JP5831894B2 - Artificial waste heat treatment system in closed water - Google Patents

Artificial waste heat treatment system in closed water Download PDF

Info

Publication number
JP5831894B2
JP5831894B2 JP2010153555A JP2010153555A JP5831894B2 JP 5831894 B2 JP5831894 B2 JP 5831894B2 JP 2010153555 A JP2010153555 A JP 2010153555A JP 2010153555 A JP2010153555 A JP 2010153555A JP 5831894 B2 JP5831894 B2 JP 5831894B2
Authority
JP
Japan
Prior art keywords
water
temperature
heat
seawater
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010153555A
Other languages
Japanese (ja)
Other versions
JP2012017549A (en
Inventor
正喜 中尾
正喜 中尾
真稔 西岡
真稔 西岡
美奈子 鍋島
美奈子 鍋島
進 矢持
進 矢持
孝昌 重松
孝昌 重松
徹 遠藤
徹 遠藤
佳則 貫上
佳則 貫上
信人 森
信人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka City University
Original Assignee
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka City University filed Critical Osaka City University
Priority to JP2010153555A priority Critical patent/JP5831894B2/en
Publication of JP2012017549A publication Critical patent/JP2012017549A/en
Application granted granted Critical
Publication of JP5831894B2 publication Critical patent/JP5831894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は、家屋・発電所等の建物から発生する人工排熱を閉鎖性水域に排出する人工排熱処理システムである。 The present invention is an artificial exhaust heat treatment system that exhausts artificial exhaust heat generated from a building such as a house or a power plant to a closed water area.

近年、都市の中心部の気温が郊外の気温より高くなるという、いわゆるヒートアイランド現象が問題となっている。ヒートアイランド現象は種々の要因が重なりあって起こっているが、その一つに都市への人口集中によって、家屋、大型発電所、石油工場、石油化学工場などの施設から発生し大気へ排出される人工排熱量が増加していることが挙げられる。 In recent years, the so-called heat island phenomenon in which the temperature in the center of a city is higher than the temperature in the suburbs has become a problem. The heat island phenomenon is caused by various factors, one of which is the artificial population that is generated from facilities such as houses, large power plants, oil factories, and petrochemical factories due to population concentration in the city and discharged into the atmosphere. The amount of exhaust heat is increasing.

これらの人工排熱は最終的には熱の逃し場として海水に放出される場合、このことが海水の水温上昇に影響を与える結果となっている。とくに、防波堤で囲まれた人工的閉鎖性水域では、外部水域との水交換が行われにくいため、海水が停滞しやすくなる。このため、夏場において人工的閉鎖性水域内の表層水温は低層水温と比べて高い傾向がある。 When these artificial exhaust heat is finally released into seawater as a heat release place, this has an effect on the rise in seawater temperature. In particular, in an artificial closed water area surrounded by a breakwater, it is difficult for water to be exchanged with an external water area, so seawater tends to stagnate. For this reason, the surface water temperature in the artificial closed water area in summer tends to be higher than the low water temperature.

例えば大阪港においては、夏期特有の温度成層が、6月には、既に形成されており、7月にかけてその成層はより強固なものへと発達していく過程が見られる。そして、この表層の水温上昇は、海風が都心部に進入するに伴い沿岸付近のヒートアイランド現象を招くという問題にもつながっている。 For example, at Osaka Port, a temperature stratification peculiar to the summer season has already been formed in June, and the process of developing the stratification into a stronger one is seen through July. And this rise in the surface water temperature leads to the problem of causing a heat island phenomenon near the coast as sea breeze enters the city center.

従来、このようなヒートアイランド現象の対策として、保水性舗装や屋上緑化等の陸上での対策が主体的に行われている。(例えば下記特許文献1参照) Conventionally, onshore countermeasures such as water retention pavement and rooftop greening have been mainly taken as countermeasures against such a heat island phenomenon. (For example, see Patent Document 1 below)

しかし、陸上におけるヒートアイランド対策は、巨額の投資にもかかわらずその効果は限られた地域に限定され、大きな効果を発揮するためには大規模な施工をしなければならないという問題があった。 However, on land heat island countermeasures, the effect is limited to a limited area in spite of huge investment, and there is a problem that a large-scale construction has to be performed in order to exert a large effect.

一方、閉鎖性水域における他の環境問題として、貧酸素水塊の問題が挙げられる。すなわち、外部の水域と交流性の悪い閉鎖性水域では、有機物が堆積しやすく、底層においては貧酸素状態が広く生じやすくなる。その結果、水中の酸素が欠乏して浄化に役立っている好気性生物が死滅すると、水域内の環境条件のバランスが崩れ、赤潮プランクトンなどの有害生物が異常に発生してしまう。 On the other hand, another environmental problem in a closed water area is the problem of anoxic water mass. That is, organic matter is likely to be deposited in a closed water area having poor exchange with an external water area, and an oxygen-poor state is likely to occur widely in the bottom layer. As a result, when aerobic organisms that are depleted due to lack of oxygen in the water die, the balance of environmental conditions in the water area is lost, and pests such as red tide plankton are abnormally generated.

外部の水域と交流性の悪い閉鎖性水域(海底に存在する急峻な窪みや、閉鎖的な内湾等)では一般的に水の流れが滞りやすい、また、夏季に成層が発達すると、表層の海水と底層の海水との密度差が大きくなり、上下の混合が起こりにくくなる。底層ではプランクトンの死骸などの有機物が堆積し、その分解が盛んに行われるため、酸素が消費される。結果として、水流の滞った海底付近では極めて溶存酸素量の少ない貧酸素水塊が形成される。 In closed water areas (such as steep pits on the seabed or closed inner bays) that have poor interaction with external water areas, water flow is generally stagnation, and when stratification develops in the summer, surface seawater And the difference in density between the seawater in the bottom layer and the upper and lower mixing is less likely to occur. In the bottom layer, organic matter such as plankton carcasses is deposited and decomposed actively, so oxygen is consumed. As a result, an anoxic water mass with a very small amount of dissolved oxygen is formed near the bottom of the sea where the water flow is stagnant.

このように形成された貧酸素水塊は、強い風や潮の流れの変化などに伴い海面付近に上昇してくることがあり、この場合、海中あるいは海底に生息する生物の大量死をもたらし、いわゆる青潮を招く要因となっていった。 The hypoxic water mass formed in this way may rise near the sea surface due to strong winds and changes in tide flow, etc., in this case, causing mass death of organisms living in the sea or at the bottom of the sea, It became a factor causing the so-called blue tide.

閉鎖性水域の浄化方法として、人工的に外部水域との交流性を持たせる方法がとられている。例えば下記特許文献2では、土木的手段により水域入口を通じて外部水域との水の交流をはかるともに、閉鎖水域内においても攪拌を行うという手段が行なわれている。 As a method for purifying a closed water area, a method of artificially providing interchangeability with an external water area is employed. For example, in Patent Document 2 described below, means for exchanging water with an external water area through a water area entrance by civil engineering means and stirring in a closed water area are performed.

しかし、湖沼のような狭い水域を攪拌するのは比較的容易であるが、港湾のような広い閉鎖性水域内を攪拌するには大規模な水流発生装置が必要となり、コストが高くなるという問題があった。
特開2009−215853号公報 特開平06−257117号公報
However, although it is relatively easy to stir a narrow water area such as a lake, a large-scale water flow generator is required to stir a large closed water area such as a harbor, which increases the cost. was there.
JP 2009-215853 A Japanese Patent Laid-Open No. 06-257117

本発明の人工排熱処理システムは、閉鎖性水域外の底層低温水を冷凍機用凝縮器や蒸気タービン用復水器等への冷却水等として活用することで、ヒートアイランド現象の加速に足止めをかけるとともに、熱交換後の温度上昇した海水を鉛直混合の促進に有効利用することで、閉鎖性水域内の底層部の貧酸素水を改善する。 The artificial waste heat treatment system of the present invention stops the acceleration of the heat island phenomenon by utilizing the low temperature bottom water outside the closed water area as cooling water for condensers for refrigerating machines, condensers for steam turbines, etc. At the same time, seawater that has risen in temperature after heat exchange is effectively used to promote vertical mixing, thereby improving the oxygen-poor water in the bottom layer in a closed water area.

本発明の閉鎖性水域への人工排熱処理システムは、人工的閉鎖性水域外の底層部の底層水を取水する取水手段と、上記取水手段が取水した底層水を熱源として用いる熱交換手段と、上記熱交換手段で用いた後に排出される排熱水を人工的閉鎖性水域内の底層部に排出する排水手段とを備える。 The artificial waste heat treatment system to the closed water area of the present invention, water intake means for taking the bottom layer water of the bottom layer outside the artificial closed water area, heat exchange means using the bottom layer water taken by the water intake means as a heat source, Drainage means for discharging waste heat water discharged after being used in the heat exchange means to the bottom layer in the artificially closed water area.

冷房による排熱を、大気だけではなく、熱容量の非常に大きい海水中へ排出することで、ヒートアイランド現象を抑制することができる。具体的には、防波堤で囲まれた閉鎖性水域外の底層貧酸素低温水を熱交換器・発電への冷媒として活用することで、省エネ、コジェネ、二酸化炭素削減が期待できる。熱交換器・発電機冷却に使用された残余排熱水の冷媒として活用することもできる。 The heat island phenomenon can be suppressed by discharging the exhaust heat from the cooling not only to the atmosphere but also into seawater having a very large heat capacity. Specifically, energy saving, cogeneration, and carbon dioxide reduction can be expected by using bottom-layered low-oxygen low-temperature water outside the closed water area surrounded by the breakwater as a refrigerant for heat exchangers and power generation. It can also be used as a refrigerant for residual waste heat water used for cooling heat exchangers and generators.

なお、未利用エネルギーである海水を熱源機器の冷却水として利用した場合の機器の運転パターンや海水利用の方法(直接利用・間接利用)についての研究は多くなされているが、利用する海水温度に注目した研究に関してはあまり行われていない。本発明は、夏期に発達するといわれている温度成層に着目し、低温底層水を利用することで、省エネルギー効果を高めている。 There are many studies on equipment operation patterns and seawater use methods (direct use and indirect use) when seawater, which is unused energy, is used as cooling water for heat source equipment. Not much research has been done on the topic. The present invention pays attention to temperature stratification, which is said to develop in the summer, and enhances the energy saving effect by using low temperature bottom water.

また、熱交換後の排熱海水を人工的閉鎖性水域内の底層部に排出することで、貧酸素状態を改善することもできる。すなわち、熱交換後の排熱海水は、人工的閉鎖性水域内の底層部の海水より温度が高いため、底層部に排出された排熱海水は周囲との海水との密度差によって上昇する。その際周囲の海水も引き付けられるように上昇する結果、閉鎖性水域内で海水の循環・垂直混合が生じ、貧酸素状態を改善することができる。 Moreover, an anaerobic state can also be improved by discharging | emitting waste-heated seawater after heat exchange to the bottom layer part in an artificial closed water area. That is, since the waste heat seawater after heat exchange has a higher temperature than the sea water in the bottom layer in the artificial closed water area, the waste heat sea water discharged to the bottom layer rises due to the density difference between the sea water and the surrounding sea water. At that time, as a result of ascending so as to attract the surrounding seawater, circulation and vertical mixing of the seawater occur in the closed water area, and the poor oxygen state can be improved.

さらに、熱交換後の排熱海水を人工的閉鎖性水域内の底層部に排出することで、ヒートアイランド現象を抑制することもできる。すなわち、上述のように閉鎖性水域内で海水の循環・垂直混合が生じる結果、表層の水温の上昇を抑制することができる。都心部では典型的な真夏日に大阪湾・東京湾等の内湾部からの海風が都心に侵入するため、表層水温を現状より低くできれば海風はより冷涼で強いものとなり、都心の冷却や換気が促進されることが期待できる。 Furthermore, a heat island phenomenon can also be suppressed by discharging | emitting waste heat seawater after heat exchange to the bottom layer part in an artificial closed water area. That is, as described above, seawater circulation and vertical mixing occur in the closed water area, and as a result, an increase in the surface water temperature can be suppressed. In central Tokyo, the sea breeze from Osaka Bay, Tokyo Bay, and other inner bays enters the city center on a typical midsummer day, so if the surface water temperature can be lowered from the current level, the sea breeze becomes cooler and stronger, and cooling and ventilation in the city center It can be expected to be promoted.

また、本発明の人工排熱処理システムは、上記熱交換手段で用いられた後、排出される排熱海水に酸素を含む気体を混入する酸素混入手段を備え、上記排水手段が、上記酸素混入手段によって酸素が混入された高酸素海水を閉鎖性水域内の底層部に排出するようにしてもよい。排出する排熱海水に酸素を混入することで、貧酸素状態をより一層改善することができる。 The artificial waste heat treatment system according to the present invention further comprises an oxygen mixing means for mixing a gas containing oxygen into the exhausted hot water discharged after being used in the heat exchange means, and the drain means is the oxygen mixing means. The high oxygen seawater mixed with oxygen may be discharged to the bottom layer in the closed water area. By mixing oxygen into the exhaust heat seawater to be discharged, the poor oxygen state can be further improved.

上記排水手段を、複数の排出口を有する排水管にすることで、排出流速を小さくし、水域内の環境を著しく変化しないようにすることができる。 By making the drainage means a drain pipe having a plurality of discharge ports, the discharge flow velocity can be reduced and the environment in the water area can be prevented from changing significantly.

また、上記閉鎖性水域が人工建造物で囲まれた港湾である場合、上記排水手段が、潮汐情報に基づいて、排出する排水量を制御するようにしてもよい。これにより、閉鎖性水域への環境変動を制御することができる。ここで、潮汐情報とは、潮汐力によって海面が上下する潮汐に関する情報をいい、例えば干潮・満潮の時間や、干満の高低差等が含まれる。 When the closed water area is a harbor surrounded by an artificial building, the drainage unit may control the amount of drainage to be discharged based on tide information. Thereby, the environmental change to a closed water area can be controlled. Here, the tide information refers to information related to tides where the sea level rises and falls due to tide force, and includes, for example, low tide / high tide time, tidal height difference, and the like.

本発明によれば、陸上では効果が地理的に限定されていたヒートアイランド対策をより効果的に実現するとともに、閉鎖性水域内における貧酸素状態を改善することができる。 ADVANTAGE OF THE INVENTION According to this invention, while the heat island countermeasure whose effect was geographically limited on land was implement | achieved more effectively, the poor oxygen state in a closed water area can be improved.

本実施形態におけるシステム全体の構成を示す図The figure which shows the structure of the whole system in this embodiment. 本実施形態の排水管の拡大図Enlarged view of the drain pipe of this embodiment 本実施形態の排水管の断面図及び平面図Sectional view and plan view of the drain pipe of this embodiment シミュレーションに用いたシステム構成図System configuration diagram used for simulation シミュレーションにおける海水平均温度およびターボ冷凍機運転時間を示す図The figure which shows seawater average temperature and turbo refrigerator operating time in simulation シミュレーションの結果を示す図Diagram showing simulation results

本実施形態における閉鎖性水域への人工排熱処理システムについて図1を用いて説明する。図1は、閉鎖性水域における本システム100全体の構成を示す図である。閉鎖性水域とは、地理的要因により水の流出入の機会が乏しく、水流が停滞しやすい水流停滞部を有する水域をいい、水流停滞部を有していれば、海だけでなく湖沼等も含まれる。本実施形態では、図1に示すように防波堤で囲われた港湾等の人工的建造物により形成された人工的閉鎖性水域を例にして説明するが、これに限定されるものではない。 An artificial waste heat treatment system for an enclosed water area in the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of the entire system 100 in a closed water area. Closed water area means a water area with a water stagnation part where there are few opportunities for inflow and outflow of water due to geographical factors, and the water flow is likely to stagnate.If it has a water stagnation part, not only the sea but also lakes and marshes etc. included. In the present embodiment, an artificial closed water area formed by an artificial structure such as a harbor surrounded by a breakwater as shown in FIG. 1 will be described as an example, but the present invention is not limited to this.

本実施形態の人工排熱処理システム100は、人工的閉鎖性水域内の海水の水温より低温である、人工的閉鎖性水域外の底層部の海水を取水する取水手段と、上記取水手段が取水した海水を熱源として用いる熱交換手段と、上記熱交換手段で用いられた後、排出される排熱海水に酸素を含む気体を混入する酸素混入手段と、上記酸素混入手段によって酸素が混入された高酸素海水を閉鎖性水域内の底層部に排出する排水手段とを備えている。以下、各手段について詳細に説明する。 The artificial waste heat treatment system 100 of the present embodiment has a water intake means for taking in seawater in the bottom layer outside the artificial closed water area, which is lower than the temperature of the seawater in the artificial closed water area, and the water intake means has taken in water. A heat exchanging means using seawater as a heat source; an oxygen mixing means for mixing a gas containing oxygen in the exhaust heat seawater discharged after being used in the heat exchanging means; and a high oxygen content mixed by the oxygen mixing means. And a drainage means for discharging the oxygen seawater to the bottom layer in the closed water area. Hereinafter, each means will be described in detail.

取水手段は、人工的閉鎖性水域外の底層部の海水を海上に汲み上げるものであればよく、その方法は特に限定されない。実用化されている海洋深層水の取水施設の技術を用いればよく、本実施形態では海水を吸引して取水する取水管101と、動力源となる揚水ポンプ102により構成されている。 The intake means is not particularly limited as long as it draws seawater in the bottom layer outside the artificial closed water area to the sea. The technology of a deep ocean water intake facility that has been put into practical use may be used, and in this embodiment, the intake pipe 101 that sucks and takes in seawater and a pumping pump 102 that is a power source are configured.

取水管の一端は閉鎖性水域外の底層部、例えば水深10〜20mの深さにまで延びた取水口101Aになっており、他端は陸上に設置された後述する熱交換手段に配設されている。この取水管101Aによって、閉鎖性水域外の海水は熱交換手段へと導かれる。取水管101は、取水口101Aを任意の水深位置に配設することができるフレキシブルホースとなっている。 One end of the intake pipe is a bottom layer outside the closed water area, for example, a water intake 101A extending to a depth of 10 to 20 m, and the other end is disposed in a heat exchange means (described later) installed on land. ing. By this intake pipe 101A, seawater outside the closed water area is guided to the heat exchange means. The intake pipe 101 is a flexible hose capable of disposing the intake port 101A at an arbitrary depth position.

揚水ポンプ102は、底水層を形成する水塊の一部を取水管101を介して連続的に吸引する。設置する場所は、作業船上や、チェーン、シンカーにより係留される浮体構造物上や、水中等が考えられる。作業船、浮体構造物に固定して運転する場合は、太陽光パネルを作業船上等に設置し、揚水ポンプ等の機械装置を駆動させるためのエネルギーとして太陽電池・蓄電池等を用いてもよい。水中に設置する場合は、例えばブイなどに係留して所定の水深の位置に釣り下げて取水口を適度の水深に位置させて運転する。 The pumping pump 102 continuously sucks a part of the water mass forming the bottom water layer through the water pipe 101. The installation location may be on a work boat, a floating structure moored by a chain or sinker, or underwater. When operating on a work ship or a floating structure, a solar panel may be installed on the work ship or the like, and a solar cell, storage battery, or the like may be used as energy for driving a mechanical device such as a pump. When installing in water, for example, it is moored on a buoy or the like, suspended to a position of a predetermined depth, and operated with an intake port positioned at an appropriate depth.

夏期における海水温度は、温度成層が発達している期間においては、取水深度に依存して水温が変化するが、その割合は、常に一定ではなく、ある一定の深度を超えるとほとんど水温に差がなくなる。このため取水する水深位置はふかければ深いほどよいわけではなく、フレキシブルホースにより適切な水深の海水をくみ上げるようにする。底層水の最大取水流量は、後述する熱交換手段で要求される施設冷却熱量によって決定される。 During the period when temperature stratification is developing, the temperature of the sea water in summer varies depending on the water intake depth, but the rate is not always constant, and there is almost no difference in the water temperature beyond a certain depth. Disappear. For this reason, the deeper the depth of water intake, the better. The flexible hose is used to pump up seawater at an appropriate depth. The maximum water intake flow rate of the bottom layer water is determined by the facility cooling heat amount required by the heat exchange means described later.

このようにして、人工的閉鎖性水域外の底層部から汲みあげられた低温海水は、導水管を通って熱交換手段に導水される。 In this way, the low-temperature seawater pumped from the bottom layer outside the artificial closed water area is led to the heat exchange means through the water conduit.

熱交換手段は、汲み上げた低温海水を冷暖房エネルギーや発電エネルギーに冷却媒体として利用するもので、既に実用化されている熱交換器103を用いることができる。なお、ここでいう冷却媒体としての利用とは、冷媒を冷却する冷却水としての利用も含まれる。 The heat exchanging means uses the pumped low-temperature seawater as a cooling medium for air-conditioning energy and power generation energy, and the heat exchanger 103 that has already been put into practical use can be used. The use as a cooling medium here includes use as cooling water for cooling the refrigerant.

例えば、地域冷暖房設備に設置される空調用冷凍機等の凝縮器に用いることが可能である。すなわち、蒸発器で蒸発したフロンガス等の冷媒を再び液体の冷媒に戻すための冷却水として、汲みあげた湾外の海水を用いることができる。 For example, it can be used for a condenser such as an air-conditioning refrigerator installed in a district heating and cooling facility. That is, the seawater outside the gulf pumped up can be used as the cooling water for returning the refrigerant such as the chlorofluorocarbon gas evaporated by the evaporator back to the liquid refrigerant.

例えば火力発電所では、蒸気タービンから排気される蒸気を冷却凝縮して復水させる復水器が用いられている。火力発電所で使用されるボイラ、蒸気タービンは大型で、排気される蒸気量も多いことから、湾外から汲み上げた海水を排気蒸気の冷却に用いることが可能である。 For example, a thermal power plant uses a condenser that cools and condenses steam exhausted from a steam turbine and condenses the steam. Boilers and steam turbines used in thermal power plants are large and the amount of steam exhausted is large, so it is possible to use seawater pumped from outside the bay to cool the exhaust steam.

このように、低温の海水を例えば冷凍機等の冷却水として利用することで、冷凍機等の効率向上効果が得られ、結果的にヒートアイランド対策としての効果も期待できる。従来の屋上緑化や保水性舗装等の陸上でのヒートアイランド対策のように地理的に制限されることはなく、より広い地域に効果を及ぼすことができる。 Thus, by using low-temperature seawater as cooling water for a refrigerator, for example, an efficiency improvement effect for the refrigerator can be obtained, and as a result, an effect as a heat island countermeasure can be expected. It is not limited geographically like conventional onshore heat island countermeasures such as rooftop greening and water retentive pavement, and can have an effect on a wider area.

なお、最適な熱交換効率を発揮するためには、取水口の取水深さを任意に調整すればよい。汲み上げた海水は、湾内の海水温より低温であるため、利用効率を高めることができる。 In addition, what is necessary is just to adjust the intake depth of a water intake arbitrarily in order to exhibit optimal heat exchange efficiency. Since the pumped seawater is cooler than the seawater temperature in the bay, the use efficiency can be improved.

熱交換器103に供給された海水は、酸素混入手段へと導水される。酸素混入手段は、熱交換器103からの排熱水に酸素を混入する酸素供給設備104である。排熱水に所要の酸素ガスを混入し高濃度酸素水に転換することができればその手段は限定せず、例えばエアコンプレッサによって圧縮空気を送って曝気しても良い。また、液体酸素貯留タンクや現場用酸素発生装置を用いてより高濃度な酸素水を生成しても良い。 Seawater supplied to the heat exchanger 103 is guided to oxygen mixing means. The oxygen mixing means is an oxygen supply facility 104 that mixes oxygen into the exhaust heat water from the heat exchanger 103. The means is not limited as long as the required oxygen gas can be mixed into the exhaust heat water and converted into high-concentration oxygen water. For example, compressed air may be sent and aerated by an air compressor. Further, oxygen water having a higher concentration may be generated using a liquid oxygen storage tank or an on-site oxygen generator.

高濃度酸素水に転換された排熱水は、図2に示すように、排水管105先端の排出口105Aより最終的な熱の逃し場である湾内に排出される。図3は、排水管の先端部を拡大した図であり、図3Aは図2中の上方向(矢印方向)からみた平面図であり、図3Bは断面図である。排出口105Aの位置を任意の水深に移動できるようになっており、本実施形態では閉鎖性水域内の底層部に位置している。また、排水管105の排出口105Aは複数設けられており、各排出口105Aは上方に向けて開口している。 As shown in FIG. 2, the exhaust heat water converted into the high-concentration oxygen water is discharged from the discharge port 105 </ b> A at the tip of the drain pipe 105 into the final bay where heat is released. 3 is an enlarged view of the distal end portion of the drain pipe, FIG. 3A is a plan view seen from the upper direction (arrow direction) in FIG. 2, and FIG. 3B is a cross-sectional view. The position of the discharge port 105 </ b> A can be moved to an arbitrary water depth, and in the present embodiment, the discharge port 105 </ b> A is located at the bottom layer in the closed water area. Further, a plurality of discharge ports 105A of the drain pipe 105 are provided, and each discharge port 105A opens upward.

熱交換器で用いられた排熱温水は、排水管105から閉鎖性水域の底層部に排出するのであるが、このとき、閉鎖性水域に及ぼす水温変化は出来る限り緩やかに変化させる方が好ましい。 The exhaust hot water used in the heat exchanger is discharged from the drain pipe 105 to the bottom layer of the closed water area. At this time, it is preferable to change the water temperature change exerted on the closed water area as gently as possible.

本実施形態では、閉鎖性水域内の水温が著しく変化することがないよう、種々の対策がとられている。すなわち、閉鎖性水域の水温変化は、排熱温水の水温と人工閉鎖性水域の水温との差(温度差)・排出流量・排出流速によって決定される。特に温度差については、環境影響評価項目として、概ね水域内の水温と比べて7度以上高い水は排出できないよう制限されていることが多い。 In this embodiment, various measures are taken so that the water temperature in the closed water area does not change significantly. That is, the water temperature change in the closed water area is determined by the difference (temperature difference), the discharge flow rate, and the discharge flow rate between the water temperature of the exhaust heat hot water and the water temperature of the artificial closed water area. In particular, the temperature difference is often restricted as an environmental impact assessment item so that water that is approximately 7 degrees or more higher than the water temperature in the water area cannot be discharged.

そこで、本実施形態では、排熱温水の水温が、人工閉鎖性水域の底層水温より7度を超えることがなく、かつ、表層水温よりは高くなるよう制御されている。具体的には、排水管から排出する排水量(すなわち、上記取水管からの取水量)によって排熱温水の温度を調整している。 Therefore, in the present embodiment, the temperature of the exhaust heat water is controlled so as not to exceed 7 degrees from the bottom water temperature of the artificial closed water area and higher than the surface water temperature. Specifically, the temperature of the waste heat hot water is adjusted by the amount of drainage discharged from the drain pipe (that is, the amount of water taken from the intake pipe).

排水管105からの排水量は、熱需要施設から要求される排熱量によって決定されるのであるが、仮に排熱量を一定とすると、排出流量が多ければ排熱温水の温度は低く、排出流量が少なければ排熱温水の温度は高くなる。 The amount of drainage from the drainage pipe 105 is determined by the amount of exhaust heat required by the heat demand facility. If the amount of exhaust heat is constant, the temperature of the exhaust heat hot water is low and the amount of exhaust flow is small if the amount of exhaust heat is large. If this is the case, the temperature of the exhaust hot water will be high.

したがって、取水量(すなわち、排水量)を調整することによって、排出水の水温を人工閉鎖性水域の底層水温より7度を超えることがなく、かつ、人工閉鎖性水域の表層水温よりは高くなるよう制御している。 Therefore, by adjusting the amount of water intake (that is, the amount of drainage), the temperature of the discharged water will not exceed 7 degrees below the bottom water temperature of the artificial closed water area, and will be higher than the surface water temperature of the artificial closed water area. I have control.

また、本実施形態では図3に示すように、排出断面積を変化させることによって温熱排水を排出する際の排出流速を制御している。これにより、閉鎖性水域内の環境が著しく変化するのを抑制することができる。 Moreover, in this embodiment, as shown in FIG. 3, the discharge flow velocity at the time of discharging | emitting hot waste water is controlled by changing discharge | emission cross-sectional area. Thereby, it can suppress that the environment in a closed water area changes remarkably.

すなわち、複数の多くの排出口を設けて排出総断面積を大きくしているため、排出流速を抑制することが可能となっている。人工閉鎖性水域の用途を考えれば、温熱排水の排出によって水域内に大きな流動を誘起することは好ましくない。浮力の効果によって緩やかな上下方向の流動を誘起して水域の水環境の改善を果たすとともに,現況の水域の利用に不都合がないような排水方法がとられている。 That is, since a plurality of discharge ports are provided to increase the total discharge sectional area, the discharge flow rate can be suppressed. In consideration of the use of artificial closed water areas, it is not preferable to induce a large flow in the water areas by discharging hot waste water. Drainage methods are used to induce a gentle up-down flow due to the effect of buoyancy to improve the water environment in the water area and to avoid the inconvenience of using the current water area.

さらに、本実施形態の上記排水手段は、潮汐情報に基づいて排出する排水量を制御する。具体的には、例えば小潮時には揚水ポンプ102の駆動力を大きくして取水する海水量を多くし、排水手段からの排水量を多くする。逆に、大潮時には揚水ポンプ102の駆動力を小さくして取水する海水量を少なくする。これにより、閉鎖性水域への環境変動を抑制することが可能となる。 Furthermore, the drainage means of the present embodiment controls the amount of drainage discharged based on tide information. Specifically, for example, at low tide, the driving force of the pumping pump 102 is increased to increase the amount of seawater to be taken in and increase the amount of drainage from the drainage means. On the contrary, at the time of high tide, the driving force of the pumping pump 102 is reduced to reduce the amount of seawater to be taken. Thereby, it becomes possible to suppress the environmental fluctuation | variation to a closed water area.

すなわち、熱需要施設から要求される排熱量を一定とすると、小潮時には港湾(防波堤)内外の海水交換が少なくなるため、温度上昇が大きくなる。閉鎖性水域外から取水している場合には流量を多くすることにより排水温度を下げることができる。大潮時には同じ排熱量でも流量を小さくして排水温度を高くしても、自然の海水交換量が多いため、影響が抑制される。 That is, if the amount of exhaust heat required from the heat demand facility is constant, the seawater exchange between the inside and outside of the harbor (breakwater) is reduced at low tide, and the temperature rises. When water is taken from outside the closed water area, the drainage temperature can be lowered by increasing the flow rate. Even when the amount of heat is the same at high tide, even if the flow rate is reduced and the drainage temperature is increased, the natural seawater exchange amount is large and the influence is suppressed.

以上のようにして排熱温水は、閉鎖性水域内の底層部に排出される。排出された排熱温水は、底層部の海水より温度が高いため、密度差により表層へと上昇する。そして、排熱温水の上昇に伴い周囲の海水もひきつられるように一体となり上昇し、閉鎖性水域内に鉛直循環が生じる。 As described above, the hot exhaust water is discharged to the bottom layer in the closed water area. Since the exhausted hot water discharged has a higher temperature than the seawater in the bottom layer, it rises to the surface due to the density difference. And with the rise of the exhaust heat hot water, the surrounding seawater rises as one is pulled, and vertical circulation occurs in the closed water area.

酸素濃度の高い表層水が底層部へと移動することにより、底層部の貧酸素状態(すなわち、酸素の欠乏している状態)を改善することができる。また、鉛直循環により水深差に伴う温度差を減少させることができる点も、底層部の貧酸素状態の改善につながる。 When the surface water having a high oxygen concentration moves to the bottom layer, the poor oxygen state of the bottom layer (that is, the state in which oxygen is deficient) can be improved. Moreover, the point which can reduce the temperature difference accompanying a water depth difference by vertical circulation also leads to the improvement of the poor oxygen state of a bottom layer part.

また、特に夏期に発達しやすい温度成層下では、表層の温度は比較的高温であるが、鉛直循環によって表層の水温の上昇を抑制することができる。表層水温を現状より低くできれば内湾部からの海風はより冷涼で強いものとなり、都心の冷却や換気が促進されることが期待できる。 Moreover, especially under the temperature stratification which is easy to develop in the summer, the temperature of the surface layer is relatively high, but the rise in the water temperature of the surface layer can be suppressed by the vertical circulation. If the surface water temperature can be lowered from the current level, the sea breeze from the inner bay becomes cooler and stronger, and cooling and ventilation in the city center can be expected to be promoted.

以上、本発明の人工排熱処理システムによれば、人工排熱に伴うヒートアイランド問題の対策と、湾内の貧酸素問題の対策を同時に実現することができる。 As described above, according to the artificial exhaust heat treatment system of the present invention, it is possible to simultaneously realize a countermeasure for the heat island problem associated with the artificial exhaust heat and a countermeasure for the poor oxygen problem in the bay.

次に、夏期に発達するといわれている温度成層に着目し、低温底層水を利用することで、冷凍機の省エネルギー効果がどの程度であるかについて説明する。未利用エネルギーである海水を熱源機器の冷却水として利用した場合の研究は多くなされているが、利用する海水の取水位置に注目した研究に関してはあまり行われていない。以下、低温底層水を利用した場合の省エネルギー効果について説明する。 Next, paying attention to temperature stratification, which is said to develop in summer, the extent of the energy saving effect of the refrigerator by using low temperature bottom water will be described. Many studies have been conducted in the case where seawater, which is unused energy, is used as cooling water for heat source equipment, but not much research has been conducted focusing on the intake location of seawater to be used. Hereinafter, the energy saving effect at the time of using low temperature bottom layer water is demonstrated.

既存の地域冷暖房負荷に対して、インバータターボ冷凍機の設置を想定して
、海水の取水深度に応じた省エネルギー効果を推定した。大阪湾臨海部の埋立地コスモスクエア地区において、都市インフラとしての地域冷暖房を、海水を使用した設備として事業化した場合のシミュレーションを行った。なお、シミュレーションに用いた冷凍機は、三菱重工ターボ冷凍機AART-145I型(冷凍能力1,500USRt)である。
Assuming the installation of an inverter turbo chiller for the existing district heating and cooling load, the energy saving effect was estimated according to the seawater intake depth. In the reclaimed land in the coastal area of Osaka Bay, in the Cosmo Square area, a simulation was conducted when district heating and cooling as urban infrastructure was commercialized as equipment using seawater. The refrigerator used in the simulation is a Mitsubishi Heavy Industries turbo refrigerator AART-145I (refrigeration capacity 1,500 USRt).

本シミュレーションに用いたシステム構成を図4に示す。本図における「冷却水出口温度」、「冷却水入口温度」とは、熱交換器に対しての出口・入口の温度であり、冷凍機に対しては入口と出口が逆の関係となる。また、本シミュレーションにおいては、熱交換器から冷凍機間での配管の保温は十分であると考え、配管経路内での熱の出入りは考慮しないものとする。(熱交換器の冷却水出口温度)は(冷凍機の冷却水入口温度)に近似し、(熱交換器の冷却水入口温度)は(冷凍機の冷却水出口温度)に近似する。 The system configuration used in this simulation is shown in FIG. The “cooling water outlet temperature” and “cooling water inlet temperature” in this figure are the temperatures of the outlet and the inlet for the heat exchanger, and the inlet and outlet are in a reverse relationship for the refrigerator. In this simulation, it is assumed that the heat insulation of the pipe between the heat exchanger and the refrigerator is sufficient, and heat input / output in the pipe path is not considered. (Cooling water outlet temperature of the heat exchanger) approximates (cooling water inlet temperature of the refrigerator), and (Cooling water inlet temperature of the heat exchanger) approximates (cooling water outlet temperature of the refrigerator).

消費電力量を算出するためには、冷凍機のCOP特性をあらわす式が必要となる。冷凍機の冷却水入口温度を12℃から1℃刻みで32℃まで(21種類)変化させ、各々の温度に対し20%から10%刻みで100%まで(9種類)負荷率を変化させたときのCOPの値を得た。この値をもとに回帰分析(2次近似)を行い、得られた近似式を示す。 In order to calculate the power consumption, an expression that expresses the COP characteristic of the refrigerator is required. The cooling water inlet temperature of the refrigerator was changed from 12 ° C to 32 ° C in increments of 1 ° C (21 types), and the load factor was changed from 20% to 100% in increments of 10% (9 types) for each temperature. When got the value of COP. Based on this value, regression analysis (second-order approximation) is performed, and the approximate expression obtained is shown.

なお、近似式の重相関R=9.938×10-1であった。 The approximate correlation multiple correlation R was 9.938 × 10 −1 .

消費電力量計算式は、
The formula for calculating power consumption is

ここで、H:排熱量、Q:冷房負荷 とする。冷房負荷Qは、
Here, H: Waste heat quantity, Q: Cooling load. The cooling load Q is

また、排熱量Hは、=冷却水使用熱量でもあり、海水側の熱交換量より、
In addition, the amount of heat H is also the amount of heat used for cooling water.

冷却水側の熱交換量より、
From the amount of heat exchange on the cooling water side,

熱交換器の伝熱特性より、式Fの関係が得られる。ここで、K:熱通過率(W/(平方メートル・K))、A:伝熱面積(平方メートル)、デルタθm:対数平均温度差(K)とする。 The relationship of Formula F is obtained from the heat transfer characteristics of the heat exchanger. Here, K: heat transmission rate (W / (square meter · K)), A: heat transfer area (square meter), delta θm: logarithm average temperature difference (K).

なお、対数平均温度差デルタθmは、次式により求められる。
また、熱交換器の特性に関しては、既存設備の運転データより冷却水使用熱量とKA値の関係を線形近似により求めた。
In addition, logarithm average temperature difference delta (theta) m is calculated | required by following Formula.
Regarding the characteristics of the heat exchanger, the relationship between the amount of heat used for cooling water and the KA value was obtained by linear approximation from the operation data of the existing equipment.

式中Cpa、γa、Cpb、γbは既知である。Va、Vbは、シミュレーションに用いた冷凍機を単独運転させたと仮定し、さらに冷水温度5℃差で定格運転した場合を想定して冷却水流量を決定し、その流量を定流量(Va=Vb≒1,000m3/h)として計算を行った。また、Qは、既存地域冷暖房システムにおいての実負荷データを、θa1は、本研究において計測した海水温度(実測値)を代入した。 In the formula, Cpa, γa, Cpb and γb are known. Va and Vb are determined assuming that the refrigerator used in the simulation is operated independently, and further assuming a case where the rated operation is performed at a difference of 5 ° C. in the chilled water temperature. Approximately 1,000m3 / h). Q is the actual load data in the existing district heating and cooling system, and θ a1 is the seawater temperature (actual value) measured in this study.

以上より、本シミュレーションにおける未知数は、E、H、θa2、θb1、θb2、COP、KAの7つとなり、これらを式A〜式Gの7つの連立方程式を解くことで、消費電力Eの値を求めた。 From the above, there are seven unknowns in this simulation: E, H, θa2, θb1, θb2, COP, and KA. By solving these seven simultaneous equations of Formula A to Formula G, the value of power consumption E can be calculated. Asked.

図5は、シミュレーションを行った日の海水平均温度、およびターボ冷凍機の運転時間を、示している。シミュレーションに用いた海水温度のデータは、2006年8月、9月に、DL−8.65m、DL−2.585の位置で実際に計測したデータを用いた。なお、表中に記載の海水平均温度は、ターボ冷凍機運転時間内における海水温度の平均値とする。 FIG. 5 shows the average seawater temperature on the day of the simulation and the operating time of the centrifugal chiller. The data of seawater temperature used for the simulation was actually measured at the positions of DL-8.65m and DL-2.585 in August and September 2006. In addition, seawater average temperature described in the table is the average value of seawater temperature within the operating time of the centrifugal chiller.

図6は、既存取水位置(DL−2.585m)とR1近傍底層水(DL−3.8m)での消費電力量算出シミュレーション結果を示している。 FIG. 6 shows a result of a simulation for calculating power consumption at the existing water intake position (DL-2.585 m) and the bottom water near R1 (DL-3.8 m).

いずれの日においても、海水温度の低下に伴い、消費電力が減少することがわかった。取水深度が約6m低くなることによる省電力割合は、8月では8.1〜16.9%(水温差1.84〜4.08度)、9月では1.1〜5.5%(水温差0.23〜1.29度)であった。8月12日は、海水温度差が4.08度もあることから、省電力割合についても16.9%という非常に高い数値を示した。 In any day, it was found that the power consumption decreased as the seawater temperature decreased. The power saving rate due to the intake depth being reduced by about 6m is 8.1 to 16.9% in August (water temperature difference 1.84 to 4.08 degrees), and 1.1 to 5.5% in September ( The water temperature difference was 0.23 to 1.29 degrees. On August 12, the seawater temperature difference was 4.08 degrees, so the power saving rate was also very high at 16.9%.

取水深度を約6m下げると、同期間の平均水温差は2℃程度、平均省電力効果は12%以上期待できるものとなった。12日を除いた、8月のシミュレーション対象日の平均値をとっても約9%の省電力量効果が得られることがわかった(平均水温差2.06度)。 When the water intake depth was lowered by about 6 m, the average water temperature difference during the same period was about 2 ° C., and the average power saving effect was expected to be 12% or more. It was found that even if the average value of the simulation target day in August, excluding the 12th, was taken, an energy saving effect of about 9% was obtained (average water temperature difference 2.06 degrees).

以上のように本発明によれば、夏期に発達するといわれている温度成層に着目し、低温底層水を利用することで、冷凍機の省エネルギー効果を格段に向上させることができる。 As described above, according to the present invention, paying attention to the temperature stratification that is said to develop in the summer, the energy saving effect of the refrigerator can be remarkably improved by using the low temperature bottom water.

100 人工排熱処理システム
101 取水管
102 揚水ポンプ
103 熱交換器
104 酸素供給設備
105 排水管
105A 排出口


100 Artificial Waste Heat Treatment System 101 Intake Pipe 102 Pump Pump 103 Heat Exchanger 104 Oxygen Supply Equipment 105 Drain Pipe 105A Discharge Port


Claims (3)

閉鎖性水域外の底層部から底層水を取水する取水手段と、
上記取水手段が取水した底層水を熱源として用いる熱交換手段と、
上記熱交換手段で用いた後に排出される排熱温水を閉鎖性水域内の底層部に排出する排水手段と、
を備え
上記排水手段が、小潮時には排水量を多くし、大潮時には排水量を少なくする、閉鎖性水域における人工排熱処理システム。
Water intake means for taking bottom water from the bottom layer outside the closed water area,
Heat exchange means using bottom water taken by the water intake means as a heat source;
Drainage means for discharging the exhaust heat warm water discharged after being used in the heat exchange means to the bottom layer in the closed water area;
Equipped with a,
An artificial waste heat treatment system in a closed water area in which the drainage means increases the amount of drainage at low tide and decreases the amount of drainage at high tide .
上記熱交換手段で用いられた後に排出される排熱温水に酸素を含む気体を混入する酸素混入手段を備え、
上記排水手段が、上記酸素混入手段によって酸素が混入された高酸素濃度水を閉鎖性水域内の底層部に排出する
請求項1記載の閉鎖性水域における人工排熱処理システム。
Comprising oxygen mixing means for mixing a gas containing oxygen into the exhaust heat hot water discharged after being used in the heat exchange means,
2. The artificial waste heat treatment system in a closed water area according to claim 1, wherein the drainage means discharges high oxygen concentration water mixed with oxygen by the oxygen mixing means to a bottom layer in the closed water area.
上記排水手段が、複数の排出口を有する排水管からなる
請求項1又は2記載の閉鎖性水域における人工排熱処理システム。
The artificial waste heat treatment system in a closed water area according to claim 1 or 2, wherein the drain means comprises a drain pipe having a plurality of discharge ports.
JP2010153555A 2010-07-06 2010-07-06 Artificial waste heat treatment system in closed water Expired - Fee Related JP5831894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153555A JP5831894B2 (en) 2010-07-06 2010-07-06 Artificial waste heat treatment system in closed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153555A JP5831894B2 (en) 2010-07-06 2010-07-06 Artificial waste heat treatment system in closed water

Publications (2)

Publication Number Publication Date
JP2012017549A JP2012017549A (en) 2012-01-26
JP5831894B2 true JP5831894B2 (en) 2015-12-09

Family

ID=45602992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153555A Expired - Fee Related JP5831894B2 (en) 2010-07-06 2010-07-06 Artificial waste heat treatment system in closed water

Country Status (1)

Country Link
JP (1) JP5831894B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148312A (en) * 1997-11-12 1999-06-02 Toshiba Corp Power generating system using seawater in depth
JP4544697B2 (en) * 2000-05-11 2010-09-15 三菱重工業株式会社 Drainage system and method for heated water
JP2004044508A (en) * 2002-07-12 2004-02-12 Toshiba Corp Wind power plant
JP2006274702A (en) * 2005-03-30 2006-10-12 Port & Airport Research Institute Water exchange system in water area in tide utilization type bay and water exchange method in water area in bay by utilization of tide
JP4849264B2 (en) * 2007-07-10 2012-01-11 東洋建設株式会社 Seawater vertical circulator

Also Published As

Publication number Publication date
JP2012017549A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
WO2012105032A1 (en) Wind turbine facility
JP2005520985A (en) Extraction of electric power from fluid flow
JP2009138555A (en) Wind power generation apparatus
CN102953940A (en) Wind turbine
JP2006264343A (en) Generating enrichment floating body
KR20150067659A (en) Prevent algae and green algae in lake water purification devices for removing
JP4769325B1 (en) Water quality improvement device for dam lakes, rivers or lakes
JP5831894B2 (en) Artificial waste heat treatment system in closed water
CN102941916A (en) Temperature control device for submerge device
KR102114397B1 (en) Ocean temperature difference generation system using heat pump
WO2022091107A1 (en) System and method for reducing temperature of water in coral reef and adjacent ocean
JP2009019351A (en) Seawater vertical circulation apparatus
CN201215062Y (en) Hydraulic generating system utilizing buoyance
JP2005143403A (en) Drifting installation for utilizing ocean deep water
RU2677318C2 (en) Sea wave power station (options), magnetohydrodynamic generator, magnetohydrodynamic channel, hydrogen-oxygen turbogenerator, pump installation and application of electrochemical generator
CN108952866B (en) Wind-wave complementary ocean temperature difference power generation system
CN202911939U (en) Temperature regulating device applied to submersible
JP2000027748A (en) Ocean deep layer water pumping-up and diffusing device
Becker et al. The energy river: realising energy potential from the river Mersey
JPH0816475B2 (en) Temperature difference power generation method and device, and temperature difference power generation / marine organism aquaculture combined device
CN220539777U (en) Automatic control seawater temperature difference power generation system
EP4379093A1 (en) Offshore wind turbine arrangement and method for cooling a hydrogen production apparatus of an offshore wind turbine arrangement
CN2333432Y (en) Fresh water generator
JP2000338278A (en) Nuclear cogeneration plant
CN216304594U (en) Underwater ducted hydroelectric generation system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151021

R150 Certificate of patent or registration of utility model

Ref document number: 5831894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees