JP2011174824A - Apparatus for evaluation of bearing rigidity - Google Patents

Apparatus for evaluation of bearing rigidity Download PDF

Info

Publication number
JP2011174824A
JP2011174824A JP2010039476A JP2010039476A JP2011174824A JP 2011174824 A JP2011174824 A JP 2011174824A JP 2010039476 A JP2010039476 A JP 2010039476A JP 2010039476 A JP2010039476 A JP 2010039476A JP 2011174824 A JP2011174824 A JP 2011174824A
Authority
JP
Japan
Prior art keywords
bearing
vibration
inner ring
outer ring
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010039476A
Other languages
Japanese (ja)
Inventor
Keiji Yasunaga
圭司 安永
Kinji Yugawa
謹次 湯川
Yasuyuki Muto
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010039476A priority Critical patent/JP2011174824A/en
Publication of JP2011174824A publication Critical patent/JP2011174824A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing rigidity evaluation apparatus, capable of accurately determining the quality of the bearing rigidity of a bearing with an outer ring shape having right-to-left asymmetry and vertical asymmetry. <P>SOLUTION: The bearing rigidity evaluation apparatus for evaluating the bearing rigidity of a bearing such as a double row bearing and a combinational bearing to which a pre-load has been applied includes an outer-ring-fixing device for fixing the outer ring of the bearing, a shaking device for providing vibrations of a prescribed frequency in an axial direction for either the inner ring of the bearing or a shaft fitted in the inner ring, and a vibration detector for detecting vibrations at the position of the axial center of either the inner ring or the shaft fitted in the inner ring. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、予圧が付与された複列軸受、組合せ軸受などの転がり軸受、特に車輪支持用のハブユニット軸受に対する軸受剛性を評価する軸受剛性評価装置に関する。   The present invention relates to a bearing stiffness evaluation apparatus that evaluates bearing stiffness for rolling bearings such as double row bearings and combination bearings to which preload is applied, particularly hub unit bearings for supporting wheels.

従来より、このような転がり軸受においては、軸受が組み込まれる機械の性能面から高剛性が要求されている。しかし、予圧量を多くして剛性を高くし過ぎると、予圧過大となって軸受性能(摩擦モーメント増大、異常発熱、疲れ寿命など)の低下を招いてしまう。従って、軸受の剛性値を予圧量と関連付けながら一定の範囲内で制御する必要がある。   Conventionally, in such a rolling bearing, high rigidity is required from the viewpoint of the performance of the machine in which the bearing is incorporated. However, if the amount of preload is increased to increase the rigidity too much, the preload becomes excessive and the bearing performance (increased friction moment, abnormal heat generation, fatigue life, etc.) is reduced. Therefore, it is necessary to control the rigidity value of the bearing within a certain range while associating it with the preload amount.

従来より、この軸受の剛性値を予圧量と関連付けて測定するための手段として、内外輪を固定しない状態の軸受において内輪を軸受軸方向(以下、軸方向と言う)から加振し、内輪または内輪に嵌合した軸体(以下、内輪と言う)および外輪の加振位置に対して軸方向端面に設けられた振動検出センサから軸方向振動を検出することにより剛性評価を行う方法が知られている。この方法は、外輪および内輪を質点とし、軸受を内輪−ばね(転動体)−外輪の2自由度系とする振動モデルを用いるもので、図5(b)のように模式的に示される。この図のように、軸方向の振動Vを内輪に付与し、軸受に負荷された予圧量および軸受剛性に敏感な、外輪および内輪の軸方向振動を検出する。この振動から軸受の固有振動数を求め、その大きさに基づき剛性の良否が判定される。   Conventionally, as a means for measuring the rigidity value of this bearing in association with the amount of preload, the inner ring is vibrated from the bearing axial direction (hereinafter referred to as the axial direction) in a bearing in which the inner and outer rings are not fixed, There is a known method for evaluating rigidity by detecting axial vibration from a vibration detecting sensor provided on an axial end surface of a shaft body (hereinafter referred to as an inner ring) fitted to an inner ring and an excitation position of an outer ring. ing. This method uses a vibration model having an outer ring and an inner ring as mass points and a bearing having a two-degree-of-freedom system of an inner ring-spring (rolling element) -outer ring, and is schematically shown in FIG. 5B. As shown in this figure, an axial vibration V is applied to the inner ring, and axial vibrations of the outer ring and the inner ring, which are sensitive to the amount of preload applied to the bearing and the bearing rigidity, are detected. The natural frequency of the bearing is obtained from this vibration, and the quality of the rigidity is determined based on the magnitude.

近年、車輪支持用のハブユニット軸受において、外輪フランジ部分が、軸受軸方向に垂直な平面上における上下左右(以下、上下左右と云う)で非対称形状を有するものが増えている。このような軸受の剛性評価を従来の外輪を固定しない状態で振動させる方法で行った場合、外輪フランジ部の質量分布が上下左右で非対称となるため、図5(c)のように、外輪にモーメントMが負荷され、外輪は軸方向以外の方向にも振動してしまう。その結果、外輪の軸方向振動の検出が難しく、固有振動数の検出が困難となり、剛性の良否の正確な誤判定が出る虞がある。この問題を解決する手法として、特許文献1には、内輪を固定した状態で内輪を軸方向に加振し、内輪に設けた一つのセンサと外輪に設けた複数のセンサから、外輪および内輪の振動を検出する手法が記載されている。この方法では、図5(d)のように、内輪の振動と、外輪の複数個所に設置された各センサの振動との位相差が得られる。この位相差から軸方向成分およびそれ以外の複数の振動成分を得ることができ、ここから軸方向振動を特定することにより固有振動数を求め、剛性を評価している。   In recent years, in hub unit bearings for supporting wheels, an outer ring flange portion has an increasing number of asymmetrical shapes in the upper, lower, left, and right sides (hereinafter referred to as upper, lower, left, and right) on a plane perpendicular to the bearing axial direction. When the conventional rigidity evaluation of the bearing is performed by a method of vibrating without fixing the outer ring, the mass distribution of the outer ring flange portion is asymmetrical in the vertical and horizontal directions, and as shown in FIG. The moment M is applied, and the outer ring vibrates in directions other than the axial direction. As a result, it is difficult to detect the axial vibration of the outer ring, it is difficult to detect the natural frequency, and there is a possibility that an accurate erroneous determination of whether the rigidity is good or not may occur. As a technique for solving this problem, Patent Document 1 discloses that the inner ring is vibrated in the axial direction while the inner ring is fixed, and one sensor provided on the inner ring and a plurality of sensors provided on the outer ring are used. A technique for detecting vibration is described. In this method, as shown in FIG. 5D, the phase difference between the vibration of the inner ring and the vibration of each sensor installed at a plurality of locations of the outer ring is obtained. From this phase difference, an axial component and a plurality of other vibration components can be obtained. From this, the natural frequency is obtained by specifying the axial vibration, and the rigidity is evaluated.

特開2000−74788号公報JP 2000-74788 A

しかし、特許文献1の方法では、振動信号から複数の振動成分を抽出するために、外輪の振動を検出するセンサが少なくとも2つは必要となってしまう。また、複雑な計算も必要となり、剛性の評価に時間がかかるという問題がある。以上の観点から、本発明は、予圧が付与された軸受、特に上下左右で非対称な外輪形状を有する軸受の軸受剛性の良否を正確に判定することができる軸受剛性評価装置を提供することを第一の目的としている。また、剛性評価のための振動信号の処理を高速化し、低コストな軸受剛性評価装置を提供することを第二の目的としている。   However, in the method of Patent Document 1, in order to extract a plurality of vibration components from the vibration signal, at least two sensors for detecting the vibration of the outer ring are required. In addition, complicated calculation is required, and there is a problem that it takes time to evaluate rigidity. In view of the above, the present invention provides a bearing rigidity evaluation apparatus that can accurately determine the quality of bearing rigidity of a bearing provided with preload, particularly a bearing having an asymmetric outer ring shape in the upper, lower, left, and right directions. One purpose. Another object of the present invention is to provide a low-cost bearing rigidity evaluation apparatus that speeds up processing of vibration signals for rigidity evaluation.

本発明の上記目的は、下記の構成により達成される。
(1)予圧が付与された複列軸受、組合せ軸受などの軸受に対する軸受剛性を評価する軸受剛性評価装置において、前記軸受の外輪を固定する外輪固定手段と、前記軸受の内輪と該内輪に嵌合された軸体とのいずれか一方に軸方向に所定周波数の振動を与える加振装置と、前記内輪と該内輪に嵌合された軸体とのいずれか一方の軸中心位置での振動を検出する振動検出手段と、を備えることを特徴とする軸受剛性評価装置。
(2)前記外輪固定手段は、空圧チャック、油圧チャック、マグネットチャック、または真空チャックのいずれかであることを特徴とする請求項1に記載の軸受剛性評価装置。
(3)前記振動検出手段は、変位型センサ、速度型センサ、または加速度型センサのいずれかであることを特徴とする請求項1に記載の軸受剛性評価装置。
(4)前記振動検出手段から出力された振動信号をFFT分析し、FFT分析から得られた周波数波形から軸受予圧と相関の高い周波数ピークを抽出するFFT分析部と、前記周波数ピークを予め設定した周波数範囲と比較し、軸受剛性の良否を判定する比較判定部と、前記判定の結果を表示または記録する表示/記録部と、を備えることを特徴とする請求項1乃至3に記載の軸受剛性評価装置。
The above object of the present invention can be achieved by the following constitution.
(1) In a bearing rigidity evaluation apparatus for evaluating bearing rigidity of a bearing such as a double row bearing or a combination bearing to which preload is applied, an outer ring fixing means for fixing an outer ring of the bearing, an inner ring of the bearing, and an inner ring fitted to the inner ring Vibration at a center position of either the inner ring or the shaft fitted to the inner ring is applied to a vibration device that applies a predetermined frequency vibration in the axial direction to any one of the combined shaft bodies. And a vibration detecting means for detecting the bearing rigidity.
(2) The bearing rigidity evaluation apparatus according to claim 1, wherein the outer ring fixing means is any one of a pneumatic chuck, a hydraulic chuck, a magnet chuck, and a vacuum chuck.
(3) The bearing rigidity evaluation apparatus according to claim 1, wherein the vibration detecting means is any one of a displacement type sensor, a speed type sensor, and an acceleration type sensor.
(4) FFT analysis is performed on the vibration signal output from the vibration detection means, and a frequency peak highly correlated with the bearing preload is extracted from the frequency waveform obtained from the FFT analysis, and the frequency peak is set in advance. The bearing rigidity according to any one of claims 1 to 3, further comprising: a comparison determination unit that determines whether the bearing rigidity is good or bad compared with a frequency range; and a display / recording unit that displays or records a result of the determination. Evaluation device.

以上のような構成により、本発明に係る軸受剛性評価装置は、外輪が固定されているため、加振器により外輪は振動することはない。すなわち、図5(a)に模式的に示すように、内輪−バネ(転動体)の1自由度系となる。そのため、上下左右で非対称な外輪形状を有する軸受であっても、その形状の影響を受けることなく、内輪の軸方向振動を正確に検知することができるので、軸受の固有振動数の正確な算出が可能となる。その結果、上下左右で非対称な外輪形状を有する軸受でも予圧量および軸受剛性の良否を正確に判定することができる。また、予圧量および剛性値の評価において、内輪または該内輪に嵌合した軸体の軸方向振動のみを考慮すればよいので、判定のための振動信号の処理が高速化できる。さらに、内輪または該内輪に嵌合した軸体の軸方向振動のみを検出すればよいので、振動センサが一つで良く低コストとなる。このため、本発明の軸受剛性評価装置は、外輪やその他の要素が非対称形状を有さない軸受にも有効である。   With the configuration as described above, the outer ring is not vibrated by the vibrator because the outer ring is fixed in the bearing rigidity evaluation apparatus according to the present invention. That is, as schematically shown in FIG. 5 (a), an inner ring-spring (rolling element) one-degree-of-freedom system is formed. Therefore, even for bearings with an outer ring shape that is asymmetrical in the vertical and horizontal directions, it is possible to accurately detect the axial vibration of the inner ring without being affected by the shape, so that the natural frequency of the bearing can be accurately calculated. Is possible. As a result, it is possible to accurately determine the quality of the preload and the bearing rigidity even in a bearing having an outer ring shape that is asymmetrical in the vertical and horizontal directions. Further, in the evaluation of the preload amount and the rigidity value, it is only necessary to consider the axial vibration of the inner ring or the shaft body fitted to the inner ring, so that the processing of the vibration signal for determination can be speeded up. Furthermore, since it is only necessary to detect the axial vibration of the inner ring or the shaft fitted to the inner ring, only one vibration sensor is required and the cost is reduced. For this reason, the bearing rigidity evaluation apparatus of the present invention is also effective for a bearing in which the outer ring and other elements do not have an asymmetric shape.

本発明の第1実施形態に係る軸受剛性評価装置の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a bearing stiffness evaluation apparatus according to a first embodiment of the present invention. 外輪を固定した場合としていない場合の周波数スペクトルである。It is a frequency spectrum when the outer ring is not fixed. 本発明の第2実施形態に係る軸受剛性評価装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the bearing rigidity evaluation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る軸受剛性評価装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the bearing rigidity evaluation apparatus which concerns on 3rd Embodiment of this invention. 本発明および従来の剛性評価を行う方法を示す模式図である。It is a schematic diagram which shows the method of performing this invention and the conventional rigidity evaluation.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の軸受剛性評価装置の第1実施形態の全体構成を示すブロック図である。本実施形態に係る軸受剛性評価装置10は、図1に示すように、予圧が付与された軸受に所定の周波数の振動を与える加振部1と、軸受の内輪の振動を検出するための振動検出部2と、検出された軸受の内輪の振動から軸受の剛性を求めるとともに、その求めた軸受剛性から軸受に付与された予圧を算出するための演算処理部3と、外輪を固定するための外輪固定部5と、を備え、本装置には、自動車の車輪に取り付けられるハブユニット軸受4が被測定軸受として取り付けられている。
(First embodiment)
FIG. 1 is a block diagram showing the overall configuration of the first embodiment of the bearing stiffness evaluation apparatus of the present invention. As shown in FIG. 1, the bearing stiffness evaluation apparatus 10 according to the present embodiment includes a vibration unit 1 that applies vibration of a predetermined frequency to a bearing to which preload is applied, and vibration for detecting vibration of an inner ring of the bearing. The detecting unit 2, the rigidity of the bearing is obtained from the detected vibration of the inner ring of the bearing, the arithmetic processing unit 3 for calculating the preload applied to the bearing from the obtained bearing rigidity, and the outer ring for fixing The hub unit bearing 4 attached to the wheel of the automobile is attached to the apparatus as a bearing to be measured.

被測定軸受であるハブユニット軸受4は、内周に2列の転走面が形成された外輪42と、外輪42の一方の転走面に対向する転走面が外周に形成されたハブシャフト41と、外輪42の他方の転走面に対向する転走面が外周に形成された内輪部材45とを有し、内輪部材45はハブシャフト41に圧入され、内輪部材45とハブシャフト41とは互いに協働して外輪42に対する内輪を構成する。外輪42とハブシャフト41および内輪部材45との間にはボール43,44が挿入されている。ハブシャフト41の一方の端部にはハブフランジ41aが一体に形成され、該フランジ41aにはハブユニット軸受4を取付対象部位に固定するためのボルトを受け入れるための複数の穴(図示せず)が設けられている。ハブシャフト41の途中部位には肩部が形成されているとともに、他方の端部には、ナット46を螺合するねじ部41bが形成されている。内輪部材45は、その端部がハブシャフト41の前記肩部に押し当てられながらねじ部41bに螺合されているナット46により締め付けられ、この締付けにより外輪42とハブシャフト41および内輪部材45間のボール43,44に対して予圧が付与されている。また、外輪42とハブシャフト41とが互いに対向する端面間には、負隙間が形成されている。さらに、外輪42の外周面の軸方向略中間位置に円環状リブが形成され、この円環状リブにはボルト挿通穴(図示せず)を有して径方向外方に向かって延びる複数個の外輪フランジ42aが周方向に任意の間隔を存して形成されている。   The hub unit bearing 4 which is a bearing to be measured includes an outer ring 42 having two rows of rolling surfaces formed on the inner periphery, and a hub shaft having a rolling surface facing one of the rolling surfaces of the outer ring 42 formed on the outer periphery. 41, and an inner ring member 45 having a rolling surface facing the other rolling surface of the outer ring 42 formed on the outer periphery. The inner ring member 45 is press-fitted into the hub shaft 41, and the inner ring member 45, the hub shaft 41, Cooperate with each other to form an inner ring for the outer ring 42. Balls 43 and 44 are inserted between the outer ring 42, the hub shaft 41 and the inner ring member 45. A hub flange 41a is integrally formed at one end of the hub shaft 41, and a plurality of holes (not shown) for receiving bolts for fixing the hub unit bearing 4 to a mounting target portion are formed in the flange 41a. Is provided. A shoulder portion is formed at an intermediate portion of the hub shaft 41, and a screw portion 41b into which the nut 46 is screwed is formed at the other end portion. The inner ring member 45 is tightened by a nut 46 that is screwed into the threaded portion 41b while the end portion of the inner ring member 45 is pressed against the shoulder portion of the hub shaft 41. By this tightening, the outer ring 42 is connected to the hub shaft 41 and the inner ring member 45. A preload is applied to the balls 43 and 44. Further, a negative gap is formed between the end faces where the outer ring 42 and the hub shaft 41 face each other. Further, an annular rib is formed at a substantially intermediate position in the axial direction on the outer peripheral surface of the outer ring 42, and the annular rib has a plurality of bolt insertion holes (not shown) and extends radially outward. The outer ring flange 42a is formed at an arbitrary interval in the circumferential direction.

この外輪フランジ42aは、外輪固定部5により挟持され固定される。すなわち、外輪固定部5は、外輪フランジ42aを挟持する断面コ字状の溝を有し、複数に分割されたチャック部51と、チャック部51を保持し加振器1を内包する筐体部52と、を備える。筐体部52は、図1に示すように、加振器1を設置するための底板部52aと、チャック部51を保持するための中板部52bと上板部52cおよび側板52dと、から成る。側板52dのチャック部51と対向する部分には、少なくとも油または空気を注入するための注入孔52eが設けられている。   The outer ring flange 42a is clamped and fixed by the outer ring fixing portion 5. That is, the outer ring fixing portion 5 has a U-shaped groove that sandwiches the outer ring flange 42 a, a chuck portion 51 that is divided into a plurality, and a housing portion that holds the chuck portion 51 and encloses the vibrator 1. 52. As shown in FIG. 1, the housing 52 includes a bottom plate 52 a for installing the vibrator 1, a middle plate 52 b, an upper plate 52 c and a side plate 52 d for holding the chuck 51. Become. An injection hole 52e for injecting at least oil or air is provided in a portion of the side plate 52d facing the chuck portion 51.

このような構成の外輪固定部5において、外輪フランジ42aをチャック部51に挟持した後、支持箱52の外方に設置されたポンプ等からこの注入孔52eへ油又は空気等を注入して、チャック部51をハブユニット軸受4の中心軸方向(径方向内方)へ移動させながら加圧することで、外輪フランジ42aは支持固定され、ハブユニット軸受4の外輪42は外輪固定部5に固定される。すなわち、チャック部51は油圧チャックまたは空圧チャックとなる仕組みである。   In the outer ring fixing portion 5 having such a configuration, after the outer ring flange 42a is sandwiched between the chuck portions 51, oil or air is injected into the injection hole 52e from a pump or the like installed outside the support box 52, The outer ring flange 42a is supported and fixed by moving the chuck portion 51 in the direction of the center axis (inward in the radial direction) of the hub unit bearing 4, and the outer ring 42 of the hub unit bearing 4 is fixed to the outer ring fixing portion 5. The That is, the chuck portion 51 is a mechanism that becomes a hydraulic chuck or a pneumatic chuck.

加振部1は、測定周波数帯の下限から上限周波数まで高速に正弦波を掃引する電圧波形を発生する発振器1aと、発振器1aから発生された電圧波形に対応する振幅および周波数を有する加振力を発生する動電型加振機1bと、動電型加振機1bで発生された加振力をハブユニット軸受4のハブシャフト41に伝達するための加振棒1cと、ハブユニット軸受4の第1の内輪41を設置するための内輪設置台1dとを有し、内輪設置台1d上には第1の内輪41のフランジ部41aが載置されている。ここでは、測定周波数帯域として1〜5kHzが設定され、振幅が一定である正弦波を掃引して電圧波形を発生することにより、1〜5kHzで振幅一定の加振力を発生するように設定されている。よって、上記加振力によりハブユニット軸受4には振動が励起される。発振器からハブシャフト41に付与される振動が、加振棒1c以外からハブユニット軸受4に伝わらないように、動電型加振機1bと内輪設置台1dとの間、および内輪設置台1dと外輪固定部5の側板52dとの間には隙間が形成されている。また同様の理由から、動電型加振機1bと内輪設置台1dは、防振ゴム等の防振材1eを介して、外輪固定部5の底板部52aの上に設置される。   The excitation unit 1 includes an oscillator 1a that generates a voltage waveform that sweeps a sine wave at high speed from the lower limit to the upper limit frequency of the measurement frequency band, and an excitation force that has an amplitude and a frequency that correspond to the voltage waveform generated from the oscillator 1a. , An exciter 1c for transmitting the excitation force generated by the electrodynamic exciter 1b to the hub shaft 41 of the hub unit bearing 4, and the hub unit bearing 4 The inner ring installation base 1d for installing the first inner ring 41 is provided, and the flange portion 41a of the first inner ring 41 is placed on the inner ring installation base 1d. Here, 1 to 5 kHz is set as a measurement frequency band, and a voltage waveform is generated by sweeping a sine wave having a constant amplitude, so that an excitation force having a constant amplitude is generated at 1 to 5 kHz. ing. Therefore, vibration is excited in the hub unit bearing 4 by the excitation force. The vibration applied to the hub shaft 41 from the oscillator is not transmitted to the hub unit bearing 4 from other than the excitation rod 1c, and between the electrodynamic exciter 1b and the inner ring installation table 1d, and the inner ring installation table 1d. A gap is formed between the outer ring fixing portion 5 and the side plate 52d. For the same reason, the electrodynamic exciter 1b and the inner ring mounting base 1d are installed on the bottom plate portion 52a of the outer ring fixing portion 5 via a vibration isolating material 1e such as a vibration isolating rubber.

振動検知部2は、振動検出センサ21と、増幅器22と、を備える。振動検出センサ21はハブシャフト41の中心位置に配置され、検出したハブシャフト41の軸方向の振動波形を電圧信号として出力する。この振動検出センサ21には、変位型や速度型、加速度型の振動検出センサを用いることができる。振動検出センサ21から出力された電圧信号は、増幅器22により増幅された後、演算処理部3へ送信される。   The vibration detection unit 2 includes a vibration detection sensor 21 and an amplifier 22. The vibration detection sensor 21 is disposed at the center position of the hub shaft 41, and outputs the detected vibration waveform in the axial direction of the hub shaft 41 as a voltage signal. The vibration detection sensor 21 may be a displacement type, speed type, or acceleration type vibration detection sensor. The voltage signal output from the vibration detection sensor 21 is amplified by the amplifier 22 and then transmitted to the arithmetic processing unit 3.

演算処理部3は、FFT分析部31と、比較判定部32と、表示/記録部33と、を有する。演算処理部3へ送信された電圧信号は、まずFFT分析部31へ入力され、ここで入力された電圧信号を高速フーリエ変換(FFT;Fast Fourier Transform)し、周波数スペクトルデータが算出され、少なくとも一つの、軸受予圧と相関の高い周波数ピーク、すなわち固有振動数を表す周波数ピークが抽出される。次に、該周波数ピークは比較判定部32へ送信され、予め設定された周波数範囲と比較され、この範囲内に該周波数ピークが存在するか否かで予圧量および剛性の良否が判定される。比較判定部32にて得られた結果は、表示/記録部33に送信されて、モニター等の画面上に表示されると共に、記録される。この演算処理部3は、例えば、既存のオペレーションシステムと剛性評価実行用ソフトウェアアプリケーションがインストールされたパーソナルコンピュータを用いて構成してもよいし、各部毎に独立した処理回路や、保存回路から構成される演算ユニットとして構成してもよい。   The arithmetic processing unit 3 includes an FFT analysis unit 31, a comparison determination unit 32, and a display / recording unit 33. The voltage signal transmitted to the arithmetic processing unit 3 is first input to the FFT analysis unit 31, and the input voltage signal is subjected to fast Fourier transform (FFT) to calculate frequency spectrum data. One frequency peak having a high correlation with the bearing preload, that is, a frequency peak representing the natural frequency is extracted. Next, the frequency peak is transmitted to the comparison / determination unit 32, compared with a preset frequency range, and whether the preload amount and the rigidity are good or not is determined based on whether or not the frequency peak exists within this range. The result obtained by the comparison / determination unit 32 is transmitted to the display / recording unit 33 and displayed and recorded on the screen of a monitor or the like. The arithmetic processing unit 3 may be configured using, for example, an existing operation system and a personal computer in which a rigidity evaluation execution software application is installed, or may be configured by an independent processing circuit or storage circuit for each unit. You may comprise as an arithmetic unit.

ここで、予圧量および剛性の良否判定に用いられる前記周波数範囲の決定方法について説明する。まず、軸受剛性の被測定物のマスターを軸受剛性評価装置10に設置する。マスターを加振して得られた周波数スペクトルデータから、固有振動数を示す一次モードから数次モードの周波数が得られる。そのうち最も高いピークを示すモードの周波数を指標とし、適正な予圧範囲を負荷した場合における該モードの周波数範囲を得る。これが前記判定に用いる周波数範囲となる。   Here, a method of determining the frequency range used for determining the quality of the preload amount and the rigidity will be described. First, a master of an object to be measured for bearing rigidity is installed in the bearing rigidity evaluation apparatus 10. From the frequency spectrum data obtained by exciting the master, the frequency of the first order mode to the second order mode indicating the natural frequency can be obtained. The frequency range of the mode when the appropriate preload range is loaded is obtained using the frequency of the mode showing the highest peak as an index. This is the frequency range used for the determination.

図2(a)は、外輪を固定して測定されたハブユニット軸受4の周波数スペクトルである。また図2(b)は、従来の方法のようにハブユニット軸受4の外輪42を固定しない方法で得られた周波数スペクトルである。横軸は周波数(Hz)、縦軸は周波数レベルを、また太線は予圧が大きい場合、細線は予圧が小さい場合を示している。   FIG. 2A is a frequency spectrum of the hub unit bearing 4 measured with the outer ring fixed. FIG. 2B is a frequency spectrum obtained by a method in which the outer ring 42 of the hub unit bearing 4 is not fixed as in the conventional method. The horizontal axis indicates the frequency (Hz), the vertical axis indicates the frequency level, the thick line indicates the case where the preload is large, and the thin line indicates the case where the preload is small.

従来のように外輪42を固定しなかった場合、図2(b)のように、各波形に複数の周波数スペクトルのピークが見られる。この中で軸受の固有振動数の周波数を表すピークはF3およびF4のみであり、その他のピークは軸方向振動以外に関するピークである。このように、軸受の固有振動数の周波数を表すピークと同等以上のピークがある場合、剛性評価の過程において、予め設定された前記周波数範囲と比較すべき固有振動数の周波数を表すピークとして、F3、F4以外のピークを選出してしまうなど、このようなピークは誤判定の原因となる可能性がある。   When the outer ring 42 is not fixed as in the prior art, a plurality of frequency spectrum peaks are observed in each waveform as shown in FIG. Among them, the peak representing the frequency of the natural frequency of the bearing is only F3 and F4, and the other peaks are peaks related to those other than axial vibration. Thus, when there is a peak equivalent to or higher than the peak representing the frequency of the natural frequency of the bearing, in the process of rigidity evaluation, as a peak representing the frequency of the natural frequency to be compared with the preset frequency range, Such peaks, such as selecting peaks other than F3 and F4, may cause misjudgment.

一方、外輪42を固定した場合、図2(a)のように、各波形に1つずつ周波数スペクトルのピークF1、F2を得ることができる。このピークF1およびF2が、軸受の固有振動数の周波数を表すピークである。図2(b)のように誤判定の原因となるピークが存在していないことがわかる。すなわち、本実施形態の剛性評価装置10を用いることにより、予圧量、すなわち軸受剛性の良否を正確に判定することができる。   On the other hand, when the outer ring 42 is fixed, peaks F1 and F2 of the frequency spectrum can be obtained for each waveform as shown in FIG. These peaks F1 and F2 are peaks representing the frequency of the natural frequency of the bearing. As shown in FIG. 2B, it can be seen that there is no peak that causes erroneous determination. That is, by using the rigidity evaluation apparatus 10 of the present embodiment, it is possible to accurately determine the preload amount, that is, the quality of the bearing rigidity.

以上のような構成により、本実施形態に係る軸受剛性評価装置10では、外輪固定部5に備えられたチャック部51により外輪フランジ42aが挟持され外輪42が固定されているため、加振器1により外輪42は振動することはない。すなわち、図5(a)に模式的に示すように、ハブシャフト(内輪)−バネ(転動体)の1自由度系となる。このため、上下左右で非対称な形状を有する外輪42の影響を受けることなく、ハブシャフト41の軸方向振動を正確に検知することができるので、軸受の固有振動数の正確な算出が可能となる。その結果、上下左右で非対称な外輪を有する軸受でも予圧量および軸受剛性の良否を正確に判定することができる。   With the configuration as described above, in the bearing stiffness evaluation apparatus 10 according to the present embodiment, the outer ring flange 42a is sandwiched and the outer ring 42 is fixed by the chuck portion 51 provided in the outer ring fixing portion 5, and therefore the vibrator 1 Thus, the outer ring 42 does not vibrate. That is, as schematically shown in FIG. 5A, a one-degree-of-freedom system of hub shaft (inner ring) -spring (rolling element) is provided. For this reason, the axial vibration of the hub shaft 41 can be accurately detected without being affected by the outer ring 42 having an asymmetrical shape in the vertical and horizontal directions, so that the natural frequency of the bearing can be accurately calculated. . As a result, it is possible to accurately determine whether the preload amount and the bearing rigidity are good or bad even with a bearing having an asymmetric outer ring in the vertical and horizontal directions.

また、予圧量及び剛性値の評価においてハブシャフト41の振動のみを考慮すればよいので、判定のための振動信号の処理が高速化できる。さらに、ハブシャフト41の振動のみを検出すればよいので、振動センサが一つで良く低コストとなる。このため、本実施形態の軸受剛性評価装置は、外輪やその他の要素が非対称形状を有さない軸受にも有効である。   Further, since only the vibration of the hub shaft 41 needs to be considered in the evaluation of the preload amount and the rigidity value, the processing of the vibration signal for determination can be speeded up. Furthermore, since only the vibration of the hub shaft 41 needs to be detected, a single vibration sensor is sufficient and the cost is reduced. For this reason, the bearing rigidity evaluation apparatus of this embodiment is also effective for a bearing in which the outer ring and other elements do not have an asymmetric shape.

(第2実施形態)
図3は本発明の軸受剛性評価装置の第2実施形態の全体構成を示すブロック図である。本実施形態に係る軸受剛性評価装置20では、図3に示すように、マグネットチャック53により外輪フランジ42aが挟持され、外輪固定部5に外輪42が固定される構成となっている。このような構成により、図1のように油または空気を注入するための注入孔やポンプ等が必要なく、剛性評価および装置製造のためのコストが低くなる。その他の構成および作用効果は第1実施形態と同様である。
(Second Embodiment)
FIG. 3 is a block diagram showing the overall configuration of the second embodiment of the bearing stiffness evaluation apparatus of the present invention. In the bearing rigidity evaluation apparatus 20 according to the present embodiment, as shown in FIG. 3, the outer ring flange 42 a is sandwiched by the magnet chuck 53 and the outer ring 42 is fixed to the outer ring fixing portion 5. With such a configuration, there is no need for an injection hole or a pump for injecting oil or air as shown in FIG. 1, and the cost for rigidity evaluation and device manufacture is reduced. Other configurations and operational effects are the same as those of the first embodiment.

(第3実施形態)
図4は本発明の軸受剛性評価装置の第3実施形態の全体構造を示すブロック図である。本実施形態に係る軸受剛性評価装置30では、図4に示すように、真空チャック54により外輪フランジ42aが挟持され、外輪固定部5に外輪42が固定される構成となっている。すなわち、外輪固定部5は、底板部52aと側板52dとを有する筐体部52と、真空チャック54と、から成り、真空チャック54は、挟持部54aで外輪フランジ42aを挟持し、挟持部54aと外輪フランジ42aとの間の微小空間Sに存在する空気を排気口54bから排気して、該空間Sを負圧とすることで外輪42を外輪固定部5に固定する。その他の構成および作用効果は第1実施形態と同様である。
(Third embodiment)
FIG. 4 is a block diagram showing the overall structure of a third embodiment of the bearing stiffness evaluation apparatus of the present invention. In the bearing stiffness evaluation apparatus 30 according to the present embodiment, as shown in FIG. 4, the outer ring flange 42 a is sandwiched by the vacuum chuck 54, and the outer ring 42 is fixed to the outer ring fixing portion 5. That is, the outer ring fixing portion 5 includes a housing portion 52 having a bottom plate portion 52a and a side plate 52d, and a vacuum chuck 54. The vacuum chuck 54 sandwiches the outer ring flange 42a by the sandwiching portion 54a, and the sandwiching portion 54a. The air existing in the minute space S between the outer ring flange 42a is exhausted from the exhaust port 54b, and the outer ring 42 is fixed to the outer ring fixing portion 5 by setting the space S to a negative pressure. Other configurations and operational effects are the same as those of the first embodiment.

なお、本発明の軸受剛性評価装置は上記実施形態に限定されるものでなく、外輪を固定する構成を有しているものであれば適宜変形、改良等が可能であり、演算処理部を別体とする等も可能である。また、上記実施形態では、ハブシャフトを加振しハブシャフトの振動を検知する構造としたが、これに限定されるものではなく、内輪を加振し内輪の振動を検知する構造としても良い。さらに、上記実施形態ではハブユニット軸受を剛性評価対象としたが、ハブユニット軸受以外の軸受にも適用が可能である。   Note that the bearing stiffness evaluation apparatus of the present invention is not limited to the above embodiment, and can be appropriately modified and improved as long as it has a configuration for fixing the outer ring. It can be used as a body. Moreover, in the said embodiment, although it was set as the structure which vibrates a hub shaft and detects the vibration of a hub shaft, it is not limited to this, It is good also as a structure which vibrates an inner ring and detects the vibration of an inner ring. Furthermore, in the above embodiment, the hub unit bearing is the object of rigidity evaluation, but it can be applied to bearings other than the hub unit bearing.

10、20、30 軸受剛性評価装置
1 加振器
2 振動検出部
3 演算処理部
4 ハブユニット軸受
5 外輪固定部
DESCRIPTION OF SYMBOLS 10, 20, 30 Bearing rigidity evaluation apparatus 1 Exciter 2 Vibration detection part 3 Arithmetic processing part 4 Hub unit bearing 5 Outer ring fixing part

Claims (4)

予圧が付与された複列軸受、組合せ軸受などの軸受に対する軸受剛性を評価する軸受剛性評価装置において、前記軸受の外輪を固定する外輪固定手段と、前記軸受の内輪と該内輪に嵌合された軸体とのいずれか一方に軸方向に所定周波数の振動を与える加振装置と、前記内輪と該内輪に嵌合された軸体とのいずれか一方の軸中心位置での振動を検出する振動検出手段と、を備えることを特徴とする軸受剛性評価装置。 In a bearing rigidity evaluation device for evaluating bearing rigidity for a bearing such as a double row bearing or a combination bearing to which a preload is applied, an outer ring fixing means for fixing an outer ring of the bearing, an inner ring of the bearing, and an inner ring fitted to the inner ring A vibration for detecting vibration at the center position of one of the vibration device for applying a vibration at a predetermined frequency in the axial direction to any one of the shaft bodies and the shaft body fitted to the inner ring and the inner ring. And a bearing rigidity evaluation apparatus. 前記外輪固定手段は、空圧チャック、油圧チャック、マグネットチャック、または真空チャックのいずれかであることを特徴とする請求項1に記載の軸受剛性評価装置。 2. The bearing rigidity evaluation apparatus according to claim 1, wherein the outer ring fixing means is any one of a pneumatic chuck, a hydraulic chuck, a magnet chuck, and a vacuum chuck. 前記振動検出手段は、変位型センサ、速度型センサ、または加速度型センサのいずれかであることを特徴とする請求項1に記載の軸受剛性評価装置。 The bearing rigidity evaluation apparatus according to claim 1, wherein the vibration detection unit is a displacement type sensor, a speed type sensor, or an acceleration type sensor. 前記振動検出手段から出力された振動信号をFFT分析し、FFT分析から得られた周波数波形から軸受予圧と相関の高い周波数ピークを抽出するFFT分析部と、前記周波数ピークを予め設定した周波数範囲と比較し、軸受剛性の良否を判定する比較判定部と、前記判定の結果を表示または記録する表示/記録部と、を備えることを特徴とする請求項1乃至3に記載の軸受剛性評価装置。 FFT analysis of the vibration signal output from the vibration detection means, an FFT analysis unit for extracting a frequency peak highly correlated with bearing preload from the frequency waveform obtained from the FFT analysis, and a frequency range in which the frequency peak is set in advance. The bearing rigidity evaluation apparatus according to claim 1, further comprising a comparison / determination unit that compares and determines whether or not the bearing rigidity is good and a display / recording unit that displays or records a result of the determination.
JP2010039476A 2010-02-25 2010-02-25 Apparatus for evaluation of bearing rigidity Pending JP2011174824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039476A JP2011174824A (en) 2010-02-25 2010-02-25 Apparatus for evaluation of bearing rigidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039476A JP2011174824A (en) 2010-02-25 2010-02-25 Apparatus for evaluation of bearing rigidity

Publications (1)

Publication Number Publication Date
JP2011174824A true JP2011174824A (en) 2011-09-08

Family

ID=44687809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039476A Pending JP2011174824A (en) 2010-02-25 2010-02-25 Apparatus for evaluation of bearing rigidity

Country Status (1)

Country Link
JP (1) JP2011174824A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607847A (en) * 2012-03-08 2012-07-25 北京工业大学 Dynamic stiffness test device of main shaft bearing combination part
CN103185683A (en) * 2011-12-29 2013-07-03 财团法人石材暨资源产业研究发展中心 Air film rigidity detection platform of air-suspending plane bearing and application method thereof
CN103323239A (en) * 2012-03-21 2013-09-25 中国商用飞机有限责任公司 Knuckle bearing detection device
JP2013234929A (en) * 2012-05-09 2013-11-21 Jtekt Corp Inspection method of wheel hub unit
CN103983456A (en) * 2014-05-07 2014-08-13 大连理工大学 Integrated loading experiment table for rolling bearing
CN108414169A (en) * 2018-03-08 2018-08-17 湖南大学 A kind of high speed rotation shafting dynamic axial load stiffness test method and device
CN109115517A (en) * 2018-09-03 2019-01-01 重庆长江轴承股份有限公司 Automotive hub bearing dynamic vibration durable test stand
CN112326242A (en) * 2020-11-03 2021-02-05 南京航空航天大学 Contact rigidity measuring method and system for angular contact ball bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185683A (en) * 2011-12-29 2013-07-03 财团法人石材暨资源产业研究发展中心 Air film rigidity detection platform of air-suspending plane bearing and application method thereof
CN102607847A (en) * 2012-03-08 2012-07-25 北京工业大学 Dynamic stiffness test device of main shaft bearing combination part
CN103323239A (en) * 2012-03-21 2013-09-25 中国商用飞机有限责任公司 Knuckle bearing detection device
JP2013234929A (en) * 2012-05-09 2013-11-21 Jtekt Corp Inspection method of wheel hub unit
CN103983456A (en) * 2014-05-07 2014-08-13 大连理工大学 Integrated loading experiment table for rolling bearing
CN108414169A (en) * 2018-03-08 2018-08-17 湖南大学 A kind of high speed rotation shafting dynamic axial load stiffness test method and device
CN108414169B (en) * 2018-03-08 2019-07-09 湖南大学 A kind of high speed rotation shafting dynamic axial load stiffness test method and device
CN109115517A (en) * 2018-09-03 2019-01-01 重庆长江轴承股份有限公司 Automotive hub bearing dynamic vibration durable test stand
CN112326242A (en) * 2020-11-03 2021-02-05 南京航空航天大学 Contact rigidity measuring method and system for angular contact ball bearing
CN112326242B (en) * 2020-11-03 2021-09-24 南京航空航天大学 Contact rigidity measuring method and system for angular contact ball bearing

Similar Documents

Publication Publication Date Title
JP2011174824A (en) Apparatus for evaluation of bearing rigidity
JP3551033B2 (en) Apparatus and method for evaluating bearing stiffness
JP2008249664A (en) Evaluation device and evaluation method for rigidity of rolling bearing unit
Reddy et al. Detection and monitoring of coupling misalignment in rotors using torque measurements
JP5003331B2 (en) Hub unit evaluation device and hub unit evaluation method
EP1568848A2 (en) A method and machine for rotor imbalance determination
CN109900475B (en) Bearing inspection device
JPWO2007058196A1 (en) Stator core looseness diagnosis device and stator core looseness diagnosis method
Pennacchi et al. Light and short arc rubs in rotating machines: Experimental tests and modelling
JP2009031100A5 (en)
JP2017026421A (en) Bearing abnormality diagnosis device
US11385111B2 (en) System and method for determining bearing preload by vibration measurement
KR20120085109A (en) Dynamic characteristics measuring apparatus of bearing, dynamic characteristics analysing system and dynamic characteristics analysing method of bearing
JPH0261700B2 (en)
JP2020134479A (en) Abnormality detection method and abnormality detection device
JP2014095660A (en) Correction method of uniformity waveform of tire
JP4753654B2 (en) Evaluation method for rolling bearing parts
CN111912631A (en) Tire uniformity data correction method and tire uniformity testing machine
JP2009036544A (en) Gear noise evaluation method of gear transmission, and device therefor
JP2018141751A (en) Blade vibration monitoring device and rotary machinery system
JP2004019715A (en) Natural vibration frequency measuring method for brake disc
JPH11153425A (en) Method and device for measuring bearing clearance of radial ball bearing
JP2003329512A (en) Apparatus and method for measurement of natural oscillation frequency of roller bearing
JP2003130762A (en) Method and device for evaluating rolling bearing
Sendhilkumar et al. Elman neural network for diagnosis of unbalance in a rotor-bearing system