JP5828271B2 - Bearing preload judgment method - Google Patents

Bearing preload judgment method Download PDF

Info

Publication number
JP5828271B2
JP5828271B2 JP2011256099A JP2011256099A JP5828271B2 JP 5828271 B2 JP5828271 B2 JP 5828271B2 JP 2011256099 A JP2011256099 A JP 2011256099A JP 2011256099 A JP2011256099 A JP 2011256099A JP 5828271 B2 JP5828271 B2 JP 5828271B2
Authority
JP
Japan
Prior art keywords
bearing
preload
frequency response
response function
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011256099A
Other languages
Japanese (ja)
Other versions
JP2013108934A (en
Inventor
公哉 古谷
公哉 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011256099A priority Critical patent/JP5828271B2/en
Publication of JP2013108934A publication Critical patent/JP2013108934A/en
Application granted granted Critical
Publication of JP5828271B2 publication Critical patent/JP5828271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、組付けされた軸受の予圧をFFT(Fast Fourier Transform:高速フーリエ変換)を用いて判定する軸受の予圧判定方法に関するものである。   The present invention relates to a bearing preload determination method for determining the preload of an assembled bearing using FFT (Fast Fourier Transform).

従来、この種の技術としては特許文献1に記載するようなものがあった。
これは、軸受に対し外部から加振機で振動を与え、その振動を軸受の内、外輪側で加速度センサにより計測した後、FFTにより解析し算出される共振周波数(固有振動数)から、その軸受の予圧を判定するというものである。
Conventionally, this type of technology has been described in Patent Document 1.
This is because vibration is applied to the bearing from the outside with a vibration exciter, and the vibration is measured by an acceleration sensor on the inner and outer ring sides of the bearing and then analyzed by FFT and calculated from the resonance frequency (natural frequency). This is to determine the preload of the bearing.

特開2000−074788号公報Japanese Patent Laid-Open No. 2000-074788

しかしながら、自動車のデフ(ディファレンシャル)軸受等の軸受におけるように、大きな予圧がその軸受の組付けに与えられる場合には、軸受のばね剛性が上がって固有振動の振幅が極めて小さくなる。したがって、軸受の振動測定による固有振動数の算出は、軸受の組付けに大きな予圧が必要な環境下ではノイズ成分の影響を受けて難しくなる。このため、固有振動数から軸受の予圧を判定するという従来技術によっては、上記デフ軸受等の軸受の予圧の判定(予圧が予圧規格等の予め定められた規定範囲内にあるかどうかの判定)は困難である。   However, when a large preload is applied to the assembly of the bearing, as in a bearing such as a differential (differential) bearing of an automobile, the spring stiffness of the bearing increases and the amplitude of the natural vibration becomes extremely small. Accordingly, the calculation of the natural frequency by measuring the vibration of the bearing becomes difficult due to the influence of noise components in an environment where a large preload is required for the assembly of the bearing. For this reason, depending on the prior art in which the bearing preload is determined from the natural frequency, determination of the bearing preload such as the differential bearing (determination of whether the preload is within a predetermined range such as a preload standard) It is difficult.

本発明の課題は、デフ軸受等の軸受の組付けにおけるような大きな軸受の予圧に対しても容易にその判定が可能な軸受の予圧判定方法を提供することにある。   An object of the present invention is to provide a bearing preload determination method that can easily determine a large bearing preload as in the assembly of a bearing such as a differential bearing.

上記課題を達成するために、請求項1に記載の発明は、軸受の予圧を高速フーリエ変換を用いて判定する軸受の予圧判定方法において、前記軸受は回転軸を支持する第1,第2軸受を含み、前記第1,第2軸受の振動が伝達可能な、前記第1軸受の近傍及び前記第2軸受の近傍に配置された第1,第2加速度センサからの各回転振動情報に対して高速フーリエ変換を行った後、周波数応答関数に変換し、得られた各周波数応答関数の実数部の絶対値の大きさと、実数部と虚数部とを含めた周波数応答関数の絶対値の大きさとの合算比を演算し、演算された合算比から、前記軸受の軸受ころの固有角振動数を算出し、算出された軸受ころの固有角振動数から軸受の予圧を推定し、推定された予圧が予め定められた規定範囲内にあるかどうかを判定することを特徴とする。
請求項2に記載の発明は、前記軸受がデフ軸受であることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a bearing preload determination method for determining bearing preload using fast Fourier transform, wherein the bearings are first and second bearings that support a rotating shaft. And the rotational vibration information from the first and second acceleration sensors arranged in the vicinity of the first bearing and in the vicinity of the second bearing capable of transmitting the vibrations of the first and second bearings . after a fast Fourier transform, the size of the absolute value of the magnitude and the frequency response function including the real and imaginary parts of the absolute value of the real part of the converted into each frequency response function, the frequency response function obtained The natural angular frequency of the bearing roller of the bearing is calculated from the calculated total ratio , and the bearing preload is estimated from the calculated natural angular frequency of the bearing roller. Whether the preload is within a predetermined range. Characterized in that it constant.
The invention according to claim 2 is characterized in that the bearing is a differential bearing.

本発明によれば、加速度センサからの各回転振動情報に対して高速フーリエ変換を行い周波数応答関数に変換した後において、各周波数応答関数の実数部の絶対値の大きさと、実数部と虚数部とを含めた周波数応答関数の絶対値の大きさとの合算比を演算する。そして、この合算比による軸受ころの固有角振動数に基づいて軸受の予圧判定をするので、同予圧判定をノイズ成分の影響を抑えて行うことができる。したがって、デフ軸受等の軸受の組付けにおけるような大きな軸受の予圧についても容易にその予圧を判定できる。   According to the present invention, after performing a fast Fourier transform on each rotational vibration information from the acceleration sensor and converting it to a frequency response function, the magnitude of the absolute value of each frequency response function, the real part, and the imaginary part And the sum ratio with the magnitude of the absolute value of the frequency response function. Since the bearing preload determination is made based on the natural angular frequency of the bearing roller based on this summing ratio, the preload determination can be performed while suppressing the influence of noise components. Therefore, it is possible to easily determine the preload of a large bearing such as a differential bearing.

本発明による軸受の予圧判定方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the preload determination method of the bearing by this invention. 同上本発明方法が適用される設備構成の一例を模式的に示す図である。It is a figure which shows typically an example of the equipment structure to which this invention method is applied. 図2中の第1,第2加速度センサからの各回転振動情報をFFTにかけて得られた信号波形図である。FIG. 3 is a signal waveform diagram obtained by subjecting each piece of rotational vibration information from the first and second acceleration sensors in FIG. 2 to FFT. 図3に示すFFT出力信号を変換して求められた各周波数応答関数の実数部の大きさGnR(ω)と、実数部と虚数部とを含めた周波数応答関数の大きさGn(ω)とを直交座標系に例示した図である。The magnitude G nR (ω) of the real part of each frequency response function obtained by converting the FFT output signal shown in FIG. 3 and the magnitude G n (ω of the frequency response function including the real part and the imaginary part. ) In an orthogonal coordinate system. 同上各周波数応答関数の実数部の大きさと、実数部と虚数部とを含めた周波数応答関数の大きさとの合算比 f(ω)による軸受ころの固有角振動数Ωの算出を説明するためのグラフである。Same as above for explaining the calculation of the natural angular frequency Ω of the bearing roller by the sum ratio f (ω) of the real part of each frequency response function and the frequency response function including the real part and imaginary part It is a graph. 同上固有角振動数に基づく軸受の予圧判定を説明するためのグラフである。It is a graph for demonstrating the preload determination of a bearing based on a natural angular frequency same as the above.

以下、本発明の実施の形態を図面に基づき説明する。なお、各図間において、同一符号は同一又は相当部分を示す。
図1のフローチャートに示す本実施形態による軸受の予圧判定方法は、例えば図2に示す設備構成を用いて実行される。
図2において1a,1bは、その組付けに比較的大きな予圧が与えられるデフ軸受等の軸受1に備わる第1,第2軸受であり、回転軸2を支持している。
加速度センサ11は、上記軸受1の回転振動情報(加速度:速度変化率)を計測するセンサであり、複数個、図示例では2つの加速度センサ11a,11bが異なる箇所に配置されている。ここでは、第1加速度センサ11aが第1軸受1aの近傍に、第2加速度センサ11bが第2軸受1bの近傍に各々配置されている。
第1,第2加速度センサ11a,11bは、各々高速フーリエ変換回路(以下、FFTと略記する)12に接続され、また、このFFT12は解析装置13に接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shows the same or an equivalent part between each figure.
The bearing preload determination method according to the present embodiment shown in the flowchart of FIG. 1 is executed using, for example, the equipment configuration shown in FIG.
In FIG. 2, 1 a and 1 b are first and second bearings provided in the bearing 1 such as a differential bearing to which a relatively large preload is applied to the assembly, and supports the rotating shaft 2.
The acceleration sensor 11 is a sensor that measures rotational vibration information (acceleration: speed change rate) of the bearing 1. A plurality of acceleration sensors 11 a and 11 b in the illustrated example are arranged at different locations. Here, the first acceleration sensor 11a is disposed in the vicinity of the first bearing 1a, and the second acceleration sensor 11b is disposed in the vicinity of the second bearing 1b.
The first and second acceleration sensors 11 a and 11 b are each connected to a fast Fourier transform circuit (hereinafter abbreviated as FFT) 12, and the FFT 12 is connected to an analysis device 13.

本実施形態による軸受の予圧判定方法は、図1に示すように、まずステップ101において、第1,第2加速度センサ11a,11bからの各回転振動情報をFFT12にかける(回転振動情報に対して高速フーリエ変換を行う)。
図3(a)に第1加速度センサ11aからの回転振動情報の高速フーリエ変換後の信号波形の一例を、図3(b)に第2加速度センサ11bからの回転振動情報の高速フーリエ変換後の信号波形の一例を示す。
第1,第2加速度センサ11a,11bからの各回転振動情報は、予圧が付与され、支持する回転軸2が回転されている状態における軸受1(第1,第2軸受1a,1b)の回転振動情報、具体的には加速度信号である。
As shown in FIG. 1, in the bearing preload determination method according to the present embodiment, first, in step 101, each rotational vibration information from the first and second acceleration sensors 11a and 11b is applied to the FFT 12 (with respect to the rotational vibration information). Fast Fourier transform).
FIG. 3A shows an example of a signal waveform after fast Fourier transform of rotational vibration information from the first acceleration sensor 11a, and FIG. 3B shows an example of a signal waveform after fast Fourier transform of rotational vibration information from the second acceleration sensor 11b. An example of a signal waveform is shown.
The rotational vibration information from the first and second acceleration sensors 11a and 11b is prerotated, and the rotation of the bearing 1 (first and second bearings 1a and 1b) in a state where the rotating shaft 2 to be supported is rotating. Vibration information, specifically acceleration signals.

次にステップ102では、各加速度信号に対する高速フーリエ変換後の信号(FFT12の出力信号)を各々周波数応答関数G(ω)に変換する。
いま、FFT出力信号に対する角振動数ωでの周波数応答関数の大きさ(実数部と虚数部とを含めた絶対値の大きさ)をGn(ω)とし、また、FFT出力信号に対する角振動数ωでの周波数応答関数の実数部の絶対値の大きさをGnR(ω)とする(図4参照)。
ここで、n は加速度センサ11の番号に由来する数値である。したがって本実施形態では、第1加速度センサ11aに由来するGn(ω)、GnR(ω)はG1(ω)、G1R(ω)となり、第2加速度センサ11bに由来するGn(ω)、GnR(ω)はG2(ω)、G2R(ω)となる。
Next, in step 102, the signal (output signal of FFT12) after the fast Fourier transform for each acceleration signal is converted into a frequency response function G (ω).
Now, let G n (ω) be the magnitude of the frequency response function at the angular frequency ω for the FFT output signal (the magnitude of the absolute value including the real part and imaginary part), and the angular vibration for the FFT output signal Let G nR (ω) be the magnitude of the absolute value of the real part of the frequency response function at several ω (see FIG. 4).
Here, n is a numerical value derived from the number of the acceleration sensor 11. Therefore, in this embodiment, G n (ω) and G nR (ω) derived from the first acceleration sensor 11a are G1 (ω) and G1R (ω), and G n (ω) derived from the second acceleration sensor 11b. , G nR (ω) becomes G2 (ω) and G2R (ω).

ステップ103では、第1,第2加速度センサ11a,11bに由来する(各加速度信号に係る)周波数応答関数G(ω)の実数部の絶対値の大きさGnR(ω)と、同じく周波数応答関数G(ω)の実数部と虚数部とを含めた周波数応答関数の絶対値の大きさGn(ω)との合算比 f(ω)(=Σ|GnR(ω)|/Σ|Gn(ω)|)を演算する。
なお、図4から分かるように、固有角振動数Ω付近では、GnR(ω)が0に近づくため f(ω)も0に近づく。つまり、f(ω)≒0の角振動数ωが固有角振動数Ωとなる。
In step 103, the magnitude G nR (ω) of the absolute value of the real part of the frequency response function G (ω) derived from the first and second acceleration sensors 11a and 11b (related to each acceleration signal) is also the frequency response. The total ratio f (ω) (= Σ | G nR (ω) | / Σ | with the magnitude G n (ω) of the absolute value of the frequency response function including the real part and the imaginary part of the function G (ω) G n (ω) |) is calculated.
As can be seen from FIG. 4, in the vicinity of the natural angular frequency Ω, G nR (ω) approaches 0, so f (ω) also approaches 0. That is, the angular frequency ω of f (ω) ≈0 becomes the natural angular frequency Ω.

次にステップ104では、上記合算比 f(ω)から軸受ころ(軸受1のころ部)の固有角振動数Ωを算出する。本実施形態では、ステップ103で演算された合算比 f(ω)より、予め設定した軸受ころの発生角振動数範囲内にてf(ω)=閾値となる点、角振動数 ωlow,ωhigh を割り出す。そして、割り出された角振動数 ωlow,ωhigh 中点を求め、これを固有角振動数Ω〔=(ωlow+ωhigh )/2〕とする(図5参照)。 Next, in step 104, the natural angular frequency Ω of the bearing roller (the roller portion of the bearing 1) is calculated from the total ratio f (ω). In this embodiment, from the sum ratio f (ω) calculated in step 103, f (ω) = threshold value within the preset angular frequency range of the bearing roller, the angular frequency ω low , ω Determine high . Then, the determined midpoints of the angular frequencies ω low and ω high are obtained and set as the natural angular frequencies Ω [= (ω low + ω high ) / 2] (see FIG. 5).

最後にステップ105では、ステップ104で算出された軸受ころの固有角振動数Ωから軸受予圧を推定し、この推定された予圧(予圧推定値)が予め定められた範囲(予圧規定範囲)内、通常は予圧規格内にあるかどうかを判定する(図6参照)。
上記軸受予圧の推定は、予め実験等によって決められた軸受予圧と固有角振動数Ωとの相関係数(図6中の直線イ)によって行われる。
判定結果は、解析装置13の表示器等の出力手段に出力され、外部に報知される。一例として、予圧推定値が予圧規格内にあれば予圧(固有角振動数Ω)OKなるメッセージが、予圧推定値が予圧規格内になければ予圧NGなるメッセージが、解析装置13の表示器に表示される。
本実施形態において、ステップ102〜ステップ105の処理は解析装置13が行っている。
Finally, in step 105, the bearing preload is estimated from the natural angular frequency Ω of the bearing roller calculated in step 104, and the estimated preload (preload estimated value) is within a predetermined range (preload regulation range). Usually, it is determined whether it is within the preload standard (see FIG. 6).
The estimation of the bearing preload is performed by a correlation coefficient (straight line A in FIG. 6) between the bearing preload and the natural angular frequency Ω determined in advance by experiments or the like.
The determination result is output to an output unit such as a display of the analysis apparatus 13 and is notified to the outside. As an example, if the preload estimated value is within the preload standard, a message “preload (natural angular frequency Ω) OK” is displayed on the display unit of the analyzer 13. Is done.
In the present embodiment, the processing from step 102 to step 105 is performed by the analysis device 13.

上述した実施形態によれば、第1,第2加速度センサ11a,11bからの各回転振動情報に対して高速フーリエ変換を行い各々周波数応答関数G(ω)に変換後に次のような処理によって軸受1の予圧を判定するようにした。すなわち、上記の各周波数応答関数G(ω)の実数部の絶対値の大きさGnR(ω)と、実数部と虚数部とを含めた周波数応答関数の絶対値の大きさGnR(ω)との合算比 f(ω)を演算する。そして、この合算比による軸受ころの固有角振動数Ωに基づいて軸受1の予圧を判定するようにして、同予圧判定をノイズ成分の影響を抑えて行うことを可能とした。
したがって、デフ軸受等の軸受1の組付けにおけるような大きな軸受の予圧についても、その予圧が予め定められた範囲(予圧規格等)内にあるかどうかを容易に判定できる。
According to the embodiment described above, the bearings are subjected to the following processing after performing fast Fourier transform on each rotational vibration information from the first and second acceleration sensors 11a and 11b and converting them to frequency response functions G (ω). A preload of 1 was judged. That is, the size G nR absolute value of the real part of each of the above frequency response function G (ω) (ω), the magnitude of the absolute value of the frequency response function, including a real part and an imaginary part G nR (omega ) And the sum ratio f (ω). Then, the preload of the bearing 1 is determined based on the natural angular frequency Ω of the bearing roller based on this summing ratio, and the preload determination can be performed while suppressing the influence of noise components.
Therefore, it is possible to easily determine whether or not the preload of a large bearing such as in the assembly of the bearing 1 such as a differential bearing is within a predetermined range (preload standard or the like).

1,1a,1b:軸受、2:回転軸、11:加速度センサ、12:高速フーリエ変換回路(FFT)、13:解析装置、G(ω):周波数応答関数、GnR(ω):周波数応答関数G(ω)の実数部の大きさ、Gn(ω):周波数応答関数G(ω)の実数部と虚数部とを含めた大きさ、f(ω):GnR(ω)とGnR(ω)との合算比、Ω:固有角振動数。
1, 1a, 1b: bearing, 2: rotating shaft, 11: acceleration sensor, 12: fast Fourier transform circuit (FFT), 13: analyzer, G (ω): frequency response function, G nR (ω): frequency response The size of the real part of the function G (ω), G n (ω): the size including the real part and the imaginary part of the frequency response function G (ω), f (ω): G nR (ω) and G Total ratio with nR (ω), Ω: natural angular frequency.

Claims (2)

軸受の予圧を高速フーリエ変換を用いて判定する軸受の予圧判定方法において、
前記軸受は回転軸を支持する第1,第2軸受を含み、前記第1,第2軸受の振動が伝達可能な、前記第1軸受の近傍及び前記第2軸受の近傍に配置された第1,第2加速度センサからの各回転振動情報に対して高速フーリエ変換を行った後、周波数応答関数に変換し、
得られた各周波数応答関数の実数部の絶対値の大きさと、実数部と虚数部とを含めた周波数応答関数の絶対値の大きさとの合算比を演算し、
演算された合算比から、前記軸受の軸受ころの固有角振動数を算出し、
算出された軸受ころの固有角振動数から軸受の予圧を推定し、
推定された予圧が予め定められた規定範囲内にあるかどうかを判定することを特徴とする軸受の予圧判定方法。
In the bearing preload determination method for determining the bearing preload using fast Fourier transform,
The bearing includes first and second bearings that support a rotating shaft, and is arranged in the vicinity of the first bearing and in the vicinity of the second bearing capable of transmitting vibrations of the first and second bearings . , After performing a fast Fourier transform on each rotational vibration information from the second acceleration sensor, convert to each frequency response function,
Calculate the sum ratio of the magnitude of the absolute value of the real part of each obtained frequency response function and the magnitude of the absolute value of the frequency response function including the real part and the imaginary part,
From the calculated total ratio , the natural angular frequency of the bearing roller of the bearing is calculated,
Estimate the bearing preload from the calculated natural angular frequency of the bearing roller,
A bearing preload determination method, comprising: determining whether the estimated preload is within a predetermined range.
前記軸受がデフ軸受であることを特徴とする請求項1に記載の軸受の予圧判定方法。   The bearing preload determination method according to claim 1, wherein the bearing is a differential bearing.
JP2011256099A 2011-11-24 2011-11-24 Bearing preload judgment method Active JP5828271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011256099A JP5828271B2 (en) 2011-11-24 2011-11-24 Bearing preload judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011256099A JP5828271B2 (en) 2011-11-24 2011-11-24 Bearing preload judgment method

Publications (2)

Publication Number Publication Date
JP2013108934A JP2013108934A (en) 2013-06-06
JP5828271B2 true JP5828271B2 (en) 2015-12-02

Family

ID=48705819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011256099A Active JP5828271B2 (en) 2011-11-24 2011-11-24 Bearing preload judgment method

Country Status (1)

Country Link
JP (1) JP5828271B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130566A (en) * 1997-07-10 1999-02-02 Masaaki Okuma Vibration-characteristic analyzer
JP3551033B2 (en) * 1998-08-28 2004-08-04 日本精工株式会社 Apparatus and method for evaluating bearing stiffness
JP2003004593A (en) * 2001-06-20 2003-01-08 Koyo Seiko Co Ltd Method and apparatus for measuring pre-load of bearing device

Also Published As

Publication number Publication date
JP2013108934A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
Ocak et al. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data
Cong et al. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis
Yamamoto et al. A smart experimental setup for vibration measurement and imbalance fault detection in rotating machinery
US8380450B2 (en) Determination of blade vibration frequencies and/or amplitudes
US9097575B2 (en) Method and device for monitoring torsional vibrations of a rotary shaft of a turbine engine
JP2013221877A (en) Abnormality inspection method and abnormality inspection device
Shrivastava et al. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique
Zou et al. Application of augmented Kalman filter to identify unbalance load of rotor-bearing system: Theory and experiment
JP6975031B2 (en) Bearing inspection equipment
Bourdon et al. Introducing angularly periodic disturbances in dynamic models of rotating systems under non-stationary conditions
Chandra et al. Swept sine testing of rotor-bearing system for damping estimation
US11385111B2 (en) System and method for determining bearing preload by vibration measurement
Pedotti et al. Fault diagnostics in rotary machines through spectral vibration analysis using low-cost MEMS devices
JP2011232334A (en) Axial vibration monitoring for detecting shaft misalignment in turbomachinery train
JP2013213817A (en) Systems and methods of identifying types of faults
JP5884415B2 (en) Torque measuring device
JP2011174824A (en) Apparatus for evaluation of bearing rigidity
Pennacchi et al. Effectiveness of MED for fault diagnosis in roller bearings
Xu et al. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis
JP5828271B2 (en) Bearing preload judgment method
JP4753654B2 (en) Evaluation method for rolling bearing parts
JP7188464B2 (en) ANALYSIS DEVICE, ANALYSIS METHOD, AND PROGRAM
JP2013033477A (en) Computing device and methods for presenting data to identify faults within power systems
KR101420519B1 (en) Device and Method for Measuring dynamic characteristic of air bearing
JP5930190B2 (en) Engine tachometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R151 Written notification of patent or utility model registration

Ref document number: 5828271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151