JP5829876B2 - Power generation system - Google Patents

Power generation system Download PDF

Info

Publication number
JP5829876B2
JP5829876B2 JP2011212680A JP2011212680A JP5829876B2 JP 5829876 B2 JP5829876 B2 JP 5829876B2 JP 2011212680 A JP2011212680 A JP 2011212680A JP 2011212680 A JP2011212680 A JP 2011212680A JP 5829876 B2 JP5829876 B2 JP 5829876B2
Authority
JP
Japan
Prior art keywords
heat source
power generation
generation system
temperature
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011212680A
Other languages
Japanese (ja)
Other versions
JP2013074160A (en
Inventor
允護 金
允護 金
周永 金
周永 金
毅 芹澤
毅 芹澤
田中 裕久
裕久 田中
中山 忠親
忠親 中山
雅敏 武田
雅敏 武田
山田 昇
昇 山田
新原 晧一
晧一 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Nagaoka University of Technology
Original Assignee
Daihatsu Motor Co Ltd
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Nagaoka University of Technology filed Critical Daihatsu Motor Co Ltd
Priority to JP2011212680A priority Critical patent/JP5829876B2/en
Priority to EP12835162.4A priority patent/EP2763201B1/en
Priority to PCT/JP2012/071711 priority patent/WO2013047057A1/en
Priority to US14/347,115 priority patent/US9627997B2/en
Publication of JP2013074160A publication Critical patent/JP2013074160A/en
Application granted granted Critical
Publication of JP5829876B2 publication Critical patent/JP5829876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、発電システムに関する。   The present invention relates to a power generation system.

従来、自動車エンジンなどの内燃機関や、ボイラー、空調設備などの熱交換器、発電機、モータなどの電動機関、照明などの発光装置などの各種エネルギー利用装置では、例えば、排熱、光などとして、多くの熱エネルギーが放出および損失されている。   Conventionally, in internal combustion engines such as automobile engines, heat exchangers such as boilers and air conditioning equipment, electric engines such as generators and motors, and various energy utilization devices such as light emitting devices such as lighting, for example, as exhaust heat, light, etc. A lot of thermal energy is released and lost.

近年、省エネルギー化の観点から、放出される熱エネルギーを回収し、エネルギー源として再利用することが要求されており、このような方法として、例えば、自動車の排気ガスシステムにおいて、排ガス浄化触媒およびマフラーの間に排気ガス熱交換器を設け、その排気ガス熱交換器において、排気管中の排気ガスを均質化するとともに、排気管および冷却器の間にBiTeからなる熱電素子(サーモエレクトリックモジュール)を、敷き詰めるように複数配列し、電気的に接続してなるサーモエレクトリックジェネレーター(TEG)が、提案されている(例えば、非特許文献1参照。)。 In recent years, from the viewpoint of energy saving, it has been required to recover the released thermal energy and reuse it as an energy source. In the exhaust gas heat exchanger, the exhaust gas in the exhaust pipe is homogenized, and a thermoelectric element (thermoelectric) made of Bi 2 Te 3 is provided between the exhaust pipe and the cooler. A thermoelectric generator (TEG) in which a plurality of modules) are arranged so as to be spread and electrically connected has been proposed (for example, see Non-Patent Document 1).

このサーモエレクトリックジェネレータでは、排気ガスにより温められた排気管と、冷却器との間に熱電素子を配置し、その一方面および他方面に温度差を生じさせて、熱電素子のゼーベック効果により、発電している。このようにして得られた電力は、通常、昇圧型DC−DCコンバータなどを介して車載バッテリーなどに蓄電され、必要に応じて、適宜使用される。   In this thermoelectric generator, a thermoelectric element is arranged between the exhaust pipe warmed by the exhaust gas and the cooler, and a temperature difference is generated between one side and the other side, and the Seebeck effect of the thermoelectric element generates power. doing. The electric power thus obtained is usually stored in an in-vehicle battery or the like via a step-up DC-DC converter or the like, and is used as needed.

MTZ Motortechnische Zeitschrift 0412009 Volume70(出版社 vieweg)MTZ Motortechnische Zeitschrift 0412009 Volume 70 (Publisher viewweg)

しかるに、このような発電方法では、複数の熱電素子(サーモエレクトリックモジュール)が電気的に接続されているので、大きな電力を取り出せるものの、それら熱電素子が敷き詰められるように配列されているので、設置において広いスペースを要するという不具合がある。   However, in such a power generation method, since a plurality of thermoelectric elements (thermoelectric modules) are electrically connected, a large amount of electric power can be taken out, but these thermoelectric elements are arranged so as to be spread out. There is a problem of requiring a large space.

そのため、発電システムを限られたスペース内、例えば、自動車内などに設置する場合には、省スペース化が要求されている。   Therefore, space saving is required when the power generation system is installed in a limited space, for example, in an automobile.

本発明の目的は、優れた効率で発電することができるとともに、省スペース化を図ることができる発電システムを提供することにある。   An object of the present invention is to provide a power generation system capable of generating power with excellent efficiency and saving space.

上記目的を達成するため、本発明の発電システムは、温度が経時的に上下する熱源と、前記熱源の温度変化により電気分極する複数の第1デバイスと、前記第1デバイスから電力を取り出すための複数の第2デバイスとを備え、前記第1デバイスおよび前記第2デバイスが、交互に積層されていることを特徴としている。   In order to achieve the above object, a power generation system according to the present invention includes a heat source whose temperature rises and falls over time, a plurality of first devices that are electrically polarized by a change in temperature of the heat source, and a method for extracting power from the first device. A plurality of second devices, wherein the first devices and the second devices are alternately stacked.

また、本発明の発電システムでは、前記熱源が、内燃機関であることが好適である。   In the power generation system of the present invention, it is preferable that the heat source is an internal combustion engine.

また、本発明の発電システムでは、前記第1デバイスが、ピエゾ効果により電気分極することが好適である。   In the power generation system of the present invention, it is preferable that the first device is electrically polarized by a piezo effect.

また、本発明の発電システムでは、前記第1デバイスが、焦電効果により電気分極することが好適である。   In the power generation system of the present invention, it is preferable that the first device is electrically polarized by a pyroelectric effect.

本発明の発電システムによれば、複数の第1デバイスおよび第2デバイスが、交互に積層されているので、複数の第1デバイスを、複数の第2デバイスを介して電気的に接続することができ、優れた効率で発電することができるとともに、省スペース化を図ることができる。   According to the power generation system of the present invention, since the plurality of first devices and the second device are alternately stacked, the plurality of first devices can be electrically connected via the plurality of second devices. It is possible to generate electric power with excellent efficiency and to save space.

図1は、本発明の発電システムの一実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of a power generation system of the present invention. 図2は、本発明の発電システムに用いられる第1デバイスおよび第2デバイスの一実施形態を示す拡大概略構成図である。FIG. 2 is an enlarged schematic configuration diagram showing an embodiment of the first device and the second device used in the power generation system of the present invention. 図3は、本発明の発電システムが車載された一実施形態を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing an embodiment in which the power generation system of the present invention is mounted on a vehicle. 図4は、図3に示す発電システムの要部拡大図である。FIG. 4 is an enlarged view of a main part of the power generation system shown in FIG.

図1は、本発明の発電システムの一実施形態を示す概略構成図、図2は、本発明の発電システムに用いられる第1デバイスおよび第2デバイスの一実施形態を示す拡大概略構成図である。   FIG. 1 is a schematic configuration diagram showing an embodiment of a power generation system of the present invention, and FIG. 2 is an enlarged schematic configuration diagram showing an embodiment of a first device and a second device used in the power generation system of the present invention. .

図1において、発電システム1は、温度が経時的に上下する熱源2と、熱源2の温度変化により電気分極する複数の第1デバイス3と、第1デバイス3から電力を取り出すための複数の第2デバイス4とを備えている。   In FIG. 1, a power generation system 1 includes a heat source 2 whose temperature rises and falls over time, a plurality of first devices 3 that are electrically polarized by a temperature change of the heat source 2, and a plurality of first devices for taking out electric power from the first device 3. 2 devices 4.

熱源2としては、温度が経時的に上下する熱源であれば、特に制限されないが、例えば、内燃機関、発光装置などの各種エネルギー利用装置が挙げられる。   The heat source 2 is not particularly limited as long as the temperature rises and falls over time, and examples thereof include various energy utilization devices such as an internal combustion engine and a light emitting device.

内燃機関は、例えば、車両などの動力を出力する装置であって、例えば、単気筒型または多気筒型が採用されるとともに、その各気筒において、多サイクル方式(例えば、2サイクル方式、4サイクル方式、6サイクル方式など)が採用される。   An internal combustion engine is a device that outputs power, for example, for a vehicle. For example, a single cylinder type or a multi-cylinder type is adopted, and a multi-cycle type (for example, a 2-cycle type, a 4-cycle type) is used in each cylinder. System, 6-cycle system, etc.).

このような内燃機関では、各気筒において、ピストンの昇降運動が繰り返されており、これにより、例えば、4サイクル方式では、吸気工程、圧縮工程、爆発工程、排気工程などが順次実施され、燃料が燃焼され、動力が出力されている。   In such an internal combustion engine, pistons are repeatedly moved up and down in each cylinder. For example, in a 4-cycle system, an intake process, a compression process, an explosion process, an exhaust process, and the like are sequentially performed, and fuel is discharged. It is burned and power is output.

このような内燃機関において、排気工程では、高温の排気ガスが、排気ガス管を介して排気され、その排気ガスを熱媒体として熱エネルギーが伝達され、排気ガス管の内部温度が上昇する。   In such an internal combustion engine, in the exhaust process, high-temperature exhaust gas is exhausted through an exhaust gas pipe, heat energy is transmitted using the exhaust gas as a heat medium, and the internal temperature of the exhaust gas pipe rises.

一方、その他の工程(排気工程を除く工程)では、排気ガス管中の排気ガス量が低減されるため、排気ガス管の内部温度は、排気工程に比べて、下降する。   On the other hand, in the other steps (steps excluding the exhaust step), the amount of exhaust gas in the exhaust gas pipe is reduced, so that the internal temperature of the exhaust gas pipe decreases compared to the exhaust process.

このように、内燃機関の温度は、排気工程において上昇し、吸気工程、圧縮工程および爆発工程において下降し、つまり、経時的に上下する。   As described above, the temperature of the internal combustion engine rises in the exhaust process and falls in the intake process, the compression process, and the explosion process, that is, rises and falls over time.

とりわけ、上記の各工程は、ピストンサイクルに応じて、周期的に順次繰り返されるため、内燃機関における各気筒の排気ガス管の内部は、上記の各工程の繰り返しの周期に伴って、周期的に温度変化、より具体的には、高温状態と低温状態とが、周期的に繰り返される。   In particular, since each of the above steps is periodically and sequentially repeated according to the piston cycle, the inside of the exhaust gas pipe of each cylinder in the internal combustion engine is periodically cycled with the repetition cycle of each of the above steps. A temperature change, more specifically, a high temperature state and a low temperature state are periodically repeated.

発光装置は、点灯(発光)時には、例えば、赤外線、可視光などの光を熱媒体として、その熱エネルギーにより温度上昇し、一方、消灯時には温度低下する。そのため、発光装置は、経時的に、点灯(発光)および消灯することにより、その温度が経時的に上下する。   When the light emitting device is turned on (emission light), for example, light such as infrared rays and visible light is used as a heat medium, and the temperature rises due to the heat energy. Therefore, the temperature of the light emitting device increases and decreases over time by turning on (emitting) and turning off over time.

とりわけ、例えば、発光装置が、経時的に照明の点灯および消灯が断続的に繰り返される発光装置(明滅(点滅)式の発光装置)である場合には、その発光装置は、点灯(発光)時における光の熱エネルギーにより、周期的に温度変化、より具体的には、高温状態と低温状態とが、周期的に繰り返される。   In particular, for example, when the light-emitting device is a light-emitting device (blinking (flashing) type light-emitting device) in which lighting is turned on and off intermittently over time, the light-emitting device is turned on (light-emitting). Due to the thermal energy of the light, a temperature change periodically, more specifically, a high temperature state and a low temperature state are periodically repeated.

また、熱源2としては、さらに、例えば、複数の熱源を備え、それら複数の熱源間の切り替えにより、温度変化を生じることもできる。   Moreover, as the heat source 2, for example, a plurality of heat sources can be provided, and a temperature change can be caused by switching between the plurality of heat sources.

より具体的には、例えば、熱源として、低温熱源(冷却材など)と、その低温熱源より温度の高い高温熱源(例えば、加熱材など)との2つの熱源を用意し、経時的に、それら低温熱源および高温熱源を、交互に切り替えて用いる形態が挙げられる。   More specifically, for example, two heat sources, a low-temperature heat source (such as a coolant) and a high-temperature heat source (eg, a heating material) having a higher temperature than the low-temperature heat source, are prepared as the heat source. A mode in which a low-temperature heat source and a high-temperature heat source are alternately switched is used.

これにより、熱源としての温度を、経時的に上下させることができ、とりわけ、低温熱源および高温熱源の切り替えを、周期的に繰り返すことにより、周期的に温度変化させることができる。   Thereby, the temperature as a heat source can be raised or lowered with time, and in particular, the temperature can be periodically changed by periodically switching the low-temperature heat source and the high-temperature heat source.

切り替え可能な複数の熱源を備える熱源2としては、特に制限されないが、例えば、燃焼用低温空気供給系、蓄熱式熱交換器、高温ガス排気系、および、供給/排気切替弁を備えた高温空気燃焼炉(例えば、再公表96−5474号公報に記載される高温気体発生装置)、例えば、高温熱源、低温熱源および水素吸蔵合金を用いた海水交換装置(水素吸蔵合金アクチュエータ式海水交換装置)などが挙げられる。   Although it does not restrict | limit especially as the heat source 2 provided with the several heat source which can be switched, For example, the high temperature air provided with the low temperature air supply system for combustion, the thermal storage heat exchanger, the high temperature gas exhaust system, and the supply / exhaust switching valve Combustion furnace (for example, a high-temperature gas generator described in Republished No. 96-5474), for example, a seawater exchange device (hydrogen storage alloy actuator-type seawater exchange device) using a high-temperature heat source, a low-temperature heat source, and a hydrogen storage alloy Is mentioned.

これら熱源2としては、上記熱源を単独使用または2種類以上併用することができる。   As these heat sources 2, the said heat source can be used individually or in combination with 2 or more types.

熱源2として、好ましくは、経時により周期的に温度変化する熱源が挙げられる。   The heat source 2 is preferably a heat source whose temperature changes periodically with time.

また、熱源2として、好ましくは、内燃機関が挙げられる。   The heat source 2 is preferably an internal combustion engine.

第1デバイス3は、熱源2の温度変化に応じて電気分極するデバイスである。   The first device 3 is a device that is electrically polarized in accordance with a temperature change of the heat source 2.

ここでいう電気分極とは、結晶の歪みにともなう正負イオンの変位により誘電分極し電位差が生じる現象、例えばピエゾ効果、および/または、温度変化により誘電率が変化し電位差が生じる現象、例えば焦電効果などのように、材料に起電力が発生する現象と定義する。   The electric polarization referred to here is a phenomenon in which a potential difference occurs due to dielectric polarization due to displacement of positive and negative ions due to crystal distortion, such as a piezo effect and / or a phenomenon in which a dielectric constant changes due to a temperature change and a potential difference occurs, such as pyroelectricity. It is defined as a phenomenon in which an electromotive force is generated in a material, such as an effect.

このような第1デバイス3として、より具体的には、例えば、ピエゾ効果により電気分極するデバイス、焦電効果により電気分極するデバイスなどが挙げられる。   More specifically, examples of the first device 3 include a device that is electrically polarized by a piezo effect, a device that is electrically polarized by a pyroelectric effect, and the like.

ピエゾ効果は、応力または歪みが加えられたときに、その応力または歪みの大きさに応じて電気分極する効果(現象)である。   The piezo effect is an effect (phenomenon) in which when a stress or strain is applied, it is electrically polarized according to the magnitude of the stress or strain.

このようなピエゾ効果により電気分極する第1デバイス3としては、特に制限されず、公知のピエゾ素子(圧電素子)を用いることができる。   The first device 3 that is electrically polarized by the piezo effect is not particularly limited, and a known piezo element (piezoelectric element) can be used.

第1デバイス3としてピエゾ素子が用いられる場合には、ピエゾ素子は、例えば、その周囲が固定部材により固定され、体積膨張が抑制された状態において、熱源2の熱を授受し、加熱および/または冷却されるように、配置される。   When a piezo element is used as the first device 3, the piezo element, for example, receives and transfers heat from the heat source 2 in a state where its periphery is fixed by a fixing member and volume expansion is suppressed, and / or Arranged to be cooled.

固定部材としては、特に制限されず、例えば、後述する第2デバイス4(例えば、電極など)を用いることもできる。   The fixing member is not particularly limited, and for example, a second device 4 (for example, an electrode) described later can be used.

そして、このような場合には、ピエゾ素子は、熱源2の経時的な温度変化により、(場合により熱媒体(上記した排気ガス、光など)を介して)加熱または冷却され、これにより、膨張または収縮する。   In such a case, the piezo element is heated or cooled (possibly via a heat medium (exhaust gas, light, etc.) as described above) due to a change in temperature of the heat source 2 with time, thereby expanding. Or shrink.

このとき、ピエゾ素子は、固定部材により体積膨張が抑制されているため、ピエゾ素子は、固定部材に押圧され、ピエゾ効果(圧電効果)、または、キュリー点付近での相変態により、電気分極する。これにより、詳しくは後述するが、第2デバイス4を介して、ピエゾ素子から電力が取り出される。   At this time, since the volume expansion of the piezo element is suppressed by the fixing member, the piezo element is pressed by the fixing member and is electrically polarized by the piezo effect (piezoelectric effect) or phase transformation near the Curie point. . Thereby, as will be described in detail later, power is extracted from the piezo element via the second device 4.

また、このようなピエゾ素子は、通常、加熱状態または冷却状態が維持され、その温度が一定(すなわち、体積一定)になると、電気分極が中和され、その後、冷却または加熱されることにより、再度、電気分極する。   In addition, such a piezo element is normally maintained in a heated state or a cooled state, and when its temperature becomes constant (that is, a constant volume), the electric polarization is neutralized, and then cooled or heated, Again, it is electrically polarized.

そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、ピエゾ素子が周期的に繰り返し加熱および冷却されるため、ピエゾ素子の電気分極およびその中和が、周期的に繰り返される。   Therefore, as described above, when the temperature of the heat source 2 periodically changes and the high temperature state and the low temperature state are periodically repeated, the piezo element is periodically heated and cooled. Electrical polarization and its neutralization are repeated periodically.

その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。   As a result, electric power is extracted as a waveform (for example, alternating current, pulsating flow, etc.) that fluctuates periodically by the second device 4 described later.

焦電効果は、例えば、絶縁体(誘電体)などを加熱および冷却する時に、その温度変化に応じて絶縁体が電気分極する効果(現象)であって、第1効果および第2効果を含んでいる。   The pyroelectric effect is, for example, an effect (phenomenon) in which the insulator is electrically polarized in accordance with a change in temperature when the insulator (dielectric) is heated and cooled, and includes the first effect and the second effect. It is out.

第1効果は、絶縁体の加熱時および冷却時において、その温度変化により自発分極し、絶縁体の表面に、電荷を生じる効果とされている。   The first effect is an effect in which, when the insulator is heated and cooled, it spontaneously polarizes due to the temperature change and generates a charge on the surface of the insulator.

また、第2効果は、絶縁体の加熱時および冷却時において、その温度変化により結晶構造に圧力変形が生じ、結晶構造に加えられる応力または歪みにより、圧電分極を生じる効果(ピエゾ効果、圧電効果)とされている。   In addition, the second effect is an effect that pressure deformation occurs in the crystal structure due to temperature changes during heating and cooling of the insulator, and piezoelectric polarization occurs due to stress or strain applied to the crystal structure (piezo effect, piezoelectric effect). ).

このような焦電効果により電気分極するデバイスとしては、特に制限されず、公知の焦電素子を用いることができる。   The device that is electrically polarized by such a pyroelectric effect is not particularly limited, and a known pyroelectric element can be used.

第1デバイス3として焦電素子が用いられる場合には、焦電素子は、熱源2の熱を授受し、加熱および/または冷却されるように、配置される。   When a pyroelectric element is used as the first device 3, the pyroelectric element is disposed so as to transfer heat of the heat source 2 and to be heated and / or cooled.

このような場合において、焦電素子は、熱源2の経時的な温度変化により、(場合により熱媒体(上記した排気ガス、光など)を介して)加熱または冷却され、その焦電効果(第1効果および第2効果を含む)により、電気分極する。これにより、詳しくは後述するが、第2デバイス4を介して、焦電素子から電力が取り出される。   In such a case, the pyroelectric element is heated or cooled (possibly via a heat medium (exhaust gas, light, etc.) described above) due to a change in temperature of the heat source 2 with time, and the pyroelectric effect (first The electric polarization is caused by the first effect and the second effect. Thereby, although mentioned later in detail, electric power is taken out from the pyroelectric element via the second device 4.

また、このような焦電素子は、通常、加熱状態または冷却状態が維持され、その温度が一定になると、電気分極が中和され、その後、冷却または加熱されることにより、再度、電気分極する。   Also, such pyroelectric elements are usually maintained in a heated state or a cooled state, and when the temperature becomes constant, the electric polarization is neutralized, and then cooled or heated again to be electrically polarized again. .

そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、焦電素子が周期的に繰り返し加熱および冷却されるため、焦電素子の電気分極およびその中和が、周期的に繰り返される。   Therefore, when the temperature of the heat source 2 is periodically changed as described above and the high temperature state and the low temperature state are periodically repeated, the pyroelectric element is periodically heated and cooled. The electrical polarization of the element and its neutralization are repeated periodically.

その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。   As a result, electric power is extracted as a waveform (for example, alternating current, pulsating flow, etc.) that fluctuates periodically by the second device 4 described later.

これら第1デバイス3は、単独使用または2種類以上併用することができる。   These first devices 3 can be used alone or in combination of two or more.

このような第1デバイス3として、具体的には、上記したように、公知の焦電素子(例えば、BaTiO、CaTiO、(CaBi)TiO、BaNdTi14、BaSmTi12、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O)など)、公知のピエゾ素子(例えば、水晶(SiO)、酸化亜鉛(ZnO)、ロッシェル塩(酒石酸カリウム−ナトリウム)(KNaC)、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O)、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、リチウムテトラボレート(Li)、ランガサイト(LaGaSiO14)、窒化アルミニウム(AlN)、電気石(トルマリン)、ポリフッ化ビニリデン(PVDF)など)などを用いることができる。 Specifically, as described above, the first device 3 is a known pyroelectric element (for example, BaTiO 3 , CaTiO 3 , (CaBi) TiO 3 , BaNd 2 Ti 5 O 14 , BaSm 2 Ti 4. O 12 , lead zirconate titanate (PZT: Pb (Zr, Ti) O 3 ), etc., known piezo elements (eg, quartz (SiO 2 ), zinc oxide (ZnO), Rochelle salt (potassium sodium tartrate) (KNaC 4 H 4 O 6) , lead zirconate titanate (PZT: Pb (Zr, Ti ) O 3), lithium niobate (LiNbO 3), lithium tantalate (LiTaO 3), lithium tetraborate (Li 2 B 4 O 7 ), Langasite (La 3 Ga 5 SiO 14 ), Aluminum Nitride (AlN), Tourmaline, Poly Vinylidene fluoride (PVDF) or the like can be used.

第1デバイス3のキュリー点は、例えば、−77℃以上、好ましくは、−10℃以上であり、例えば、1300℃以下、好ましくは、900℃以下である。   The Curie point of the first device 3 is, for example, −77 ° C. or higher, preferably −10 ° C. or higher, for example, 1300 ° C. or lower, preferably 900 ° C. or lower.

また、第1デバイス3(絶縁体(誘電体))の比誘電率は、例えば、1以上、好ましくは、100以上、より好ましくは、2000以上である。   The relative dielectric constant of the first device 3 (insulator (dielectric)) is, for example, 1 or more, preferably 100 or more, more preferably 2000 or more.

このような発電システム1では、第1デバイス3(絶縁体(誘電体))の比誘電率が高いほど、エネルギー変換効率が高く、高電圧で電力を取り出すことができるが、第1デバイス3の比誘電率が上記下限未満であれば、エネルギー変換効率が低く、得られる電力の電圧が低くなる場合がある。   In such a power generation system 1, the higher the relative dielectric constant of the first device 3 (insulator (dielectric)), the higher the energy conversion efficiency and the higher voltage can be taken out. If the relative dielectric constant is less than the above lower limit, the energy conversion efficiency is low, and the voltage of the obtained power may be low.

なお、第1デバイス3(絶縁体(誘電体))は、熱源2の温度変化によって電気分極するが、その電気分極は、電子分極、イオン分極および配向分極のいずれでもよい。   The first device 3 (insulator (dielectric)) is electrically polarized by the temperature change of the heat source 2, and the electrical polarization may be any of electronic polarization, ionic polarization, and orientation polarization.

例えば、配向分極によって分極が発現する材料(例えば、液晶材料など)では、その分子構造を変化させることにより、発電効率の向上を図ることができるものと期待されている。   For example, it is expected that a material that exhibits polarization by orientation polarization (for example, a liquid crystal material) can improve power generation efficiency by changing its molecular structure.

図1において、第2デバイス4は、第1デバイス3から電力を取り出すために設けられる。   In FIG. 1, the second device 4 is provided to extract power from the first device 3.

このような第2デバイス4は、より具体的には、特に制限されないが、例えば、上記の第1デバイス3を挟んで対向配置される2つの電極(例えば、銅電極、銀電極など)、例えば、それら電極に接続される導線などを備えており、第1デバイス3に電気的に接続されている。   More specifically, the second device 4 is not particularly limited, but, for example, two electrodes (for example, a copper electrode, a silver electrode, etc.) disposed opposite to each other with the first device 3 interposed therebetween, for example, ., And the like, and are electrically connected to the first device 3.

また、この発電システム1では、図2に示すように、第1デバイス3および第2デバイス4は、交互に積層されている。   Moreover, in this electric power generation system 1, as shown in FIG. 2, the 1st device 3 and the 2nd device 4 are laminated | stacked alternately.

具体的には、この発電システム1では、第1デバイス3が薄膜型(シート状)に形成されるとともに、第2デバイス4が薄層型(シート状、例えば、電極など)に形成されている。   Specifically, in the power generation system 1, the first device 3 is formed in a thin film type (sheet shape), and the second device 4 is formed in a thin layer type (sheet shape, for example, an electrode). .

そして、第2デバイス4の上に、第1デバイス3および第2デバイス4が順次、積層配置され、さらに、最上層が、第2デバイス4とされる。これにより、第2デバイス4が最上層および最下層となるように、第1デバイス3および第2デバイス4が交互に積層された積層構造体21が、形成される。   Then, the first device 3 and the second device 4 are sequentially stacked on the second device 4, and the uppermost layer is the second device 4. Thereby, the laminated structure 21 in which the first devices 3 and the second devices 4 are alternately laminated is formed so that the second device 4 is the uppermost layer and the lowermost layer.

積層構造体21に含まれる第1デバイス3の数量は、例えば、10〜140、好ましくは、50〜100であり、また、第2デバイス4の数量は、例えば、11〜161、好ましくは、51〜101である。   The number of the first devices 3 included in the laminated structure 21 is, for example, 10 to 140, preferably 50 to 100, and the number of the second devices 4 is, for example, 11 to 161, preferably 51. ˜101.

また、積層構造体21において、第1デバイス3の1つあたりの厚みは、例えば、5〜15μm、好ましくは、8〜12μmであり、また、第2デバイス4の1つあたりの厚みは、例えば、0.5〜2μm、好ましくは、1〜1.5μmであり、積層構造体21の厚みは、例えば、55〜2000μm、好ましくは、550〜1300μmである。   In the laminated structure 21, the thickness per one first device 3 is, for example, 5 to 15 μm, preferably 8 to 12 μm, and the thickness per one second device 4 is, for example, 0.5 to 2 μm, preferably 1 to 1.5 μm, and the thickness of the laminated structure 21 is, for example, 55 to 2000 μm, preferably 550 to 1300 μm.

なお、このようにして得られた積層構造体21では、複数の第1デバイス3が、複数の第2デバイス4を介して電気的に接続されている。   In the laminated structure 21 obtained in this way, the plurality of first devices 3 are electrically connected via the plurality of second devices 4.

また、積層構造体21は、熱源2に接触するか、または、熱源2の熱を伝達する熱媒体(上記した排気ガス、光など)に接触(曝露)されるように配置される。   In addition, the laminated structure 21 is disposed so as to contact the heat source 2 or to be exposed (exposed) to a heat medium (exhaust gas, light, etc.) that transmits heat of the heat source 2.

そして、図1に示す発電システム1では、その第2デバイス4が、昇圧器5、交流/直流変換器(AC−DCコンバーター)6およびバッテリー7に、順次、電気的に接続されている。   In the power generation system 1 shown in FIG. 1, the second device 4 is electrically connected sequentially to the booster 5, the AC / DC converter (AC-DC converter) 6, and the battery 7.

このような発電システム1により、発電するには、例えば、まず、熱源2の温度を経時的に上下、好ましくは、周期的に温度変化させ、その熱源2により、積層構造体21(第1デバイス3を含む。)を、加熱および/または冷却する。   In order to generate power with such a power generation system 1, for example, first, the temperature of the heat source 2 is changed over time, preferably periodically, and the laminated structure 21 (first device) is changed by the heat source 2. 3) is heated and / or cooled.

そして、このような温度変化に応じて、上記した第1デバイス3を、好ましくは、周期的に電気分極させる。その後、第2デバイス4を介することにより、電力を、第1デバイス3の周期的な電気分極に応じて周期的に変動する波形(例えば、交流、脈流など)として、取り出す。   The first device 3 described above is preferably electrically polarized periodically in accordance with such a temperature change. Thereafter, the electric power is taken out as a waveform (for example, alternating current, pulsating current, etc.) that periodically fluctuates according to the periodic electric polarization of the first device 3 through the second device 4.

このような発電システム1において、熱源2の温度は、高温状態における温度が、例えば、200〜1200℃、好ましくは、700〜900℃であり、低温状態における温度が、上記の高温状態における温度未満、より具体的には、例えば、100〜800℃、好ましくは、200〜500℃であり、高温状態と低温状態との温度差が、例えば、10〜600℃、好ましくは、20〜500℃である。   In such a power generation system 1, the temperature of the heat source 2 is, for example, 200 to 1200 ° C., preferably 700 to 900 ° C. in the high temperature state, and the temperature in the low temperature state is lower than the temperature in the high temperature state. More specifically, for example, 100 to 800 ° C., preferably 200 to 500 ° C., and the temperature difference between the high temperature state and the low temperature state is, for example, 10 to 600 ° C., preferably 20 to 500 ° C. is there.

また、それら高温状態と低温状態との繰り返し周期は、例えば、10〜400サイクル/秒、好ましくは、30〜100サイクル/秒である。   Moreover, the repetition period of these high temperature states and low temperature states is, for example, 10 to 400 cycles / second, preferably 30 to 100 cycles / second.

そして、このようにして発電システム1により取り出された電力を、第2デバイス4に接続される昇圧器5において、周期的に変動する波形(例えば、交流、脈流など)の状態で昇圧する。昇圧器5としては、交流電圧を、例えば、コイル、コンデンサなどを用いた簡易な構成により、優れた効率で昇圧できる昇圧器が、用いられる。   Then, the electric power extracted by the power generation system 1 in this manner is boosted in a state of a waveform (for example, alternating current, pulsating current) that periodically varies in the booster 5 connected to the second device 4. As the booster 5, a booster capable of boosting AC voltage with excellent efficiency by a simple configuration using, for example, a coil and a capacitor is used.

次いで、昇圧器5において昇圧された電力を、交流/直流変換器6において直流電圧に変換した後、バッテリー7に蓄電する。   Next, the electric power boosted by the booster 5 is converted into a DC voltage by the AC / DC converter 6 and then stored in the battery 7.

このような発電システム1によれば、温度が経時的に上下する熱源2を用いるため、変動する電圧(例えば、交流電圧)を取り出すことができ、その結果、一定電圧(直流電圧)として取り出す場合に比べて、簡易な構成により、優れた効率で昇圧して、蓄電することができる。   According to such a power generation system 1, since the heat source 2 whose temperature rises and falls with time is used, a fluctuating voltage (for example, an AC voltage) can be extracted, and as a result, a constant voltage (DC voltage) is extracted. Compared to the above, it is possible to store the electric power by boosting with excellent efficiency by a simple configuration.

また、熱源2が、周期的に温度変化する熱源であれば、電力を、周期的に変動する波形として取り出すことができ、その結果、簡易な構成により、より優れた効率で昇圧して、蓄電することができる。   In addition, if the heat source 2 is a heat source that periodically changes in temperature, electric power can be extracted as a waveform that varies periodically. As a result, the electric power can be boosted with higher efficiency and stored with a simple configuration. can do.

とりわけ、このような発電システム1では、複数の第1デバイス3および第2デバイス4が、交互に積層されているので、複数の第1デバイス3を、複数の第2デバイス4を介して電気的に接続することができ、優れた効率で発電することができるとともに、省スペース化を図ることができる。   In particular, in such a power generation system 1, since the plurality of first devices 3 and the second devices 4 are alternately stacked, the plurality of first devices 3 are electrically connected via the plurality of second devices 4. The power can be generated with excellent efficiency, and space saving can be achieved.

図3は、本発明の発電システムが車載された一実施形態を示す概略構成図、図4は、図3に示す発電システムの要部拡大図である。   FIG. 3 is a schematic configuration diagram showing an embodiment in which the power generation system of the present invention is mounted on a vehicle, and FIG.

図3において、自動車10は、内燃機関11、触媒搭載部12、エキゾーストパイプ13、マフラー14および排出パイプ15を備えている。   In FIG. 3, the automobile 10 includes an internal combustion engine 11, a catalyst mounting portion 12, an exhaust pipe 13, a muffler 14, and a discharge pipe 15.

内燃機関11は、エンジン16、および、エキゾーストマニホールド17を備えている。   The internal combustion engine 11 includes an engine 16 and an exhaust manifold 17.

エンジン16は、多気筒(4気筒型)多サイクル(4サイクル)方式のエンジンであって、各気筒に、エキゾーストマニホールド17の分岐管18(後述)の上流側端部が接続されている。   The engine 16 is a multi-cylinder (4-cylinder type) multi-cycle (4-cycle) engine, and an upstream end portion of a branch pipe 18 (described later) of the exhaust manifold 17 is connected to each cylinder.

エキゾーストマニホールド17は、エンジン16の各気筒から排出される排気ガスを収束するために設けられる排気多岐管であって、エンジン16の各気筒に接続される複数(4つ)の分岐管18(これらを区別する必要がある場合には、図3の上側から順に、分岐管18a、分岐管18b、分岐管18cおよび分岐管18dと称する。)と、それら分岐管18の下流側において、各分岐管18を1つに統合する集気管19とを備えている。   The exhaust manifold 17 is an exhaust manifold provided for converging exhaust gas exhausted from each cylinder of the engine 16, and a plurality of (four) branch pipes 18 (these are connected to each cylinder of the engine 16. 3 are referred to as the branch pipe 18a, the branch pipe 18b, the branch pipe 18c, and the branch pipe 18d in order from the upper side of FIG. 3), and each branch pipe on the downstream side of the branch pipe 18. And an air collecting tube 19 that integrates 18 into one.

また、各分岐管18は、その流れ方向途中において、箱型空間20を、それぞれ1つ備えている。箱型空間20は、分岐管18に連通するように介装される略直方体状の空間であって、その内側において、上記した積層構造体21(複数の第1デバイス3および複数の第2デバイス4からなる積層構造体21)を備えている(図4参照)。   Each branch pipe 18 includes one box-shaped space 20 in the middle of the flow direction. The box-shaped space 20 is a substantially rectangular parallelepiped space interposed so as to communicate with the branch pipe 18, and the laminated structure 21 (the plurality of first devices 3 and the plurality of second devices) is disposed inside the box-shaped space 20. 4) (see FIG. 4).

このようなエキゾーストマニホールド17では、分岐部18の上流側端部が、それぞれ、エンジン16の各気筒に接続されるとともに、分岐管18の下流側端部と集気管19の上流側端部とが接続されている。また、集気管19の下流側端部は、触媒搭載部12の上流側端部に接続されている。   In such an exhaust manifold 17, the upstream end portion of the branch portion 18 is connected to each cylinder of the engine 16, and the downstream end portion of the branch pipe 18 and the upstream end portion of the air collecting pipe 19 are connected to each other. It is connected. Further, the downstream end of the air collecting pipe 19 is connected to the upstream end of the catalyst mounting portion 12.

触媒搭載部12は、例えば、触媒担体およびその担体上にコーティングされる触媒を備えており、内燃機関11から排出される排気ガスに含まれる炭化水素(HC)、窒素酸化物(NO)、一酸化炭素(CO)などの有害成分を浄化するために、内燃機関11(エキゾーストマニホールド17)の下流側端部に接続されている。 The catalyst mounting unit 12 includes, for example, a catalyst carrier and a catalyst coated on the carrier, and hydrocarbons (HC), nitrogen oxides (NO x ) contained in exhaust gas discharged from the internal combustion engine 11, In order to purify harmful components such as carbon monoxide (CO), it is connected to the downstream end of the internal combustion engine 11 (exhaust manifold 17).

エキゾーストパイプ13は、触媒搭載部12において浄化された排気ガスをマフラー14に案内するために設けられており、上流側端部が触媒搭載部12に接続されるとともに、下流側端部がマフラー14に接続されている。   The exhaust pipe 13 is provided to guide the exhaust gas purified in the catalyst mounting portion 12 to the muffler 14. The upstream end is connected to the catalyst mounting portion 12 and the downstream end is the muffler 14. It is connected to the.

マフラー14は、エンジン16(とりわけ、爆発工程)において生じる騒音を、静音化すために設けられており、その上流側端部がエキゾーストパイプ13の下流側端部に接続されている。また、マフラー14の下流側端部は、排出パイプ15の上流側端部に接続されている。   The muffler 14 is provided to silence noise generated in the engine 16 (in particular, an explosion process), and an upstream end thereof is connected to a downstream end of the exhaust pipe 13. The downstream end of the muffler 14 is connected to the upstream end of the discharge pipe 15.

排出パイプ15は、エンジン16から排出され、エキゾーストマニホールド17、触媒搭載部12、エキゾーストパイプ13およびマフラー14を順次通過し、浄化および静音化された排気ガスを、外気に放出するために設けられており、その上流側端部がマフラー14の下流側端部に接続されるとともに、その下流側端部が、外気に開放されている。   The exhaust pipe 15 is provided to discharge exhaust gas that has been exhausted from the engine 16 and sequentially passes through the exhaust manifold 17, the catalyst mounting portion 12, the exhaust pipe 13, and the muffler 14, and has been purified and silenced. The upstream end is connected to the downstream end of the muffler 14, and the downstream end is open to the outside air.

そして、この自動車10は、図3において点線で示すように、発電システム1を搭載している。   The automobile 10 is equipped with the power generation system 1 as shown by a dotted line in FIG.

発電システム1は、上記したように、熱源2、第1デバイス3および第2デバイス4を備えている。   As described above, the power generation system 1 includes the heat source 2, the first device 3, and the second device 4.

この発電システム1では、熱源2として、内燃機関11のエンジン16が用いられており、また、図4が参照されるように、分岐管18の箱型空間20内には、第1デバイス3および第2デバイス4を備える積層構造体21が配置されている。   In this power generation system 1, the engine 16 of the internal combustion engine 11 is used as the heat source 2, and as shown in FIG. 4, the first device 3 and the box-shaped space 20 of the branch pipe 18 are included. A laminated structure 21 including the second device 4 is disposed.

積層構造体21は、シート状に形成されており、箱型空間20内において、互いに間隔を隔てて整列配置されるとともに、図示しない固定部材により、固定されている。   The laminated structure 21 is formed in a sheet shape, and is aligned and arranged at intervals in the box-shaped space 20 and is fixed by a fixing member (not shown).

これにより、積層構造体21の表面および裏面の両面、さらには、周側面は、箱型空間20内の外気に露出され、排気ガスに接触(曝露)可能とされている。   Thereby, both the front surface and the back surface of the laminated structure 21, and the peripheral side surface are exposed to the outside air in the box-type space 20 and can be exposed (exposed) to the exhaust gas.

また、発電システム1は、図示しない第2デバイス4(例えば、導線など)を介して、図3に示すように、昇圧器5、交流/直流変換器6およびバッテリー7に、順次、電気的に接続されている。   Further, the power generation system 1 sequentially and electrically supplies a booster 5, an AC / DC converter 6 and a battery 7 sequentially via a second device 4 (for example, a conducting wire) (not shown) as shown in FIG. It is connected.

そして、このような自動車10では、エンジン16の駆動により、各気筒において、ピストンの昇降運動が繰り返され、吸気工程、圧縮工程、爆発工程および排気工程が順次実施され、その温度が経時的に上下される。   In such an automobile 10, by driving the engine 16, the pistons are repeatedly moved up and down in each cylinder, and the intake process, the compression process, the explosion process, and the exhaust process are sequentially performed. Is done.

より具体的には、例えば、分岐管18aに接続される気筒、および、分岐管18cに接続される気筒の2つの気筒において、ピストンが連動し、吸気工程、圧縮工程、爆発工程および排気工程が、同位相で実施される。これにより、燃料が燃焼され、動力が出力されるとともに、高温の排気ガスが、分岐管18aおよび分岐管18cの内部を排気工程において通過する。   More specifically, for example, in two cylinders, that is, a cylinder connected to the branch pipe 18a and a cylinder connected to the branch pipe 18c, the pistons are interlocked to perform the intake process, the compression process, the explosion process, and the exhaust process. , Implemented in phase. As a result, the fuel is combusted and power is output, and high-temperature exhaust gas passes through the branch pipe 18a and the branch pipe 18c in the exhaust process.

このとき、エンジン16の熱が、排気ガス(熱媒体)を介して伝達され、分岐管18aおよび分岐管18cの内部温度は、排気工程において上昇し、その他の工程(吸気工程、圧縮工程、爆発工程)において下降するので、ピストンサイクルに応じて、経時的に上下し、高温状態と低温状態とが、周期的に繰り返される。   At this time, the heat of the engine 16 is transmitted through the exhaust gas (heat medium), the internal temperatures of the branch pipe 18a and the branch pipe 18c rise in the exhaust process, and other processes (intake process, compression process, explosion) In step (5), it moves up and down with time according to the piston cycle, and the high temperature state and the low temperature state are periodically repeated.

一方、それら2つの気筒とはタイミングを異にして、分岐管18bに接続される気筒、および、分岐管18dに接続される気筒の2つの気筒において、ピストンが連動し、吸気工程、圧縮工程、爆発工程および排気工程が、同位相で実施される。これにより、燃料が燃焼され、動力が出力されるとともに、分岐管18aおよび分岐管18cとは異なるタイミングにおいて、高温の排気ガスが、分岐管18bおよび分岐管18dの内部を排気工程において通過する。   On the other hand, in the two cylinders, the cylinder connected to the branch pipe 18b and the cylinder connected to the branch pipe 18d at different timings from the two cylinders, the pistons are interlocked, and the intake process, the compression process, The explosion process and the exhaust process are performed in the same phase. As a result, fuel is combusted and power is output, and at a timing different from that of the branch pipe 18a and the branch pipe 18c, high-temperature exhaust gas passes through the branch pipe 18b and the branch pipe 18d in the exhaust process.

このとき、エンジン16の熱が、排気ガス(熱媒体)を介して伝達され、分岐管18bおよび分岐管18dの内部温度は、排気工程において上昇し、その他の工程(吸気工程、圧縮工程、爆発工程)において下降するので、ピストンサイクルに応じて、経時的に上下し、高温状態と低温状態とが、周期的に繰り返される。   At this time, the heat of the engine 16 is transmitted through the exhaust gas (heat medium), the internal temperatures of the branch pipe 18b and the branch pipe 18d rise in the exhaust process, and other processes (intake process, compression process, explosion) In step (5), it moves up and down with time according to the piston cycle, and the high temperature state and the low temperature state are periodically repeated.

この周期的な温度変化は、分岐管18aおよび分岐管18cの周期的な温度変化とは、周期が同じである一方、位相が異なる。   This periodic temperature change has the same period but a different phase from the periodic temperature changes of the branch pipe 18a and the branch pipe 18c.

そして、この発電システム1では、上記したように、各分岐管18の内部(箱型空間20内)に、シート状の積層構造体21が配置されている。   And in this electric power generation system 1, as above-mentioned, the sheet-like laminated structure 21 is arrange | positioned inside each branch pipe 18 (in the box-shaped space 20).

そのため、エンジン16(熱源2)から排出される排気ガスが、分岐管18内に導入され、箱型空間20内に充填されると、その箱型空間20内において、積層構造体21の表面および裏面の両面(さらには、周側面)が、排気ガス(熱媒体)に接触(曝露)され、加熱および/または冷却される。   Therefore, when the exhaust gas discharged from the engine 16 (heat source 2) is introduced into the branch pipe 18 and filled in the box-shaped space 20, the surface of the laminated structure 21 and the box-shaped space 20 Both surfaces of the back surface (and also the peripheral surface) are brought into contact (exposed) with exhaust gas (heat medium) and heated and / or cooled.

すなわち、積層構造体21の表面および裏面の両面が、エンジン16(熱源2)、および、そのエンジン16の熱を伝達する熱媒体の経時的な温度変化により、加熱および/または冷却される。   That is, both the front surface and the back surface of the laminated structure 21 are heated and / or cooled by the temperature change of the engine 16 (heat source 2) and the heat medium that transfers the heat of the engine 16 with time.

そして、これにより、積層構造体21に含まれる第1デバイス3を、周期的に高温状態または低温状態にすることができ、第1デバイス3を、その素子(例えば、ピエゾ素子、焦電素子など)に応じた効果(例えば、ピエゾ効果、焦電効果など)により、電気分極させることができる。   And thereby, the 1st device 3 contained in the laminated structure 21 can be periodically made into a high temperature state or a low temperature state, and the 1st device 3 is made into the element (for example, a piezo element, a pyroelectric element, etc.). ) According to the effect (for example, piezo effect, pyroelectric effect, etc.).

そのため、この発電システム1では、第2デバイス4を介して、各第1デバイス3から電力を周期的に変動する波形(例えば、交流、脈流など)として、取り出すことができる。   Therefore, in this power generation system 1, power can be extracted from each first device 3 through the second device 4 as a waveform (for example, alternating current, pulsating current) that periodically varies.

また、この発電システム1では、分岐管18aおよび分岐管18cの温度と、分岐管18bおよび分岐管18dの温度とが、同じ周期、かつ、異なる位相で周期的に変化するため、電力を、周期的に変動する波形(例えば、交流、脈流など)として、連続的に取り出すことができる。   Further, in this power generation system 1, since the temperature of the branch pipe 18a and the branch pipe 18c and the temperature of the branch pipe 18b and the branch pipe 18d change periodically with the same period and different phases, Can be continuously extracted as a waveform (for example, alternating current, pulsating flow, etc.) that fluctuates automatically.

そして、排気ガスは、各分岐管18を通過した後、集気管19に供給され、集気された後、触媒搭載部12に供給され、その触媒搭載部12に備えられる触媒により浄化される。その後、排気ガスは、エキゾーストパイプ13に供給され、マフラー14において静音化された後、排出パイプ15を介して、外気に排出される。   Then, after passing through each branch pipe 18, the exhaust gas is supplied to the air collection pipe 19, collected, then supplied to the catalyst mounting section 12, and purified by the catalyst provided in the catalyst mounting section 12. Thereafter, the exhaust gas is supplied to the exhaust pipe 13, silenced in the muffler 14, and then discharged to the outside air through the discharge pipe 15.

このとき、各分岐管18内を通過する排気ガスは、集気管19において集気されるので、集気管19、触媒搭載部12、エキゾーストパイプ13、マフラー14および排出パイプ15を順次通過する排気ガスは、その温度が、平滑化されている。   At this time, since the exhaust gas passing through each branch pipe 18 is collected in the air collection pipes 19, the exhaust gas sequentially passes through the air collection pipe 19, the catalyst mounting portion 12, the exhaust pipe 13, the muffler 14, and the exhaust pipe 15. The temperature is smoothed.

そのため、温度が平滑化されたこのような排気ガスを通過させる集気管19、触媒搭載部12、エキゾーストパイプ13、マフラー14および排出パイプ15の温度は、通常、経時的に上下することなく、ほぼ一定である。   Therefore, the temperature of the air collection pipe 19, the catalyst mounting portion 12, the exhaust pipe 13, the muffler 14 and the exhaust pipe 15 through which such exhaust gas whose temperature has been smoothed normally does not increase or decrease with time, It is constant.

そのため、集気管19、触媒搭載部12、エキゾーストパイプ13、マフラー14または排出パイプ15を熱源2として用い、その周囲または内部に、上記した積層構造体21(第1デバイス3を含む。)を配置する場合には、第1デバイス3から取り出される電力は、その電圧が小さく、また、一定(直流電圧)である。   Therefore, the air collection pipe 19, the catalyst mounting part 12, the exhaust pipe 13, the muffler 14 or the exhaust pipe 15 is used as the heat source 2, and the laminated structure 21 (including the first device 3) is arranged around or inside thereof. In this case, the electric power extracted from the first device 3 has a small voltage and is constant (DC voltage).

そのため、このような方法では、得られる電力を、簡易な構成で効率良く昇圧することができず、蓄電効率に劣るという不具合がある。   Therefore, in such a method, there is a problem that the obtained electric power cannot be boosted efficiently with a simple configuration and the power storage efficiency is poor.

一方、上記したように、分岐管18の内部空間に上記した積層構造体21(第1デバイス3を含む。)を配置すれば、熱源2の経時的な温度変化により、第1デバイス3を、周期的に高温状態または低温状態にすることができ、第1デバイス3を、そのデバイス(例えば、ピエゾ素子、焦電素子など)に応じた効果(例えば、ピエゾ効果、焦電効果など)により、周期的に電気分極させることができる。   On the other hand, as described above, if the above-described laminated structure 21 (including the first device 3) is arranged in the internal space of the branch pipe 18, the first device 3 is caused by the temperature change of the heat source 2 over time. The first device 3 can be periodically changed to a high temperature state or a low temperature state, and an effect (for example, a piezo effect, a pyroelectric effect, etc.) according to the device (for example, a piezo element, a pyroelectric element, etc.) It can be periodically electrically polarized.

そのため、この発電システム1では、第2デバイス4を介して、各第1デバイス3から電力を周期的に変動する波形(例えば、交流、脈流など)として、取り出すことができる。   Therefore, in this power generation system 1, power can be extracted from each first device 3 through the second device 4 as a waveform (for example, alternating current, pulsating current) that periodically varies.

その後、この方法では、例えば、図3において点線で示すように、上記により得られた電力を、第2デバイス4に接続される昇圧器5において、周期的に変動する波形(例えば、交流、脈流など)の状態で昇圧し、次いで、昇圧された電力を、交流/直流変換器6において直流電圧に変換した後、バッテリー7に蓄電する。バッテリー7に蓄電された電力は、自動車10や、自動車10に搭載される各種電気部品の動力などとして、適宜、用いることができる。   Thereafter, in this method, for example, as indicated by a dotted line in FIG. 3, the electric power obtained as described above is periodically changed in the booster 5 connected to the second device 4 (for example, alternating current, pulse, etc.). And then the boosted power is converted into a DC voltage by the AC / DC converter 6 and then stored in the battery 7. The electric power stored in the battery 7 can be used as appropriate as the power of the automobile 10 and various electrical components mounted on the automobile 10.

そして、このような発電システム1によれば、温度が経時的に上下する熱源2を用いるため、変動する電圧(例えば、交流電圧)を取り出すことができ、その結果、一定電圧(直流電圧)として取り出し、DC−DCコンバーターで変換する場合に比べて、優れた効率で昇圧して、蓄電することができる。   And according to such a power generation system 1, since the heat source 2 whose temperature rises and falls with time is used, a fluctuating voltage (for example, AC voltage) can be taken out, and as a result, as a constant voltage (DC voltage) Compared with the case of taking out and converting by a DC-DC converter, it is possible to store the electric power by boosting with excellent efficiency.

とりわけ、このような発電システム1では、複数の第1デバイス3および第2デバイス4が、交互に積層されているので、複数の第1デバイス3を、複数の第2デバイス4を介して電気的に接続することができ、優れた効率で発電することができるとともに、省スペース化を図ることができる。   In particular, in such a power generation system 1, since the plurality of first devices 3 and the second devices 4 are alternately stacked, the plurality of first devices 3 are electrically connected via the plurality of second devices 4. The power can be generated with excellent efficiency, and space saving can be achieved.

1 発電システム
2 熱源
3 第1デバイス
4 第2デバイス
5 昇圧器
6 交流/直流変換器
7 バッテリー
DESCRIPTION OF SYMBOLS 1 Power generation system 2 Heat source 3 1st device 4 2nd device 5 Booster 6 AC / DC converter 7 Battery

Claims (4)

温度が経時的に上下する熱源と、
前記熱源の温度変化により電気分極する複数の第1デバイスと、
前記第1デバイスから電力を取り出すための複数の第2デバイスと
を備え、
前記第1デバイスおよび前記第2デバイスが、交互に積層されることにより、積層構造体を形成し、
前記熱源が、
多気筒型のエンジンと、前記エンジンの各気筒に接続される複数の分岐管、および、前記分岐管の下流側において各前記分岐管を統合する集気管を備える排気多岐管とを備え周期的に温度変化する内燃機関であり、
前記積層構造体が、前記分岐管内において、前記内燃機関の排気ガスに接触されるように配置されること
を特徴とする、発電システム。
A heat source whose temperature rises and falls over time;
A plurality of first devices that are electrically polarized by a temperature change of the heat source;
A plurality of second devices for extracting power from the first device;
The first device and the second device, the Rukoto are alternately stacked to form a layered structure,
The heat source is
Comprising a multi-cylinder type engine, a plurality of branch pipes connected to the cylinders of the engine, and, an exhaust manifold with a collector pipe for integrating each of said branch pipe on the downstream side of the branch pipe, periodic Is an internal combustion engine that changes temperature,
The power generation system, wherein the laminated structure is disposed in the branch pipe so as to be in contact with the exhaust gas of the internal combustion engine .
前記熱源が、内燃機関であることを特徴とする、請求項1に記載の発電システム。   The power generation system according to claim 1, wherein the heat source is an internal combustion engine. 前記第1デバイスが、ピエゾ効果により電気分極することを特徴とする請求項1または2に記載の発電システム。   The power generation system according to claim 1, wherein the first device is electrically polarized by a piezo effect. 前記第1デバイスが、焦電効果により電気分極することを特徴とする請求項1または2に記載の発電システム。
The power generation system according to claim 1, wherein the first device is electrically polarized by a pyroelectric effect.
JP2011212680A 2011-09-28 2011-09-28 Power generation system Active JP5829876B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011212680A JP5829876B2 (en) 2011-09-28 2011-09-28 Power generation system
EP12835162.4A EP2763201B1 (en) 2011-09-28 2012-08-28 Power generating system
PCT/JP2012/071711 WO2013047057A1 (en) 2011-09-28 2012-08-28 Power generation system
US14/347,115 US9627997B2 (en) 2011-09-28 2012-08-28 Power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212680A JP5829876B2 (en) 2011-09-28 2011-09-28 Power generation system

Publications (2)

Publication Number Publication Date
JP2013074160A JP2013074160A (en) 2013-04-22
JP5829876B2 true JP5829876B2 (en) 2015-12-09

Family

ID=48478389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212680A Active JP5829876B2 (en) 2011-09-28 2011-09-28 Power generation system

Country Status (1)

Country Link
JP (1) JP5829876B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183146B2 (en) * 2013-10-23 2017-08-23 富士通株式会社 Power generator
JP6386235B2 (en) * 2014-02-25 2018-09-05 ダイハツ工業株式会社 In-vehicle power generation system
JP6217765B2 (en) * 2016-01-25 2017-10-25 トヨタ自動車株式会社 Vehicle power generator
JP6217766B2 (en) * 2016-01-25 2017-10-25 トヨタ自動車株式会社 Vehicle power generator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108818A (en) * 1982-12-14 1984-06-23 Nippon Denso Co Ltd Engine room ventilation system
JPH03177082A (en) * 1989-12-05 1991-08-01 Idemitsu Petrochem Co Ltd Thermoelectric power generator
JPH11257064A (en) * 1998-03-10 1999-09-21 Nissan Motor Co Ltd Exhaust pipe cooling system of internal combustion engine
JPH11332266A (en) * 1998-05-13 1999-11-30 Murata Mfg Co Ltd Power generating apparatus
JP2000073754A (en) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd Waste heat recovery device for vehicle
JP2007288923A (en) * 2006-04-17 2007-11-01 Toyota Industries Corp Apparatus and method for power generation
US20100175392A1 (en) * 2009-01-15 2010-07-15 Malloy Kevin J Electrocaloric refrigerator and multilayer pyroelectric energy generator
US20130099121A1 (en) * 2010-03-10 2013-04-25 Pioneer Corporation Infrared ray detection element and infrared ray detection device having the same
CN102792579B (en) * 2010-04-28 2016-01-20 大发工业株式会社 Electricity generation system

Also Published As

Publication number Publication date
JP2013074160A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5865646B2 (en) Power generation system
JP6150676B2 (en) Power generation system
WO2014069045A1 (en) Electricity-generating system
WO2013047057A1 (en) Power generation system
JP5829876B2 (en) Power generation system
JP5759865B2 (en) Power generation system
JP5829877B2 (en) Power generation system
JP6355379B2 (en) Power generation system
JP5968698B2 (en) Power generation system
JP5829910B2 (en) In-vehicle power generation system
JP6150677B2 (en) Power generation system
JP2015070747A (en) Power generation system
JP6257404B2 (en) Power generation system
JP5855875B2 (en) Power generation system
JP6316677B2 (en) Power generation system
WO2015045840A1 (en) Power generation system
JP2015070762A (en) Power generation system
JP6446312B2 (en) Power generation system
JP6346060B2 (en) Power generation system
WO2017130626A1 (en) Electric power generation system
JP2017135905A (en) Electrical generating system
JP6210858B2 (en) Power generation system
JP2020054200A (en) Power generating system
JP2018125919A (en) Power generation system
JP2019013082A (en) Power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5829876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250