JP5828387B2 - Bearing for molten metal plating bath - Google Patents

Bearing for molten metal plating bath Download PDF

Info

Publication number
JP5828387B2
JP5828387B2 JP2011191576A JP2011191576A JP5828387B2 JP 5828387 B2 JP5828387 B2 JP 5828387B2 JP 2011191576 A JP2011191576 A JP 2011191576A JP 2011191576 A JP2011191576 A JP 2011191576A JP 5828387 B2 JP5828387 B2 JP 5828387B2
Authority
JP
Japan
Prior art keywords
bearing
plating bath
molten metal
support
metal plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011191576A
Other languages
Japanese (ja)
Other versions
JP2013053331A (en
Inventor
衛介 小川
衛介 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011191576A priority Critical patent/JP5828387B2/en
Priority to CN 201220443926 priority patent/CN202808923U/en
Publication of JP2013053331A publication Critical patent/JP2013053331A/en
Application granted granted Critical
Publication of JP5828387B2 publication Critical patent/JP5828387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融亜鉛や溶融アルミニウムその他溶融金属を鋼板の表面にめっきする溶融金属めっき装置においてサポートロールやシンクロールを回転可能に支承するため溶融金属めっき浴に浸漬される自動調芯機能を有する溶融金属めっき浴用軸受に関する発明である。   The present invention has an automatic alignment function that is immersed in a molten metal plating bath to rotatably support a support roll and a sink roll in a molten metal plating apparatus for plating molten zinc, molten aluminum and other molten metals on the surface of a steel sheet. It is an invention related to a bearing for a molten metal plating bath.

上記技術分野に係わる溶融金属めっき浴用軸受(以下、単に軸受と言う場合がある。)が組み込まれた溶融金属めっき装置の概略構成図を図5に示す。図5に示すように、溶融金属めっき装置20は、溶融金属めっき浴(以下単に「めっき浴」と言う場合がある。)21が貯留されるめっき槽22と、めっき浴21の表層部分に浸漬されて、めっき浴21の内に導入される鋼板Wの酸化を防止するためのスナウト23と、めっき浴21の中に配置されたシンクロール28と、めっき浴21の内でシンクロール28の上方に位置する一対のサポートロール27と、めっき浴21の表面より僅か上方に位置するガスワイピングノズル26とを有している。シンクロール28自体には外部駆動力が付与されず、走行する鋼板Wとの接触による摩擦力で反時計回りに駆動される。またサポートロール27は、通例、外部のモーター( 図示せず) に連結された駆動ロールである。なお、サポートロール27には外部駆動力が付与されない無駆動タイプもある。溶融金属めっき浴用ロールであるシンクロール28及び一対のサポートロール27は、フレーム24・25に取り付けられた軸受装置1・1により各々回転自在に支持されており、常に一体としてめっき浴21の内に浸漬される。   FIG. 5 shows a schematic configuration diagram of a molten metal plating apparatus in which a bearing for a molten metal plating bath related to the above technical field (hereinafter sometimes simply referred to as a bearing) is incorporated. As shown in FIG. 5, a molten metal plating apparatus 20 is immersed in a plating tank 22 in which a molten metal plating bath (hereinafter, simply referred to as “plating bath”) 21 is stored, and a surface layer portion of the plating bath 21. Then, a snout 23 for preventing oxidation of the steel sheet W introduced into the plating bath 21, a sink roll 28 disposed in the plating bath 21, and the sink roll 28 in the plating bath 21 above the sink roll 28. And a gas wiping nozzle 26 positioned slightly above the surface of the plating bath 21. No external driving force is applied to the sink roll 28 itself, and the sink roll 28 is driven counterclockwise by a frictional force caused by contact with the traveling steel plate W. The support roll 27 is usually a drive roll connected to an external motor (not shown). The support roll 27 may be a non-driving type in which no external driving force is applied. A sink roll 28 and a pair of support rolls 27, which are rolls for a molten metal plating bath, are rotatably supported by bearing devices 1 and 1 attached to the frames 24 and 25, respectively, and are always integrated into the plating bath 21 as a unit. Soaked.

鋼板Wは、スナウト23を経てめっき浴21の内に斜方から進入し、シンクロール28を経由して上方に進行方向を変えられる。めっき浴21の中を上昇する鋼板Wは、当該鋼板Wを一定の力で押し付けた一対のサポートロール27に挟まれ、パスラインが保たれるとともに、反りや振動が防止される。ガスワイピングノズル26は、めっき浴21から出てきた鋼板Wに高速ガスを吹き付け、高速ガスのガス圧により、鋼板Wに付着した溶融金属めっきの厚さを均一に調整する。このようにして、溶融金属めっきが施された鋼板Wを得ることができる。ここで、各々のサポートロール27には、鋼板Wへの押付力より矢印Dで示すように右斜め上方向または左斜め上方向に向かう力が作用しており、シンクロール27を支持する軸受装置1は、その斜め上方向に向かう力を負荷することとなる。また、シンクロール28には、鋼板Wに付与されるテンションにより矢印Gで示すように左斜め上方方向に向かう力が作用しており、シンクロール28を支持する軸受装置1は、その左斜め上方向に向かう力を負荷することとなる。   The steel plate W enters the plating bath 21 from the oblique direction through the snout 23, and the traveling direction can be changed upward via the sink roll 28. The steel plate W rising in the plating bath 21 is sandwiched between a pair of support rolls 27 that press the steel plate W with a constant force, so that the pass line is maintained and warpage and vibration are prevented. The gas wiping nozzle 26 sprays high-speed gas onto the steel sheet W coming out of the plating bath 21 and uniformly adjusts the thickness of the molten metal plating attached to the steel sheet W by the gas pressure of the high-speed gas. In this way, a steel plate W on which molten metal plating has been applied can be obtained. Here, each support roll 27 is subjected to a force directed toward the upper right direction or the upper left direction as indicated by an arrow D from the pressing force against the steel plate W, and the bearing device that supports the sink roll 27. 1 will load the force which goes in the diagonally upward direction. Further, the sink roll 28 is subjected to a force directed obliquely upward to the left as indicated by an arrow G due to the tension applied to the steel plate W, and the bearing device 1 that supports the sink roll 28 has A force in the direction is loaded.

ここで、溶融金属めっき浴(以下、単にめっき浴と言う場合がある。)21に浸漬された回転体であるサポートロール27やシンクロール28(以下、両者を総称してロール27・28という場合がある。)の軸部には、高温のめっき浴21による熱変形や、鋼板Wから負荷される荷重による変形が生じる。そして、変形により軸部が曲がり偏芯すると、当該軸部を支承する軸受の内面に偏磨耗が生じ、ロール27・28に回転不良や振動などの現象が生じる。このような現象は、めっきされた鋼板の表面に擦り疵や押し疵が発生するという品質に係わる問題や、鋼板の走行速度を高めることができないという生産性に係わる問題を招来していた。   Here, a support roll 27 and a sink roll 28 (hereinafter collectively referred to as rolls 27 and 28), which are rotating bodies immersed in a molten metal plating bath (hereinafter may be simply referred to as a plating bath) 21, respectively. In the shaft part) is deformed due to thermal deformation by the high-temperature plating bath 21 or due to a load applied from the steel plate W. When the shaft portion is bent and eccentric due to the deformation, uneven wear occurs on the inner surface of the bearing that supports the shaft portion, and the rolls 27 and 28 exhibit phenomena such as rotation failure and vibration. Such a phenomenon has caused a problem related to quality that scuffs and creases are generated on the surface of the plated steel sheet and a problem related to productivity that the traveling speed of the steel sheet cannot be increased.

かかる問題を解消するため自動調芯機能を付与した構成の軸受が従来から提案されたおり、その一例が下記特許文献1・2に開示されている。特許文献1には、「溶融金属めっきラインにおける溶融金属浴中のサポートロールにおいて、前記サポートロールを無駆動とし、該サポートロール軸受と摺動接触するスリーブ外周部に自溶性合金溶射すると共に、内表面を鏡面仕上げした断面形状が凸状をなすブッシュを設け、前記ブッシュの外周を球面軸受としたことを特徴とする無駆動溶融金属浴中のサポートロール」、が開示されており、前記ブッシュが自動調芯軸受として機能する。   In order to solve such a problem, a bearing having an automatic alignment function has been proposed, and an example thereof is disclosed in Patent Documents 1 and 2 below. Patent Document 1 states that “in the support roll in the molten metal bath in the molten metal plating line, the support roll is undriven, and self-fluxing alloy spraying is performed on the outer periphery of the sleeve that is in sliding contact with the support roll bearing. There is disclosed a support roll in a non-driven molten metal bath, characterized in that a bush whose cross-sectional shape is mirror-finished on the surface is provided, and the outer periphery of the bush is a spherical bearing. '' Functions as a self-aligning bearing.

また、特許文献2に開示された軸受装置は、「溶融メッキ浴内に浸漬配置されるロールを回転自在に支承する軸受装置において、ハウジングに内装されて前記ロールの軸部負荷方向を支承する軸受部材の外周部を、正面視及び側面視のそれぞれが円弧状となるように形成した調芯機能を備えたことを特徴とする軸受装置」、である。   Further, the bearing device disclosed in Patent Document 2 is “a bearing device that rotatably supports a roll immersed in a hot dipping bath, and is a bearing that is built in a housing and supports the axial load direction of the roll. A bearing device having a centering function in which an outer peripheral portion of a member is formed so that each of a front view and a side view has an arc shape.

特開2005−248298号公報JP 2005-248298 A 実開平1−119048号公報Japanese Utility Model Publication No. 1-119048

上記特許文献1・2に開示された軸受は、その自動調芯機能により、いずれも上記ロールの偏芯にともなう問題を解消することができるものの、以下のような問題があった。すなわち、特許文献1のサポートロールにおいて軸受であるブッシュは、その自動調芯機能を奏する外周面が球状をなしており、その内面がサポートロールの軸部と摺動する摺動面となっている。ここで、溶融金属めっき浴用軸受は、腐蝕性が高いめっき浴中で使用されるため、摺動による摩擦磨耗に加えめっき浴による腐蝕磨耗も進みやすく、使用中に摺動面は大きく磨耗し、粗面化する。摺動面が粗面化すると軸部表面との摩擦係数が大きくなるため、軸部の回転に伴い軸受も回転する、いわゆる連れ回りという現象を招来する。この軸部の連れ回りのために軸受の外周面または当該外周面が接触するアームの内面に磨耗が生じ、軸受が奏すべき自動調芯機能が損なわれるという問題があった。また、特に難加工材であるセラミックス製の軸受においては、特許文献1の軸受のように、外周面を球状に形成することは非常に困難であり、工業生産上、軸受のコストが高くなるという問題があった。   The bearings disclosed in Patent Documents 1 and 2 can solve the problems associated with the eccentricity of the rolls by the automatic alignment function, but have the following problems. That is, the bush which is a bearing in the support roll of Patent Document 1 has a spherical outer peripheral surface having an automatic alignment function, and the inner surface is a sliding surface that slides with the shaft portion of the support roll. . Here, since the bearing for the molten metal plating bath is used in a plating bath having high corrosiveness, in addition to frictional wear due to sliding, corrosion wear due to the plating bath is likely to proceed, and the sliding surface is greatly worn during use. Roughen. When the sliding surface becomes rough, the coefficient of friction with the surface of the shaft portion increases, so that a phenomenon called so-called rotation occurs, in which the bearing rotates as the shaft portion rotates. Due to the rotation of the shaft portion, the outer peripheral surface of the bearing or the inner surface of the arm with which the outer peripheral surface comes into contact is worn, and there is a problem that the automatic alignment function that the bearing should perform is impaired. In particular, in a ceramic bearing, which is a difficult-to-process material, it is very difficult to form the outer peripheral surface in a spherical shape as in the bearing of Patent Document 1, and the cost of the bearing increases in industrial production. There was a problem.

一方で、特許文献2に開示された軸受によれば、正面視が半円環状の軸受の底面に接触するように回り止めを配置することにより、上記特許文献1の連れ回りの発生を回避し、連れ回りによる軸受の外周面の磨耗の発生を防止できる。しかしながら、特許文献2の軸受では、軸部の偏芯に対し、その鉛直方向の成分と水平方向の成分との調芯をともに軸受の外周面の頂部のみで負担する。そのため軸受の外周面の頂部または当該頂部が接触するハウジングの内面に局部的に磨耗が生じ、軸受が奏すべき自動調芯機能が損なわれるという問題があった。また、特許文献2の軸受は、正面視および側面視のそれぞれが円弧状となるよう軸受の外周面を形成する必要があり、特許文献1の軸受と同様に、工業生産上、軸受のコストが高くなるという問題があった。   On the other hand, according to the bearing disclosed in Patent Document 2, the rotation stop is arranged so that the front view contacts the bottom surface of the semi-circular bearing, thereby avoiding the accompanying rotation of Patent Document 1. The occurrence of wear on the outer peripheral surface of the bearing due to rotation can be prevented. However, in the bearing of Patent Document 2, for the eccentricity of the shaft portion, both the alignment of the vertical component and the horizontal component are borne only by the top portion of the outer peripheral surface of the bearing. For this reason, there is a problem in that the top of the outer peripheral surface of the bearing or the inner surface of the housing with which the top contacts is locally worn, which impairs the automatic alignment function that the bearing should perform. Moreover, the bearing of patent document 2 needs to form the outer peripheral surface of a bearing so that each of front view and side view may become circular arc shape, and, like the bearing of patent document 1, the cost of a bearing is industrially produced. There was a problem of becoming higher.

本発明は、上記従来技術の問題点を発明者が鋭意検討してなされたものであり、溶融金属めっき浴に浸漬され使用される溶融金属めっき浴用軸受において、自動調芯機能を奏すべき面の使用中における磨耗が少なく、自動調芯機能を長期間に渡り維持できるシンプルな構成の溶融金属めっき浴用軸受を提供することを目的としている。   The present invention has been made by the inventor's earnest examination of the above-mentioned problems of the prior art. In a bearing for a molten metal plating bath that is immersed and used in a molten metal plating bath, the surface of the surface that should have an automatic alignment function is provided. It is an object of the present invention to provide a bearing for a molten metal plating bath having a simple configuration that has little wear during use and can maintain an automatic alignment function for a long period of time.

上記目的を達成する本発明の一態様は、溶融金属めっき浴中に浸漬される回転体の軸部を回転自在に支承するとともに、互いに直交する二の平面を有する支持部材で支持される溶融金属めっき浴用軸受であって、前記軸部の外周面が接触しつつ摺動可能な摺動面と、前記摺動面が延びる方向と同一方向に延設されているとともに前記支持部材の二の平面に対面する少なくとも二の面を有し、前記二の面には、各々が対面する平面と頂部が接する凸状部が形成されていることを特徴とする溶融金属めっき浴用軸受である。   One aspect of the present invention that achieves the above object is a molten metal that rotatably supports a shaft portion of a rotating body immersed in a molten metal plating bath and is supported by a support member having two planes orthogonal to each other. A plating bath bearing, wherein the outer peripheral surface of the shaft portion is slidable while being in contact, and extends in the same direction as the direction in which the sliding surface extends, and two planes of the support member The bearing for a molten metal plating bath is characterized in that it has at least two surfaces facing each other, and a convex portion in contact with the flat surface facing each other and the top is formed on each of the two surfaces.

前記支持部材は、前記二の平面に替え、互いに直交する四の平面を有し、前記溶融金属めっき浴用軸受は、前記二の面に替え、前記摺動面が延びる方向と同一方向に延設されているとともに前記支持部材の四の平面に対面する四の面を有し、前記四の面には、各々が対面する支持平面と頂部が接する凸状部が形成されていてもよい。   The support member is replaced with the two planes and has four planes orthogonal to each other, and the molten metal plating bath bearing is replaced with the second plane and extends in the same direction as the direction in which the sliding surface extends. In addition, there may be four surfaces facing the four planes of the support member, and the four surfaces may be formed with convex portions that contact the support planes that face each other and the top.

さらに、前記支持部材の平面は、前記支持部材に替え前記軸受に形成されており、前記軸受の面は、前記軸受に替え前記支持部材に形成されていてもよい。   Furthermore, the plane of the support member may be formed on the bearing instead of the support member, and the surface of the bearing may be formed on the support member instead of the bearing.

前記支持部材は、当該支持部材の平面の一端側に置かれた支持面を有し、さらに前記溶融金属めっき浴用軸受は、前記支持面に頂部が接する凸状部を有することが好ましい。   It is preferable that the support member has a support surface placed on one end side of the flat surface of the support member, and the molten metal plating bath bearing further has a convex portion whose top is in contact with the support surface.

前記軸受の面に形成された凸状部の頂部と、当該軸受の面が相対する前記支持部材の平面との間には間隙が設けられていることが好ましい。   It is preferable that a gap is provided between the top of the convex portion formed on the surface of the bearing and the plane of the support member to which the surface of the bearing faces.

前記摺動面が延びる方向における前記凸状部の外縁形状は、円弧状であることが好ましい。この外縁形状が円弧状である前記凸状部は、前記摺動面が延びる方向において前記軸受の面の一端から他端に渡り形成されていることがなお好ましい。さらに、外縁形状が円弧状である前記凸状部は、前記摺動面が延びる方向において、その頂部が、前記軸受の面の中心より一端側に偏位した位置に配置されていることが望ましい。   It is preferable that an outer edge shape of the convex portion in a direction in which the sliding surface extends is an arc shape. It is more preferable that the convex portion whose outer edge shape is an arc shape is formed from one end to the other end of the surface of the bearing in the direction in which the sliding surface extends. Further, it is desirable that the convex portion whose outer edge shape is an arc shape is arranged such that the top portion thereof is deviated to one end side from the center of the surface of the bearing in the direction in which the sliding surface extends. .

さらに、前記凸状部の外縁形状が円弧状である場合に、前記軸受の面のうち隣接する面の間には各々を接続する接続面が介在されていることが好ましい。前記接続面の形状は、前記摺動面が延びる方向に対し直交する方向に沿う断面視において、外側に膨出した円弧状であることが望ましい。   Furthermore, when the outer edge shape of the said convex-shaped part is circular arc shape, it is preferable that the connection surface which connects each is interposed between the adjacent surfaces among the surfaces of the said bearing. The shape of the connection surface is preferably an arc shape bulging outward in a cross-sectional view along a direction orthogonal to the direction in which the sliding surface extends.

前記支持部材には、外縁形状が円弧状である前記凸状部の頂部に通じる貫通孔が形成されていることが好ましい。   It is preferable that the support member is formed with a through-hole that communicates with the top of the convex portion whose outer edge shape is an arc shape.

前記摺動面が延びる方向において、前記軸受の面の一端および他端の少なくとも一方の角部には、R面またはC面が形成されていることが好ましい。   In the direction in which the sliding surface extends, it is preferable that an R surface or a C surface is formed at at least one corner of one end and the other end of the bearing surface.

前記摺動面が延びる方向において、前記摺動面の一端および他端の少なくとも一方の角部には、R面またはC面が形成されていることが望ましい。   In the direction in which the sliding surface extends, it is preferable that an R surface or a C surface is formed at at least one corner of one end and the other end of the sliding surface.

前記軸受の摺動面は、セラミックスで構成されていることが望ましい。   The sliding surface of the bearing is preferably made of ceramics.

本発明によれば、下記で詳細に述べるように、本発明の目的を達成することができる。   According to the present invention, the object of the present invention can be achieved as described in detail below.

本発明に係わる第1態様の軸受が組み込まれた軸受装置の斜視図である。It is a perspective view of the bearing apparatus with which the bearing of the 1st aspect concerning this invention was integrated. 図1の軸受の軸芯に対し鉛直な平面Aおよび水平な平面Hに沿う断面図である。2 is a cross-sectional view taken along a vertical plane A and a horizontal plane H with respect to the shaft core of the bearing of FIG. 図2のB−B断面図である。It is BB sectional drawing of FIG. 図1の正面図、背面図、右側面図である。FIG. 2 is a front view, a rear view, and a right side view of FIG. 1. 図1の軸受装置が組み込まれた溶融金属めっき装置の概略構成図である。It is a schematic block diagram of the molten metal plating apparatus with which the bearing apparatus of FIG. 1 was integrated. 図1の軸受の第1変形例、第2変形例の軸受が組み込まれた軸受装置の図である。It is a figure of the bearing apparatus incorporating the bearing of the 1st modification of the bearing of FIG. 1, and a 2nd modification. 図1の軸受の第3変形例〜第5変形例の軸受が組み込まれた軸受装置の図である。It is a figure of the bearing apparatus with which the bearing of the 3rd modification of the bearing of FIG. 1-the 5th modification was integrated. 本発明に係わる第2態様の軸受が組み込まれた軸受装置の正面図である。It is a front view of the bearing apparatus with which the bearing of the 2nd aspect concerning this invention was integrated. 本発明に係わる第3態様および第4態様の軸受が組み込まれた軸受装置の図である。It is a figure of the bearing apparatus with which the bearing of the 3rd aspect and 4th aspect concerning this invention was integrated. 本発明に係わる第5態様の軸受が組み込まれた軸受装置の側断面図である。It is a sectional side view of the bearing apparatus with which the bearing of the 5th aspect concerning this invention was integrated.

以下、本発明に係わる軸受について、その第1態様および第1態様の複数の変形例、ならびに第2〜第5態様に基づき、図面を参照しながら具体的に説明する。なお、上記第1〜第5態様の軸受は、いずれも軸受装置に内蔵され、上記図5を参照して説明した溶融金属めっき装置に組み込まれて使用されるが、本発明はこれに限定されることなく、その作用効果を奏する限り、同一性の範囲内で適宜変形して実施することができる。また、第1〜第5態様の軸受の各構成要素は、本発明の作用効果を奏する限り、適宜互いに組み合わせて実施することができる。さらに、以下の説明では、めっき浴中に浸漬される回転体としてサポートロールの軸部を回転自在に支承する軸受を例として説明するが、本発明は、シンクロールその他溶融金属めっき浴中に浸漬される回転体において、同様に実施することができる。   Hereinafter, the bearing according to the present invention will be specifically described with reference to the drawings based on the first aspect, a plurality of modifications of the first aspect, and the second to fifth aspects. The bearings of the first to fifth aspects are all incorporated in the bearing device and used by being incorporated in the molten metal plating apparatus described with reference to FIG. 5, but the present invention is not limited to this. Without departing from the above, the present invention can be appropriately modified and implemented within the range of identity as long as the effects are exhibited. Moreover, each component of the bearing of the 1st-5th aspect can be implemented in combination with each other suitably as long as there exists an effect of this invention. Further, in the following explanation, a bearing that rotatably supports the shaft portion of the support roll as a rotating body immersed in the plating bath will be described as an example. However, the present invention is immersed in a sink roll or other molten metal plating bath. The same can be applied to the rotating body to be used.

[第1実施形態]
第1態様の軸受について、図1〜4を参照して説明する。ここで、図1は、第1態様の軸受3が組み込まれた軸受装置1の斜視図、図2は、図1の軸受3の軸芯Iに対し鉛直な平面Aおよび水平な平面Hに沿う軸受装置1の断面図、図3は、図2のB−B断面である正断面図、図4(a)は、図1の軸受装置の正面図、図4(b)は、その背面図、図4(c)は、その側面図である。なお、図1〜3に示すように、以下の説明では、軸受3の摺動面3aが延びる方向である、軸受3の軸芯Iに沿う軸をX軸、X軸に直交するとともに軸芯Iに水平に交わる軸をY軸、X軸・Y軸に共に直交する軸芯Iに垂直に交わる軸をZ軸と称する。
[First Embodiment]
The bearing of a 1st aspect is demonstrated with reference to FIGS. Here, FIG. 1 is a perspective view of the bearing device 1 in which the bearing 3 of the first aspect is incorporated, and FIG. 2 is along a plane A and a plane H perpendicular to the axis I of the bearing 3 in FIG. Cross-sectional view of the bearing device 1, FIG. 3 is a front cross-sectional view that is a BB cross-section of FIG. 2, FIG. 4 (a) is a front view of the bearing device of FIG. 1, and FIG. FIG. 4C is a side view thereof. 1 to 3, in the following description, the axis along the axis I of the bearing 3, which is the direction in which the sliding surface 3 a of the bearing 3 extends, is orthogonal to the X axis, the X axis, and the axis. The axis that intersects I horizontally is referred to as the Y axis, and the axis that intersects perpendicularly to the axis I perpendicular to both the X axis and the Y axis is referred to as the Z axis.

第1態様の軸受3が組み込まれた軸受装置1は、図1に示すように、めっき浴中に浸漬される回転体であるサポートロールの軸部27aを回転自在に支承する軸受3と当該軸受3を支持する支持部材2とで構成されている。以下、支持部材2、軸受3の順にその構造を詳細に説明する。なお、軸受装置1は、サポートロールの両端に2組配置されているが、両者の構成は同一であるので、一方の軸受装置1についてのみ説明し、他方の軸受装置1の説明は省略する。   As shown in FIG. 1, the bearing device 1 in which the bearing 3 of the first aspect is incorporated includes a bearing 3 that rotatably supports a shaft portion 27 a of a support roll that is a rotating body immersed in a plating bath, and the bearing. 3 and a support member 2 that supports 3. Hereinafter, the structure will be described in detail in the order of the support member 2 and the bearing 3. Although two sets of bearing devices 1 are arranged at both ends of the support roll, since the configuration of both is the same, only one bearing device 1 will be described, and description of the other bearing device 1 will be omitted.

[支持部材]
第1態様の支持部材2は、図3に詳細を示すように、互いに直交する四の平面(以下、理解しやすいように支持平面と言う。)、具体的に上方の支持平面2a、下方の支持平面2c、右方の支持平面2dおよび左方の支持平面2bを有しており、これら四の支持平面2a〜2dは、各々平板状部材2e〜2hの内面(一面)となっている。この4枚の平板状部材2e〜2hは、支持平面2a〜2dを構成する各々の内面が互いに直交し、各面により断面が略矩形状(本態様の場合には正四角形状)の収納室2qを形成するよう、各々固定されている。さらに、本発明において必須の構成ではないが、図2に示すように、本態様の支持部材2には、X軸方向において支持平面2a〜2hの一端に、支持平面2a〜2hと直交する平面または円弧面の支持面2mが配置されるよう、その支持面2mを内面(一面)として有する平板状部材2iが収納室2qを塞ぐ状態で、平板状部材2e〜2hの一端に固定されている。そして、図1に示すように、軸受3は、X軸方向において、平板状部材2iに相対する収納室2qの一端開口から収納室2qに収納され、X軸方向に移動しないよう、その端部が、平板状部材2f・2hの端面に接合された一対の固定部材2nで固定される。
[Support member]
As shown in detail in FIG. 3, the support member 2 according to the first aspect includes four planes orthogonal to each other (hereinafter referred to as support planes for easy understanding), specifically an upper support plane 2a and a lower plane. It has a support plane 2c, a right support plane 2d, and a left support plane 2b, and these four support planes 2a to 2d are the inner surfaces (one surface) of the flat plate members 2e to 2h, respectively. The four flat plate-like members 2e to 2h are storage chambers whose inner surfaces constituting the support planes 2a to 2d are orthogonal to each other, and each surface has a substantially rectangular cross section (in the case of this embodiment, a regular square shape). Each is fixed so as to form 2q. Further, although not essential in the present invention, as shown in FIG. 2, the support member 2 of this aspect includes a plane orthogonal to the support planes 2 a to 2 h at one end of the support planes 2 a to 2 h in the X-axis direction. Alternatively, the flat plate-like member 2i having the support surface 2m as an inner surface (one surface) is fixed to one end of the flat plate-like members 2e to 2h so that the arc-shaped support surface 2m is disposed. . And as shown in FIG. 1, the bearing 3 is accommodated in the storage chamber 2q from one end opening of the storage chamber 2q facing the flat plate member 2i in the X-axis direction, and its end portion is prevented from moving in the X-axis direction. Are fixed by a pair of fixing members 2n joined to the end faces of the flat members 2f and 2h.

平板状部材2e〜2iは、化学的腐蝕性の高いめっき浴に対し耐蝕性を有する材料で構成することが望ましく、セラミックスやステンレス鋼などの金属を選択するとよい。また、自動調芯の際に軸受3と接触しつつ傾動する支持平面2a〜2dおよび支持面2mには耐摩耗性が要求されるので、平板状部材2e〜2iを金属で構成する場合には、硬度の高く耐摩耗性に優れたセラミックスやサーメットなどの皮膜を支持平面2a〜2dおよび支持面2mに形成しておくことが望ましい。   The flat members 2e to 2i are preferably made of a material having a corrosion resistance against a plating bath having a high chemical corrosion property, and a metal such as ceramics or stainless steel may be selected. Further, since the support planes 2a to 2d and the support surface 2m that are tilted while being in contact with the bearing 3 during automatic alignment are required to have wear resistance, when the flat members 2e to 2i are made of metal, It is desirable to form a film of ceramics or cermet having high hardness and excellent wear resistance on the support planes 2a to 2d and the support surface 2m.

さらに、平板状部材2e〜2iの内面全体を支持平面2a〜2dまたは支持面2mとする必要はなく、後述する軸受3の凸状部3f・3kが接触する部分に支持平面2a〜2dまたは支持面2mを設けておけばよい。その点、本態様の支持部材2は、好ましい態様として、比較的密閉された空間である収納室2qからめっき浴を排出するため、当該収納室2qに連なるめっき浴の排出口を平板状部材2e〜2iに設けており、平板状部材2e〜2iの各々の内面(一面)の一部である中央部が支持平面2a〜2dおよび支持面2mとなっている。   Furthermore, it is not necessary that the entire inner surface of the flat plate members 2e to 2i be the support planes 2a to 2d or the support surface 2m, and the support planes 2a to 2d or the support are in contact with the convex portions 3f and 3k of the bearing 3 to be described later. A surface 2m may be provided. In this respect, the support member 2 of the present embodiment, as a preferred embodiment, discharges the plating bath from the storage chamber 2q, which is a relatively sealed space, so that the discharge port of the plating bath connected to the storage chamber 2q is a flat plate member 2e. The central part which is a part of each inner surface (one surface) of the flat members 2e to 2i is the support planes 2a to 2d and the support surface 2m.

具体的には、本態様の支持部材2におけるめっき浴の排出口は、図1および図4に示すように、四隅を切り欠かれ略十の字形状をなす各平板状部材2e〜2iの、四隅の開口2o・2pとして構成してある。そして、軸受装置1をめっき浴に浸漬した際に収納室2qに浸入しためっき浴は、軸受装置1の引き上げ時に、この開口2o・2pから排出される。かかる構成の支持部材2によれば、収納室2q、特にその支持平面2a〜2dと軸受3の外周面との間の間隙に浸入しためっき浴は、メンテナンス等のために軸受装置1を引上げた際、開口2o・2pを通じて容易に外部に流出する。したがって、軸受装置1の引上げ後に、上記間隙に残留し冷却固化しためっき浴が、収縮変形する支持部材2で軸受3に押し付けられ、軸受3を破損することを効果的に防止することが可能となる。   Specifically, as shown in FIG. 1 and FIG. 4, the discharge port of the plating bath in the support member 2 of the present embodiment is formed by cutting the four corners of the flat plate members 2 e to 2 i, which are substantially ten-shaped. It is configured as four corner openings 2o and 2p. The plating bath that has entered the storage chamber 2q when the bearing device 1 is immersed in the plating bath is discharged from the openings 2o and 2p when the bearing device 1 is pulled up. According to the support member 2 having such a configuration, the plating bath that has entered the storage chamber 2q, particularly the gap between the support planes 2a to 2d thereof and the outer peripheral surface of the bearing 3, lifts the bearing device 1 for maintenance or the like. At this time, it easily flows out through the openings 2o and 2p. Therefore, after the bearing device 1 is pulled up, the plating bath remaining in the gap and cooled and solidified can be effectively prevented from being pressed against the bearing 3 by the support member 2 that contracts and deforms, and the bearing 3 is damaged. Become.

なお、図1において、符号2Lは、軸受3の凸状部3fの頂部3gに位置に対応し、平板状部材2f・2hのほぼ中央部に形成された貫通孔状のめっき浴の排出口である。かかる排出口2j・2Lの作用効果については、下記軸受3の説明の欄で詳細に説明する。   In FIG. 1, reference numeral 2 </ b> L corresponds to the position of the top portion 3 g of the convex portion 3 f of the bearing 3, and is a through-hole-shaped plating bath outlet formed at substantially the center of the flat plate-like members 2 f and 2 h. is there. The operational effects of the discharge ports 2j and 2L will be described in detail in the description of the bearing 3 below.

本態様の軸受装置1において、めっき浴の排出口は上記のとおり平板状部材2e〜2iの四隅を切り欠き形成しているが、当該排出口は収納室2qに連なっていればよく、四隅の排出口を貫通孔状に構成してもよい。また、収納室2qから円滑にめっき浴を排出するという観点から、支持平面2a〜2dまたはめっき浴排出口2o・2p・2j・2Lの表面にめっき浴が付着しがたいことが望ましく、めっき浴との濡れ性の低いセラミックスやサーメットなどの皮膜をこれらに形成しておくことが望ましい。さらに、同様な観点から、上方の平板状部材2eの中央部に貫通孔状の開口2jを設け、めっき浴が収納室2qから円滑に排出されるように支持部材2を構成することが望ましい。   In the bearing device 1 of this embodiment, the discharge port of the plating bath is formed by cutting out the four corners of the flat plate members 2e to 2i as described above, but the discharge port may be continuous with the storage chamber 2q. You may comprise a discharge port in the shape of a through-hole. Further, from the viewpoint of smoothly discharging the plating bath from the storage chamber 2q, it is desirable that the plating bath does not easily adhere to the surfaces of the support planes 2a to 2d or the plating bath discharge ports 2o, 2p, 2j, and 2L. It is desirable to form a film such as a ceramic or cermet having low wettability with these. Furthermore, from the same viewpoint, it is desirable to provide the through-hole-like opening 2j at the center of the upper flat plate-like member 2e, and to configure the support member 2 so that the plating bath is smoothly discharged from the storage chamber 2q.

[軸受]
次に、軸受3について説明する。第1態様の軸受3は、図1〜3に示すように、外観が略円柱形状をなすサポートロールの軸部27aの外周面が摺動する、X軸方向に延びる摺動面3aと、摺動面3aが延びる方向と同一方向であるX軸方向に延設されているとともに支持部材2の四の支持平面2a〜2dに各々対面する四の面(以下、理解しやすいように外面と言う。)3b〜3eを有している。そして、その四の外面3b〜3eには、図2に示すように、各々が対面する支持平面2a〜2dと頂部3gが接する凸状部3fが形成されている。
[bearing]
Next, the bearing 3 will be described. As shown in FIGS. 1 to 3, the bearing 3 of the first aspect includes a sliding surface 3 a extending in the X-axis direction, on which the outer peripheral surface of the shaft portion 27 a of the support roll having a substantially cylindrical shape slides, and a sliding surface. Four surfaces that extend in the X-axis direction, which is the same direction as the moving surface 3a extends, and respectively face the four support planes 2a to 2d of the support member 2 (hereinafter referred to as the outer surface for easy understanding). .) 3b-3e. As shown in FIG. 2, the four outer surfaces 3b to 3e are formed with convex portions 3f in contact with the support planes 2a to 2d that face each other and the top portion 3g.

かかる構成の軸受3が組み込まれた軸受装置1によれば、図3において矢印Eで示すように左回りに回転するサポートロールの軸部27aの外周面は、軸受3の摺動面3aに接しつつ摺動する。なお、図3に示すようにサポートロールには矢印Dで示す負荷が作用しているため、軸受3は、その摺動面3aの左方上部で軸部27aを支持しており、その外面3b〜3eのうち少なくとも上方の外面3bおよび左方の外面3cの2面に設けられた凸状部3fの頂部3gが、これらと対面する支持部材2の支持平面2a・2bと接する状態となっている。   According to the bearing device 1 incorporating the bearing 3 having such a configuration, the outer peripheral surface of the shaft portion 27a of the support roll that rotates counterclockwise as shown by an arrow E in FIG. 3 is in contact with the sliding surface 3a of the bearing 3. Slide while. As shown in FIG. 3, since the load indicated by the arrow D acts on the support roll, the bearing 3 supports the shaft portion 27a at the upper left portion of the sliding surface 3a, and the outer surface 3b. 3e, the top 3g of the convex portion 3f provided on at least the upper outer surface 3b and the left outer surface 3c is in contact with the support planes 2a and 2b of the support member 2 facing them. Yes.

そして、高温のめっき浴による加熱、鋼板から負荷される荷重により軸部27aが変形してその軸芯が偏芯すると、軸受3には、軸部27aの偏芯量に応じ、Y軸およびZ軸回りの回転モーメントが作用する。ここで、支持部材2の支持平面2a・2bには、軸受3の外面3b・3cに各々設けられた凸状部3fの頂部3gが接している。しかして、Y軸回り方向において、軸受3は、Y軸回りの回転モーメントのために、外面3bに設けられた凸状部3fの頂部3gを支点として、外面3bが支持平面2aに対し偏芯量に応じ傾動する。また、Z軸回り方向において、軸受3は、Z軸回りの回転モーメントのために、外面3cに設けられた凸状部3fの頂部3gを支点として、外面3cが支持平面2bに対し偏芯量に応じ傾動する。このように、軸部27aの偏芯にともない軸受3に作用する回転モーメントのうち、Y軸回りの成分を外面3bに設けられた凸状部3fの表面3bで、Z軸回りの成分を外面3cに設けられた凸状部3fの表面3cで、2面で分離して受け、それぞれの方向に傾動せしめることにより、軸受3の傾動による支持部材2の支持平面2a・2bの磨耗を抑制しつつ軸部27aの偏芯量に応じた軸受3の自動調芯が可能となる。さらに、外面3bと外面3cの各々に形成された凸状部3fの頂部3gは、互いに直交する支持平面2aおよび2bと接しているので、軸部27aの外周面と軸受3の摺動面3aとの摺動時の摩擦抵抗により軸芯I回りに軸受3が連れ回りすることもない。   When the shaft portion 27a is deformed by heating with a high-temperature plating bath or a load applied from the steel sheet and the shaft core is eccentric, the bearing 3 has a Y-axis and a Z-axis according to the eccentric amount of the shaft portion 27a. A rotational moment around the axis acts. Here, the top surfaces 3 g of the convex portions 3 f provided on the outer surfaces 3 b and 3 c of the bearing 3 are in contact with the support planes 2 a and 2 b of the support member 2. Thus, in the direction around the Y axis, the bearing 3 is eccentric with respect to the support plane 2a with the top 3g of the convex portion 3f provided on the outer surface 3b as a fulcrum because of the rotational moment around the Y axis. Tilt according to the amount. Further, in the direction around the Z axis, the bearing 3 has an eccentric amount with respect to the support plane 2b with the top 3g of the convex portion 3f provided on the outer surface 3c as a fulcrum because of the rotational moment around the Z axis. Tilt according to. Thus, of the rotational moment acting on the bearing 3 due to the eccentricity of the shaft portion 27a, the component around the Y-axis is the surface 3b of the convex portion 3f provided on the outer surface 3b, and the component around the Z-axis is the outer surface. The surface 3c of the convex portion 3f provided on 3c is separated and received by two surfaces and tilted in the respective directions, thereby suppressing the wear of the support planes 2a and 2b of the support member 2 due to the tilt of the bearing 3. However, automatic alignment of the bearing 3 according to the amount of eccentricity of the shaft portion 27a is possible. Furthermore, since the top 3g of the convex portion 3f formed on each of the outer surface 3b and the outer surface 3c is in contact with the support planes 2a and 2b orthogonal to each other, the outer peripheral surface of the shaft portion 27a and the sliding surface 3a of the bearing 3 are provided. The bearing 3 does not rotate around the axis I due to the frictional resistance when sliding.

次いで、まず、軸受3を正面から見た態様について、図3を参照して説明する。図に示すように、本態様の軸受3は、大略矩形状(本態様の場合には正四角形状)の断面形状を有し、上方の外面3bが支持平面2a、左方の外面3cが支持平面2b、下方の外面3dが支持平面2c、右方の外面3eが支持平面2dと対面するよう、支持部材2の収納室2qに挿着されている。この軸受3の中央部には、軸部27aよりも大きな内径の略円柱形状の中空部3sが形成されており、中空部3sの内周面が摺動面3aとして機能している。なお、上記説明した第1態様の軸受の作用効果からすると、軸受3は、少なくとも直交する二の外面3b・3cを備えていれば足りる。しかしながら、操業条件などの変化により、サポートロールに作用する負荷の方向が変動し、図3に示す矢印Dと反対方向に負荷が作用する可能性がある場合には、この負荷により反対方向に移動するサポートロールを支持するため当該外面3b・3cと相対する外面3d・3eを備えておくことが好ましい。   Next, an aspect of the bearing 3 as viewed from the front will be described with reference to FIG. As shown in the figure, the bearing 3 of this embodiment has a substantially rectangular cross section (in the case of this embodiment, a regular square shape), and the upper outer surface 3b is supported by the support plane 2a and the left outer surface 3c is supported. The flat surface 2b, the lower outer surface 3d is inserted into the storage chamber 2q of the support member 2 such that the lower outer surface 3d faces the support flat surface 2c and the right outer surface 3e faces the support flat surface 2d. A substantially cylindrical hollow portion 3s having an inner diameter larger than that of the shaft portion 27a is formed at the center of the bearing 3, and the inner peripheral surface of the hollow portion 3s functions as the sliding surface 3a. In addition, from the effect of the bearing of the first aspect described above, it is sufficient that the bearing 3 includes at least two outer surfaces 3b and 3c that are orthogonal to each other. However, if the direction of the load acting on the support roll fluctuates due to changes in operating conditions and the load may act in the direction opposite to the arrow D shown in FIG. 3, the load moves in the opposite direction. In order to support the supporting roll, it is preferable to have outer surfaces 3d and 3e facing the outer surfaces 3b and 3c.

軸受3の各外面3b〜3eは、支持平面2a〜2dに対し全てが密着するよう構成してもよいが、図示するように、軸受3が収納室2qに挿着されたとき、各々の間に、Z軸方向の隙間aまたはY軸方向の隙間bが形成されるように構成することが望ましい。このように隙間a・bを設けることで以下の利点が生じる。まず、第1に、収納室2qへの軸受3の挿着が容易になる。第2に、相対する二の外面、すなわち外面3bと3dおよび外面3cと3eの各々の凸状部3fを同一形状とし、その頂部3gをX軸方向において同一位置に配置する必要がなく、軸受3を低コストで形成することが可能となり、さらに軸部27aの偏芯の態様に応じ凸状部3fを各々異なる形状とすることも可能となる。なお、外面3b〜3eが支持平面2a〜2dと全て密着させる場合、軸受3が自動調芯機能を発揮するためには、相対する外面3bと3dおよび外面3cと3eが軸芯を介し対称となるよう、各々の凸状部3fを同一形状とし、その頂部3gをX軸方向において同一位置に配置する必要がある。第3に、間隙a・bを設けることにより、自動調芯のため外面3b・3cが支持平面2a・2bと傾動し、その結果磨耗により寿命を迎えた場合でも、支持部材2から軸受3を一旦取り外し、X軸周りに180°、軸受3を回転させ収納室2qに再挿着すれば、未使用の外面3d・3eにより自動調芯を機能せしめることができ、1個の軸受3の長寿命化を図ることができる。   The outer surfaces 3b to 3e of the bearing 3 may be configured so that all of the outer surfaces 3b to 3e are in close contact with the support planes 2a to 2d. However, when the bearing 3 is inserted into the storage chamber 2q, as shown in the drawing, In addition, it is desirable that the gap a in the Z-axis direction or the gap b in the Y-axis direction be formed. By providing the gaps a and b in this way, the following advantages arise. First, it becomes easy to insert the bearing 3 into the storage chamber 2q. Secondly, the convex portions 3f of the two opposite outer surfaces, that is, the outer surfaces 3b and 3d and the outer surfaces 3c and 3e, have the same shape, and there is no need to arrange the top portion 3g at the same position in the X-axis direction. 3 can be formed at low cost, and the convex portions 3f can be formed in different shapes according to the eccentricity of the shaft portion 27a. When the outer surfaces 3b to 3e are all in close contact with the support planes 2a to 2d, the opposing outer surfaces 3b and 3d and the outer surfaces 3c and 3e are symmetrical with respect to the axis so that the bearing 3 exhibits an automatic alignment function. Therefore, it is necessary to make each convex part 3f have the same shape and to arrange the top part 3g at the same position in the X-axis direction. Thirdly, by providing the gaps a and b, the outer surfaces 3b and 3c are tilted with the support planes 2a and 2b for automatic alignment, and as a result, the bearing 3 is moved from the support member 2 even when the life is reached due to wear. Once it is removed, the bearing 3 is rotated 180 ° around the X axis and reinserted into the storage chamber 2q. The self-alignment can be made to function by the unused outer surfaces 3d and 3e. Life can be extended.

次いで、第4に、外面3b〜3eと支持平面2a〜2dとの間に浸入しためっき浴は隙間a・bを通じ排出されるので、軸受装置1の引上げ時における軸受3の破損を防止できる。なお、外面3b〜3eの各々の凸状部3fの頂部3gは、支持平面2a〜2dと接するよう構成されているため、頂部3gと支持平面2a〜2dの接触部に浸入しためっき浴は排出され難い可能性がある。この接触部に浸入しためっき浴を排出するため、上記支持部材2の項で説明したように、頂部3gに位置に対応し、平板状部材2f・2hのほぼ中央部に形成された貫通孔状のめっき浴の排出口2j〜2Lが設けられている。   Next, fourthly, since the plating bath that has entered between the outer surfaces 3b to 3e and the support planes 2a to 2d is discharged through the gaps a and b, the bearing 3 can be prevented from being damaged when the bearing device 1 is pulled up. In addition, since the top part 3g of each convex-shaped part 3f of the outer surfaces 3b-3e is comprised so that the support planes 2a-2d may be contacted, the plating bath which permeated the contact part of the top part 3g and the support planes 2a-2d is discharged | emitted. It may be difficult. In order to discharge the plating bath that has entered the contact portion, as described in the section of the support member 2, a through-hole shape corresponding to the position of the top portion 3g and formed at substantially the center of the flat plate-like members 2f and 2h. The plating bath discharge ports 2j to 2L are provided.

さらに、図3に示すように、軸受3には、隣接する外面3b〜3eの間に、各々を接続する接合面3o〜3rを設けることが好ましい。具体的には、軸芯Iに直交するY−Z平面に沿う断面視において、外面3bと外面3cとはその端部において接続面3oで接続され、外面3cと外面3dとは接続面3pで接続されおり、外面3dと外面3e、外面3eと外面3bについても同様である。ここで、隣接する外面3b〜3eが直接接続していても、軸受3は自動調芯機能を発揮することは可能であるが、外面3b〜3eが直接接続すると接続部に鋭角な角部が生じる。この角部には、軸受装置1のめっき浴への浸漬および引き上げ時の急激な加熱・冷却によりクラック等が生じ、軸受3の破損の原因となりやすい。一方で、本態様の軸受3のように隣接する外面3の間に接続面3o〜3rを設け鋭角な角部を消滅せしめることにより、軸受3の破損を抑制することができる。また、隣接する外面3b〜3eの間に接続面3o〜3rを設けることにより、軸受3と支持部材2との間に浸入しためっき浴を効果的に排出することも可能となる。なお、接続面の形態は特段限定されず、摺動面3aが延びる方向であるX軸に直交する断面視、すなわちY−Z平面において、直線状のC面、軸芯I側に引っ込んだ凹面、複数の平面や曲面で構成された多角面その他各種の形態とすることができる。しかしながら、肉厚の急変部を減じ、加熱・冷却により発生する熱応力を低減するため、図3に示すように、接続面3o〜3rの形状は、外側に膨出する円弧状とすることが望ましい。   Furthermore, as shown in FIG. 3, it is preferable that the bearing 3 is provided with joint surfaces 3o to 3r that connect each other between adjacent outer surfaces 3b to 3e. Specifically, in a cross-sectional view along the YZ plane orthogonal to the axis I, the outer surface 3b and the outer surface 3c are connected to each other at the connection surface 3o at the end portion, and the outer surface 3c and the outer surface 3d are connected to each other at the connection surface 3p. The same applies to the outer surface 3d and the outer surface 3e, and the outer surface 3e and the outer surface 3b. Here, even if the adjacent outer surfaces 3b to 3e are directly connected, the bearing 3 can exhibit the self-aligning function. However, when the outer surfaces 3b to 3e are directly connected, a sharp corner is formed in the connecting portion. Arise. Cracks and the like are likely to be caused at the corners due to the rapid heating and cooling when the bearing device 1 is immersed in the plating bath and when the bearing device 1 is pulled up. On the other hand, the damage of the bearing 3 can be suppressed by providing the connection surfaces 3o to 3r between the adjacent outer surfaces 3 as in the bearing 3 of this embodiment to eliminate the sharp corners. Further, by providing the connection surfaces 3o to 3r between the adjacent outer surfaces 3b to 3e, the plating bath that has entered between the bearing 3 and the support member 2 can be effectively discharged. The form of the connection surface is not particularly limited, and is a cross-sectional view orthogonal to the X axis, which is the direction in which the sliding surface 3a extends, that is, a straight C surface in the YZ plane, a concave surface retracted to the axis I side. In addition, a polygonal surface composed of a plurality of flat surfaces or curved surfaces and other various forms can be used. However, in order to reduce the sudden change portion of the thickness and reduce the thermal stress generated by heating / cooling, the shape of the connection surfaces 3o to 3r may be an arc shape bulging outward as shown in FIG. desirable.

次に、軸受3を側面から見た態様について、図2を参照して説明する。図2に示すように、本態様の軸受3は、X軸方向において、中空部3sの左端の開口から軸部27aが挿入される、X軸に沿う断面視が略コの字状である。この軸受3の各々の外面3b〜3eに形成された凸状部3fのX軸に沿った断面視における外縁形状は、外側に凸をなす円弧状である。本態様の軸受3において、外縁が円弧状をなす凸状部3fは、当該外縁が外面3b〜3eの左端(一端)から右端(他端)を結ぶように両端に渡り形成されており、X軸方向においてその中央に頂部3gは位置している。つまり、本態様の軸受3では、凸状部3fの表面が、実質的に軸受3の外面3b〜3eとなっている。なお、各凸状部3fの外縁形状は同一であるが、上記説明したように軸受3と支持部材2との間には隙間a・bが設けてあるので、完全に同一とする必要はなく、異なる外縁形状としてもよい。   Next, the aspect which looked at the bearing 3 from the side surface is demonstrated with reference to FIG. As shown in FIG. 2, the bearing 3 of this aspect has a substantially U-shaped cross-sectional view along the X-axis in which the shaft portion 27 a is inserted from the opening at the left end of the hollow portion 3 s in the X-axis direction. The outer edge shape of the convex portion 3f formed on each of the outer surfaces 3b to 3e of the bearing 3 in a sectional view along the X-axis is an arc shape protruding outward. In the bearing 3 of this aspect, the convex part 3f whose outer edge forms an arc shape is formed across both ends so that the outer edge connects the left end (one end) to the right end (other end) of the outer surfaces 3b to 3e. The top 3g is located in the center in the axial direction. That is, in the bearing 3 of this aspect, the surface of the convex portion 3 f is substantially the outer surfaces 3 b to 3 e of the bearing 3. In addition, although the outer edge shape of each convex-shaped part 3f is the same, since the clearance gap a * b is provided between the bearing 3 and the supporting member 2 as demonstrated above, it is not necessary to make it completely the same. Different outer edge shapes may be used.

上記軸受3において、上記凸状部3fのX軸に沿う断面形状は、Z軸上およびY軸上のいずれの箇所でも図2で示す形状と同一である。すなわち、凸状部3fは、全体として略蒲鉾形状をなしており、凸状部3fの表面(外面3b〜3eでもある。)は外側に凸の一つの曲面となっている。このように、凸状部3fを略蒲鉾形状とすることにより、支持部材2の支持平面2a〜2dとの接触面積が増加し、調芯動作の際の支持平面2a〜2dとの摩擦による凸状部3fの表面の磨耗が抑制され、軸受3を長寿命化できるので好ましい。   In the bearing 3, the cross-sectional shape along the X axis of the convex portion 3 f is the same as the shape shown in FIG. 2 at any location on the Z axis and the Y axis. That is, the convex portion 3f has a substantially bowl shape as a whole, and the surface (also the outer surfaces 3b to 3e) of the convex portion 3f is a single curved surface protruding outward. Thus, by making the convex part 3f into a substantially bowl shape, the contact area with the support planes 2a to 2d of the support member 2 increases, and the convexity due to friction with the support planes 2a to 2d during the alignment operation. Since the wear of the surface of the shape portion 3f is suppressed and the life of the bearing 3 can be extended, it is preferable.

ここで、第1態様の軸受3と凸状部の形態が異なる軸受について、図6および図7を参照しつつ説明する。なお、凸状部の形態のみが異なる第1態様の軸受3の第1〜第5変形例に係わる軸受4〜8が組み込まれた軸受装置1を示す図6・7において、支持部材2や軸受の摺動面3aその他第1態様の軸受3と同一の構成要素については同一符号を付しており、詳細な説明を省略する(図8〜10を参照しつつ以下説明する第2〜第5態様の軸受についても同様である。)。   Here, the bearing in which the shape of the convex part differs from the bearing 3 of the first aspect will be described with reference to FIGS. 6 and 7. 6 and 7 showing the bearing device 1 in which the bearings 4 to 8 according to the first to fifth modifications of the bearing 3 of the first mode differing only in the shape of the convex portion are shown in FIGS. The other constituent elements identical to those of the bearing 3 of the first mode are denoted by the same reference numerals, and detailed description thereof is omitted (second to fifth described below with reference to FIGS. 8 to 10). The same applies to the bearing of the embodiment.)

第1変形例に係わる軸受4が組み込まれた軸受装置1の正面図である図6(a)に示す。本態様の軸受4は、X軸方向に延びるとともに支持平面2a〜2dに各々対面する平面状の四の外面4b〜4eと、各外面4b〜4eの中央部に突起するよう形成された半球状の凸状部4fとを有する点で第1態様の軸受3と相違している。かかる軸受4によれば、半球状の各凸状部4fの頂部3gが、支持部材2の支持平面2a〜2dと接するよう配置されているので、軸部27aの偏芯に対応し頂部3gを支点として軸受4は傾動し、軸芯I回りの軸受4の連れ回りを防止しつつ自動調芯機能を奏することとなる。なお、軸受4は、その凸状部4fを半球状としており、凸状部4fの表面と支持平面2a〜2dとの接触面積が少なく、第1態様の軸受3に比べ耐摩耗性の点では幾分不利であるが、その外面4b〜4eと支持平面2a〜2dとの間の間隙が広く、めっき浴の排出性の面からは有利である。   FIG. 6A is a front view of the bearing device 1 in which the bearing 4 according to the first modification is incorporated. The bearing 4 of this aspect is formed in a hemispherical shape that extends in the X-axis direction and faces the support planes 2a to 2d and protrudes from the center of each of the outer surfaces 4b to 4e. It differs from the bearing 3 of a 1st aspect by the point which has 4f of convex parts. According to the bearing 4, since the top 3g of each hemispherical convex portion 4f is arranged so as to contact the support planes 2a to 2d of the support member 2, the top 3g corresponding to the eccentricity of the shaft portion 27a. The bearing 4 tilts as a fulcrum and performs an automatic alignment function while preventing rotation of the bearing 4 around the axis I. The bearing 4 has a hemispherical convex portion 4f, has a small contact area between the surface of the convex portion 4f and the support planes 2a to 2d, and is more wear resistant than the bearing 3 of the first mode. Although somewhat disadvantageous, the gap between the outer surfaces 4b to 4e and the support planes 2a to 2d is wide, which is advantageous from the viewpoint of the discharge performance of the plating bath.

第2変形例に係わる軸受5が組み込まれた軸受装置1の側断面図を図6(b)に示す。なお、図6(b)において、軸受5の右端部は側面図となっている。図に示すように、本態様の軸受5は、X軸方向に延設されるとともに支持部材2の支持平面2a〜2d(支持平面2b・2dは不図示)に対面する平面状の四の外面5b〜5e(外面5cは不図示)と、各外面5b〜5eにおいてZ軸またはY軸に沿い突起するように形成された一条の凸状部5fとを有する点で、第1態様の軸受3と相違している。かかる軸受5においても、軸芯I回りの軸受5の連れ回りを防止しつつ自動調芯機能を発揮することができ、さらに上記第1変形例に係わる軸受4に比べ支持平面2a〜2dとの接触長が長いので耐磨耗性を向上することができる。なお、軸受5の外面5eに形成された凸状部5sのように、種々の形態で生じる可能性のある軸部27aの偏芯に対応できるようX軸方向において他の凸状部5fと異なる位置に凸状部を設けてもよい。   FIG. 6B shows a side sectional view of the bearing device 1 in which the bearing 5 according to the second modification is incorporated. In FIG. 6B, the right end portion of the bearing 5 is a side view. As shown in the figure, the bearing 5 of this embodiment is extended in the X-axis direction and has four planar outer surfaces facing the support planes 2a to 2d of the support member 2 (support planes 2b and 2d are not shown). 5b-5e (outer surface 5c is not shown) and a single convex portion 5f formed on each outer surface 5b-5e so as to project along the Z-axis or Y-axis. Is different. Such a bearing 5 can also exhibit an automatic alignment function while preventing rotation of the bearing 5 around the shaft core I, and further, with the support planes 2a to 2d as compared with the bearing 4 according to the first modification. Since the contact length is long, the wear resistance can be improved. It should be noted that, unlike the convex portion 5s formed on the outer surface 5e of the bearing 5, it is different from the other convex portions 5f in the X-axis direction so as to cope with the eccentricity of the shaft portion 27a which may occur in various forms. A convex portion may be provided at the position.

第3変形例に係わる軸受6が組み込まれた軸受装置1の側断面図を図7(a)に示す。本態様の軸受6は、X軸に沿う断面形状が外側に凸の略三角形状の凸状部6fを有している点で、第1態様の軸受3と相違している。この凸状部6fのX軸に沿う断面形状は、上記第1態様の凸状部3fと同様に、Z軸上およびY軸上のいずれの箇所でも図7(a)で示す形状と同一であり、凸状部6fは、全体として略山形状をなしている。そして、支持部材2の支持平面2a〜2d(支持平面2b・2dは不図示)と対面する凸状部6fの2面が外面6b〜6eであり(外面6c・6eは不図示)、凸状部6fの2面が交わる交点が頂部3gとなっている。なお、頂部3gおよび当該頂部3gが接する支持平面2a〜2dの損傷を抑制するため、凸状部6fの2面の交点は、丸めておくことが望ましい。かかる軸受6においても、軸芯I回りの軸受5の連れ回りを防止しつつ自動調芯機能を発揮することができる。   FIG. 7A shows a side sectional view of the bearing device 1 in which the bearing 6 according to the third modification is incorporated. The bearing 6 of this embodiment is different from the bearing 3 of the first embodiment in that the cross-sectional shape along the X-axis has a substantially triangular convex portion 6f that protrudes outward. The cross-sectional shape along the X axis of the convex portion 6f is the same as the shape shown in FIG. 7A at any location on the Z axis and the Y axis, like the convex portion 3f of the first aspect. Yes, the convex portion 6f has a substantially mountain shape as a whole. The two surfaces of the convex portion 6f facing the support planes 2a to 2d (support planes 2b and 2d are not shown) of the support member 2 are the outer surfaces 6b to 6e (the outer surfaces 6c and 6e are not shown). The intersection of the two surfaces of the portion 6f is the top 3g. In addition, in order to suppress damage to the top part 3g and the support planes 2a to 2d with which the top part 3g contacts, it is desirable to round the intersection of the two surfaces of the convex part 6f. Such a bearing 6 can also exhibit an automatic alignment function while preventing rotation of the bearing 5 around the axis I.

第4変形例に係わる軸受7が組み込まれた軸受装置1の側断面図を図7(b)に示す。本態様の軸受7は、X軸に沿い延設されるとともに支持部材2の支持平面2a〜2d(支持平面2b・2dは不図示)に対面する平面状の四の外面7b〜7e(外面7c・7eは不図示)と、X軸方向において外面7b〜7eの一部、具体的には外面7b〜7eの中央部に形成されたX軸に沿う断面形状が外側に凸の円弧状をなす凸状部7fを有する点で、第1態様の軸受3と相違している。なお、凸状部7fの断面形状は、Z軸上およびY軸上のいずれの箇所でも図7(b)で示す形状と同一であり、凸状部7fは、全体として略蒲鉾形状をなしている。かかる軸受7においても、軸芯I回りの軸受7の連れ回りを防止しつつ自動調芯機能を発揮することができる。   FIG. 7B shows a side sectional view of the bearing device 1 in which the bearing 7 according to the fourth modification is incorporated. The bearing 7 of this embodiment is extended along the X axis and faces four flat outer surfaces 7b to 7e (outer surface 7c) facing the support planes 2a to 2d (support planes 2b and 2d are not shown) of the support member 2. 7e is not shown), and a part of the outer surfaces 7b to 7e in the X-axis direction, specifically, a cross-sectional shape along the X-axis formed at the center of the outer surfaces 7b to 7e forms an outwardly convex arc shape The bearing 3 is different from the bearing 3 of the first aspect in having a convex portion 7f. The cross-sectional shape of the convex portion 7f is the same as the shape shown in FIG. 7B at any location on the Z-axis and the Y-axis, and the convex portion 7f has a substantially bowl shape as a whole. Yes. Such a bearing 7 can also exhibit an automatic alignment function while preventing rotation of the bearing 7 around the axis I.

第5変形例に係わる軸受8が組み込まれた軸受装置1の側断面図を図7(c)に示す。本態様の軸受8は、基本的には、第1態様の軸受3と同一の構成であるが、その外面8b〜8e(外面8c・8eは不図示)に配置された凸状部8fの頂部3gが、X軸方向において軸受8の中心Fより距離cだけ左側(軸部27aが挿入される中空部3sの開口側)に偏位した位置に配置されている点で、軸受3と相違している。かかる軸受8によれば、軸芯I回りの軸受8の連れ回りを防止しつつ自動調芯機能を発揮することができるとともに、中空部3sへの軸部27aの挿入や軸部27aの変形により比較的損傷を受けやすい軸受8の左端部の厚みdを厚くでき、軸受8の長寿命化の面で有利である。   FIG. 7C shows a side sectional view of the bearing device 1 in which the bearing 8 according to the fifth modification is incorporated. The bearing 8 of this mode is basically the same configuration as the bearing 3 of the first mode, but the top of the convex portion 8f disposed on the outer surfaces 8b to 8e (outer surfaces 8c and 8e are not shown). 3g is different from the bearing 3 in that it is disposed at a position shifted to the left side (opening side of the hollow portion 3s into which the shaft portion 27a is inserted) by a distance c from the center F of the bearing 8 in the X-axis direction. ing. According to such a bearing 8, an automatic alignment function can be exhibited while preventing the bearing 8 around the shaft core I from being rotated, and the shaft portion 27 a is inserted into the hollow portion 3 s and the shaft portion 27 a is deformed. The thickness d of the left end portion of the bearing 8 that is relatively easily damaged can be increased, which is advantageous in terms of extending the life of the bearing 8.

次いで、好ましい態様である第1態様の軸受3において、軸受3と軸部27aとの間に介在する潤滑媒体であるめっき浴の循環に関する構成および軸部27aの偏芯にともない生じる可能性のある軸受3の破損を防止する構成ついて説明する。まず、前者であるが、本態様の軸受3には、稼動中にX軸方向へ移動するサポートロールに対し、その軸部27aの右端面を受けX軸方向の移動を規制するため、スラスト受けとしての軸受端部3nが右端に配置されている。一方で、このように軸受端部3nを設け軸受3の右端を閉塞すると、潤滑媒体であるめっき浴が軸受3と軸部27aの摺動面に円滑に供給されず、またドロスなどの異物が軸受3の内部に滞留する可能性がある。このため、中空部3sの右端から軸受端部3nに至るまでの領域に配置された、中空部3sと比べて内径の大きな湯溜まり部3Lと、X軸方向に沿い軸受端部3nを貫通するように形成された貫通孔3mとを軸受3に設けておくことが好ましい。この構成により、軸受3に軸部27aが挿入された場合であっても、めっき浴は、貫通孔3mを通じて湯溜まり部3Lと外部の間を循環し、ドロスを円滑に排除しつつ潤滑媒体として機能することとなる。また、軸受端部3nを設け軸受3の右端を閉塞すると、軸受装置1を引上げた際にその内部にめっき浴が残留し、残留しためっき浴が冷却凝固する過程で軸受3を破損せしめる可能性がある。このため、図に示すように、貫通孔3mは、その下面を、Z軸方向において摺動面3a(中空部3sの内面)の下面より下方に位置するよう配置し、軸受3の内部に流入しためっき浴が貫通孔3mを通じて外部に排出されるよう構成することが望ましい。   Next, in the bearing 3 according to the first aspect which is a preferred aspect, there is a possibility that it may occur due to the configuration relating to the circulation of the plating bath which is a lubricating medium interposed between the bearing 3 and the shaft portion 27a and the eccentricity of the shaft portion 27a. A configuration for preventing the bearing 3 from being damaged will be described. First, as for the former, the bearing 3 of this aspect is provided with a thrust receiver for receiving a right end surface of the shaft portion 27a of the support roll that moves in the X-axis direction during operation and restricts movement in the X-axis direction. The bearing end 3n is arranged at the right end. On the other hand, when the bearing end 3n is provided in this manner and the right end of the bearing 3 is closed, the plating bath as a lubricating medium is not smoothly supplied to the sliding surfaces of the bearing 3 and the shaft 27a, and foreign matter such as dross is not generated. There is a possibility of staying in the bearing 3. For this reason, the hot water pool portion 3L having a larger inner diameter than the hollow portion 3s and disposed in the region from the right end of the hollow portion 3s to the bearing end portion 3n and the bearing end portion 3n along the X-axis direction are penetrated. It is preferable to provide the bearing 3 with the through hole 3m formed as described above. With this configuration, even when the shaft portion 27a is inserted into the bearing 3, the plating bath circulates between the hot water pool portion 3L and the outside through the through hole 3m, and smoothly removes dross as a lubricating medium. Will function. Further, if the bearing end 3n is provided and the right end of the bearing 3 is closed, when the bearing device 1 is pulled up, a plating bath remains inside the bearing device 1, and the bearing 3 may be damaged in the process of cooling and solidifying the remaining plating bath. There is. For this reason, as shown in the figure, the through hole 3m is arranged such that its lower surface is located below the lower surface of the sliding surface 3a (the inner surface of the hollow portion 3s) in the Z-axis direction and flows into the bearing 3. It is desirable that the plated bath is discharged through the through hole 3m.

さらに、上記のように軸受3の右端に軸受端部3nを配置する場合には、軸受端部3nが対面する支持部材2の平板状部材2iの支持面2mに、頂部が接する凸状部3kを軸受端部3nに設けることが好ましい。これにより、軸部27aの偏芯に対する軸受3の調芯がより円滑に実施される。   Further, when the bearing end 3n is arranged at the right end of the bearing 3 as described above, the convex portion 3k whose top is in contact with the support surface 2m of the flat plate member 2i of the support member 2 that the bearing end 3n faces. Is preferably provided at the bearing end 3n. Thereby, the alignment of the bearing 3 with respect to the eccentricity of the shaft portion 27a is performed more smoothly.

次に、軸部27aの偏芯にともない生じる可能性のある軸受3の破損を防止する構成について説明する。図2に示す軸受3のように、X軸方向において、摺動面3aの左端(一端)または右端(他端)に存する角部、すなわち中空部3sの開口端の角部には、R面3jを設けておくことが好ましい。これにより、偏芯時の変形により傾いた軸部27aの外周面が、中空部3sの開口端の角部に押し付けられ、その角部を破損させることを防止することができる。また、自動調芯時に矢印C方向に傾動する軸受3においても、支持部材2の支持平面2a〜2dとの衝突を防止するため、X軸方向において、軸受3の外面の3b〜3eの左端または右端の角部には、R面3h・3iを設けておくことが好ましい。上記R面3h〜3jは、C面であってもよい。   Next, the structure which prevents the damage of the bearing 3 which may arise with the eccentricity of the axial part 27a is demonstrated. As in the bearing 3 shown in FIG. 2, in the X-axis direction, the corner at the left end (one end) or the right end (the other end) of the sliding surface 3a, that is, the corner of the opening end of the hollow portion 3s, has an R surface. 3j is preferably provided. Thereby, it can prevent that the outer peripheral surface of the axial part 27a inclined by the deformation | transformation at the time of eccentricity is pressed on the corner | angular part of the opening end of 3 s of hollow parts, and damaging the corner | angular part. Also, in the bearing 3 that tilts in the direction of arrow C during automatic alignment, in order to prevent collision with the support planes 2a to 2d of the support member 2, the left end of the outer surface 3b to 3e of the bearing 3 in the X-axis direction or It is preferable to provide the R surfaces 3h and 3i at the corner at the right end. The R surfaces 3h to 3j may be C surfaces.

[材料構成]
めっき浴中に浸漬され軸部27aと摺動する軸受3には、めっき浴に対する耐蝕性と摺動に対する耐摩耗性が要求される。そのため、軸受3の少なくとも摺動面3aの部分は、セラミックスで構成することが望ましい。以下、軸受3をセラミックスで構成する場合について、その好適な例を説明する。なお、上記第1〜第5変形例に係わる軸受、下記第2〜第5態様の軸受をセラミックスで構成する場合でも同様である。
[Material composition]
The bearing 3 immersed in the plating bath and sliding with the shaft portion 27a is required to have corrosion resistance against the plating bath and wear resistance against sliding. Therefore, it is desirable that at least the sliding surface 3a portion of the bearing 3 is made of ceramics. Hereinafter, the suitable example is demonstrated about the case where the bearing 3 is comprised with ceramics. The same applies to the case where the bearings according to the first to fifth modifications and the bearings of the following second to fifth modes are made of ceramics.

セラミックスとしては、サポートロールが使用される雰囲気その他の操業条件の要請による耐熱衝撃性・耐蝕性などに応じ、アルミナ・ジルコニア・シリカその他の酸化物系セラミックス、硼化ジルコニウム・硼化チタン・硼化ボロンその他の硼化物系セラミックス、炭化シリコン・炭化ボロンその他の炭化物系セラミックス、またはカーボンなどの無機材料を利用してよい。そして、軸受3は、めっき浴への浸漬および取出しの際に急熱・急冷されるため、耐熱衝撃性に優れている必要がある。そのため、軸受3を構成するセラミックスとしては、熱伝導率が高い窒化珪素・窒化アルミその他の窒化物系セラミックスが好ましく、めっき浴である溶融金属に対し高い耐溶損性および耐磨耗性を有し、高温強度に優れた窒化珪素系セラミックスが特に好ましい。以下、軸受3を構成するに好適な窒化珪素セラミックスについては、特開2001−335368号に記載のものと同じでよい。   Ceramics include alumina, zirconia, silica and other oxide ceramics, zirconium boride, titanium boride, boride depending on the thermal shock resistance and corrosion resistance required by the operating conditions of the support roll and other operating conditions. Boron and other boride ceramics, silicon carbide / boron carbide and other carbide ceramics, or inorganic materials such as carbon may be used. The bearing 3 needs to be excellent in thermal shock resistance because it is rapidly heated / cooled when immersed in the plating bath and taken out. Therefore, as the ceramic constituting the bearing 3, silicon nitride / aluminum nitride and other nitride ceramics having high thermal conductivity are preferable and have high resistance to erosion and wear against molten metal as a plating bath. Silicon nitride ceramics excellent in high temperature strength are particularly preferable. Hereinafter, silicon nitride ceramics suitable for constituting the bearing 3 may be the same as those described in JP-A-2001-335368.

窒化珪素セラミックス中に存在するアルミニウム及び酸素はフォノン散乱源となり、熱伝導率を低減させる。窒化珪素セラミックスは、窒化珪素粒子とその周囲の粒界相とから構成され、アルミニウム及び酸素はこれらの相に含有される。アルミニウムは珪素に近いイオン半径を有するため、窒化珪素粒子内に容易に固溶する。アルミニウムの固溶により窒化珪素粒子自身の熱伝導率が低下し、窒化珪素セラミックスの熱伝導率は著しく低下する。従って、窒化珪素セラミックス中におけるアルミニウムの含有量はできるだけ少なくすることが望ましい。   Aluminum and oxygen present in the silicon nitride ceramic serve as a phonon scattering source and reduce the thermal conductivity. Silicon nitride ceramics are composed of silicon nitride particles and surrounding grain boundary phases, and aluminum and oxygen are contained in these phases. Since aluminum has an ionic radius close to that of silicon, it easily dissolves in silicon nitride particles. Due to the solid solution of aluminum, the thermal conductivity of the silicon nitride particles themselves is lowered, and the thermal conductivity of the silicon nitride ceramics is significantly lowered. Therefore, it is desirable to reduce the aluminum content in the silicon nitride ceramics as much as possible.

焼結助剤として添加する酸化物中の酸素の多くは粒界相に存在する。窒化珪素セラミックスの高熱伝導率化を達成するには、窒化珪素粒子に比べて熱伝導率が低い粒界相の量を低減することが必要である。焼結助剤の添加量の下限は、8.5%以上の相対密度を有する焼結体が得られる量である。焼結助剤の添加量をこの範囲内でできるだけ少なくすることにより、粒界相中の酸素量を低減させることが望ましい。   Most of the oxygen in the oxide added as a sintering aid is present in the grain boundary phase. In order to achieve high thermal conductivity of silicon nitride ceramics, it is necessary to reduce the amount of grain boundary phase having lower thermal conductivity than silicon nitride particles. The lower limit of the addition amount of the sintering aid is such an amount that a sintered body having a relative density of 8.5% or more can be obtained. It is desirable to reduce the amount of oxygen in the grain boundary phase by making the addition amount of the sintering aid as small as possible within this range.

酸素量の少ない窒化珪素粉末を原料とすると、粒界相中の酸素量が低減できるために粒界相の量自体を低減でき、焼結体の高熱伝導率化が達成されるが、焼結過程で生成するSiOの量の減少により難焼結性となる。ところが、他の酸化物より焼結性に優れたMgOを焼結助剤として用いると、焼結助剤の添加量を少なくして、緻密な焼結体を得ることができる。その結果、焼結体の熱伝導率は飛躍的に高くなる。 When silicon nitride powder with a small amount of oxygen is used as a raw material, the amount of oxygen in the grain boundary phase can be reduced, so the amount of grain boundary phase itself can be reduced, and high thermal conductivity of the sintered body can be achieved. It becomes difficult to sinter due to a decrease in the amount of SiO 2 produced in the process. However, when MgO, which is superior in sinterability to other oxides, is used as a sintering aid, the amount of sintering aid added can be reduced and a dense sintered body can be obtained. As a result, the thermal conductivity of the sintered body is dramatically increased.

マグネシウムとともに添加し得る焼結助剤としては、Y、La、Ce、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb,Lu等の周期律表第3族(後述)が挙げられる。なかでも、焼結温度及び圧力が高くなり過ぎないという点で、Y、La、Ce、Gd、Dy、Ybが好ましい。   Examples of sintering aids that can be added together with magnesium include Group 3 of the periodic table such as Y, La, Ce, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu (described later). Is mentioned. Among these, Y, La, Ce, Gd, Dy, and Yb are preferable in that the sintering temperature and pressure do not become too high.

軸受3を構成する窒化珪素セラミックスの常温における熱伝導率は50W/(m・K)以上であり、より好ましくは60W/(m・K)以上である。従って、窒化珪素系セラミックス中の酸素含有量は、50W/(m・K)以上の熱伝導率を得るには5重量%以下であり、60W/(m・K)以上の熱伝導率を得るには3重量%以下である。また窒化珪素粒子中の酸素含有量は、50W/(m・K)以上の熱伝導率を得るには2.5重量%以下であり、60W/(m・K)以上の熱伝導率を得るには1.5重量%以下である。さらに窒化珪素系セラミックス中のアルミニウムの含有量は、50W/(m・K)以上の熱伝導率を得るには0.2重量%以下であり、60W/(m・K)以上の熱伝導率を得るには0.1重量%以下である。   The thermal conductivity of silicon nitride ceramics constituting the bearing 3 at room temperature is 50 W / (m · K) or more, more preferably 60 W / (m · K) or more. Accordingly, the oxygen content in the silicon nitride ceramic is 5% by weight or less to obtain a thermal conductivity of 50 W / (m · K) or more, and a thermal conductivity of 60 W / (m · K) or more. Is 3% by weight or less. The oxygen content in the silicon nitride particles is 2.5% by weight or less for obtaining a thermal conductivity of 50 W / (m · K) or more, and a thermal conductivity of 60 W / (m · K) or more. Is 1.5% by weight or less. Furthermore, the aluminum content in the silicon nitride ceramic is 0.2% by weight or less for obtaining a thermal conductivity of 50 W / (m · K) or more, and a thermal conductivity of 60 W / (m · K) or more. Is 0.1% by weight or less.

窒化珪素セラミックス中のマグネシウムMgOと周期律表第3族元素酸化物の合計量は0.6〜7重量%であるのが好ましい。その合計量が0.6重量%未満では、焼結体の相対密度が95%未満と不十分である。一方7重量%を超えると、熱伝導率の低い粒界相の量が過剰となり、焼結体の熱伝導率が50W/(m・K)未満となる。MgO+第3族元素酸化物は0.6〜4重量%であるのがより好ましい。   The total amount of magnesium MgO and Group 3 element oxides in the silicon nitride ceramic is preferably 0.6 to 7% by weight. When the total amount is less than 0.6% by weight, the relative density of the sintered body is less than 95%, which is insufficient. On the other hand, if it exceeds 7% by weight, the amount of the grain boundary phase having a low thermal conductivity becomes excessive, and the thermal conductivity of the sintered body becomes less than 50 W / (m · K). The MgO + Group 3 element oxide is more preferably 0.6 to 4% by weight.

MgO/第3族元素酸化物の重量比は1〜70が好ましく、1〜10がより好ましく、1〜5が最も好ましい。MgO/第3族元素酸化物が1未満では、粒界相中の希土類酸化物の割合が多すぎるため、難焼結性となり緻密な焼結体が得られない。また、MgO/第3族元素酸化物が70を超えると焼結時におけるMgの拡散を抑制できず、焼結体表面に色むらが生じる。MgO/第3族元素酸化物が1〜70の範囲にあると、1650〜1850℃での焼結により高熱伝導率化が著しい。焼結体を1800〜2000℃で熱処理すると、さらに高熱伝導率化される。熱処理による高熱伝導率化は、窒化珪素粒子の成長と蒸気圧の高いMgOの揮発による。   The weight ratio of MgO / Group 3 element oxide is preferably 1 to 70, more preferably 1 to 10, and most preferably 1 to 5. If the MgO / Group 3 element oxide is less than 1, the ratio of the rare earth oxide in the grain boundary phase is too high, and it becomes difficult to sinter and a dense sintered body cannot be obtained. On the other hand, if the MgO / Group 3 element oxide exceeds 70, the diffusion of Mg during sintering cannot be suppressed, and color unevenness occurs on the surface of the sintered body. When the MgO / Group 3 element oxide is in the range of 1 to 70, the thermal conductivity is significantly increased by sintering at 1650 to 1850 ° C. When the sintered body is heat-treated at 1800 to 2000 ° C., the thermal conductivity is further increased. The increase in thermal conductivity by heat treatment is due to the growth of silicon nitride particles and volatilization of MgO having a high vapor pressure.

窒化珪素粒子中のアルミニウム、マグネシウム及び周期律表第3族元素の合計量は1.0重量%以下であるのが好ましい。   The total amount of aluminum, magnesium, and Group 3 elements in the periodic table in the silicon nitride particles is preferably 1.0% by weight or less.

窒化珪素焼結体中のβ型窒化珪素粒子のうち、短軸径が5μm以上のβ型窒化珪素粒子の割合が10体積%超では、焼結体の熱伝導率は向上するが、組織中に導入された粗大粒子が破壊の起点として作用するため破壊強度が著しく低下し、700Mpa以上の曲げ強度が得られない。従って、窒化珪素焼結体中のβ型窒化珪素粒子のうち、短軸径が5μm以上のβ型窒化珪素粒子の割合は10体積%以下であるのが好ましい。同様に、組織中に導入された粗大粒子が破壊の起点として作用することを抑えるために、β型窒化珪素粒子のアスペクト比は15以下であるのが好ましい。   Of the β-type silicon nitride particles in the silicon nitride sintered body, when the proportion of β-type silicon nitride particles having a minor axis diameter of 5 μm or more exceeds 10% by volume, the thermal conductivity of the sintered body is improved. Since the coarse particles introduced into the film act as a starting point of fracture, the fracture strength is remarkably lowered, and a bending strength of 700 Mpa or more cannot be obtained. Therefore, the ratio of β-type silicon nitride particles having a minor axis diameter of 5 μm or more in the β-type silicon nitride particles in the silicon nitride sintered body is preferably 10% by volume or less. Similarly, the β-type silicon nitride particles preferably have an aspect ratio of 15 or less in order to prevent the coarse particles introduced into the structure from acting as a starting point of fracture.

軸受3を形成する窒化珪素セラミックスは、急激な温度変化に対して十分な抵抗力を有する必要がある。急激な温度変化に対する抵抗力は下記式(1):
R=αc(1−ν)/Eα ・・・(1)
( 但し、αc:常温における4点曲げ強度(MPa)、ν:常温におけるポアソン比、E:常温におけるヤング率(MPa)、α:常温から800℃までの平均熱膨張係数)
により表される係数で表される係数Rは600以上であるのが好ましく、700以上であるのがより好ましい。係数Rが600未満であると軸受3が破壊するおそれがある。係数Rは、軸受3から切り出した試験片に対して測定した常温における4点曲げ強度αc(MPa)、常温におけるポアソン比ν、常温におけるヤング率E(MPa)及び常温から800℃までの平均熱膨張係数αから求める。
The silicon nitride ceramic forming the bearing 3 needs to have a sufficient resistance to sudden temperature changes. The resistance to sudden temperature changes is the following formula (1):
R = αc (1−ν) / Eα (1)
(However, αc: Four-point bending strength (MPa) at normal temperature, ν: Poisson's ratio at normal temperature, E: Young's modulus (MPa) at normal temperature, α: Average thermal expansion coefficient from normal temperature to 800 ° C)
The coefficient R represented by the coefficient represented by is preferably 600 or more, and more preferably 700 or more. If the coefficient R is less than 600, the bearing 3 may be broken. The coefficient R is the four-point bending strength αc (MPa) at room temperature measured for the specimen cut out from the bearing 3, the Poisson's ratio ν at room temperature, the Young's modulus E (MPa) at room temperature, and the average heat from room temperature to 800 ° C. Obtained from the expansion coefficient α.

[第2実施形態]
本発明に係わる第2態様の軸受について図8を参照しつつ説明する。図8は、第2態様の軸受18が組み込まれた軸受装置9の正面図である。本態様の軸受18は、上記第1態様の軸受装置1に組み込まれた軸受3に対し、自動調芯機能を奏する凸状部が形成される外面が二の外面3b・3cのみであるという点で相違している。以下、本態様の軸受装置9を構成する支持部材10および軸受18について詳細に説明する。
[Second Embodiment]
A bearing according to a second aspect of the present invention will be described with reference to FIG. FIG. 8 is a front view of the bearing device 9 in which the bearing 18 of the second aspect is incorporated. The bearing 18 of this aspect is that the outer surface where the convex part which has an automatic centering function is formed is only the two outer surfaces 3b and 3c with respect to the bearing 3 incorporated in the bearing device 1 of the first aspect. Is different. Hereinafter, the support member 10 and the bearing 18 that constitute the bearing device 9 of this aspect will be described in detail.

[支持部材]
第2態様の支持部材10は、図8に示すように、互いに直交する二の支持平面、具体的には、上方の支持平面10a、左方の支持平面10bを有しており、この二の支持平面10a・10bは、略直交するよう組み合わされた平板状部材10c・10dの内面(一面)となっている。そして、支持部材10は、めっき浴中に伸ばされたフレーム25の先端部25aに、支持平面10aが下方に、支持平面10bが右方に向く姿勢で固定されている。
[Support member]
As shown in FIG. 8, the support member 10 of the second aspect has two support planes orthogonal to each other, specifically, an upper support plane 10a and a left support plane 10b. The support planes 10a and 10b are inner surfaces (one surface) of the flat plate members 10c and 10d that are combined so as to be substantially orthogonal to each other. The support member 10 is fixed to the end portion 25a of the frame 25 extended into the plating bath in such a posture that the support plane 10a faces downward and the support plane 10b faces right.

[軸受]
第2態様の軸受18は、基本的には、第1態様の軸受3と同様な構成である。すなわち、外観が略円柱形状をなすサポートロールの軸部27aの外周面が摺動する、X軸方向に延びる摺動面3aと、摺動面3aが延びる方向と同一方向であるX軸方向に延設されているとともに上記第1態様の軸受3と同様な形態の凸状部3fが形成された外面3b・3cを有している。しかしながら、軸受18において、凸状部3fが形成された外面は、上方と左方の二の外面3b・3cのみであり、当該外面3b・3cは支持部材10の二の支持平面10a・10bに各々対面している。なお、外面3b・3cに相対する軸受18の表面、すなわち下方の表面および右方の表面にも凸状部を形成してもよいが、自動調芯機能を奏する外面は、支持平面3b・3cに対面する外面3b・3cのみとなる。
[bearing]
The bearing 18 of the second aspect is basically the same configuration as the bearing 3 of the first aspect. That is, the outer peripheral surface of the shaft portion 27a of the support roll having a substantially cylindrical shape slides, the sliding surface 3a extending in the X-axis direction, and the X-axis direction that is the same direction as the sliding surface 3a extends. It has the outer surface 3b * 3c in which the convex-shaped part 3f of the form similar to the bearing 3 of the said 1st aspect was formed while being extended. However, in the bearing 18, the outer surfaces on which the convex portions 3 f are formed are only the upper and left outer surfaces 3 b and 3 c, and the outer surfaces 3 b and 3 c are formed on the two support planes 10 a and 10 b of the support member 10. They are facing each other. Convex portions may also be formed on the surface of the bearing 18 facing the outer surfaces 3b and 3c, that is, the lower surface and the right surface, but the outer surface having an automatic alignment function is supported by the support planes 3b and 3c. Only the outer surfaces 3b and 3c facing each other.

上記構成の軸受18は、外面3bが支持平面10aに、外面3cが支持平面10bに対面した状態で、各々の凸状部3fの頂部3gが支持平面10a・10bに接するように支持部材10に装着される。そして、支持部材10に装着された軸受18は、好ましくは、フレーム25の先端部25aの下端から右方に延設されたアーム25bの右端に設けられた、平板状の固定部材25cにより、その右下部分が押し付けられ支持部材10に固定される。アーム25bと固定部材25cの間には圧縮バネなどを利用した弾性体25dが介在しており、伸縮可能な状態で軸受18を固定している。なお、めっき浴中に浸漬されたサポートロールには、鋼板に付与される張力により図において矢印Dで示す力が作用しているため、軸受18を固定する上記固定部材25c・弾性体25dは必須の構成ではないが、軸受18を安定して支持部材10に固定しておくためには、設けておくことが好ましい。   The bearing 18 having the above-described configuration is formed on the support member 10 such that the top 3g of each convex portion 3f is in contact with the support planes 10a and 10b with the outer surface 3b facing the support plane 10a and the outer surface 3c facing the support plane 10b. Installed. The bearing 18 attached to the support member 10 is preferably fixed by a flat plate-like fixing member 25c provided at the right end of an arm 25b extending rightward from the lower end of the front end portion 25a of the frame 25. The lower right portion is pressed and fixed to the support member 10. An elastic body 25d using a compression spring or the like is interposed between the arm 25b and the fixing member 25c, and the bearing 18 is fixed in an expandable / contractable state. In addition, since the force shown by the arrow D in the figure acts on the support roll immersed in the plating bath due to the tension applied to the steel plate, the fixing member 25c and the elastic body 25d for fixing the bearing 18 are essential. However, it is preferable to provide the bearing 18 in order to stably fix the bearing 18 to the support member 10.

かかる構成の軸受18が組み込まれた軸受装置9によれば、図8において矢印Eで示すように左回りに回転するサポートロールの軸部27aの外周面は、軸受18の摺動面3aに接しつつ摺動する。なお、図8に示すようにサポートロールには矢印Dで示す負荷が作用しているため、軸受18は、その摺動面3aの左方上部で軸部27aを支持しており、その外面3b・3cの2面に設けられた凸状部3fの頂部3gが、これらと対面する支持部材2の支持平面10a・10bと接する状態となっている。   According to the bearing device 9 incorporating the bearing 18 having such a configuration, the outer peripheral surface of the shaft portion 27a of the support roll that rotates counterclockwise as shown by an arrow E in FIG. 8 is in contact with the sliding surface 3a of the bearing 18. Slide while. As shown in FIG. 8, since the load indicated by the arrow D acts on the support roll, the bearing 18 supports the shaft portion 27a at the upper left portion of the sliding surface 3a, and the outer surface 3b. The top portions 3g of the convex portions 3f provided on the two surfaces 3c are in contact with the support planes 10a and 10b of the support member 2 facing each other.

そして、高温のめっき浴による加熱、鋼板から負荷される荷重により軸部27aが変形してその軸芯が偏芯すると、軸受18には、軸部27aの偏芯量に応じ、Y軸およびZ軸回りの回転モーメントが作用する。ここで、支持部材2の支持平面10a・10bには、軸受18の外面3b・3cに各々設けられた凸状部3fの頂部3gが接している。しかして、Y軸回り方向において、軸受18は、Y軸回りの回転モーメントのために、外面3bに設けられた凸状部3fの頂部3gを支点として、外面3bが支持平面10aに対し偏芯量に応じ傾動する。また、Z軸回り方向において、軸受18は、Z軸回りの回転モーメントのために、外面3cに設けられた凸状部3fの頂部3gを支点として、外面3cが支持平面10bに対し偏芯量に応じ傾動する。なお、傾動にともなう軸受18の変位は、伸縮可能な弾性体25dで許容している。このように、軸部27aの偏芯にともない軸受18に作用する回転モーメントのうち、Y軸回りの成分を外面3bに設けられた凸状部3f、Z軸回りの成分を外面3cに設けられた凸状部3fで分離して受け、それぞれを傾動せしめることにより、軸部27aの偏芯量に応じた軸受18の自動調芯が可能となる。さらに、外面3bと外面3cの各々に形成された凸状部3fの頂部3gは、互いに直交する支持平面10aおよび10bと接しているので、軸部27aの外周面と軸受18の摺動面3aとの摺動時の摩擦抵抗により軸芯I回りに軸受18が連れ回りすることもない。さらに、本態様の軸受装置10では、軸受18の外面3b・3cと対面する支持平面10a・10b以外の面は開放されているため、軸受装置10の引上げた際にめっき浴がそれらの間に残留しがたく、第1態様の軸受装置1よりも更に軸受18の破損を抑制することが可能となる。   When the shaft portion 27a is deformed by heating with a high-temperature plating bath or a load applied from the steel sheet and the shaft core is eccentric, the bearing 18 has a Y-axis and a Z-axis according to the eccentric amount of the shaft portion 27a. A rotational moment around the axis acts. Here, the top portions 3 g of the convex portions 3 f provided on the outer surfaces 3 b and 3 c of the bearing 18 are in contact with the support planes 10 a and 10 b of the support member 2. Thus, in the direction around the Y axis, the bearing 18 is eccentric with respect to the support plane 10a with the top 3g of the convex portion 3f provided on the outer surface 3b as a fulcrum because of the rotational moment around the Y axis. Tilt according to the amount. Further, in the direction around the Z axis, the bearing 18 has an eccentric amount with respect to the support plane 10b with the top 3g of the convex portion 3f provided on the outer surface 3c as a fulcrum because of the rotational moment around the Z axis. Tilt according to. The displacement of the bearing 18 accompanying the tilting is allowed by the elastic body 25d that can be expanded and contracted. Thus, out of the rotational moment acting on the bearing 18 due to the eccentricity of the shaft portion 27a, the component around the Y axis is provided on the outer surface 3b, and the component around the Z axis is provided on the outer surface 3c. The bearing 18 can be automatically aligned according to the amount of eccentricity of the shaft portion 27a by receiving it separately at the convex portion 3f and tilting each of them. Further, since the top 3g of the convex portion 3f formed on each of the outer surface 3b and the outer surface 3c is in contact with the support planes 10a and 10b orthogonal to each other, the outer peripheral surface of the shaft portion 27a and the sliding surface 3a of the bearing 18 are provided. The bearing 18 does not rotate around the axis I due to the frictional resistance when sliding. Further, in the bearing device 10 of this aspect, since the surfaces other than the support planes 10a and 10b facing the outer surfaces 3b and 3c of the bearing 18 are open, the plating bath is interposed between them when the bearing device 10 is pulled up. It is difficult to remain, and it is possible to further prevent damage to the bearing 18 than the bearing device 1 of the first aspect.

[第3実施形態]
本発明に係わる第3態様の軸受について図9(a)を参照しつつ説明する。図9(a)は、第3態様の軸受12が組み込まれた軸受装置10の側断面図である。本態様の軸受12は、基本的には上記第1態様の軸受3と同様に、軸部37aの偏芯に対応し自動調芯機能を発揮するとともに軸受12の連れ回りを防止するよう構成されているが、サポートロールのX軸方向の移動を規制するスラスト受けである軸受端部が右端に無く、軸部37aが挿入される中空部3sが軸受12の左端(一端)から右端(他端)に渡り通じており、右端も開放されている点で相違している。また、この軸受12が支持される支持部材11についても、右端に配置される平板状部材が無く、めっき浴がより円滑に支持部材11の内部に流通するように構成されている。なお、軸受12は、左端面と同様に、支持部材11に配置された不図示の固定部材2n(図1参照)で右端面も固定され、X軸方向の移動が規制されている。
[Third Embodiment]
A bearing according to a third aspect of the present invention will be described with reference to FIG. FIG. 9A is a side sectional view of the bearing device 10 in which the bearing 12 of the third aspect is incorporated. The bearing 12 according to this aspect is basically configured to correspond to the eccentricity of the shaft portion 37a and exhibit an automatic alignment function and prevent the bearing 12 from being rotated in the same manner as the bearing 3 according to the first aspect. However, the bearing end that is a thrust receiver that restricts the movement of the support roll in the X-axis direction is not at the right end, and the hollow portion 3s into which the shaft portion 37a is inserted extends from the left end (one end) to the right end (the other end). ) And the right end is also open. Further, the support member 11 that supports the bearing 12 is also configured such that there is no flat member disposed at the right end, and the plating bath flows more smoothly inside the support member 11. The bearing 12 is also fixed to the right end surface by a fixing member 2n (not shown) arranged on the support member 11 (see FIG. 1), similarly to the left end surface, and movement in the X-axis direction is restricted.

ここで、軸受端部を設けない軸受12が組み込まれた本態様の軸受装置10では、以下の構成によりサポートロールのX軸方向の移動を規制している。すなわち、軸部37aには、X軸方向において、その右方と左方に形成された大径部37bおよび37cと、左右の大径部37bと37cの間に形成された小径部37dとを有しており、小径部37dの両端にはZ軸方向に延びる規制面37e・37fが形成されている。小径部37dは、その左右の規制面37eおよび37fの間に、軸受12の中空部3sの両端面が挿入可能な長さで形成されている。そして、軸受装置10では、上記のように構成された軸部37aは、その大径部37eよりも大きな径を有する中空部3sに通され、左右の規制面37eと37fとの間に中空部3sが位置するよう配置されている。上記の構成により、サポートロールがX軸方向に移動した場合には、軸受12の中空部3sの両端面に接する左右の規制面37eおよび37fでその移動を規制することとなる。   Here, in the bearing device 10 of this aspect in which the bearing 12 without the bearing end portion is incorporated, the movement of the support roll in the X-axis direction is restricted by the following configuration. That is, the shaft portion 37a has large diameter portions 37b and 37c formed on the right and left sides in the X-axis direction, and a small diameter portion 37d formed between the left and right large diameter portions 37b and 37c. The small-diameter portion 37d is formed with restricting surfaces 37e and 37f extending in the Z-axis direction. The small-diameter portion 37d is formed between the left and right regulating surfaces 37e and 37f so that both end surfaces of the hollow portion 3s of the bearing 12 can be inserted. In the bearing device 10, the shaft portion 37a configured as described above is passed through the hollow portion 3s having a larger diameter than the large-diameter portion 37e, and the hollow portion is interposed between the left and right regulating surfaces 37e and 37f. It is arranged so that 3s is located. With the above configuration, when the support roll moves in the X-axis direction, the left and right regulating surfaces 37e and 37f that are in contact with both end surfaces of the hollow portion 3s of the bearing 12 are regulated.

[第4実施形態]
本発明に係わる第4態様の軸受について図9(b)を参照しつつ説明する。図9(b)は、第4態様の軸受14が組み込まれた軸受装置13の側断面図である。本態様の軸受14は、基本的には上記第1態様の軸受3と同様の機能を奏するよう構成されているが、軸部27aが摺動する摺動面3aが形成された本体部14cと、本体部14cを保持するとともに 凸状部3fが設けられた四の外面3b〜3eを有する保持部14aの二の部材の組合せにより構成されている点で相違している。この軸受14の場合には、本体部14cと保持部14aを別個の材料で構成できるという利点があり、例えば、めっき浴に対する耐蝕性と軸部27aの摺動に対する耐摩耗性の高いセラミックスで本体部14cを、加工の容易なステンレスなどの金属で凸状部3fを形成する保持部14aを形成するとよい。なお、保持部14cを金属で構成する場合には、めっき浴に対する耐蝕性を高めるため、その表面にセラミックスやサーメットなどの皮膜をその表面に形成しておくことが望ましい。以下、軸受14の本体部14cおよび保持部14aについて詳細に説明する。なお、支持部材の構成は、第1態様の支持部材2と同一であるので、説明を省略する。
[Fourth Embodiment]
The bearing of the 4th aspect concerning this invention is demonstrated referring FIG.9 (b). FIG. 9B is a side sectional view of the bearing device 13 in which the bearing 14 of the fourth aspect is incorporated. The bearing 14 of this aspect is basically configured to perform the same function as the bearing 3 of the first aspect, but includes a main body part 14c formed with a sliding surface 3a on which the shaft part 27a slides. This is different in that it is constituted by a combination of the two members of the holding portion 14a which holds the main body portion 14c and has the four outer surfaces 3b to 3e provided with the convex portion 3f. In the case of this bearing 14, there is an advantage that the main body portion 14c and the holding portion 14a can be made of different materials. The holding part 14a which forms the convex part 3f with a metal such as stainless steel that can be easily processed may be formed on the part 14c. When the holding portion 14c is made of metal, it is desirable to form a film such as ceramics or cermet on the surface in order to improve the corrosion resistance against the plating bath. Hereinafter, the main body portion 14c and the holding portion 14a of the bearing 14 will be described in detail. In addition, since the structure of a supporting member is the same as the supporting member 2 of a 1st aspect, description is abbreviate | omitted.

[本体部]
上記したように軸部27aの外周面が摺動する摺動面3aを有する本体部14cは、軸芯Iに直交するZ−Y平面における断面形状が略扇形状をなしており、その内面が摺動面3aとなっている。なお、本体部14cの形状は上記に限定されず、半円環状であってもよいし、円環状であってもよい。すなわち、本体部14cは、摺動面3aを有していればよい。
[Main unit]
As described above, the main body portion 14c having the sliding surface 3a on which the outer peripheral surface of the shaft portion 27a slides has a substantially fan-shaped cross section in the ZY plane perpendicular to the shaft core I. It is a sliding surface 3a. In addition, the shape of the main-body part 14c is not limited above, A semi-annular shape may be sufficient and an annular shape may be sufficient. That is, the main body portion 14c only needs to have the sliding surface 3a.

[保持部]
上記本体部14cを保持する保持部14aの外観形状は、第1態様の軸受3と同一であり、X軸方向に延設されるとともに支持部材2の互いに直交する四の支持平面2a〜2dに各々対面する四の外面3b〜3eを有し、その外面3b〜3eには、頂部3gが支持平面2a〜2dと接する凸状部3fが各々設けられている。そして、保持部14aの中央には軸部27aが挿通可能な中空部14dがX軸に沿い形成されており、サポートロールが負荷を受ける矢印Dの方向に対応し、中空部14dの左上方の隅部に本体部14cが挿着される断面形状が略扇形状の挿着凹部14bが設けられている。ここで、挿着凹部14bに挿着された本体部14cは、その内面である摺動面3aが中空部14dの内面から突出するよう固定されており、その突出した摺動面3aに軸部27aは接触しつつ円滑に回転することとなる。
[Holding part]
The external shape of the holding portion 14a that holds the main body portion 14c is the same as that of the bearing 3 of the first aspect, and extends in the X-axis direction and extends to the four support planes 2a to 2d of the support member 2 that are orthogonal to each other. Each has four outer surfaces 3b to 3e facing each other, and the outer surfaces 3b to 3e are respectively provided with convex portions 3f whose top portions 3g are in contact with the support planes 2a to 2d. A hollow portion 14d through which the shaft portion 27a can be inserted is formed along the X axis at the center of the holding portion 14a, and corresponds to the direction of arrow D where the support roll receives a load. An insertion recess 14b having a substantially fan-shaped cross-section in which the main body 14c is inserted is provided at the corner. Here, the main body portion 14c inserted into the insertion recess 14b is fixed so that the sliding surface 3a, which is the inner surface, protrudes from the inner surface of the hollow portion 14d, and the shaft portion is attached to the protruding sliding surface 3a. 27a rotates smoothly while contacting.

かかる構成の軸受14が組み込まれた軸受装置13によれば、サポートロールの軸部27aの外周面は、本体部14cの摺動面3aに接しつつ摺動する。サポートロールには矢印Dで示す負荷が作用しているため、保持部14aの外面3b・3cの2面に設けられた凸状部3fの頂部3gが、これらと対面する支持部材2の支持平面2a・2bと接する状態となる。   According to the bearing device 13 in which the bearing 14 having such a configuration is incorporated, the outer peripheral surface of the shaft portion 27a of the support roll slides while being in contact with the sliding surface 3a of the main body portion 14c. Since the load indicated by the arrow D acts on the support roll, the top 3g of the convex portion 3f provided on the two outer surfaces 3b and 3c of the holding portion 14a faces the support plane of the support member 2 facing these. It will be in the state which touches 2a * 2b.

そして、軸部27aが偏芯すると、その偏芯量に応じ、軸受14にはY軸およびZ軸回りの回転モーメントが作用する。支持部材2の支持平面2a・2bには、保持部14aの外面3b・3cに各々設けられた凸状部3fの頂部3gが接しているので、軸受14は、Y軸回り方向およびZ軸回り方向において、各々の回転モーメントのために、凸状部3fの頂部3gを支点として、外面3bが支持平面2aに対し偏芯量に応じ傾動し、軸部27aの偏芯量に応じた軸受14の自動調芯がなされることとなる。また、外面3bと外面3cの各々に形成された凸状部3fの頂部3gは、支持平面2aおよび2bと接しているので、軸芯I回りに軸受14が連れ回りすることもない。   When the shaft portion 27a is eccentric, a rotational moment about the Y axis and the Z axis acts on the bearing 14 in accordance with the eccentric amount. Since the top portions 3g of the convex portions 3f provided on the outer surfaces 3b and 3c of the holding portion 14a are in contact with the support planes 2a and 2b of the support member 2, the bearing 14 is rotated about the Y axis and the Z axis. In each direction, the outer surface 3b tilts with respect to the support plane 2a according to the amount of eccentricity, and the bearing 14 according to the amount of eccentricity of the shaft portion 27a, with the top 3g of the convex portion 3f as a fulcrum for each rotational moment. The automatic alignment is performed. Moreover, since the top 3g of the convex portion 3f formed on each of the outer surface 3b and the outer surface 3c is in contact with the support planes 2a and 2b, the bearing 14 does not rotate around the axis I.

[第5実施形態]
本発明に係わる第5態様の軸受について図10を参照しつつ説明する。図10は、第5態様の軸受17および支持部材16が組み込まれた軸受装置15の側断面図である。本態様の軸受17は、基本的には第1態様の軸受3と同様の機能を奏するよう構成されているが、凸状部が、軸受に替えて支持部材に設けられている点で相違している。以下、軸受17および支持部材16の順にその構成を具体的に説明する。
[Fifth Embodiment]
The bearing of the 5th aspect concerning this invention is demonstrated referring FIG. FIG. 10 is a side sectional view of the bearing device 15 in which the bearing 17 and the support member 16 of the fifth aspect are incorporated. The bearing 17 of this aspect is basically configured to perform the same function as the bearing 3 of the first aspect, but differs in that the convex portion is provided on the support member instead of the bearing. ing. Hereinafter, the structure will be specifically described in the order of the bearing 17 and the support member 16.

[軸受]
本態様の軸受17は、第1態様の軸受3と同様に、軸部27aが摺動するX軸方向に延設された摺動面3aを有するが、その四の外面17b〜17e(17c・17eは不図示)は互いに直交する平面(以下、理解のため本態様においても便宜的に支持平面と言う。)となっている。すなわち、第1態様の支持部材2の支持平面は、本態様においては支持部材に替え軸受17に設けられている。
[bearing]
The bearing 17 of this aspect has the sliding surface 3a extended in the X-axis direction on which the shaft portion 27a slides, similarly to the bearing 3 of the first aspect, but the four outer surfaces 17b to 17e (17c. 17e is a plane orthogonal to each other (hereinafter referred to as a support plane for convenience in this embodiment for the sake of understanding). That is, the support plane of the support member 2 of the first aspect is provided in the bearing 17 in place of the support member in this aspect.

[支持部材]
本態様の支持部材16は、第1態様の支持部材2と同様に、5枚の平板状部材2e〜2i(平板状部材2f・2hは不図示)の略コの字形状に組合せ、軸受17を収納する収納室2qを形成するよう構成されているが、四の平板状部材2e〜2hのX軸方向に延設された面(以下、理解のため内面と言う。)16a〜16d(16b・16dは不図示)は、各々軸受17の支持平面17b〜17eに対面しており、内面16a〜16dには、各々が対面する支持平面17b〜17eと頂部16sが接する凸状部16rが設けられている。すなわち、第1態様の軸受3の凸状部が設けられる面は、本態様においては軸受に替え支持部材16に設けられている。
[Support member]
Similar to the support member 2 of the first aspect, the support member 16 of this aspect is combined with a substantially U-shape of five flat plate members 2e to 2i (the flat plate members 2f and 2h are not shown), and the bearing 17 Of the four flat members 2e to 2h extending in the X-axis direction (hereinafter referred to as inner surfaces for the sake of understanding) 16a to 16d (16b). (16d is not shown) faces the support planes 17b to 17e of the bearing 17, and the inner surfaces 16a to 16d are provided with convex portions 16r where the top faces 16s are in contact with the support planes 17b to 17e facing each other. It has been. That is, the surface on which the convex portion of the bearing 3 of the first aspect is provided is provided on the support member 16 in place of the bearing in this aspect.

このように支持平面と凸状部を設ける面とを軸受と支持部材との間で入れ替えた構成によっても、上記第1〜第4態様の軸受と同様に、軸芯I回りの連れ回りを防止しつつ軸受17は自動調芯機能を発揮することができる。なお、本態様の軸受17は、外面17b〜17eが平面であるため加工等で形成することが容易であり、特に軸受17を難加工性のセラミックスで構成する場合に有利である。   In this way, the support plane and the surface on which the convex portion is provided are interchanged between the bearing and the support member, so that the rotation around the shaft core I is prevented in the same manner as the bearings of the first to fourth aspects. However, the bearing 17 can exhibit an automatic alignment function. In addition, since the outer surfaces 17b to 17e are flat, the bearing 17 of this aspect can be easily formed by machining or the like, and is particularly advantageous when the bearing 17 is made of difficult-to-work ceramics.

1(9、13、15) 軸受装置
2(10、11、16) 保持部材
2a(2b〜2d、17b〜17e) 平面(支持平面)
2e(2f〜2i) 平板状部材
2j(2k〜2L) 貫通孔
2q 収納室
3(4〜8,12、14、17、18) 軸受
3a 摺動面
3b(3c〜3e、16a〜16d) 面(外面、内面)
3f(3k、16r) 凸状部
3g(16s) 頂部
3L 湯溜まり部
3m 貫通孔
3o(3p〜3r) 接続面
3s 中空部
20 溶融金属めっき装置
21 溶融金属めっき浴
27 サポートロール
28 シンクロール
W 鋼板
1 (9, 13, 15) Bearing device 2 (10, 11, 16) Holding member 2a (2b-2d, 17b-17e) Plane (support plane)
2e (2f to 2i) Flat plate member 2j (2k to 2L) Through hole 2q Storage chamber 3 (4 to 8, 12, 14, 17, 18) Bearing 3a Sliding surface 3b (3c to 3e, 16a to 16d) Surface (Outer surface, inner surface)
3f (3k, 16r) Convex part 3g (16s) Top part 3L Hot water pool part 3m Through hole 3o (3p-3r) Connection surface 3s Hollow part 20 Molten metal plating apparatus 21 Molten metal plating bath 27 Support roll 28 Sink roll W Steel sheet

Claims (13)

溶融金属めっき浴中に浸漬される回転体の軸部を回転自在に支承するとともに、隣り合う四の平面を有する支持部材で支持される溶融金属めっき浴用軸受であって、
前記軸部の外周面が摺動する摺動面と、前記摺動面が延びる方向と同一方向に延設されているとともに前記支持部材の四の平面それぞれ対面する四の面を有し、前記四の面には、各々が対面する平面と頂部が接する凸状部が形成されていることを特徴とする溶融金属めっき浴用軸受。
A bearing for a molten metal plating bath that rotatably supports a shaft portion of a rotating body immersed in a molten metal plating bath and supported by a support member having four adjacent planes ,
Has a sliding surface which the outer peripheral surface of the shaft portion slides, a fourth surface facing each to the four planes of the support member with extends in the same direction in which the sliding surface extends, The four metal surfaces are formed with a convex portion in contact with a flat surface facing each other and a top portion.
前記摺動面が延びる方向における前記凸状部の外縁形状は円弧状であり、The outer edge shape of the convex portion in the direction in which the sliding surface extends is an arc shape,
前記支持部材には、外縁形状が円弧状である前記凸状部の頂部に通じる貫通孔が形成されている請求項1に記載の溶融金属めっき浴用軸受。2. The bearing for a molten metal plating bath according to claim 1, wherein the support member is formed with a through-hole that communicates with the top of the convex portion whose outer edge shape is an arc shape.
前記平面は前記支持部材に替え前記軸受に形成されており、前記面は、前記軸受に替え前記支持部材に形成されている請求項1または2のいずれかに記載の溶融金属めっき浴用軸受。   The bearing for a molten metal plating bath according to claim 1, wherein the flat surface is formed on the bearing instead of the support member, and the surface is formed on the support member instead of the bearing. 前記支持部材は、当該支持部材の平面の一端側に置かれた支持面を有し、さらに前記溶融金属めっき浴用軸受は、前記支持面に頂部が接する凸状部を有する請求項1乃至3のいずれかに記載の溶融金属めっき浴用軸受。   The said support member has a support surface set | placed on the one end side of the plane of the said support member, Furthermore, the said bearing for molten metal plating baths has the convex-shaped part which a top part contacts the said support surface. The bearing for molten metal plating baths in any one. 前記軸受の面に形成された凸状部の頂部と、当該軸受の面が相対する前記支持部材の平面との間には間隙が設けられている請求項乃至4のいずれかに記載の溶融金属めっき浴用軸受。 The melting according to any one of claims 1 to 4, wherein a gap is provided between a top of the convex portion formed on the surface of the bearing and a plane of the support member to which the surface of the bearing faces. Bearing for metal plating bath. 前記摺動面が延びる方向における前記凸状部の外縁形状は、円弧状である請求項1乃至5のいずれかに記載の溶融金属めっき浴用軸受。   The bearing for a molten metal plating bath according to any one of claims 1 to 5, wherein an outer edge shape of the convex portion in a direction in which the sliding surface extends is an arc shape. 外縁形状が円弧状である前記凸状部は、前記摺動面が延びる方向において前記軸受の面の一端から他端に渡り形成されている請求項6に記載の溶融金属めっき浴用軸受。   The bearing for a molten metal plating bath according to claim 6, wherein the convex portion whose outer edge shape is an arc shape is formed from one end to the other end of the surface of the bearing in a direction in which the sliding surface extends. 外縁形状が円弧状である前記凸状部は、前記摺動面が延びる方向において、その頂部が、前記軸受の面の中心より一端側に偏位した位置に配置されている請求項6または7のいずれかに記載の溶融金属めっき浴用軸受。   The convex portion having an arcuate outer edge shape is disposed at a position where a top portion of the convex portion is deviated to one end side from a center of a surface of the bearing in a direction in which the sliding surface extends. A bearing for a molten metal plating bath according to any one of the above. 前記軸受の面のうち隣接する面の間には各々を接続する接続面が介在されている請求項6乃至8のいずれかに記載の溶融金属めっき浴用軸受。   The bearing for molten metal plating baths according to any one of claims 6 to 8, wherein a connecting surface for connecting each of the bearing surfaces is interposed between adjacent surfaces. 前記摺動面が延びる方向に対し直交する方向に沿う断面視において、前記接続面の形状は、外側に膨出する円弧状である請求項9に記載の溶融金属めっき浴用軸受。   The bearing for a molten metal plating bath according to claim 9, wherein a shape of the connection surface is an arc shape bulging outward in a cross-sectional view along a direction orthogonal to a direction in which the sliding surface extends. 前記摺動面が延びる方向において、前記軸受の面の一端および他端の少なくとも一方の角部には、R面またはC面が形成されている請求項1乃至10のいずれかに記載の溶融金属めっき浴用軸受。 In the direction in which the sliding surface extends, at least one corner of one end and the other end face of the bearing, the molten metal according to any one of claims 1 to 10 R plane or C plane is formed Bearing for plating bath. 前記摺動面が延びる方向において、前記摺動面の一端および他端の少なくとも一方の角部には、R面またはC面が形成されている請求項1乃至11のいずれかに記載の溶融金属めっき浴用軸受。 The molten metal according to any one of claims 1 to 11 , wherein an R surface or a C surface is formed at at least one corner of one end and the other end of the sliding surface in a direction in which the sliding surface extends. Bearing for plating bath. 前記軸受の摺動面は、セラミックスで構成されている請求項1乃至12のいずれかに記載の溶融金属めっき浴用軸受。
The bearing for a molten metal plating bath according to any one of claims 1 to 12 , wherein the sliding surface of the bearing is made of ceramics.
JP2011191576A 2011-09-02 2011-09-02 Bearing for molten metal plating bath Active JP5828387B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011191576A JP5828387B2 (en) 2011-09-02 2011-09-02 Bearing for molten metal plating bath
CN 201220443926 CN202808923U (en) 2011-09-02 2012-08-31 Bearing for molten metal electroplate liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191576A JP5828387B2 (en) 2011-09-02 2011-09-02 Bearing for molten metal plating bath

Publications (2)

Publication Number Publication Date
JP2013053331A JP2013053331A (en) 2013-03-21
JP5828387B2 true JP5828387B2 (en) 2015-12-02

Family

ID=47867838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191576A Active JP5828387B2 (en) 2011-09-02 2011-09-02 Bearing for molten metal plating bath

Country Status (2)

Country Link
JP (1) JP5828387B2 (en)
CN (1) CN202808923U (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153055A (en) * 1988-12-02 1990-06-12 Sumitomo Metal Ind Ltd Device for supporting bearing for roll immersed in hot dipping bath
JP2543100Y2 (en) * 1992-02-24 1997-08-06 新日本製鐵株式会社 Support roll support structure in molten metal plating bath
JP3464632B2 (en) * 1999-08-27 2003-11-10 株式会社日立製作所 Bearings for continuous hot metal plating equipment
JP4725759B2 (en) * 2001-02-20 2011-07-13 日立金属株式会社 Bearing device in molten metal bath
DE10130959A1 (en) * 2001-06-27 2003-01-16 Band Zink Gmbh coater
JP4466114B2 (en) * 2004-02-23 2010-05-26 Jfeスチール株式会社 Bearing for roll in bath of hot dipping bath
ES2355282T3 (en) * 2008-09-01 2011-03-24 Band-Zink Gmbh ROLLER SUPPORT FOR ROLLERS GUIDE FOR A Fused METAL BATH.

Also Published As

Publication number Publication date
JP2013053331A (en) 2013-03-21
CN202808923U (en) 2013-03-20

Similar Documents

Publication Publication Date Title
EP2447388B1 (en) Roll for use in galvanizing pot
JP5828387B2 (en) Bearing for molten metal plating bath
JP5828388B2 (en) Bearing equipment for molten metal plating bath
US9234545B2 (en) Bearing
JP5828392B2 (en) Roll for hot metal plating bath
JP4678581B2 (en) Roll for hot metal plating bath
JP2012180552A (en) Rotating body
US6619848B2 (en) Ceramic dynamic pressure bearing, motor with bearing, hard disc apparatus and polygon scanner
JP4678580B2 (en) Roll for hot metal plating bath
JP5888593B2 (en) Roll for hot metal plating bath
JP2013216926A (en) Roll for molten-metal plating bath
US6729766B2 (en) Retention of ceramic bearings
JP2013001913A (en) Roll for hot-dip metal plating bath
JP2012241209A (en) Roll for hot dip metal plating bath
JP2013133538A (en) Roll for hot dip metal plating bath
JP2013159785A (en) Roll for hot dip metal plating bath
JP5822705B2 (en) Ceramic composite and sliding member for molten metal plating bath using the same
JP4453072B2 (en) Roll for continuous molten metal plating
JP2597937B2 (en) bearing
JP4775194B2 (en) Sliding bearing device for molten metal plating bath
JP4894179B2 (en) Sliding bearing device for molten metal plating bath
JP5892642B2 (en) Rotating body
JP5979613B2 (en) Rotating body
JP2014109061A (en) Bearing for molten metal plating bath
JP2002294419A (en) Roller bearing used in continuous hot-dip metal plating bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151008

R150 Certificate of patent or registration of utility model

Ref document number: 5828387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350