transmission line in which the line has no branching and the first transmission line and the second transmission line are symmetrically arranged on the left and right of the steel tower. It is characterized by performing.
(1) For each of the parallel two-line transmission lines, the amount of electricity taken in at least two different times in steady operation and the amount of electricity of the zero-phase component at least one time point are input to the line constant calculation means. .
(2) In the line constant calculation means, when all the phase arrangements of the first transmission line and the second transmission line match, the common line condition is a zero-phase voltage, and the differential line condition is a defect including the a phase. On the basis of the conditions for the open phase including the phase and the b phase and the open phase including the c phase, and the equations shown in Equations 3, 4, and 6,
When all the phase arrangements of the first transmission line and the second transmission line are inconsistent, the common line condition is a zero-phase voltage, and the differential line condition is an open phase including any one of a, b, and c. Based on the conditions to be performed and the equations shown in Equations 3, 4, and 6,
When the phase arrangement of only one phase is the same among all the phase arrangements of the first transmission line and the second transmission line, the common line condition is the open phase including the zero-phase voltage and the a or c phase, and the differential line Based on the condition that the phase is an open phase including the a or c phase and the open phase including the c phase, and the equations shown in the equations (3), (4), and (6) The line constant calculated as two single-line transmission line models is restored to the parallel two-line transmission line model by mode synthesis, and the parallel two-line transmission line Calculate the line constant.

また、本発明の保護制御計測装置は、測定対象とする、回線に分岐がなく、第1の送電線と第2の送電線が鉄塔の左右に対称配置された平行2回線の送電線路の両端に設置され送電線両端の電気量を取り込む電気量取込手段と、前記電気量取込手段における電気量取り込みを同時刻に行うための時刻同期手段と、前記線路をπ型等価回路または分布定数回路として、前記電気量取込手段において取り込んだ、少なくとも1つの時点の零相成分の電気量を含む電気量から線路の定数を、第1の送電線と第2の送電線の全ての相配置が一致する場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa相を含む欠相とb相を含む欠相とc相を含む欠相とする条件と、数3、数4及び数6に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置が不一致の場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa、b、cいずれかの相を含む欠相とする条件と、数3、数4及び数6に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置のうち1相のみ相配置が一致する場合、コモンラインの条件を零相電圧とa又はc相を含む欠相とし、ディファレンシャルラインの条件をa又はc相を含む欠相とc相を含む欠相とする条件と、数3、数4及び数6に示す式とに基づいて、アドミッタンス及びインピーダンス行列として算出する線路定数算出手段とを備える。
In addition, the protection control measuring device of the present invention has both ends of a parallel two-line power transmission line in which the circuit is not branched and the first power transmission line and the second power transmission line are symmetrically arranged on the left and right of the steel tower. An electric quantity capturing means for capturing the electric quantity at both ends of the transmission line installed in the power supply, a time synchronization means for performing the electric quantity capturing in the electric quantity capturing means at the same time, and the line as a π-type equivalent circuit or a distributed constant As a circuit, the constant of the line is calculated from the electric quantity including the electric quantity of the zero-phase component at at least one time taken in by the electric quantity taking-in means, and all the phase arrangements of the first transmission line and the second transmission line are arranged. , The common line condition is a zero-phase voltage, the differential line condition is an open phase including an a phase, an open phase including a b phase, and an open phase including a c phase. And based on the equation shown in Equation 6
When all the phase arrangements of the first transmission line and the second transmission line are inconsistent, the common line condition is a zero-phase voltage, and the differential line condition is an open phase including any one of a, b, and c. Based on the conditions to be performed and the equations shown in Equations 3, 4, and 6,
When the phase arrangement of only one phase is the same among all the phase arrangements of the first transmission line and the second transmission line, the common line condition is the open phase including the zero-phase voltage and the a or c phase, and the differential line Line constant calculating means for calculating as an admittance and impedance matrix based on the condition that the condition is an open phase including the a or c phase and the open phase including the c phase, and the equations shown in the equations (3), (4), and (6) Is provided.

特に、前記線路定数算出手段は、次の構成を有することを特徴とする。
(1) 平行2回線の送電線路をコモンモードとディファレンシャルモードにモード分解する1回線送電線モデル化処理部。
(2) 2つの1回線送電線モデルのそれぞれについて、線路定数を算出する1回線送電線モデル線路定数算出処理部。
(3) 2つの1回線送電線モデルとして算出した線路定数を、モード合成によって平行2回線送電線モデルに復元する2回線送電線モデル復元化処理部。
In particular, the line constant calculating means has the following configuration.
(1) One-line transmission line modeling processing unit that mode-divides parallel two-line transmission lines into common mode and differential mode.
(2) A one-line transmission line model line constant calculation processing unit that calculates a line constant for each of the two one-line transmission line models.
(3) A two-line transmission line model restoration processing unit for restoring line constants calculated as two one-line transmission line models into a parallel two-line transmission line model by mode synthesis.

本発明によれば、平行2回線送電線において、測定対象とする線路の両端で同時刻に零相分を含んだ電気量を取り込み、その電気量に基づいて線路定数をアドミッタンス及びインピーダンス行列として算出することが可能となり、従来技術に比較して、簡単かつ正確に線路定数を得ることができる。特に、零相分の検出は、必ずしも送電線内部事故に限らず検出が可能であることから、本発明によれば、事故時以外における線路定数の算出を容易に実施できる。   According to the present invention, in a parallel two-line transmission line, the amount of electricity including the zero phase component is taken in at both ends of the line to be measured at the same time, and the line constant is calculated as an admittance and impedance matrix based on the amount of electricity. As compared with the prior art, the line constant can be obtained easily and accurately. In particular, detection of the zero-phase component is not necessarily limited to an accident inside the transmission line, and can be detected. Therefore, according to the present invention, it is possible to easily calculate the line constant other than at the time of the accident.

本発明の実施例1の全体構成を示す配置図。1 is a layout diagram showing the overall configuration of Embodiment 1 of the present invention. 実施例1における送電線の配置例を示す正面図。FIG. 3 is a front view illustrating an example of arrangement of power transmission lines in the first embodiment. 実施例1における保護制御計測装置の内部構成を示すブロック図。1 is a block diagram showing an internal configuration of a protection control measurement device in Embodiment 1. FIG. 実施例1の動作を説明するフローチャート。3 is a flowchart for explaining the operation of the first embodiment. 実施例2の動作を説明するフローチャート。9 is a flowchart for explaining the operation of the second embodiment. 実施例3の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the third embodiment. 実施例4における保護制御計測装置のブロック図。The block diagram of the protection control measuring device in Example 4. FIG. 実施例4の事故時の電圧電流波形を示す波形図。The wave form diagram which shows the voltage current waveform at the time of the accident of Example 4. FIG. 実施例4の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the fourth embodiment. 実施例5における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to a fifth embodiment. 実施例5の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the fifth embodiment. 実施例6における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to a sixth embodiment. 実施例6の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the sixth embodiment. 実施例7における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to a seventh embodiment. 実施例7の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the seventh embodiment. 実施例8における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to an eighth embodiment. 実施例8の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the eighth embodiment.

本発明の実施形態を下記の実施例に従って説明する。   Embodiments of the present invention will be described according to the following examples.

(構成)
図1は、実施例1に係る送電線定数測定方法を組み込んだ保護制御計測装置110の全体構成を示す配置図である。101A,101B,101Cは第1の被定数測定送電線、102A,102B,102Cは第2の被定数測定送電線を示している。1031,1032は変流器、1041,1042は計器用変圧器である。105はA電気所とB電気所の保護制御計測装置を結ぶ通信回線である。図2に示すように、第1の被定数測定送電線1および第2の被定数測定送電線2の送電線は、鉄塔の左右に対称形に振り分けて配置されている。
(Constitution)
FIG. 1 is a layout diagram illustrating the overall configuration of a protection control measurement device 110 incorporating a transmission line constant measurement method according to a first embodiment. Reference numerals 101A, 101B, and 101C denote first constant constant measurement transmission lines, and 102A, 102B, and 102C denote second constant measurement power transmission lines. Reference numerals 1031 and 1032 denote current transformers, and 1041 and 1042 denote instrument transformers. Reference numeral 105 denotes a communication line that connects the protection control measuring devices of the A and B electric stations. As shown in FIG. 2, the transmission lines of the first constant measurement transmission line 1 and the second constant measurement transmission line 2 are arranged symmetrically on the left and right of the steel tower.

保護制御計測装置110の内部構成を図3に示す。電気所A,Bにそれぞれ設けられた保護制御計測装置110は、運用状態にある送電線101A,101B,101Cおよび102A,102B,102C両端の電流、電圧の瞬時値を一定時間間隔でサンプリングする電気量取込手段111を有する。この電気量取込手段111は、取り込んだ電気量をディジタル信号に変換後、メモリに記録する。   The internal configuration of the protection control measuring device 110 is shown in FIG. The protection control measuring device 110 provided at each of the electric stations A and B is an electric device that samples instantaneous values of currents and voltages at both ends of the transmission lines 101A, 101B, 101C and 102A, 102B, 102C in an operating state at regular intervals. A quantity taking-in means 111 is provided. The electric quantity taking-in means 111 converts the taken-in electric quantity into a digital signal and records it in a memory.

電気量取込手段111には、GPSの絶対時刻信号を利用した時刻同期手段112からの時刻情報も入力される。すなわち、第1及び第2の被定数測定送電線1,2の定数測定のためには、各送電線両端の装置110において、同時刻にデータをサンプリングする必要がある。そのため、両端の保護制御計測装置110において、その内部クロックの時刻を、GPSの絶対時刻信号に基づいて、時刻同期手段112を用いて高精度に合わせる。保護制御計測装置110ではこのクロックに従い、送電線両端の電流、電圧の瞬時値を一定時間間隔でサンプリングする。   Time information from the time synchronizer 112 using the GPS absolute time signal is also input to the electric quantity take-in means 111. That is, in order to measure the constants of the first and second constant-measurement transmission lines 1 and 2, it is necessary to sample data at the same time in the devices 110 at both ends of each transmission line. Therefore, in the protection control measuring devices 110 at both ends, the time of the internal clock is adjusted with high accuracy using the time synchronization means 112 based on the absolute time signal of GPS. In accordance with this clock, the protection control measuring device 110 samples instantaneous values of current and voltage at both ends of the transmission line at regular time intervals.

電気量取り込み手段111内のメモリに記録した送電線両端の電流、電圧データは、2回線送電線線路定数算出手段113(以下、線路定数算出手段と呼ぶ)で、後述する方法に従って演算する。なお、相手端子の電流、電圧は、通信回線105を利用して自端子の電気量取込手段111に入る。   The current and voltage data at both ends of the transmission line recorded in the memory in the electric quantity capturing unit 111 are calculated by a two-line transmission line line constant calculation unit 113 (hereinafter referred to as a line constant calculation unit) according to a method described later. The current and voltage of the counterpart terminal enter the self-quantity taking-in means 111 of the own terminal using the communication line 105.

線路定数算出手段113は、少なくともひとつの時点の電流、電圧内に零相分が含まれる場合において、アドミッタンス行列とインピーダンス行列を求める。そのため、前記保護制御計測装置110は零相分検出手段114を備えている。すなわち、非特許文献1に記載されているように、不平衡2回線送電線の線路定数を得る為には少なくとも3回の測定が必要であり、下表のような条件のデータを必要とすることが既に分かっている。   The line constant calculation unit 113 obtains an admittance matrix and an impedance matrix when the zero-phase component is included in the current and voltage at at least one time point. Therefore, the protection control measuring device 110 includes a zero phase detection means 114. That is, as described in Non-Patent Document 1, at least three measurements are required to obtain the line constant of an unbalanced two-line transmission line, and data with conditions as shown in the table below is required. I already know that.

Figure 0005834308
Figure 0005834308

このように平行2回線送電線の線路定数を求めるには、少なくともひとつの時点の電流、電圧の零相成分が必要である。そこで、本実施例では、保護制御計測装置110内に零相分検出手段114を組込んである。   Thus, in order to obtain the line constant of the parallel two-line transmission line, the zero-phase component of the current and voltage at at least one time point is required. Therefore, in this embodiment, the zero phase detection means 114 is incorporated in the protection control measurement device 110.

さらに、本実施例においては、前記線路定数算出手段113が、次の3つの手段を備えている。
(1) 平行2回線の送電線路をコモンモードとディファレンシャルモードにモード分解する1回線送電線モデル化処理部
(2) 2つの1回線送電線モデルのそれぞれについて、線路定数を算出する1回線送電線モデル線路定数算出処理部
(3) 2つの1回線送電線モデルとして算出した線路定数を、モード合成によって平行2回線送電線モデルに復元する2回線送電線モデル復元化処理部
Further, in the present embodiment, the line constant calculation means 113 includes the following three means.
(1) One-line transmission line modeling processing unit that mode-divides parallel two-line transmission lines into common mode and differential mode
(2) One-line transmission line model line constant calculation processing unit for calculating the line constant for each of the two one-line transmission line models
(3) Two-line transmission line model restoration processing unit that restores line constants calculated as two single-line transmission line models to parallel two-line transmission line models by mode synthesis

(作用)
次に、本実施例の作用を説明する。まず、ステップS1にてt1時点での電気量を取り込む。この電気量はとくに零相分を含む必要はないことから、任意の時点で取り込んだ電気量でよい。次にステップS2で零相分を含む電圧あるいは電流が発生しているか監視を行う。
(Function)
Next, the operation of this embodiment will be described. First, in step S1, the amount of electricity at time t1 is captured. Since the amount of electricity does not need to include the zero phase component, it may be the amount of electricity taken at an arbitrary time. Next, in step S2, it is monitored whether a voltage or current including the zero phase is generated.

具体的には電力系統保護で用いられる零相過電圧リレーあるいは零相過電流リレーを装置内に設けその動作の有無を確認することで実現できる。零相分が、たとえば送電線の外部あるいは内部の事故で発生すればこれらのリレーが動き、ステップS3でその際の時刻t2で電気量を取り込む。これによりアドミッタンス行列は求めることができる。さらに、インピーダンス行列を求めるには、適当な時刻t3でステップS4にて電気量を取り込み、以上から得られた全ての電気量を用いてステップS5にて線路定数の計算を行う。   Specifically, it can be realized by providing a zero-phase overvoltage relay or a zero-phase overcurrent relay used in power system protection in the apparatus and confirming the operation. If the zero-phase component occurs, for example, due to an accident outside or inside the transmission line, these relays move, and the amount of electricity is taken in at time t2 at that time in step S3. Thereby, the admittance matrix can be obtained. Further, in order to obtain the impedance matrix, the electric quantity is taken in at step S4 at an appropriate time t3, and the line constant is calculated in step S5 using all the electric quantities obtained from the above.

電力系統に零相成分が発生したタイミングで正確に電気量を取り込むことから、線路定数の計算精度をより向上することができる。   Since the electric quantity is accurately taken in at the timing when the zero phase component is generated in the power system, the calculation accuracy of the line constant can be further improved.

以下同様にしてステップSn(n≧2)まで同様にして電気量を取り込む。最後に、ステップSn+1において、線路定数算出手段113により、アドミッタンスおよびインピーダンス行列を求める。   In the same manner, the amount of electricity is taken in the same manner up to step Sn (n ≧ 2). Finally, in step Sn + 1, the admittance and impedance matrix are obtained by the line constant calculation means 113.

すなわち、ステップSn+1において、線路定数算出手段113に設けられた3つの処理部(1)〜(3) により、
(1) 1回線送電線モデル化処理、
(2) 1回線送電線モデル線路定数算出処理、
(3) 2回線送電線モデル復元化処理、
を順に行うことにより、自己インピーダンスYs,Zsおよび相互インピーダンスYm,Zmの未知数を得る。以下、これら処理について説明する。
That is, in step Sn + 1, the three processing units (1) to (3) provided in the line constant calculating unit 113
(1) One-line transmission line modeling process,
(2) Single line transmission line model line constant calculation processing,
(3) Two-line transmission line model restoration processing,
Are obtained in order to obtain unknowns of the self-impedances Ys and Zs and the mutual impedances Ym and Zm. Hereinafter, these processes will be described.

(1) 1回線送電線モデル化処理
図2に示すように、平行2回線送電線の送電線配置の相反性と物理的左右対称性から、送電線1Lおよび2Lの線路定数は完全に独立なものとはならず、インピーダンスZ=R+jX(Ω/km)とアドミタンスY=jB(Ω−1/km)は、以下の式で表される。
(1) One-line transmission line modeling process As shown in FIG. 2, the line constants of transmission lines 1L and 2L are completely independent from the reciprocity and physical symmetry of the transmission line arrangement of parallel two-line transmission lines. The impedance Z = R + jX (Ω / km) and the admittance Y = jB (Ω−1 / km) are not expressed by the following equations.

Figure 0005834308
Figure 0005834308

また、上図の平行2回線送電線両端の電気量は以下のベクトルで定義する。

Figure 0005834308
The quantity of electricity at both ends of the parallel two-line transmission line in the above figure is defined by the following vector.
Figure 0005834308

平行2回線送電線の線路定数を求める為に、送電線1Lと2Lが左右対称である性質を利用すると、次のモード分解行列が導かれる。

Figure 0005834308
If the property that the power transmission lines 1L and 2L are symmetrical is used in order to obtain the line constant of the parallel two-line power transmission line, the following mode decomposition matrix is derived.
Figure 0005834308

ここでUは3×3型の単位行列である。T−1によるモード分解計算をYとZに適用すると、以下の式が得られる。

Figure 0005834308
Here, U is a 3 × 3 unit matrix. When the mode decomposition calculation by T-1 is applied to Y and Z, the following equations are obtained.
Figure 0005834308

この結果からT−1を用いたモード分解(コモンモードとディファレンシャルモード)により、平行2回線送電線は下図のような二つの仮想的な1回線送電線(common Line と differential Line と呼ぶ)に分離することができる。   From this result, the parallel two-line transmission line is separated into two virtual one-line transmission lines (referred to as common line and differential line) as shown below by mode decomposition (common mode and differential mode) using T-1. can do.

Figure 0005834308
Figure 0005834308

以上より、2回線送電線の自己インピーダンスYs,Zsおよび相互インピーダンスYm,Zmを求める問題が、2つの1回線送電線の線路定数を求める問題に帰着できる。   From the above, the problem of obtaining the self-impedances Ys and Zs and the mutual impedances Ym and Zm of the two-line transmission lines can be reduced to the problem of obtaining the line constants of the two one-line transmission lines.

(2) 1回線送電線モデル線路定数算出処理
この1回線送電線モデルの線路定数を算出するには、種々な手段が採用できる。各種の線路定数の算出手段については、実施例2以降に具体的に説明する。
(2) Single-line transmission line model line constant calculation processing Various means can be adopted to calculate the line constant of this single-line transmission line model. Various line constant calculating means will be specifically described in the second and subsequent embodiments.

(3) 2回線送電線モデル復元化処理
式(B)により得られたYcL,ZcLおよびYdL,ZdLを以下の式でモード合成することにより、元の2回線送電線のインピーダンスY,Zを求めることができる。

Figure 0005834308
(3) Two-line transmission line model reconstruction processing YcL, ZcL and YdL, ZdL obtained by equation (B) are mode-combined by the following equation to obtain impedances Y and Z of the original two-line transmission line be able to.
Figure 0005834308

(効果)
本発明では、このようにして送電線が運用されている状態の異なる複数時点の電気量を取り込んで、2回線送電線線路を、上述のように、二つの仮想的な1回線送電線に見立てて、線路定数を算出することができる。その結果、平行2回線送電線を、仮想的に2つの1回線送電線モデルに置き換えることにより、1回線送電線の線路定数算出手段と同様の手段で、2回線送電線の線路定数を、算出することが可能となる。
(effect)
In the present invention, the amount of electricity at a plurality of points in time when the transmission line is operated in this way is taken in, and the two-line transmission line is regarded as two virtual one-line transmission lines as described above. Thus, the line constant can be calculated. As a result, by replacing the parallel two-line transmission line with two single-line transmission line models virtually, the line constant of the two-line transmission line is calculated by the same means as the line constant calculation means of the one-line transmission line. It becomes possible to do.

(構成)
実施例1の構成において、1回線送電線モデルの線路定数算出処理を行うにあたり、送電線をπ型等価回路モデルとして考える方法について示す。ここで送電線は、ねん架していないことを想定する。当然ながら以下得られる一般解は、ねん架している場合にもあてはまる。
(Constitution)
In the configuration of the first embodiment, a method for considering a transmission line as a π-type equivalent circuit model when performing a line constant calculation process of a one-line transmission line model will be described. Here, it is assumed that the transmission line is not suspended. Of course, the general solution obtained below also applies to the case where it is suspended.

Figure 0005834308
Figure 0005834308

(作用)
図5に実施例2の処理フローを示す。すなわち、図4のステップSn+1において、(2)の線路定数を算出するにあたり、線路定数を算出する1回線送電線モデルとして、π型等価回路モデルを適用したものである。
(Function)
FIG. 5 shows a processing flow of the second embodiment. That is, in step Sn + 1 of FIG. 4, in calculating the line constant of (2), a π-type equivalent circuit model is applied as a one-line transmission line model for calculating the line constant.

この場合、送電線両端の電流電圧の関係は以下で表せる。

Figure 0005834308
In this case, the relationship between the current and voltage at both ends of the transmission line can be expressed as follows.
Figure 0005834308

ただし各行列は、以下を満たすものとする。

Figure 0005834308
However, each matrix shall satisfy the following.
Figure 0005834308

上表のような電圧、電流データが得られた場合、以下の(D)式および(E)式を、線路定数算出手段で計算することでcLとdLの線路定数が得ることができ、線路全体の線路定数が得られることとなる。   When voltage and current data as shown in the table above are obtained, the following line constants (D) and (E) can be calculated by the line constant calculation means to obtain cL and dL line constants. The entire line constant is obtained.

Figure 0005834308
Figure 0005834308
Figure 0005834308
Figure 0005834308

(効果)
送電線をπ型等価回路モデルと考える方法を平行2回線送電線に適用することができ、従来の2回線送電線に設置する保護制御計測装置で必要であった送電線に関連する整定計算を大幅に省力化できる。
(effect)
The method of considering a transmission line as a π-type equivalent circuit model can be applied to a parallel two-line transmission line, and a settling calculation related to the transmission line required for a protection control measurement device installed on a conventional two-line transmission line can be performed. Significant labor saving.

(構成)
実施例3として、前記実施例1の構成において、送電線を下記のような分布定数回路と考える方法について示す。
(Constitution)
As a third embodiment, a method of considering a power transmission line as a distributed constant circuit as described below in the configuration of the first embodiment will be described.

Figure 0005834308
Figure 0005834308

(作用)
この実施例3は、前記実施例1で説明した処理のうち、1回線送電線モデルの線路定数算出処理ステップSn+1の「(2) 1回線送電線モデルの線路定数算出処理」において、線路定数を算出する1回線送電線モデルとして、分布定数回路モデルを適用したものである。
図6に実施例3の処理フローを示す。
(Function)
In the third embodiment, among the processes described in the first embodiment, the line constant is determined in “(2) Line constant calculation processing of one-line transmission line model” in the line constant calculation processing step Sn + 1 of the one-line transmission line model. A distributed constant circuit model is applied as a one-line transmission line model to be calculated.
FIG. 6 shows a processing flow of the third embodiment.

送電線を分布定数回路とすると、その単位長あたりのアドミッタンス、インピーダンスは以下であらわされる。

Figure 0005834308
When a transmission line is a distributed constant circuit, the admittance and impedance per unit length are expressed as follows.
Figure 0005834308

ただし、以下の式が成り立つとする。

Figure 0005834308
However, it is assumed that the following equation holds.
Figure 0005834308

これは2つの状態での測定データを用い、ガウスニュートン法で解くことでY,Zを求めることができる。この手順を線路定数算出手段113にて行う。   In this case, Y and Z can be obtained by using measurement data in two states and solving by the Gauss-Newton method. This procedure is performed by the line constant calculation means 113.

(効果)
本実施例は、前記図4の線路定数算出処理フローのステップSn+1「(2) 1回線送電線モデルの線路定数算出処理」に、(F)式、(G)式を適用したものであり、これにより前記実施例2と同様に線路定数を算出することができる。その結果、送電線を分布定数回路モデルと考える方法を平行2回線送電線に適用することができ、従来の2回線送電線に設置する保護制御計測装置で必要であった送電線に関連する整定計算を大幅に省力化できる。
(effect)
In this embodiment, Expression (F) and Expression (G) are applied to Step Sn + 1 “(2) Line Constant Calculation Process for One-Line Transmission Line Model” of the line constant calculation process flow of FIG. As a result, the line constant can be calculated in the same manner as in the second embodiment. As a result, the method of considering the transmission line as a distributed constant circuit model can be applied to the parallel two-line transmission line, and the settling related to the transmission line required in the conventional protection control measuring device installed in the two-line transmission line. The calculation can be saved greatly.

(構成)
実施例4の構成を図7に示す。前記実施例3に対して、零相分検出手段114の具体例として、送電線事故状態検出手段115を設ける。なお、他の構成は、実施例1〜3と同様である。
(Constitution)
The configuration of Example 4 is shown in FIG. In contrast to the third embodiment, a transmission line accident state detection unit 115 is provided as a specific example of the zero phase component detection unit 114. Other configurations are the same as those in the first to third embodiments.

実施例4においては、送電線事故状態検出手段115を用いて、対象送電線内に事故が発生しているか、あるいは事故を検出した保護リレーの動作か、あるいは系統操作により遮断器が開放している期間であることを検出する。   In the fourth embodiment, the circuit breaker is opened by using the transmission line accident state detection means 115, whether an accident has occurred in the target transmission line, the operation of the protection relay that detected the accident, or the system operation. It is detected that it is a period.

具体的には、送電線内部事故を検出する電流差動リレー、距離リレーあるいは回線選択リレーなど、選択性のあるリレーの出力を送電線事故状態検出手段115の入力とすることで送電線内部に事故が発生していることを検出できる。   Specifically, an output of a selective relay such as a current differential relay, a distance relay, or a line selection relay that detects an accident inside the transmission line is used as an input of the transmission line accident state detection means 115 to enter the inside of the transmission line. It is possible to detect that an accident has occurred.

(作用)
本実施例における電流電圧事故波形のタイムチャートを図8に示す。t1時点は事故発生前の電気量、t2時点は送電線内部の事故発生時の電気量、t3時点は事故検出後遮断器が送電線を開放し再閉路するまでの電気量、t4時点は系統事故が復旧した電気量を示す。
(Function)
FIG. 8 shows a time chart of the current-voltage accident waveform in this example. The amount of electricity before the occurrence of the accident at the time t1, the amount of electricity at the time of the occurrence of the accident inside the transmission line at the time t2, the amount of electricity until the circuit breaker opens and recloses the transmission line after the detection of the accident at the time t3, the system at the time t4 Indicates the amount of electricity recovered from the accident.

本実施例の動作フローチャートを図9に示す。この図9の各ステップを、前記図8に示した各時刻の電気量と対比して説明する。図9のステップS1が、図8の事故発生前t1時点の電気量取込に対応し、図9のステップS1が、図8の事故発生前t1時点の電気量取込みに対応する。ステップ2では、送電線内部事故が発生したか否かを前記送電線事故状態検出手段115によって検出し、事故が発生した場合に、次のステップS3において事故発生時点であるt2時点の電気量取込みを行う。   An operation flowchart of the present embodiment is shown in FIG. Each step of FIG. 9 will be described in comparison with the amount of electricity at each time shown in FIG. Step S1 in FIG. 9 corresponds to the electric quantity taking in at time t1 before the occurrence of the accident in FIG. 8, and step S1 in FIG. 9 corresponds to electric quantity taking in at the time t1 before the occurrence of the accident in FIG. In step 2, whether or not a power line internal accident has occurred is detected by the power line accident state detection means 115, and when an accident has occurred, the amount of electricity taken in at time t2, which is the time when the accident occurred, in the next step S3. I do.

その後、ステップS4にて、事故検出後遮断器が送電線を開放し再閉路するまでのt3時点での電気量の取込みを行う。ステップ5では、送電線事故状態検出手段115によって遮断器の状態を本実施例の装置に取込むことで、送電線内部事故の継続あるいは復旧を判定する。ステップ5において送電線内部事故の復旧を判定した場合は、ステップS6において系統事故復旧したt4時点の電気量の取込みを行う。その後、ステップS7において、線路定数算出手段113により得られた全ての電気量を用いて線路定数の計算を行う。   Thereafter, in step S4, the amount of electricity is taken in at time t3 until the circuit breaker opens the power transmission line and closes again after the accident is detected. In step 5, the state of the circuit breaker is taken into the apparatus of the present embodiment by the transmission line accident state detection means 115 to determine whether or not the transmission line internal accident is continued or recovered. When it is determined in step 5 that the power line internal accident has been recovered, the amount of electricity at time t4 when the system accident is recovered in step S6 is taken. Thereafter, in step S7, the line constant is calculated using all the electric quantities obtained by the line constant calculating means 113.

(効果)
本実施例によれば、送電線内部事故中あるいは復旧中の電気量を取り込むことで、零相成分を含む電気量を利用できることから、線路定数算出手段の演算精度が向上することが期待できる。なお、系統事故中あるいは復旧中に線路定数を算出できた場合に、その時点で該当する保護リレーの整定値を変更することは、本装置の演算処理速度が速くなれば可能となる。
(effect)
According to the present embodiment, it is expected that the calculation accuracy of the line constant calculation means is improved because the amount of electricity including the zero-phase component can be used by taking in the amount of electricity during the power line internal accident or recovery. If the line constant can be calculated during a system fault or recovery, the set value of the corresponding protection relay can be changed at that time if the calculation processing speed of the apparatus increases.

(構成)
実施例5の構成を図10に示す。この実施例5は、前記実施例1の変形例であって、線路定数算出手段113において算出した線路定数が、予め定めた範囲内に入っていない場合は、算出結果を破棄する線路定数検定手段116を設けたものである。すなわち、線路定数算出手段113は、実施例1乃至実施例3に示す式を用いるが、取り込んだ電気量によって演算誤差が大きくなる、あるいは演算が収束せずに物理的にありえない値を算出結果とする可能性がある。そこで、この実施例5では、あらかじめ物理的にありえる線路定数の範囲を線路定数検定手段116内に組み込んでおく。
(Constitution)
The configuration of Example 5 is shown in FIG. The fifth embodiment is a modification of the first embodiment, and when the line constant calculated by the line constant calculation means 113 is not within a predetermined range, the line constant verification means discards the calculation result. 116 is provided. That is, the line constant calculation unit 113 uses the expressions shown in the first to third embodiments, but the calculation error becomes large depending on the amount of electricity taken in, or the calculation does not converge and the value that is physically impossible is calculated as the calculation result. there's a possibility that. Therefore, in the fifth embodiment, a range of line constants that can be physically present is incorporated in the line constant test means 116 in advance.

(作用)
このような構成を有する実施例5では、図11に示すフローチャートのステップ1からステップSn+1のように、前記実施例1と同様にして、線路定数であるアドミッタンス及びインピーダンス行列を求める。その後、ステップSn+2において、線路定数算出手段113からの結果を線路定数検定手段116に入力して、計算で得られた線路定数の値が予め設定された範囲内にあるか否かを検定する。検定結果が、範囲内である場合には、ステップSn+3において算出された線路定数を確定し、範囲外である場合は、ステップSn+4において算出結果を破棄する。
(Function)
In the fifth embodiment having such a configuration, the admittance and impedance matrix, which are line constants, are obtained in the same manner as in the first embodiment as in steps 1 to Sn + 1 in the flowchart shown in FIG. Thereafter, in step Sn + 2, the result from the line constant calculation means 113 is input to the line constant verification means 116, and it is verified whether or not the value of the line constant obtained by the calculation is within a preset range. When the test result is within the range, the line constant calculated at step Sn + 3 is determined, and when it is out of the range, the calculation result is discarded at step Sn + 4.

なお、線路定数算出処理は、前記実施例2あるいは実施例3に示す式を用いるが、取り込んだ電気量によって演算誤差が大きくなる、あるいは演算が収束せずに、物理的にありえない値を算出結果とする可能性がある。そこで、あらかじめ物理的にありえる線路定数の範囲を事前に線路定数検定手段116内に組み込んでおく。   The line constant calculation process uses the equation shown in the second embodiment or the third embodiment, but the calculation error increases depending on the amount of electricity taken in, or the calculation does not converge and the physically impossible value is calculated. There is a possibility. Therefore, the range of the line constant that can be physically present in advance is incorporated in the line constant test means 116 in advance.

線路定数検定手段116からの結果を検定し、範囲外である場合は、算出結果を破棄する。ステップSn+1の線路定数算出手段によりアドミタンスおよびインピーダンス行列を求める。得られた結果より線路定数の検定をステップSn+2で行い、線路定数の範囲外である場合は、算出結果を破棄する。   The result from the line constant verification means 116 is verified, and if it is out of the range, the calculation result is discarded. The admittance and impedance matrix are obtained by the line constant calculating means in step Sn + 1. From the obtained result, the line constant is verified in step Sn + 2, and if it is outside the range of the line constant, the calculation result is discarded.

(効果)
このように実施例5においては、演算誤差や収束しない演算結果を排除することが可能になるので、高精度な線路定数を求めることが可能となる。
(effect)
As described above, in the fifth embodiment, calculation errors and calculation results that do not converge can be eliminated, so that a highly accurate line constant can be obtained.

(構成)
図12は保護制御計測装置110を送電線の故障点標定装置とした実施例6の構成を示す。すなわち、本発明の保護制御計測装置110に公知の故障点評定手段117を組み込み、この故障点評定手段117に線路定数算出手段113によって得られた線路定数を、電気量取込手段111で取得した各時点の電気量と共に入力するものである。
(Constitution)
FIG. 12 shows a configuration of the sixth embodiment in which the protection control measuring device 110 is a power line failure point locating device. That is, a known failure point rating means 117 is incorporated in the protection control measuring device 110 of the present invention, and the line constant obtained by the line constant calculation means 113 is acquired in the failure point rating means 117 by the electric quantity capturing means 111. It is input together with the amount of electricity at each time point.

(作用)
このような構成の実施例6の動作は、図13のフローチャートに示すように、ステップS1からステップSn+1までは前述までの実施例と同じである。その後、ステップSn+1の線路定数算出手段113の算出結果を故障点標定機能117に入力し、ステップSn+2では、故障点評定手段117が線路定数算出手段113の出力を用いて故障点評定の整定値を補正あるいは再設定する。
(Function)
The operation of the sixth embodiment having such a configuration is the same as that of the previous embodiments from step S1 to step Sn + 1 as shown in the flowchart of FIG. Thereafter, the calculation result of the line constant calculation unit 113 in step Sn + 1 is input to the failure point location function 117. In step Sn + 2, the failure point evaluation unit 117 uses the output of the line constant calculation unit 113 to set the set value of the failure point evaluation. Correct or reset.

(効果)
故障点標定のアルゴリズムは種々提案されてきており距離リレーのように線路のインピーダンスを測距するもの、電流の分布を求めるものなどがあるが、いずれも正しい線路の定数が必要となる。
(effect)
Various fault location algorithms have been proposed, such as those that measure line impedance, such as distance relays, and those that obtain current distribution, all of which require correct line constants.

従来の故障点標定装置では、線路定数を求めるために前述したCarson-Polarczhek法を利用した計算をコンピュータでオフラインで行い装置の運用開始前に整定していた。運用後は整定変更を行わずに固定で運用するのが一般的であった。本実施例によれば、事前に従来方法で整定しておいた場合でも、運用後に実際の潮流から線路定数が求められ再整定を自動的に行えることから、精度の高い故障点標定装置を得ることができる。   In the conventional fault location device, the calculation using the Carson-Polarczhek method described above is performed off-line with a computer to determine the line constant, and is set before the operation of the device is started. After operation, it was common to operate with no settling change. According to the present embodiment, even when the conventional method is set in advance, the line constant is obtained from the actual power flow after operation, and re-setting can be performed automatically, so that a highly accurate fault location device is obtained. be able to.

また従来のCarson-Polarczhek法を利用した計算は線路の幾何学的な配置を入力する必要があり、また周囲温度、大地の導電率などを推測で入力する必要があったことから経済性、信頼性の課題があったが、本実施例によれば、運用開始前に労力をかけて線路定数を求める必要がなくなるとともに、運用中の周囲の環境変化を時々刻々適応的に反映しながら線路定数が算出できることから大幅に経済性、信頼性が向上する。   In addition, calculation using the conventional Carson-Polarczhek method requires input of the geometrical layout of the line, and input of the ambient temperature, ground conductivity, etc., has to be made by estimation. However, according to this embodiment, it is not necessary to calculate the line constant before starting operation, and the line constant can be reflected while adaptively reflecting changes in the surrounding environment during operation. Therefore, economic efficiency and reliability are greatly improved.

なお、故障点標定装置には、相手端子からの電流を自端子に取込んで標定演算を行う上述のもの以外に、各端子の時刻同期した電気量データを中央の演算装置に集約し、演算装置で故障点標定演算を行うものもある。この場合は、上述の線路定数算出手段113、この中央の演算装置に置くことになるが、その効果は上述の例と同等である。   In addition to the above-mentioned one that takes the current from the other terminal into its own terminal and performs the orientation calculation, the failure point locating device aggregates the time-synchronized electricity quantity data into the central processing unit and calculates Some devices perform fault location calculations. In this case, the line constant calculation unit 113 is placed in the central arithmetic unit, but the effect is equivalent to the above example.

(構成)
図14は、保護制御計測装置110を送電線の保護を行う距離リレー装置とした実施例8の構成を示す。すなわち、本発明の保護制御計測装置110に公知の距離リレー118を組み込み、この距離リレー118に線路定数算出手段113によって得られた線路定数を、電気量取込手段111で取得した各時点の電気量と共に入力するものである。
(Constitution)
FIG. 14 shows a configuration of an eighth embodiment in which the protection control measurement device 110 is a distance relay device that protects a transmission line. That is, a known distance relay 118 is incorporated in the protection control measuring device 110 of the present invention, and the line constant obtained by the line constant calculation means 113 is obtained in the distance relay 118 by the electric quantity capturing means 111. It is input with quantity.

(作用)
このような構成の実施例7の動作は、図15のフローチャートに示すように、ステップS1からステップSn+1までは前述までの実施例と同じである。その後、ステップSn+1の線路定数算出手段113の算出結果を距離リレー118に入力し、ステップSn+2では、距離リレー118が線路定数算出手段113の出力を用いて距離リレー118の線路定数に関わる整定値を補正あるいは再設定する。
(Function)
The operation of the seventh embodiment having such a configuration is the same as that of the previous embodiments from step S1 to step Sn + 1 as shown in the flowchart of FIG. Thereafter, the calculation result of the line constant calculation unit 113 in step Sn + 1 is input to the distance relay 118. In step Sn + 2, the distance relay 118 uses the output of the line constant calculation unit 113 to set a set value related to the line constant of the distance relay 118. Correct or reset.

(効果)
距離リレーのアルゴリズムは種々提案されてきているが、いずれも正しい線路の定数が必要となる。従来の距離リレーでは、線路定数を求めるために前述したCarson-Polarczhek法を利用した計算をコンピュータでオフラインで行うか、あるいは送電線建設時に実測をしたデータを用いるかなどして装置の運用開始前に動作範囲を整定していた。運用後は、整定変更を行わずに固定で運用するのが一般的であった。本実施例によれば、事前に従来方法で整定しておいた場合でも、運用後に実際の潮流から線路定数が求められ再整定を自動的に行えることから精度の高い距離リレーを得ることができる。
(effect)
Various distance relay algorithms have been proposed, but all require correct line constants. In conventional distance relays, the calculation using the Carson-Polarczhek method described above to calculate the line constant is performed off-line with a computer, or data measured during construction of the transmission line is used before starting the operation of the equipment. The operating range was set to After operation, it was common to operate with no change of setting. According to the present embodiment, even when the conventional method is set in advance, the line constant is obtained from the actual power flow after the operation and re-settling can be automatically performed, so that a highly accurate distance relay can be obtained. .

また従来のCarson-Polarczhek法を利用した計算は線路の幾何学的な配置を入力する必要があり、また周囲温度、大地の導電率などを推測で入力する必要があったことから経済性、信頼性の課題があり、建設時に実測する場合も印加用電源などの準備が必要であったが、本実施例によれば、運用開始前に労力をかけて線路定数を求める必要がなくなるとともに、運用中の周囲の環境変化を時々刻々適応的に反映しながら線路定数が算出できることから大幅に経済性、信頼性が向上する。   In addition, calculation using the conventional Carson-Polarczhek method requires input of the geometrical layout of the line, and input of the ambient temperature, ground conductivity, etc., has to be made by estimation. However, according to the present example, it is not necessary to calculate the line constant before starting operation, and it is not necessary to prepare the line constant. Since the line constant can be calculated while adaptively reflecting changes in the surrounding environment, the economy and reliability are greatly improved.

(構成)
図16は、本発明の保護制御計測装置110を送電線の保護を行う電流差動リレー装置とした場合の構成である。すなわち、本発明の保護制御計測装置110に充電電流補償機能を有する電流差動リレー119を組み込み、この電流差動リレー119に対して線路定数算出手段113によって得られた線路定数を、電気量取込手段111で取得した各時点の電気量と共に入力するものである。
(Constitution)
FIG. 16 shows a configuration when the protection control measurement device 110 of the present invention is a current differential relay device that protects a power transmission line. In other words, a current differential relay 119 having a charging current compensation function is incorporated in the protection control measuring device 110 of the present invention, and the line constant obtained by the line constant calculating means 113 for the current differential relay 119 is obtained as an electric quantity. It is input together with the amount of electricity at each time point acquired by the insertion means 111.

(作用)
このような構成の実施例8の動作は、図17のフローチャートに示すように、ステップS1からステップSn+1までは前述までの実施例と同じである。その後、ステップSn+1の線路定数算出手段113の算出結果を電流差動リレー119に入力し、ステップSn+2では、電流差動リレー119が線路定数算出手段113の出力を用いて、充電電流の補償値を補正あるいは再設定する。
(Function)
The operation of the eighth embodiment having such a configuration is the same as that of the previous embodiments from step S1 to step Sn + 1 as shown in the flowchart of FIG. Thereafter, the calculation result of the line constant calculation unit 113 in step Sn + 1 is input to the current differential relay 119. In step Sn + 2, the current differential relay 119 uses the output of the line constant calculation unit 113 to calculate the compensation value of the charging current. Correct or reset.

(効果)
従来、長距離送電線やケーブル系の保護を行う電流差動リレーの整定には、送電線の充電電流を補償した整定を行うのが一般的であり、線路のアドミッタンスと端子の電圧から充電電流を求めていた。アドミッタンスの計算は、前述の例のように線路の幾何学的配置から求められていたが、労力が多く精度にも課題があった。本実施例によれば、事前に従来方法で整定しておいた場合でも、運用後に実際の線路アドミッタンスから充電電流が求められ、再整定を自動的に行えることから、精度の高い電流差動リレーを得ることができる。
(effect)
Conventionally, the current differential relay that protects long-distance transmission lines and cable systems is generally set by compensating for the charging current of the transmission line. The charging current is determined from the line admittance and the terminal voltage. I was looking for. The calculation of the admittance has been obtained from the geometrical arrangement of the lines as in the above example, but it has been labor intensive and has a problem in accuracy. According to the present embodiment, even when the current method is set in advance, the charging current is obtained from the actual line admittance after the operation, and the re-setting can be automatically performed. Can be obtained.

また、従来のCarson-Polarczhek法を利用した計算は、線路の幾何学的な配置を入力する必要があり、かつ周囲温度、大地の導電率などを推測で入力する必要があったことから経済性、信頼性の課題があった。さらに、建設時に実測する場合も印加用電源などの準備が必要であった。本実施例によれば、運用開始前に労力をかけて充電電流を求める必要がなくなるとともに、運用中の周囲の環境変化を時々刻々適応的に反映しながら線路定数が算出できることから、大幅に経済性、信頼性が向上する。   In addition, the calculation using the conventional Carson-Polarczhek method requires economic input because it is necessary to input the geometrical layout of the line and to input the ambient temperature, ground conductivity, etc. There was a reliability issue. Furthermore, preparations such as a power supply for application were also required when actually measuring at the time of construction. According to this embodiment, it is not necessary to calculate the charging current with effort before starting operation, and the line constant can be calculated while adaptively reflecting the surrounding environmental changes during operation. And reliability are improved.

101A,101B,101C:送電線1
102A,102B,102C:送電線2
1031:変流器1
1032:変流器2
1041:計器用変圧器1
1042:計器用変圧器2
105:通信回線
110:保護制御計測装置
111:電気量取込手段
112:時刻同期手段
113:2回線送電線線路定数算出手段
114:零相分検出手段
115:送電線事故状態検出手段
116:線路定数検定手段
117:故障点標定手段
118:距離リレー
119:差動リレー
101A, 101B, 101C: Transmission line 1
102A, 102B, 102C: Transmission line 2
1031: Current transformer 1
1032: Current transformer 2
1041: Instrument transformer 1
1042: Instrument transformer 2
105: Communication line 110: Protection control measuring device 111: Electric quantity take-in means 112: Time synchronization means 113: Two-line transmission line line constant calculation means 114: Zero-phase component detection means 115: Transmission line accident state detection means 116: Line Constant test means 117: Fault location means 118: Distance relay 119: Differential relay

Claims (12)

回線に分岐がなく、第1の送電線と第2の送電線が鉄塔の左右に対称配置された平行2回線の送電線路の定数を測定する線路定数測定方法において、
平行2回線の送電線路のそれぞれについて、定常運用における少なくとも2つ以上の異なる時点で取り込んだ電気量と、少なくとも1つの時点の零相成分の電気量とを線路定数算出手段の入力とし、
線路定数算出手段において、
第1の送電線と第2の送電線の全ての相配置が一致する場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa相を含む欠相とb相を含む欠相とc相を含む欠相とする条件と、数15及び数16に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置が不一致の場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa、b、cいずれかの相を含む欠相とする条件と、数15及び数16に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置のうち1相のみ相配置が一致する場合、コモンラインの条件を零相電圧とa又はc相を含む欠相とし、ディファレンシャルラインの条件をa又はc相を含む欠相とc相を含む欠相とする条件と、数15及び数16に示す式とに基づいて、平行2回線の送電線路をコモンモードとディファレンシャルモードにモード分解することで1回線の送電線路モデルとして取り扱い、2つの1回線送電線モデルとして算出した線路定数を、モード合成によって平行2回線送電線モデルに復元することで、平行2回線送電線の線路定数を算出することを特徴とする線路定数測定方法。
<モード分解>
Figure 0005834308
<モード合成>
Figure 0005834308
In a line constant measuring method for measuring a constant of a parallel two-line transmission line in which the line has no branch and the first transmission line and the second transmission line are symmetrically arranged on the left and right of the steel tower ,
For each of the two parallel transmission lines, the amount of electricity taken in at least two different time points in steady operation and the amount of electricity in the zero phase component at least one time point are input to the line constant calculation means,
In the line constant calculation means,
When all phase arrangements of the first transmission line and the second transmission line match, the common line condition is a zero-phase voltage, and the differential line condition is an open phase including an a phase and an open phase including a b phase. Based on the conditions for phase loss including the c phase and the equations shown in Equations 15 and 16,
When all the phase arrangements of the first transmission line and the second transmission line are inconsistent, the common line condition is a zero-phase voltage, and the differential line condition is an open phase including any one of a, b, and c. Based on the conditions to be performed and the equations shown in Equations 15 and 16,
When the phase arrangement of only one phase is the same among all the phase arrangements of the first transmission line and the second transmission line, the common line condition is the open phase including the zero-phase voltage and the a or c phase, and the differential line Modal decomposition of parallel two-line transmission lines into common mode and differential mode based on the condition that the phase is an open phase including the a or c phase and the open phase including the c phase, and the equations shown in the equations 15 and 16. By treating the line constants calculated as two single-line transmission line models into a parallel two-line transmission line model by mode synthesis, the line constants of the parallel two-line transmission lines are A line constant measuring method characterized by calculating.
<Mode decomposition>
Figure 0005834308
<Mode composition>
Figure 0005834308
前記線路定数算出手段において、平行2回線の送電線路モデルとしてπ型等価回路モデルを用い、線路定数の算出にあたり以下の式を用いることを特徴とする請求項1の線路定数測定方法。
Figure 0005834308
The line constant measuring method according to claim 1, wherein the line constant calculating means uses a π-type equivalent circuit model as a parallel two-line transmission line model, and uses the following equation for calculating the line constant.
Figure 0005834308
前記線路定数算出手段において、平行2回線の送電線路モデルとして分布定数回路モデルを用い、線路定数の算出にあたり以下の式を用いることを特徴とする請求項1の線路定数測定方法。
Figure 0005834308
2. The line constant measuring method according to claim 1, wherein the line constant calculating means uses a distributed constant circuit model as a transmission line model of two parallel lines, and uses the following equation for calculating the line constant.
Figure 0005834308
測定対象とする、回線に分岐がなく第1の送電線と第2の送電線が鉄塔の左右に対称配置された平行2回線の送電線路の両端に設置され送電線両端の電気量を取り込む電気量取込手段と、
前記電気量取込手段における電気量取り込みを同時刻に行うための時刻同期手段と、
前記線路をπ型等価回路または分布定数回路として、前記電気量取込手段において取り込んだ、少なくとも1つの時点の零相成分の電気量を含む電気量から線路の定数を、
第1の送電線と第2の送電線の全ての相配置が一致する場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa相を含む欠相とb相を含む欠相とc相を含む欠相とする条件と、数19及び数20に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置が不一致の場合、コモンラインの条件を零相電圧とし、ディファレンシャルラインの条件をa、b、cいずれかの相を含む欠相とする条件と、数19及び数20に示す式とに基づいて、
第1の送電線と第2の送電線の全ての相配置のうち1相のみ相配置が一致する場合、コモンラインの条件を零相電圧とa又はc相を含む欠相とし、ディファレンシャルラインの条件をa又はc相を含む欠相とc相を含む欠相とする条件と、数19及び数20に示す式とに基づいて、アドミッタンス及びインピーダンス行列として算出する線路定数算出手段とを備えた保護制御計測装置において、
前記線路定数算出手段が、
(1)平行2回線の送電線路をコモンモードとディファレンシャルモードにモード分解する1回線送電線モデル化処理部
(2) 2つの1回線送電線モデルのそれぞれについて、線路定数を算出する1回線送電線モデル線路定数算出処理部
(3) 2つの1回線送電線モデルとして算出した線路定数を、モード合成によって平行2回線送電線モデルに復元する2回線送電線モデル復元化処理部
を備えていることを特徴とする保護制御計測装置。
<モード分解>
Figure 0005834308
<モード合成>
Figure 0005834308
The electricity to be measured is installed at both ends of a parallel two-line transmission line in which the first transmission line and the second transmission line are symmetrically arranged on the left and right of the tower without any branching in the line, and the electricity is taken in at both ends of the transmission line A quantity intake means;
A time synchronization means for performing the electric quantity taking-in in the electric quantity taking-in means at the same time;
As the π-type equivalent circuit or distributed constant circuit, the line constant is calculated from the electric quantity including the electric quantity of the zero-phase component at least one time taken in by the electric quantity taking-in means.
When all phase arrangements of the first transmission line and the second transmission line match, the common line condition is a zero-phase voltage, and the differential line condition is an open phase including an a phase and an open phase including a b phase. Based on the conditions for phase loss including the c phase and the equations shown in Equations 19 and 20,
When all the phase arrangements of the first transmission line and the second transmission line are inconsistent, the common line condition is a zero-phase voltage, and the differential line condition is an open phase including any one of a, b, and c. Based on the conditions to be performed and the equations shown in Equations 19 and 20,
When the phase arrangement of only one phase is the same among all the phase arrangements of the first transmission line and the second transmission line, the common line condition is the open phase including the zero-phase voltage and the a or c phase, and the differential line Line constant calculation means for calculating an admittance and an impedance matrix based on the condition that the condition is an open phase including the a or c phase and the open phase including the c phase, and the equations shown in Equations 19 and 20 are provided. In protection control measurement equipment,
The line constant calculating means is
(1) One-line transmission line modeling processing unit that mode-divides parallel two-line transmission lines into common mode and differential mode
(2) One-line transmission line model line constant calculation processing unit for calculating the line constant for each of the two one-line transmission line models
(3) Protection control measurement characterized by a two-line transmission line model restoration processing unit that restores line constants calculated as two single-line transmission line models to parallel two-line transmission line models by mode synthesis apparatus.
<Mode decomposition>
Figure 0005834308
<Mode composition>
Figure 0005834308
前記線路定数算出手段に設けられた1回線送電線モデル線路定数算出処理部が、平行2回線の送電線路モデルとしてπ型等価回路モデルを用い、線路定数算出手段の演算として以下の式を用いることを特徴とする請求項に記載の保護制御計測装置。
Figure 0005834308
The one-line transmission line model line constant calculation processing unit provided in the line constant calculation means uses a π-type equivalent circuit model as a parallel two-line transmission line model, and uses the following equation as the calculation of the line constant calculation means The protection control measuring device according to claim 4 .
Figure 0005834308
前記線路定数算出手段に設けられた1回線送電線モデル線路定数算出処理部が、平行2回線の送電線路モデルとして分布定数回路モデルを用い、線路定数算出手段の演算として以下の式を用いることを特徴とする請求項に記載の保護制御計測装置。
Figure 0005834308
The one-line transmission line model line constant calculation processing unit provided in the line constant calculation means uses a distributed constant circuit model as a transmission line model of two parallel lines, and uses the following formula as an operation of the line constant calculation means: The protection control measuring device according to claim 4 , wherein
Figure 0005834308
前記線路定数算出手段として、保護制御装置に取り込む電気量に零相成分が一定値以上含まれていることを検出する零相分検出手段を設け、零相分が一定値以上となったことを条件に前記線路定数算出手段を起動することを特徴とする請求項4から6のいずれかに記載の保護制御計測装置。 As the line constant calculating means, provided is a zero phase component detecting means for detecting that the amount of electricity to be taken into the protection control device includes a zero phase component or more, and that the zero phase component becomes a certain value or more. The protection control measuring device according to claim 4 , wherein the line constant calculating means is activated according to a condition. 前記零相分検出手段を線路事故中あるいは線路開放中を検出する線路事故状態検出手段から構成し、この線路事故状態検出手段からの検出結果に従って、前記電気量取込手段が電気量を取り込む時点の内少なくとも一つ以上は線路事故中あるいは線路開放中の時点であることを特徴とする請求項に記載の保護制御計測装置。 The zero phase component detecting means is composed of a line fault state detecting means for detecting whether a line fault or the line is open, and the electric quantity taking means takes in the electric quantity according to the detection result from the line fault state detecting means. The protection control measuring device according to claim 7 , wherein at least one of the points is a time when a line accident or a line is open. 前記平行2回線の線路定数算出手段の出力側に、前記線路定数算出手段が算出した線路定数が予め定めた範囲内に入っていない場合は算出結果を破棄する線路定数検定手段を設けたことを特徴とする請求項4から7のいずれかに記載の保護制御計測装置。 Line constant test means for discarding the calculation result when the line constant calculated by the line constant calculation means is not within a predetermined range is provided on the output side of the line constant calculation means for the two parallel lines. The protection control measuring device according to any one of claims 4 to 7 , 前記平行2回線の線路定数算出手段の出力側に、前記線路定数算出手段の算出結果により故障点標定における線路定数に関わる整定値を補正あるいは再設定する故障点評定手段を設けたことを特徴とする請求項4から7のいずれかに記載の保護制御計測装置。 A failure point rating means for correcting or resetting a set value related to the line constant in the fault point location based on the calculation result of the line constant calculation means is provided on the output side of the line constant calculation means for the two parallel lines. The protection control measuring device according to any one of claims 4 to 7 . 前記平行2回線の線路定数算出手段の出力側に、前記線路定数算出手段の算出結果により測距性能に関わる整定値を補正あるいは再設定する距離リレーを設けたことを特徴とする請求項4から7のいずれかに記載の保護制御計測装置。 The output side of the line constant calculation means of the two parallel lines, claim 4, characterized in that a distance relay for correcting or resetting the setting value related to the ranging performance by calculating the result of the line constant calculating means The protection control measurement device according to any one of 7 . 前記平行2回線の線路定数算出手段の出力側に、前記線路定数算出手段の算出結果により充電電流補償機能に関わる整定値を補正あるいは再設定する送電線電流差動リレーを設けたことを特徴とする請求項4から7のいずれかに記載の保護制御計測装置。 A transmission line current differential relay for correcting or resetting a set value related to a charging current compensation function based on a calculation result of the line constant calculation unit is provided on an output side of the line constant calculation unit of the two parallel lines. The protection control measuring device according to any one of claims 4 to 7 .
JP2010197397A 2010-09-03 2010-09-03 Line constant measuring method and protection control measuring device for two parallel transmission lines Active JP5834308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197397A JP5834308B2 (en) 2010-09-03 2010-09-03 Line constant measuring method and protection control measuring device for two parallel transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197397A JP5834308B2 (en) 2010-09-03 2010-09-03 Line constant measuring method and protection control measuring device for two parallel transmission lines

Publications (2)

Publication Number Publication Date
JP2012052979A JP2012052979A (en) 2012-03-15
JP5834308B2 true JP5834308B2 (en) 2015-12-16

Family

ID=45906442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197397A Active JP5834308B2 (en) 2010-09-03 2010-09-03 Line constant measuring method and protection control measuring device for two parallel transmission lines

Country Status (1)

Country Link
JP (1) JP5834308B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126374A (en) * 2012-12-25 2014-07-07 Kyoto Univ Fault point locator

Also Published As

Publication number Publication date
JP2012052979A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP1971869B1 (en) Method and device for fault location in a two-terminal transmission or distribution power line
Gazzana et al. An integrated technique for fault location and section identification in distribution systems
KR100473798B1 (en) Method for detecting line to ground fault location for power systems
US8942954B2 (en) Fault location in a non-homogeneous electric power line
Jiang et al. PMU-based fault location using voltage measurements in large transmission networks
Liu et al. A fault location technique for two-terminal multisection compound transmission lines using synchronized phasor measurements
Dobakhshari et al. A wide-area scheme for power system fault location incorporating bad data detection
US7286963B2 (en) Method and device for fault location on three terminal power line
Liang et al. A general fault location method in complex power grid based on wide-area traveling wave data acquisition
Hussain et al. Fault location scheme for multi-terminal transmission lines using unsynchronized measurements
EP1870717B1 (en) System and method for determining phase-to-earth admittances of a three-phase electric line
CN108700631A (en) Method, system and equipment for the fault detect in the route protection of electrical power transmission system
Çapar et al. A performance oriented impedance based fault location algorithm for series compensated transmission lines
EP3564687B1 (en) Determination of power transmission line parameters using asynchronous measurements
WO2019229638A1 (en) Fault location for parallel transmission lines with zero sequence currents estimated from faulted line measurements
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
JP5481636B2 (en) Line constant measuring method and protection control measuring device
Dalcastagne et al. A study about the sources of error of impedance-based fault location methods
Lin et al. A new fault location technique for three-terminal transmission grids using unsynchronized sampling
Lin et al. A signal-superimposed technique for fault location in transmission lines through IED measurements considering communication service failure
Ghaedi et al. Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors
Mekhamer et al. Fault location in long transmission lines using synchronized phasor measurements from both ends
Lin et al. Fault location for three-ended ring-topology power system using minimum GPS-based measurements and CVT/CT sensing
JP5834308B2 (en) Line constant measuring method and protection control measuring device for two parallel transmission lines
Mohamed et al. Accurate fault location algorithm on power transmission lines with use of two-end unsynchronized measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151005

R150 Certificate of patent or registration of utility model

Ref document number: 5834308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250