JP5481636B2 - Line constant measuring method and protection control measuring device - Google Patents

Line constant measuring method and protection control measuring device Download PDF

Info

Publication number
JP5481636B2
JP5481636B2 JP2009212717A JP2009212717A JP5481636B2 JP 5481636 B2 JP5481636 B2 JP 5481636B2 JP 2009212717 A JP2009212717 A JP 2009212717A JP 2009212717 A JP2009212717 A JP 2009212717A JP 5481636 B2 JP5481636 B2 JP 5481636B2
Authority
JP
Japan
Prior art keywords
line
constant
electricity
line constant
phase component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009212717A
Other languages
Japanese (ja)
Other versions
JP2011064465A (en
Inventor
寛之 梅崎
勝彦 関口
英之 高荷
尚史 久門
雅大 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kyoto University
Original Assignee
Toshiba Corp
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kyoto University filed Critical Toshiba Corp
Priority to JP2009212717A priority Critical patent/JP5481636B2/en
Publication of JP2011064465A publication Critical patent/JP2011064465A/en
Application granted granted Critical
Publication of JP5481636B2 publication Critical patent/JP5481636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、送電線両端子に設置した保護制御計測装置において取り込んだ電気量を用いて送電線の線路定数を推定する方法、及びこの方法を適用した保護制御計測装置に関するものである。   The present invention relates to a method for estimating a line constant of a transmission line using an amount of electricity taken in a protection control measurement device installed at both terminals of the transmission line, and a protection control measurement device to which this method is applied.

正確な線路定数を得ることは、保護リレーの整定、事故点標定、系統運用では重要なことである。
そのために多くの方法が提案されてきている。よく使われているのは、Carson-Polarczhek法であり、線路の幾何学的な構造、大地からの距離など各種パラメータを入力してコンピュータで計算を行う。
しかしながら、この方法は多数のパラメータを必要とすること、ねん架の有無、各相の対象性の有無を実際の送電線と合致させる労力が多大であり、精度も場合により低いという問題がある。
Obtaining accurate line constants is important for protection relay setting, fault location, and system operation.
Many methods have been proposed for this purpose. The Carson-Polarczhek method, which is often used, is a computer that inputs various parameters such as the geometric structure of the track and the distance from the ground.
However, this method has a problem that a large number of parameters are required, labor for matching the presence / absence of a bridge and the presence / absence of each phase with an actual transmission line is great, and the accuracy is sometimes low.

他の方法として、送電線の建設時に試験電圧を各相ごとに入力し、その際の電流、電圧からインピーダンス、アドミッタンスを求める方法である。この方法は正確に線路定数を求めることができるが、労力、コストがかかるという点、及び線路停止時に計測を行う必要があるという点、測定精度を上げるには試験電圧を高くする必要がありコスト、安全面での問題もある。   As another method, a test voltage is input for each phase when a transmission line is constructed, and impedance and admittance are obtained from current and voltage at that time. Although this method can accurately determine the line constant, it requires labor and cost, requires measurement when the line is stopped, and requires higher test voltage to increase measurement accuracy. There are also safety issues.

上述したCarson-Polarczhek法や試験電圧を印加する方法の問題点を解決するために、GPSを利用して同時刻の送電線両端の電圧電流を得て、これから送電線線路定数を求め、これを用いて事故点標定を行うという提案が特許文献1や特許文献2に記載されている。   In order to solve the problems of the Carson-Polarczhek method and the method of applying the test voltage described above, the voltage current at both ends of the transmission line at the same time is obtained using GPS, and the transmission line constant is obtained from this. Patent Document 1 and Patent Document 2 describe proposals for accident point location.

特開2003−270285号公報JP 2003-270285 A 特開2004−12292号公報JP 2004-12292 A

これらの文献で提案されている方法は、送電線を集中定数回路あるいは分布定数回路としてモデル化し、送電線事故時の両端の電圧、電流から、線路定数を求めている。   In the methods proposed in these documents, the transmission line is modeled as a lumped constant circuit or a distributed constant circuit, and the line constant is obtained from the voltage and current at both ends at the time of the transmission line fault.

従来の技術は、送電線の事故点標定のための線路定数を求める方法であり、該当送電線内部に事故が発生することを条件に、両端の電気量と線路定数の関係を定式化している。したがって、送電線内部事故が発生しないかぎり該当送電線の線路定数が求められないことになる。これは、距離リレーの整定値を決めるために線路定数が必要な場合には不適当である。なぜならば、系統事故発生時点で正確な線路定数が必要となるためである。また、系統運用全般、たとえば潮流の推定などに利用する場合も、送電線内部事故が発生しない場合は、線路定数を求めることができないため不都合である。   The conventional technology is a method for obtaining the line constant for the fault location of the transmission line, and formulates the relationship between the electric quantity at both ends and the line constant on the condition that an accident occurs inside the transmission line. . Therefore, the line constant of the corresponding transmission line cannot be obtained unless a transmission line internal accident occurs. This is not appropriate when line constants are required to determine the distance relay settling value. This is because an accurate line constant is required at the time of occurrence of a system fault. In addition, it is also inconvenient when it is used for system operation in general, for example, estimation of tidal currents, because the line constant cannot be obtained if a power line internal accident does not occur.

本発明は上記事情に鑑みてなされたものであり、簡易かつ高精度に送電線の定数を求めることの可能な線路定数測定方法及びこの方法を適用した保護制御計測装置を提供することを目的とする。特に、本発明は、特許文献1や特許文献2に記載された発明のような送電線内部事故を必ずしも必要とせずに、常時の潮流を利用して高精度に線路定数を求めることができる汎用的な線路定数測定方法と保護制御計測装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a line constant measuring method capable of easily and accurately obtaining a transmission line constant, and a protection control measuring apparatus to which this method is applied. To do. In particular, the present invention does not necessarily require a power line internal accident as in the inventions described in Patent Document 1 and Patent Document 2, and can obtain a line constant with high accuracy using a normal power flow. It is an object of the present invention to provide a typical line constant measuring method and protection control measuring device.

本発明の線路定数測定方法は、測定対象とする線路の両端に設置され送電線両端の電気量を取り込む電気量取込手段と、前記電気量取込手段における電気量取り込みを同時刻に行うための時刻同期手段と、前記線路をπ型等価回路または分布定数回路として、前記電気量取込手段において取り込んだ電気量から線路の定数を、アドミッタンス及びインピーダンス行列として算出する線路定数算出手段と、前記電気量取込手段に取り込む電気量に零相分が一定値以上含まれていることを検出する零相分検出手段を使用し、前記零相分検出手段において検出した零相分が一定値以上となったことを条件に線路定数算出手段を起動し、前記線路定数算出手段により少なくとも2つ以上の異なる時点で前記電気量取込手段に取り込んだ電気量とその零相分に基づいて送電線路の定数を算出することを特徴とする。
In the line constant measuring method of the present invention, an electric quantity capturing unit that is installed at both ends of a line to be measured and captures an electric quantity at both ends of a transmission line, and an electric quantity is captured by the electric quantity capturing unit at the same time. Time synchronization means, and the line as a π-type equivalent circuit or distributed constant circuit, line constant calculation means for calculating the line constant from the quantity of electricity taken in the quantity of electricity taking means as an admittance and impedance matrix, and Using zero phase detection means for detecting that the amount of electricity to be taken into the electricity quantity taking means contains a zero phase component or more, a zero phase component detected by the zero phase detection means is greater than or equal to a certain value. The line constant calculating means is started on the condition that the electric quantity is taken into the electric quantity taking means at at least two different time points by the line constant calculating means and its zero. And calculates the constants of the power transmission line based on the minute.

また、本発明の保護制御計測装置は、測定対象とする線路の両端に設置され送電線両端の電気量を取り込む電気量取込手段と、前記電気量取込手段における電気量取り込みを同時刻に行うための時刻同期手段と、前記線路をπ型等価回路または分布定数回路として、前記電気量取込手段において取り込んだ電気量から線路の定数を、アドミッタンス及びインピーダンス行列として算出する線路定数算出手段と、前記電気量取込手段に取り込む電気量に零相分が一定値以上含まれていることを検出する零相分検出手段を備え、前記線路定数算出手段が、前記零相分検出手段において検出した零相分が一定値以上となったことを条件に起動し、少なくとも2つ以上の異なる時点で前記電気量取込手段に取り込んだ電気量とその零相分に基づいて送電線路の定数を算出するものであることを特徴とする。   Further, the protection control measuring device of the present invention includes an electric quantity capturing unit that is installed at both ends of the line to be measured and takes in the electric quantity at both ends of the transmission line, and the electric quantity taking in the electric quantity taking unit at the same time. Time synchronization means for performing, and line constant calculation means for calculating the constant of the line as an admittance and impedance matrix from the quantity of electricity taken in by the quantity fetching means as the π-type equivalent circuit or distributed constant circuit A zero phase component detecting means for detecting that the amount of electricity to be taken into the electricity quantity capturing device includes a zero phase component or more, and the line constant calculating means is detected by the zero phase component detecting device. It is started on condition that the zero phase component is equal to or greater than a certain value, and is sent based on the amount of electricity taken into the electricity amount taking means and the zero phase component at at least two different time points. And characterized in that for calculating the constants of the line.

本発明によれば、測定対象とする線路の両端で同時刻に零相分を含んだ電気量を取り込み、その電気量に基づいて線路定数をアドミッタンス及びインピーダンス行列として算出することが可能となり、従来技術に比較して、簡単かつ正確に線路定数を得ることができる。特に、零相分の検出は、必ずしも送電線内部事故に限らず検出が可能であることから、本発明によれば、事故時以外における線路定数の算出を容易に実施できる。   According to the present invention, it is possible to take in an electric quantity including a zero phase component at both ends of a line to be measured at the same time, and calculate a line constant as an admittance and an impedance matrix based on the electric quantity. Compared with technology, the line constant can be obtained easily and accurately. In particular, detection of the zero-phase component is not necessarily limited to an accident inside the transmission line, and can be detected. Therefore, according to the present invention, it is possible to easily calculate the line constant other than at the time of the accident.

本発明の実施例1の全体構成を示す配置図。1 is a layout diagram showing the overall configuration of Embodiment 1 of the present invention. 実施例1における保護制御計測装置のブロック図。1 is a block diagram of a protection control measurement device in Embodiment 1. FIG. 実施例1の動作を説明するフローチャート。3 is a flowchart for explaining the operation of the first embodiment. 実施例4における保護制御計測装置のブロック図。The block diagram of the protection control measuring device in Example 4. FIG. 送電線事故時の電圧及び電流の状態を示す波形図。The wave form diagram which shows the state of the voltage and electric current at the time of a power transmission line accident. 実施例4の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the fourth embodiment. 実施例5における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to a fifth embodiment. 実施例5の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the fifth embodiment. 実施例6における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to a sixth embodiment. 実施例6の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the sixth embodiment. 実施例7における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to a seventh embodiment. 実施例7の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the seventh embodiment. 実施例8における保護制御計測装置のブロック図。FIG. 10 is a block diagram of a protection control measurement device according to an eighth embodiment. 実施例8の動作を説明するフローチャート。10 is a flowchart for explaining the operation of the eighth embodiment.

(構成)
図1は、本発明の実施例1に係る送電線定数測定方法を適用した保護制御計測装置110のブロック図である。101A,101B,101Cは被定数測定送電線、102は変流器、103は計器用変圧器である。104は自端と相手端を結ぶ通信回線である。
(Constitution)
FIG. 1 is a block diagram of a protection control measurement device 110 to which a transmission line constant measurement method according to Embodiment 1 of the present invention is applied. 101A, 101B, and 101C are constant-measurement transmission lines, 102 is a current transformer, and 103 is an instrument transformer. Reference numeral 104 denotes a communication line connecting the local end and the other end.

保護制御計測装置110の内部構成を図2に示す。電気所A,Bにそれぞれ設けられた保護制御計測装置110は、自端の電気量と、相手側電気所から通信回線を介して送られてきた相手端電気量を取り込む電気量取込手段111を有する。この電気量取込手段111には、GPSの絶対時刻信号を利用した時刻同期手段112からの時刻情報も入力される。この電気量取込手段111の出力側には、電気量取込手段111によって得られた情報を元に線路定数を算出する線路定数算出手段113が設けられている。   The internal configuration of the protection control measuring device 110 is shown in FIG. The protection control measuring device 110 provided at each of the electric stations A and B includes an electric quantity taking-in means 111 for taking in the electric quantity at the other end and the electric quantity at the other end sent from the counterpart electric station via the communication line. Have Time information from the time synchronization unit 112 using an absolute time signal of GPS is also input to the electric quantity capturing unit 111. On the output side of the electric quantity taking-in means 111, a line constant calculating means 113 for calculating the line constant based on the information obtained by the electric quantity taking-in means 111 is provided.

この線路定数算出手段113は、少なくともひとつの時点の電流、電圧内に零相分が含まれる場合において、アドミッタンス行列とインピーダンス行列を求める。そのため、前記保護制御計測装置110は零相分検出手段114を備えている。   The line constant calculation unit 113 obtains an admittance matrix and an impedance matrix when a zero-phase component is included in the current and voltage at at least one time point. Therefore, the protection control measuring device 110 includes a zero phase detection means 114.

このような構成の保護制御計測装置110においては、運用状態にある送電線101A,101B,101C両端の電流、電圧の瞬時値を、電気量取込手段111にて一定時間間隔でサンプリングし、ディジタル信号に変換後、図示しないメモリに記録する。なお、送電線の定数測定のためには送電線両端の装置110において、同時刻にデータをサンプリングする必要があるため、GPSの絶対時刻信号を利用した時刻同期手段112を用いて、両端の保護制御計測装置110の内部クロックの時刻を高精度に合わせる。   In the protection control measuring apparatus 110 having such a configuration, instantaneous values of currents and voltages at both ends of the transmission lines 101A, 101B, and 101C in an operating state are sampled at a constant time interval by the electric quantity taking-in means 111, and digitally After conversion to a signal, it is recorded in a memory (not shown). In addition, since it is necessary to sample data at the same time in the devices 110 at both ends of the transmission line in order to measure the constant of the transmission line, the time synchronization unit 112 using the absolute time signal of GPS is used to protect both ends. The time of the internal clock of the control measurement device 110 is adjusted with high accuracy.

保護制御計測装置110では、このクロックに従い送電線両端の電流、電圧の瞬時値を一定時間間隔でサンプリングする。次に、電気量取込手段111内のメモリに記録した送電線両端の電流、電圧データを線路定数算出手段113で以下に従って演算する。なお、ここで相手端子の電流、電圧は通信回線104を利用して自端子の電気量取込手段111に入る。   In the protection control measurement device 110, the instantaneous values of the current and voltage at both ends of the transmission line are sampled at regular time intervals according to this clock. Next, the current and voltage data at both ends of the transmission line recorded in the memory in the electric quantity taking-in means 111 are calculated by the line constant calculating means 113 according to the following. Here, the current and voltage of the counterpart terminal enter the self-quantity taking-in means 111 of the own terminal using the communication line 104.

3相送電線のモデルを下記に示す。このモデルにおいて、Iia、Iib、Iic、Via、Vib、Vicは自端の電気量、Ioa、Iob、Ioc、Voa、Vob、Vocは相手端の電気量とする。Z1、Y1、Z4、Y4、Z6、Y6は送電線自己インピーダンス、Z2、Y2、Z3、Y3、Z5、Y5は相互インピーダンスとする。

Figure 0005481636
The three-phase transmission line model is shown below. In this model, Iia, Iib, Iic, Via, Vib, and Vic are self-quantity, and Ioa, Iob, Ioc, Voa, Vob, and Voc are magnitudes of the other end. Z1, Y1, Z4, Y4, Z6 and Y6 are transmission line self-impedances, and Z2, Y2, Z3, Y3, Z5 and Y5 are mutual impedances.
Figure 0005481636

上図の3相送電線に関して以下の式(1)が成立する。

Figure 0005481636
The following equation (1) is established for the three-phase transmission line in the upper diagram.
Figure 0005481636

ここで、求めたい線路定数の未知数である送電線自己インピーダンスZ1、Y1、Z4、Y4、Z6、Y6及び相互インピーダンスZ2、Y2、Z3、Y3、Z5、Y5は、送電線両端で得られる電流、電圧Vi、Ii、Vo、Ioを既知として成立する連立方程式の数より少ない。そこで、実施例1では、少なくとも2回以上の時点、すなわち異なる2時点での電流、電圧を用いて連立方程式を作り線路定数の未知数を得る。   Here, transmission line self-impedances Z1, Y1, Z4, Y4, Z6, Y6 and mutual impedances Z2, Y2, Z3, Y3, Z5, and Y5, which are unknown line constants to be obtained, are currents obtained at both ends of the transmission line, The voltages Vi, Ii, Vo, Io are less than the number of simultaneous equations that are established. Therefore, in the first embodiment, simultaneous equations are formed using currents and voltages at least twice or more, that is, at two different time points, to obtain unknown line constants.

(作用)
図3の処理フローに基づいて、本発明の特徴である電気量取込み及び線路定数算出の手順について説明する。
(Function)
Based on the processing flow of FIG. 3, the procedure of taking in the electric quantity and calculating the line constant, which is a feature of the present invention, will be described.

まず、ステップS1にて、ある時刻t1時点の自端子及び相手端子の電気量を取り込む。相手端子の電気量は通信回線を用いて取り込むが、すでに相手端子でGPSの絶対時刻信号によりt1時点の電気量が取り込まれているので、通信回線の遅延は問題とならない。この電気量は特に零相分を含む必要はないことから、任意の時点で取り込んだ電気量でよい。   First, in step S1, the amount of electricity of the own terminal and the counterpart terminal at a certain time t1 is captured. The amount of electricity at the other terminal is captured using a communication line, but since the amount of electricity at time t1 has already been captured at the other terminal by the GPS absolute time signal, the delay of the communication line does not pose a problem. Since the amount of electricity does not need to include the zero phase component in particular, the amount of electricity taken at an arbitrary time may be used.

次に、ステップS2で零相分検出手段114により、零相分を含む電圧あるいは電流が発生しているか監視を行う。この零相分検出手段114としては、電力系統保護で用いられる零相過電圧リレーあるいは零相過電流リレーを装置内に設けその動作の有無を確認することで実現できる。零相分が、たとえば送電線の外部あるいは内部の事故で発生すれば、これらのリレーが動き、ステップS3でその際の時刻(t2)で電気量を取り込む。これによりアドミッタンス行列は求めることができる。   Next, in step S2, the zero phase component detecting unit 114 monitors whether a voltage or current including the zero phase component is generated. This zero-phase component detecting means 114 can be realized by providing a zero-phase overvoltage relay or zero-phase overcurrent relay used in power system protection in the apparatus and confirming the operation. If the zero-phase component occurs due to, for example, an accident outside or inside the transmission line, these relays move, and the amount of electricity is taken in at time (t2) at that time in step S3. Thereby, the admittance matrix can be obtained.

さらに、インピーダンス行列を求めるには、適当な時刻t3でステップS4にて電気量を取り込む。以下、同様にしてステップSn(n≧2)までこれらの電気量の取り込みを繰り返し、時刻tnの電気量を取り込む。   Furthermore, in order to obtain the impedance matrix, the amount of electricity is taken in at step S4 at an appropriate time t3. Thereafter, the taking of these electric quantities is repeated in the same manner until step Sn (n ≧ 2), and the electric quantity at time tn is taken.

ステップSn+1では、線路定数算出手段113により、アドミッタンス及びインピーダンス行列を求める。本発明では、このようにして送電線が運用されている状態の異なる複数時点の電気量を取り込んで線路定数を算出する。   In step Sn + 1, the admittance and impedance matrix are obtained by the line constant calculation means 113. In the present invention, the line constant is calculated by taking in the quantity of electricity at a plurality of points in time when the transmission line is operated in this way.

(線路定数算出の方法)
以下、実施例1の線路定数算出手段113により、ステップSn+1において、線路定数を算出する方法について、具体的に説明する。この実施例1では、下記の通り、送電線をπ型等価回路として考える。ここで、送電線は、ねん架していないことを想定する。当然ながら以下得られる一般解は、ねん架している場合にも当てはまる。

Figure 0005481636
(Method of calculating line constant)
Hereinafter, a method of calculating the line constant in step Sn + 1 by the line constant calculation unit 113 of the first embodiment will be specifically described. In the first embodiment, the transmission line is considered as a π-type equivalent circuit as described below. Here, it is assumed that the transmission line is not suspended. Of course, the general solution obtained below also applies to the case where it is suspended.
Figure 0005481636

このπ型等価回路において、線路定数はインピーダンスZ(=R+jX[Ω])、アドミッタンスY(=jB[Ω])で定義され、回路の相反性より、アドミッタンス行列Y、インピーダンス行列Zは、以下の式(2)で表現される。

Figure 0005481636
In this π-type equivalent circuit, the line constant is defined by impedance Z (= R + jX [Ω]) and admittance Y (= jB [Ω]). Due to the reciprocity of the circuit, the admittance matrix Y and impedance matrix Z are It is expressed by equation (2).
Figure 0005481636

このとき、送電線両端の電流、電圧と上記行列の関係は以下の回路方程式が成立する。

Figure 0005481636
At this time, the following circuit equation is established for the relationship between the current and voltage at both ends of the transmission line and the above matrix.
Figure 0005481636

式(6)を以下のように定義し、前記式(3)を未知数Yに対する方程式とすると、以下の式(7)に変換される。

Figure 0005481636
If the equation (6) is defined as follows and the equation (3) is an equation for the unknown Y, it is converted into the following equation (7).
Figure 0005481636

この式(7)は以下に書き換えられる。

Figure 0005481636
This equation (7) can be rewritten as follows.
Figure 0005481636

ここで、電圧データ行列Vyに対して数式処理を行う。具体的には、ガウスの消去法の中の前進消去を適用することで上三角形行列に変形する。これにより行列の階数を求めると、行列Vyの階数は、vi,v0の値にかかわらず5であることが判る。このことは、式(7)が退化しており、1個の測定データではアドミッタンスyを決定できないことを示している。   Here, mathematical expression processing is performed on the voltage data matrix Vy. Specifically, it transforms into an upper triangular matrix by applying forward erasure in Gaussian elimination. Accordingly, when the rank of the matrix is obtained, it is found that the rank of the matrix Vy is 5 regardless of the values of vi and v0. This indicates that the equation (7) is degenerated and the admittance y cannot be determined with one measurement data.

以下、この行列Vyを用いてアドミッタンス行列Yを求める。ここで、前記の通り1個の測定データではアドミッタンスyを決定できないために、本実施例では、2つの異なる状態の測定データVi yとVii が必要となる。この場合、少なくとも片方の状態では零相分が必要である。すなわち、Vi yとVii yを縦に並べた行列[Vi yii yTに対し、適用な行列Pによって前進消去を行うと、その6行6列成分は、次の式(9)(10)となる。

Figure 0005481636
Hereinafter, the admittance matrix Y is obtained using this matrix V y . Here, since the admittance y cannot be determined with one measurement data as described above, the measurement data V i y and V ii y in two different states are required in this embodiment. In this case, a zero phase component is required in at least one state. That is, when forward erasure is performed on a matrix [V i y V ii y ] T in which V i y and V ii y are vertically arranged by an applicable matrix P, the 6 × 6 component is expressed by the following formula ( 9) It becomes (10).
Figure 0005481636

これに対し、具体的な数値が代入された時、式(9)が0にならなければこの行列の階数は6となり、アドミッタンスyが決定できる。ここで、式(10)のαに注目すると、Vi yが零相分を含まない場合、次の式(11)が成立する。更に、Vii yも零相分を含まない場合、次の式(12)となって、αは0となる。従って、Vi yとVii yのどちらかが零相分を含む必要があることが分かる。

Figure 0005481636
On the other hand, when a specific numerical value is substituted, if Equation (9) does not become 0, the rank of this matrix is 6, and the admittance y can be determined. Here, paying attention to α in equation (10), when V i y does not include the zero phase component, the following equation (11) is established. Further, when V ii y does not include the zero phase component, the following equation (12) is established, and α is 0. Therefore, it can be seen that either V i y or V ii y needs to include the zero phase component.
Figure 0005481636

このようにして、零相分検出手段114により零相分が検出された状態において、電圧及び電流データが得られた場合、以下の式(13)を線路定数算出手段113で計算することで、アドミッタンスyが決定できアドミッタンス行列Yが求められる。

Figure 0005481636
Thus, when voltage and current data is obtained in a state where the zero phase component is detected by the zero phase component detecting unit 114, the following equation (13) is calculated by the line constant calculating unit 113, The admittance y can be determined, and the admittance matrix Y is obtained.
Figure 0005481636

同様にしてインピーダンス行列Zを求める。すなわち、Zについても同様に、前記式(4)を未知数Zに対する方程式にすると、次の式(14)(15)に変換される。

Figure 0005481636
Similarly, an impedance matrix Z is obtained. That is, similarly to Z, when the equation (4) is changed to an equation for the unknown Z, it is converted into the following equations (14) and (15).
Figure 0005481636

ここで、Inを用いてインピーダンス行列を求めるには3つの異なる状態のデータIi n,Iii n及びIiii nが必要となる。少なくともひとつの状態では零相分が必要である。すなわち、Inの階数は3、2個のデータを使った次の行列[Ii nii nTの階数は5となり、2個のデータではインピーダンスzを決定できない。 Here, the data I i n the three different states in determining the impedance matrix with I n, is I ii n and I iii n becomes necessary. At least one state requires a zero phase component. That is, the rank of I n is 3, and the rank of the next matrix [I i n I i n ] T using the data of 2 is 5, and the impedance z cannot be determined by the data of 2.

そこで、3つの異なる状態でのデータを利用する。3つの状態でのデータを縦に並べた次の行列[Ii nii niii nTに対し、適当な行列Qによって前進消去を行うと、その6行6列成分は次の式(16)(17)となる。

Figure 0005481636
Therefore, data in three different states are used. When forward erasure is performed on the next matrix [I i n I i n I i n ] T in which data in three states are arranged vertically by an appropriate matrix Q, the 6-row 6-column component is expressed by the following equation: (16) (17).
Figure 0005481636

この式(16)に対して具体的な数値が代入された時、式(16)が0にならなければ、この行列の階数は6となり、インピーダンスzが決定できる。そこで、式(16)中のγに着目すると、Iii n及びIiii nが零相分を含まない場合、次の式(18)の関係が成立する。同様にIi nも零相分を含まない場合、次の式(19)となってγは0となる。従って、Ii n、Iii n、Iiii nのいずれかは、零相分を含む必要がある。

Figure 0005481636
When a specific numerical value is assigned to the equation (16), if the equation (16) does not become 0, the rank of this matrix is 6, and the impedance z can be determined. Therefore, focusing on γ in equation (16), when I ii n and I iii n do not include the zero phase component, the relationship of the following equation (18) is established. Similarly, when I i n does not include the zero-phase component, γ is 0 as shown in the following equation (19). Therefore, I i n, I ii n , is either I iii n, we are necessary to include a zero-phase component.
Figure 0005481636

このような電圧、電流データが得られた場合、以下の式(20)を線路定数算出手段113で計算することでインピーダンスzが決定でき、インピーダンス行列Zが求められる。

Figure 0005481636
When such voltage and current data is obtained, the impedance z can be determined by calculating the following equation (20) by the line constant calculation means 113, and the impedance matrix Z is obtained.
Figure 0005481636

以上のとおり、実施例1の線路定数算出手段113においては、線路定数Y,Zを決定するためには3つの異なる潮流状態でのデータを必要とし、行列Vy,In共に少なくとも1つは零相分を含む必要がある。そして、行列[Vi yii yT及び[Ii nii niii nTの階数が6になるデータが得られた時、擬似逆行列によって前記式(13)(14)でアドミッタンスy及びインピーダンスzが決定でき、線路定数であるアドミッタンス行列Y及びインピーダンス行列Zが、線路定数算出手段113により求められる。 As described above, in the line constant calculating means 113 of the first embodiment, line constant Y, require data at three different power flow state to determine Z, matrix V y, at least one 1 I n both are It is necessary to include the zero phase component. Then, when the matrix [V i y V ii y] T and where [I i n I ii n I iii n] rank of T is 6 data has been obtained, the equation by the pseudo-inverse matrix (13) (14) Thus, the admittance y and impedance z can be determined, and the admittance matrix Y and impedance matrix Z, which are line constants, are obtained by the line constant calculation means 113.

(効果)
本実施例によれば、従来の保護制御計測装置で必要であった送電線に関連する整定計算を大幅に省力化できるとともに、運用中の送電線周囲の環境変化に適応して正しい線路定数を算出し整定値を補正できることから、経済性、信頼性の高い保護制御計測装置を提供できる。
(effect)
According to the present embodiment, the settling calculation related to the transmission line, which was necessary in the conventional protection control measurement device, can be greatly saved, and the correct line constant can be adapted to the environmental change around the transmission line in operation. Since it is possible to calculate and correct the settling value, it is possible to provide an economical and reliable protection control measuring device.

実施例2は前記実施例1の変形例であって、前記式(3)に基づいて以下の式(21)に示す行列を定義することにより、線路定数算出手段113において、以下の式(22)でアドミッタンス行列Yを求めるものである。

Figure 0005481636
The second embodiment is a modification of the first embodiment. By defining a matrix shown in the following equation (21) based on the equation (3), the line constant calculating unit 113 uses the following equation (22). ) To obtain an admittance matrix Y.
Figure 0005481636

同様に、前記式(4)より以下の式(23)に示す行列を定義することにより、線路定数算出手段113において、以下の式(24)でインピーダンス行列Zを求める。

Figure 0005481636
Similarly, by defining the matrix shown in the following formula (23) from the formula (4), the line constant calculation means 113 obtains the impedance matrix Z by the following formula (24).
Figure 0005481636

この実施例2では、行列Y及びZを要素に分解せず、行列のまま解くことができる。すなわち、元々の回路方程式は、下記の通り前記式(3)から(5)に示した通りのものである。

Figure 0005481636
In the second embodiment, the matrices Y and Z can be solved without being decomposed into elements. That is, the original circuit equation is as shown in the above formulas (3) to (5) as follows.
Figure 0005481636

この時、Y及びZは3×3型行列であり、他の項は全て3×1型行列(ベクトル)である。これより、3つの測定値を用意することでi,vはそれぞれ3×3型行列となり、上記の連立方程式(3)(4)は以下の行列方程式(25)(26)となる。

Figure 0005481636
At this time, Y and Z are 3 × 3 type matrices, and all other terms are 3 × 1 type matrices (vectors). Thus, by preparing three measurement values, i and v become 3 × 3 matrixes, and the simultaneous equations (3) and (4) become the following matrix equations (25) and (26).
Figure 0005481636

これより、Vy及びInの逆行列を取ることでY,Zを求めることができる。この実施例2でも、零相分が必要である。すなわち、この行列方程式を解くためには、Vy及びInが正則である必要がある。また、Zが正則であるため、Inが正則であることはVzが正則であることと同値である。よって、両端の電圧データを集めた行列が、正則である必要がある。 From this, it is possible to obtain Y, and Z by taking the inverse of V y and I n. Even in the second embodiment, a zero-phase component is necessary. That is, in order to solve the matrix equation has to V y and I n are nonsingular. Further, since Z is regular, that I n is regular are equivalent and that V z is regular. Therefore, the matrix that collects the voltage data at both ends needs to be regular.

正方行列が正則であることは行列の階数がそのサイズに等しくなることと同値であるが、集めたデータの中に零相分が一つも含まれない場合は有効なデータが2つしかないことを意味し、行列の階数が一つ落ちてしまう。そのため、実施例2においても、前記実施例1と同様に、零相分を含むことが必要不可欠である。   The regularity of a square matrix is equivalent to the rank of the matrix being equal to its size, but if there is no zero-phase component in the collected data, there are only two valid data. Meaning that the rank of the matrix drops by one. Therefore, also in the second embodiment, it is indispensable that the zero phase component is included as in the first embodiment.

このように、実施例2においても、零相分検出手段114により零相分を検出した状態において、電気量取込手段111から取り込んだ電気量に基づいて、線路定数算出手段113によりアドミッタンス行列Y及びインピーダンス行列Zを求めることが可能である。   As described above, also in the second embodiment, the admittance matrix Y is calculated by the line constant calculation unit 113 based on the electric quantity acquired from the electric quantity acquisition unit 111 in a state where the zero phase component is detected by the zero phase detection unit 114. And the impedance matrix Z can be obtained.

実施例3は、前記線路定数算出手段113が、送電線を分布定数回路と考えることにより、線路定数の算出を行うものである。この実施例2において、送電線を分布定数回路としておくと、その入力端と出力端の関係は、以下の式(27)の四端子表現で表される。式(27)中、Y,Zは、単位長あたりのアドミッタンス、インピーダンスであり、相反性から前記実施例1で述べた式(1)と同じ形となる。

Figure 0005481636
In the third embodiment, the line constant calculation unit 113 calculates the line constant by considering the power transmission line as a distributed constant circuit. In the second embodiment, when the power transmission line is a distributed constant circuit, the relationship between the input end and the output end is expressed by a four-terminal expression of the following equation (27). In the formula (27), Y and Z are admittance and impedance per unit length, and have the same form as the formula (1) described in the first embodiment because of reciprocity.
Figure 0005481636

ここで、式(27)中の各記号は、次の式(28)〜(30)に示すとおりである。

Figure 0005481636
Here, each symbol in the formula (27) is as shown in the following formulas (28) to (30).
Figure 0005481636

前記の式(27)より、アドミッタンス、インピーダンスY,Zに関する次の非線形連立方程式(31)が導かれる。

Figure 0005481636
From the above equation (27), the following nonlinear simultaneous equation (31) relating to admittance and impedances Y and Z is derived.
Figure 0005481636

この非線形連立方程式(31)は、2つの状態での測定データを用い、ガウスニュートン法で解くことでY,Zを求めることができる。この手順を線路定数算出手段113にて行う。具体的には、線路の相反性を仮定したことによって、この連立方程式(31)は複素数の式6個分の意味を持ち、変数の数(未知数の数)がYは実数で6個、Zは実数で12個となっている。一方、一度の測定で得られる方程式は複素数で6個(実数で12個)の為、π型等価回路の場合と違い理論上は2つのデータから線路定数Y,Zを推定可能である。   This nonlinear simultaneous equation (31) can be obtained Y and Z by solving with the Gauss-Newton method using measurement data in two states. This procedure is performed by the line constant calculation means 113. Specifically, by assuming the reciprocity of the line, this simultaneous equation (31) has the meaning of six complex expressions, the number of variables (the number of unknowns) is Y is a real number, Z Has 12 real numbers. On the other hand, since the equations obtained by one measurement are 6 complex numbers (12 real numbers), the line constants Y and Z can be theoretically estimated from two data unlike the case of the π-type equivalent circuit.

なお、この送電線を分布定数回路と考える方法についても、理論上では零相分は必要不可欠ではないが、零成分を含むことが望ましい。すなわち、π型等価回路は、分布定数線路を級数展開し、高次項を無視した近似である。これにより、理論上は有効である高次項を実用上小さいためにほとんど無視し、結果としてほぼπ型等価回路で解探索をしている。そのため、一部の成分が無視されやすくなり、結果として解に収束しなくなる。よって、分布定数線路の解探索でも高次項に頼らずに解に到達するために、別の方法で有効なデータを増やす必要があり、その方法として零相分を利用することが好ましい。   It should be noted that the zero phase component is not indispensable in theory for the method of considering this transmission line as a distributed constant circuit, but it is desirable to include a zero component. In other words, the π-type equivalent circuit is an approximation in which a series of distributed constant lines is expanded and high-order terms are ignored. As a result, high-order terms that are theoretically effective are practically small, so they are almost ignored, and as a result, a solution search is performed with a π-type equivalent circuit. For this reason, some components are easily ignored, and as a result, they do not converge to a solution. Therefore, in order to arrive at a solution without relying on a high-order term even when searching for a solution of a distributed constant line, it is necessary to increase effective data by another method, and it is preferable to use the zero phase component as the method.

このように実施例3においても、零相分検出手段114により零相分を検出した状態において、電気量取込手段111から取り込んだ電気量に基づいて、線路定数算出手段113によりアドミッタンス行列Y及びインピーダンス行列Zを求めることが可能である。その結果、従来の保護制御計測装置で必要であった送電線に関連する整定計算を大幅に省力化できる。   As described above, also in the third embodiment, in a state where the zero phase component is detected by the zero phase component detecting unit 114, the admittance matrix Y and the line constant calculating unit 113 based on the amount of electricity captured from the electrical amount capturing unit 111. The impedance matrix Z can be obtained. As a result, the settling calculation related to the transmission line, which is necessary in the conventional protection control measurement device, can be greatly saved.

(構成)
実施例4の構成を図4に示す。この実施例4は、実施例3における零相分検出手段114の具体例として、送電線事故状態検出手段115を設けたものである。なお、他の構成は、前記実施例1と同様である。
(Constitution)
The configuration of Example 4 is shown in FIG. In the fourth embodiment, a transmission line accident state detecting means 115 is provided as a specific example of the zero phase component detecting means 114 in the third embodiment. Other configurations are the same as those of the first embodiment.

実施例4においては、この送電線事故状態検出手段115を用いて、対象送電線内に事故が発生しているか、あるいは事故を検出した保護リレーの動作か、あるいは系統操作により遮断器が開放している期間であることを検出する。具体的には、送電線内部事故を検出する電流差動リレー、距離リレーあるいは回線選択リレーなど、選択性のあるリレーの出力を、送電線事故状態検出手段115の入力とすることで送電線内部に事故が発生していることを検出できる。   In the fourth embodiment, the circuit breaker is opened by using the transmission line accident state detection means 115, whether an accident has occurred in the target transmission line, the operation of the protective relay that detected the accident, or the system operation. It is detected that it is a period. Specifically, the output of a selective relay such as a current differential relay, a distance relay, or a line selection relay that detects an accident inside the transmission line is used as an input of the transmission line accident state detection means 115, so that the inside of the transmission line is detected. It is possible to detect that an accident has occurred.

(作用)
電流、電圧事故波形のタイムチャートを図5に示す。t1時点は事故発生前の電気量、t2時点は送電線内部の事故発生時の電気量、t3時点は事故検出後遮断器が送電線を開放し再閉路するまでの電気量、t4時点は系統事故が復旧した電気量を示す。
(Function)
FIG. 5 shows a time chart of current and voltage accident waveforms. The amount of electricity before the occurrence of the accident at the time t1, the amount of electricity at the time of the occurrence of the accident inside the transmission line at the time t2, the amount of electricity until the circuit breaker opens and recloses the transmission line after the detection of the accident at the time t3, the system at the time t4 Indicates the amount of electricity recovered from the accident.

実施例4の動作フローチャートを図6に示す。この図6の各ステップを、前記図5に示した各時刻の電気量と対比して説明する。図6のステップS1が、図5の事故発生前t1時点の電気量取込みに対応する。ステップ2では、送電線内部事故が発生したか否かを前記送電線事故状態検出手段115によって検出し、事故が発生した場合に、次のステップS3において事故発生時点であるt2時点の電気量取込みを行う。   FIG. 6 shows an operation flowchart of the fourth embodiment. Each step in FIG. 6 will be described in comparison with the amount of electricity at each time shown in FIG. Step S1 in FIG. 6 corresponds to the intake of electricity at time t1 before the occurrence of the accident in FIG. In step 2, whether or not a power line internal accident has occurred is detected by the power line accident state detection means 115, and when an accident has occurred, the amount of electricity taken in at time t2, which is the time when the accident occurred, in the next step S3. I do.

その後、ステップS4にて、事故検出後遮断器が送電線を開放し再閉路するまでのt3時点での電気量の取込みを行う。ステップ5では、送電線事故状態検出手段115によって遮断器の状態を本実施例の装置に取込むことで、送電線内部事故の継続あるいは復旧を判定する。ステップ5において送電線内部事故の復旧を判定した場合は、ステップS6において系統事故復旧したt4時点の電気量の取込みを行う。その後、ステップS7において、線路定数算出手段113により得られた全ての電気量を用いて線路定数の計算を行う。   Thereafter, in step S4, the amount of electricity is taken in at time t3 until the circuit breaker opens the power transmission line and closes again after the accident is detected. In step 5, the state of the circuit breaker is taken into the apparatus of the present embodiment by the transmission line accident state detection means 115 to determine whether or not the transmission line internal accident is continued or recovered. When it is determined in step 5 that the power line internal accident has been recovered, the amount of electricity at time t4 when the system accident is recovered in step S6 is taken. Thereafter, in step S7, the line constant is calculated using all the electric quantities obtained by the line constant calculating means 113.

(効果)
このような構成を有する実施例4によれば、送電線内部事故中あるいは復旧中の電気量を取り込むことで、零相分を含む電気量を利用できることから、線路定数算出手段113の演算精度が向上することが期待できる。なお、系統事故中あるいは復旧中に線路定数を算出できた場合に、その時点で該当する保護リレーの整定値を変更することは、本装置の演算処理速度が速くなれば可能となる。
(effect)
According to the fourth embodiment having such a configuration, since the amount of electricity including the zero phase can be used by taking in the amount of electricity during an accident inside the transmission line or during restoration, the calculation accuracy of the line constant calculation unit 113 is high. It can be expected to improve. If the line constant can be calculated during a system fault or recovery, the set value of the corresponding protection relay can be changed at that time if the calculation processing speed of the apparatus increases.

(構成)
実施例5の構成を図7に示す。この実施例5は、前記実施例1の変形例であって、線路定数算出手段113において算出した線路定数が、予め定めた範囲内に入っていない場合は、算出結果を破棄する線路定数検定手段116を設けたものである。すなわち、線路定数算出手段113は、実施例1乃至実施例3に示す式を用いるが、取り込んだ電気量によって演算誤差が大きくなる、あるいは演算が収束せずに物理的にありえない値を算出結果とする可能性がある。そこで、この実施例5では、あらかじめ物理的にありえる線路定数の範囲を線路定数検定手段116内に組み込んでおく。
(Constitution)
The configuration of Example 5 is shown in FIG. The fifth embodiment is a modification of the first embodiment, and when the line constant calculated by the line constant calculation means 113 is not within a predetermined range, the line constant verification means discards the calculation result. 116 is provided. That is, the line constant calculation unit 113 uses the expressions shown in the first to third embodiments, but the calculation error becomes large depending on the amount of electricity taken in, or the calculation does not converge and the value that is physically impossible is calculated as the calculation result. there's a possibility that. Therefore, in the fifth embodiment, a range of line constants that can be physically present is incorporated in the line constant test means 116 in advance.

(作用)
このような構成を有する実施例5では、図11に示すフローチャートのステップ1からステップSn+1のように、前記実施例1と同様にして、線路定数であるアドミッタンス及びインピーダンス行列を求める。その後、ステップSn+2において、線路定数算出手段113からの結果を線路定数検定手段116に入力して、計算で得られた線路定数の値が予め設定された範囲内にあるか否かを検定する。検定結果が、範囲内である場合には、ステップSn+3において算出された線路定数を確定し、範囲外である場合は、ステップSn+4において算出結果を破棄する。
(Function)
In the fifth embodiment having such a configuration, the admittance and impedance matrix, which are line constants, are obtained in the same manner as in the first embodiment, as in steps 1 to Sn + 1 in the flowchart shown in FIG. Thereafter, in step Sn + 2, the result from the line constant calculation means 113 is input to the line constant verification means 116, and it is verified whether or not the value of the line constant obtained by the calculation is within a preset range. To do. When the test result is within the range, the line constant calculated at step Sn + 3 is determined, and when it is out of the range, the calculation result is discarded at step Sn + 4.

(効果)
このように実施例5においては、演算誤差や収束しない演算結果を排除することが可能になるので、高精度な線路定数を求めることが可能となる。
(effect)
As described above, in the fifth embodiment, calculation errors and calculation results that do not converge can be eliminated, so that a highly accurate line constant can be obtained.

(構成)
図9に示す実施例6は、本発明の保護制御計測装置110を送電線の故障点標定装置とした場合の構成を示す。すなわち、本発明の保護制御計測装置110に公知の故障点評定手段117を組み込み、この故障点評定手段117に線路定数算出手段113によって得られた線路定数を、電気量取込手段111で取得した各時点の電気量と共に入力するものである。
(Constitution)
Example 6 shown in FIG. 9 shows a configuration in the case where the protection control measuring device 110 of the present invention is a power line failure point locating device. That is, a known failure point rating means 117 is incorporated in the protection control measuring device 110 of the present invention, and the line constant obtained by the line constant calculation means 113 is acquired in the failure point rating means 117 by the electric quantity capturing means 111. It is input together with the amount of electricity at each time point.

(作用)
このような構成の実施例6の動作は、図10のフローチャートに示すように、ステップS1からステップSn+1までは前述までの実施例と同じである。その後、ステップSn+1の線路定数算出手段113の算出結果を故障点標定機能117に入力し、ステップSn+2では、故障点評定手段117が線路定数算出手段113の出力を用いて故障点評定の整定値を補正あるいは再設定する。
(Function)
The operation of the sixth embodiment having such a configuration is the same as that of the previous embodiments from step S1 to step Sn + 1 as shown in the flowchart of FIG. Thereafter, the calculation result of the line constant calculation unit 113 in step Sn + 1 is input to the failure point locating function 117. In step Sn + 2, the failure point evaluation unit 117 uses the output of the line constant calculation unit 113 to evaluate the failure point. Correct or reset the settling value.

(効果)
故障点標定のアルゴリズムは種々提案されてきており距離リレーのように線路のインピーダンスを測距するもの、電流の分布を求めるものなどがあるが、いずれも正しい線路の定数が必要となる。従来の故障点標定装置では、線路定数を求めるために前述したCarson-Polarczhek法を利用した計算をコンピュータでオフラインで行い装置の運用開始前に整定していた。運用後は整定変更を行わずに固定で運用するのが一般的であった。
(effect)
Various fault location algorithms have been proposed, such as those that measure line impedance, such as distance relays, and those that obtain current distribution, all of which require correct line constants. In the conventional fault location device, the calculation using the Carson-Polarczhek method described above is performed off-line with a computer to determine the line constant, and is set before the operation of the device is started. After operation, it was common to operate with no settling change.

本実施例によれば、事前に従来方法で整定しておいた場合でも、運用後に実際の潮流から線路定数が求められ再整定を自動的に行えることから、精度の高い故障点標定装置を得ることができる。また従来のCarson-Polarczhek法を利用した計算は線路の幾何学的な配置を入力する必要があり、また周囲温度、大地の導電率などを推測で入力する必要があったことから経済性、信頼性の課題があった。一方、本実施例によれば、運用開始前に労力をかけて線路定数を求める必要がなくなるとともに、運用中の周囲の環境変化を時々刻々適応的に反映しながら線路定数が算出できることから、経済性、信頼性が大幅に向上する。   According to the present embodiment, even when the conventional method is set in advance, the line constant is obtained from the actual power flow after operation, and re-setting can be performed automatically, so that a highly accurate fault location device is obtained. be able to. In addition, calculation using the conventional Carson-Polarczhek method requires input of the geometrical layout of the line, and input of the ambient temperature, ground conductivity, etc., has to be made by estimation. There was a gender issue. On the other hand, according to this embodiment, it is not necessary to calculate the line constant before starting operation, and the line constant can be calculated while adaptively reflecting the surrounding environmental changes during operation. And reliability are greatly improved.

なお、故障点標定装置には、相手端子からの電流を自端子に取込んで標定演算を行う上述のもの以外に、各端子の時刻同期した電気量データを中央の演算装置に集約し、演算装置で故障点標定演算を行うものもある。この場合は、上述の線路定数算出手段113は、この中央の演算装置に置くことになるが、その効果は上述の例と同等である。   In addition to the above-mentioned one that takes the current from the other terminal into its own terminal and performs the orientation calculation, the failure point locating device aggregates the time-synchronized electricity quantity data into the central processing unit and calculates Some devices perform fault location calculations. In this case, the above-described line constant calculation means 113 is placed in this central processing unit, but the effect is equivalent to the above-described example.

(構成)
図11は、保護制御計測装置110を送電線の保護を行う距離リレーとした場合の構成を示す。すなわち、本発明の保護制御計測装置110に公知の距離リレー118を組み込み、この距離リレー118に線路定数算出手段113によって得られた線路定数を、電気量取込手段111で取得した各時点の電気量と共に入力するものである。
(Constitution)
FIG. 11 shows a configuration when the protection control measuring device 110 is a distance relay that protects a power transmission line. That is, a known distance relay 118 is incorporated in the protection control measuring device 110 of the present invention, and the line constant obtained by the line constant calculation means 113 is obtained in the distance relay 118 by the electric quantity capturing means 111. It is input with quantity.

(作用)
このような構成の実施例7の動作は、図12のフローチャートに示すように、ステップS1からステップSn+1までは前述までの実施例と同じである。その後、ステップSn+1の線路定数算出手段113の算出結果を距離リレー118に入力し、ステップSn+2では、距離リレー118が線路定数算出手段113の出力を用いて距離リレー118の線路定数に関わる整定値を補正あるいは再設定する。
(Function)
The operation of the seventh embodiment having such a configuration is the same as that of the previous embodiments from step S1 to step Sn + 1 as shown in the flowchart of FIG. Thereafter, the calculation result of the line constant calculating unit 113 in step Sn + 1 is input to the distance relay 118. In step Sn + 2, the distance relay 118 uses the output of the line constant calculating unit 113 to set the line constant of the distance relay 118. Correct or reset the settling value involved.

(効果)
距離リレーのアルゴリズムは種々提案されてきているが、いずれも正しい線路の定数が必要となる。従来の距離リレーでは、線路定数を求めるために前述したCarson-Polarczhek法を利用した計算をコンピュータでオフラインで行うか、あるいは送電線建設時に実測をしたデータを用いるかなどして装置の運用開始前に動作範囲を整定していた。運用後は、整定変更を行わずに固定で運用するのが一般的であった。
(effect)
Various distance relay algorithms have been proposed, but all require correct line constants. In conventional distance relays, the calculation using the Carson-Polarczhek method described above to calculate the line constant is performed off-line with a computer, or data measured during construction of the transmission line is used before starting the operation of the equipment. The operating range was set to After operation, it was common to operate with no change of setting.

本実施例によれば事前に従来方法で整定しておいた場合でも、運用後に実際の潮流から線路定数が求められ再整定を自動的に行えることから精度の高い距離リレーを得ることができる。また従来のCarson-Polarczhek法を利用した計算は線路の幾何学的な配置を入力する必要があり、また周囲温度、大地の導電率などを推測で入力する必要があったことから経済性、信頼性の課題があり、建設時に実測する場合も印加用電源などの準備が必要であったが、本実施例によれば、運用開始前に労力をかけて線路定数を求める必要がなくなるとともに、運用中の周囲の環境変化を時々刻々適応的に反映しながら線路定数が算出できることから大幅に経済性、信頼性が向上する。   According to the present embodiment, even if the setting is performed in advance by the conventional method, the line constant is obtained from the actual power flow after the operation and the re-setting can be automatically performed, so that a highly accurate distance relay can be obtained. In addition, calculation using the conventional Carson-Polarczhek method requires input of the geometrical layout of the line, and input of the ambient temperature, ground conductivity, etc., has to be made by estimation. However, according to the present example, it is not necessary to calculate the line constant before starting operation, and it is not necessary to prepare the line constant. Since the line constant can be calculated while adaptively reflecting changes in the surrounding environment, the economy and reliability are greatly improved.

(構成)
図13は、本発明の保護制御計測装置110を送電線の保護を行う電流差動リレー装置とした場合の構成である。すなわち、本発明の保護制御計測装置110に公知の電流差動リレー119を組み込み、この電流差動リレー119に対して線路定数算出手段113によって得られた線路定数を、電気量取込手段111で取得した各時点の電気量と共に入力するものである。
(Constitution)
FIG. 13 shows a configuration in which the protection control measurement device 110 of the present invention is a current differential relay device that protects a transmission line. That is, a known current differential relay 119 is incorporated in the protection control measuring device 110 of the present invention, and the line constant obtained by the line constant calculating unit 113 for the current differential relay 119 is converted by the electric quantity capturing unit 111. It is input together with the amount of electricity acquired at each time point.

(作用)
このような構成の実施例8の動作は、図14のフローチャートに示すように、ステップS1からステップSn+1までは前述までの実施例と同じである。その後、ステップSn+1の線路定数算出手段113の算出結果を電流差動リレー119に入力し、ステップSn+2では、電流差動リレー119が線路定数算出手段113の出力を用いて電流差動リレー119の線路定数に関わる整定値を補正あるいは再設定する。
(Function)
The operation of the eighth embodiment having such a configuration is the same as that of the previous embodiments from step S1 to step Sn + 1 as shown in the flowchart of FIG. Thereafter, the calculation result of the line constant calculation unit 113 in step Sn + 1 is input to the current differential relay 119. In step Sn + 2, the current differential relay 119 uses the output of the line constant calculation unit 113 to perform current differential. The settling value related to the line constant of the relay 119 is corrected or reset.

(効果)
従来、長距離送電線やケーブル系の保護を行う電流差動リレーの整定には、送電線の充電電流を補償した整定を行うのが一般的であり、線路のアドミッタンスと端子の電圧から充電電流を求めていた。アドミッタンスの計算は、前述の例のように線路の幾何学的配置から求められていたが、労力が多く精度にも課題があった。
(effect)
Conventionally, the current differential relay that protects long-distance transmission lines and cable systems is generally set by compensating for the charging current of the transmission line. The charging current is determined from the line admittance and the terminal voltage. I was looking for. The calculation of the admittance has been obtained from the geometrical arrangement of the lines as in the above example, but it has been labor intensive and has a problem in accuracy.

本実施例によれば、事前に従来方法で整定しておいた場合でも、運用後に実際の線路アドミッタンスから充電電流が求められ、再整定を自動的に行えることから、精度の高い電流差動リレーを得ることができる。また、従来のCarson-Polarczhek法を利用した計算は、線路の幾何学的な配置を入力する必要があり、かつ周囲温度、大地の導電率などを推測で入力する必要があったことから経済性、信頼性の課題があった。さらに、建設時に実測する場合も印加用電源などの準備が必要であった。本実施例によれば、運用開始前に労力をかけて充電電流を求める必要がなくなるとともに、運用中の周囲の環境変化を時々刻々適応的に反映しながら線路定数が算出できることから、大幅に経済性、信頼性が向上する。   According to the present embodiment, even when the current method is set in advance, the charging current is obtained from the actual line admittance after the operation, and the re-setting can be automatically performed. Can be obtained. In addition, the calculation using the conventional Carson-Polarczhek method requires economic input because it is necessary to input the geometrical layout of the line and to input the ambient temperature, ground conductivity, etc. There was a reliability issue. Furthermore, preparations such as a power supply for application were also required when actually measuring at the time of construction. According to this embodiment, it is not necessary to calculate the charging current with effort before starting operation, and the line constant can be calculated while adaptively reflecting the surrounding environmental changes during operation. And reliability are improved.

101A,101B、101C:送電線
102:変流器
103:計器用変圧器
104:通信回線
110:保護制御計測装置
111:電気量取込手段
112:時刻同期手段
113:線路定数算出手段
114:零相分検出手段
115:送電線事故状態検出手段
116:線路定数検定手段
117:故障点標定手段
118:距離リレー
119:充電電流補償リレー
101A, 101B, 101C: Transmission line 102: Current transformer 103: Instrument transformer 104: Communication line 110: Protection control measuring device 111: Electric quantity taking means 112: Time synchronization means 113: Line constant calculating means 114: Zero Phase detection means 115: Transmission line accident state detection means 116: Line constant verification means 117: Fault location means 118: Distance relay 119: Charging current compensation relay

Claims (11)

測定対象とする線路の両端に設置され送電線両端の電気量を取り込む電気量取込手段と、
前記電気量取込手段における電気量取り込みを同時刻に行うための時刻同期手段と、
前記線路をπ型等価回路または分布定数回路として、前記電気量取込手段において取り込んだ電気量から線路の定数を、アドミッタンス及びインピーダンス行列として算出する線路定数算出手段と、
前記電気量取込手段に取り込む電気量に零相分が一定値以上含まれていることを検出する零相分検出手段を使用し、
前記零相分検出手段において検出した零相分が一定値以上となったことを条件に線路定数算出手段を起動し、前記線路定数算出手段により少なくとも2つ以上の異なる時点で前記電気量取込手段に取り込んだ電気量とその零相分に基づいて送電線路の定数を算出することを特徴とする線路定数測定方法。
Electric quantity capturing means that is installed at both ends of the line to be measured and captures the electric quantity at both ends of the transmission line;
A time synchronization means for performing the electric quantity taking-in in the electric quantity taking-in means at the same time;
Line constant calculating means for calculating the constant of the line as the admittance and impedance matrix from the quantity of electricity taken in by the quantity of electricity taking means as the π-type equivalent circuit or distributed constant circuit,
Using the zero phase component detecting means for detecting that the zero phase component is contained in a certain value or more in the amount of electricity to be taken into the electricity amount capturing device,
The line constant calculation means is started on the condition that the zero phase component detected by the zero phase component detection means exceeds a certain value, and the electric quantity is taken in at least two different time points by the line constant calculation means. A line constant measuring method, comprising: calculating a constant of a transmission line based on an amount of electricity taken into the means and its zero phase component.
前記線路をπ型等価回路とし、線路定数をインピーダンスZ、アドミッタンスYで定義し、前記線路定数算出手段において以下の式を用いて線路定数を算出することを特徴とする請求項1に記載の線路定数測定方法。
Figure 0005481636
または,
Figure 0005481636
2. The line according to claim 1, wherein the line is a π-type equivalent circuit, the line constant is defined by impedance Z and admittance Y, and the line constant is calculated by the following equation using the following equation. Constant measurement method.
Figure 0005481636
Or
Figure 0005481636
前記線路を分布定数回路とし、線路の単位長あたりのアドミッタンスY、インピーダンスZを前記線路定数算出手段において以下の式を用いることにより算出することを特徴とする請求項1に記載の線路定数測定方法。
Figure 0005481636
The line constant measuring method according to claim 1, wherein the line is a distributed constant circuit, and the admittance Y and the impedance Z per unit length of the line are calculated by using the following equations in the line constant calculating means. .
Figure 0005481636
測定対象とする線路の両端に設置され送電線両端の電気量を取り込む電気量取込手段と、
前記電気量取込手段における電気量取り込みを同時刻に行うための時刻同期手段と、
前記線路をπ型等価回路または分布定数回路として、前記電気量取込手段において取り込んだ電気量から線路の定数を、アドミッタンス及びインピーダンス行列として算出する線路定数算出手段と、
前記電気量取込手段に取り込む電気量に零相分が一定値以上含まれていることを検出する零相分検出手段を備え、
前記線路定数算出手段が、前記零相分検出手段において検出した零相分が一定値以上となったことを条件に起動し、少なくとも2つ以上の異なる時点で前記電気量取込手段に取り込んだ電気量とその零相分に基づいて送電線路の定数を算出するものであることを特徴とする保護制御計測装置。
Electric quantity capturing means that is installed at both ends of the line to be measured and captures the electric quantity at both ends of the transmission line;
A time synchronization means for performing the electric quantity taking-in in the electric quantity taking-in means at the same time;
Line constant calculating means for calculating the constant of the line as the admittance and impedance matrix from the quantity of electricity taken in by the quantity of electricity taking means as the π-type equivalent circuit or distributed constant circuit,
A zero-phase component detecting means for detecting that the zero-phase component is included in the electricity quantity to be taken into the electricity quantity capturing device;
The line constant calculation means is started on the condition that the zero phase component detected by the zero phase component detection means is equal to or greater than a certain value, and is taken into the electricity quantity taking means at at least two different time points. A protection control measuring device for calculating a constant of a transmission line based on an amount of electricity and its zero phase.
前記線路定数算出手段が、前記線路をπ型等価回路とし、線路定数をインピーダンスZ、アドミッタンスYで定義し、以下の式を用いて線路定数を算出することを特徴とする請求項4に記載の保護制御計測装置。
Figure 0005481636
または,
Figure 0005481636
5. The line constant calculation unit according to claim 4, wherein the line constant calculation unit defines the line as a π-type equivalent circuit, defines the line constant as impedance Z and admittance Y, and calculates the line constant using the following formula. Protection control measuring device.
Figure 0005481636
Or
Figure 0005481636
前記線路定数算出手段が、前記線路を分布定数回路とし、線路の単位長あたりのアドミッタンスY、インピーダンスZを以下の式を用いることにより算出することを特徴とする請求項4に記載の保護制御計測装置。
Figure 0005481636
5. The protection control measurement according to claim 4, wherein the line constant calculating means calculates the admittance Y and the impedance Z per unit length of the line by using the following expressions, with the line being a distributed constant circuit. apparatus.
Figure 0005481636
前記零相分検出手段を線路事故中あるいは線路開放中を検出する線路事故状態検出手段から構成し、この線路事故状態検出手段からの検出結果に従って、前記電気量取込手段が電気量を取り込む時点の内少なくとも一つ以上は線路事故中あるいは線路開放中の時点であることを特徴とする請求項4から6のいずれかに記載の保護制御計測装置。   The zero phase component detecting means is composed of a line fault state detecting means for detecting whether a line fault or the line is open, and the electric quantity taking means takes in the electric quantity according to the detection result from the line fault state detecting means. 7. The protection control measuring apparatus according to claim 4, wherein at least one of the points is a time when a line accident or a line is open. 前記線路定数算出手段の出力側に、前記線路定数算出手段が算出した線路定数が予め定めた範囲内に入っていない場合は算出結果を破棄する線路定数検定手段を設けたことを特徴とする請求項4から6のいずれかに記載の保護制御計測装置。   The line constant test means for discarding the calculation result when the line constant calculated by the line constant calculation means is not within a predetermined range is provided on the output side of the line constant calculation means. Item 7. The protection control measurement device according to any one of Items 4 to 6. 前記線路定数算出手段の出力側に、前記線路定数算出手段の算出結果により故障点標定における線路定数に関わる整定値を補正あるいは再設定する故障点評定手段を設けたことを特徴とする請求項4から6のいずれかに記載の保護制御計測装置。   5. The failure point evaluation means for correcting or resetting a set value related to the line constant in the failure point location based on the calculation result of the line constant calculation means is provided on the output side of the line constant calculation means. To 6. The protection control measuring device according to any one of claims 1 to 6. 前記線路定数算出手段の出力側に、前記線路定数算出手段の算出結果により測距性能に関わる整定値を補正あるいは再設定する距離リレーを設けたことを特徴とする請求項4から6のいずれかに記載の保護制御計測装置。   7. A distance relay for correcting or resetting a settling value related to ranging performance according to a calculation result of the line constant calculating unit is provided on an output side of the line constant calculating unit. The protection control measuring device described in 1. 前記線路定数算出手段の出力側に、前記線路定数算出手段の算出結果により充電電流補償機能に関わる整定値を補正あるいは再設定する送電線電流差動リレーを設けたことを特徴とする請求項4から6のいずれかに記載の保護制御計測装置。   5. The transmission line current differential relay is provided on the output side of the line constant calculating means, which corrects or resets a set value related to a charging current compensation function based on a calculation result of the line constant calculating means. To 6. The protection control measuring device according to any one of claims 1 to 6.
JP2009212717A 2009-09-15 2009-09-15 Line constant measuring method and protection control measuring device Active JP5481636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009212717A JP5481636B2 (en) 2009-09-15 2009-09-15 Line constant measuring method and protection control measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212717A JP5481636B2 (en) 2009-09-15 2009-09-15 Line constant measuring method and protection control measuring device

Publications (2)

Publication Number Publication Date
JP2011064465A JP2011064465A (en) 2011-03-31
JP5481636B2 true JP5481636B2 (en) 2014-04-23

Family

ID=43950893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212717A Active JP5481636B2 (en) 2009-09-15 2009-09-15 Line constant measuring method and protection control measuring device

Country Status (1)

Country Link
JP (1) JP5481636B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807140A (en) * 2016-02-04 2016-07-27 天津大学 Ultrahigh-voltage overhead-cable hybrid power transmission line order parameter measurement method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439607B (en) * 2013-08-28 2016-11-23 三川电力设备股份有限公司 By method and system and the Fault Locating Method of failure wave-recording identification element population parameter
KR101664010B1 (en) * 2015-02-05 2016-10-10 전남대학교산학협력단 An Estimation Method of Line Parameter based on Synchrophasor Measurements in Power System
JP6625952B2 (en) * 2016-09-27 2019-12-25 株式会社日立製作所 Power system characteristic estimation device and method, and power system management device
CN113945802B (en) * 2021-10-25 2023-06-20 国网重庆市电力公司电力科学研究院 Method and device for measuring space potential below high-voltage transmission line

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566348B2 (en) * 1991-06-26 1996-12-25 関西電力株式会社 Positive line impedance measuring device for power lines
JPH1169608A (en) * 1997-08-13 1999-03-09 Toshiba Corp Digital protection relay device
JP2992615B2 (en) * 1998-03-19 1999-12-20 財団法人 関西電気保安協会 Line constant measuring device and ground fault monitoring device for ungrounded electric circuit
JP2000214210A (en) * 1999-01-20 2000-08-04 Toshiba Corp Accident point locater
JP3586266B2 (en) * 2002-06-06 2004-11-10 東京電力株式会社 Fault location method for transmission line and fault location system using the same
JP4909595B2 (en) * 2006-01-19 2012-04-04 株式会社東芝 Accident point location system, accident point location method, accident point location system terminal device and orientation calculation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807140A (en) * 2016-02-04 2016-07-27 天津大学 Ultrahigh-voltage overhead-cable hybrid power transmission line order parameter measurement method
CN105807140B (en) * 2016-02-04 2018-07-27 天津大学 A kind of super-pressure is aerial-cable mixed power transmission line order parameter measurement method

Also Published As

Publication number Publication date
JP2011064465A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
EP1971869B1 (en) Method and device for fault location in a two-terminal transmission or distribution power line
US7286963B2 (en) Method and device for fault location on three terminal power line
Ghorbani et al. Negative-sequence network based fault location scheme for double-circuit multi-terminal transmission lines
Liao et al. Online optimal transmission line parameter estimation for relaying applications
EP1724597B1 (en) System and method for determining location of phase-to-earth fault
Dobakhshari et al. A wide-area scheme for power system fault location incorporating bad data detection
US6584417B1 (en) Method and directional element for fault direction determination in a capacitance-compensated line
EP3350897A1 (en) Time-domain line protection of electric power delivery systems
JP5481636B2 (en) Line constant measuring method and protection control measuring device
Hussain et al. Fault location scheme for multi-terminal transmission lines using unsynchronized measurements
CN111542980B (en) Apparatus and method for identifying fault location in electric power transmission line
Eisa et al. Accurate one-end fault location for overhead transmission lines in interconnected power systems
EP3564687B1 (en) Determination of power transmission line parameters using asynchronous measurements
WO2019229638A1 (en) Fault location for parallel transmission lines with zero sequence currents estimated from faulted line measurements
Xiu et al. Novel fault location methods for ungrounded radial distribution systems using measurements at substation
JP2015520849A (en) Fault detection and location apparatus and method
CN102495325B (en) Accurate fault locating method for double circuit lines on same pole
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
Lin et al. A signal-superimposed technique for fault location in transmission lines through IED measurements considering communication service failure
Mekhamer et al. Fault location in long transmission lines using synchronized phasor measurements from both ends
Lin et al. Fault location for three-ended ring-topology power system using minimum GPS-based measurements and CVT/CT sensing
JP6621515B1 (en) Ground capacitance measuring apparatus and ground capacitance measuring method
KR101664010B1 (en) An Estimation Method of Line Parameter based on Synchrophasor Measurements in Power System
JP5834308B2 (en) Line constant measuring method and protection control measuring device for two parallel transmission lines
US20050114048A1 (en) Method for detecting line-to-line fault location in power network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5481636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350