JP5826602B2 - Pipe installation device - Google Patents

Pipe installation device Download PDF

Info

Publication number
JP5826602B2
JP5826602B2 JP2011244670A JP2011244670A JP5826602B2 JP 5826602 B2 JP5826602 B2 JP 5826602B2 JP 2011244670 A JP2011244670 A JP 2011244670A JP 2011244670 A JP2011244670 A JP 2011244670A JP 5826602 B2 JP5826602 B2 JP 5826602B2
Authority
JP
Japan
Prior art keywords
pipe
sphere
rotation
ground
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011244670A
Other languages
Japanese (ja)
Other versions
JP2013100675A (en
Inventor
茂治 岩永
茂治 岩永
河越 勝
勝 河越
秀明 小田原
秀明 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2011244670A priority Critical patent/JP5826602B2/en
Publication of JP2013100675A publication Critical patent/JP2013100675A/en
Application granted granted Critical
Publication of JP5826602B2 publication Critical patent/JP5826602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、断面四角形状の管を地中に設置するための管設置装置に関する。   The present invention relates to a pipe installation device for installing a pipe having a square section in the ground.

従来、断面四角状の管を地中に設置するための管設置装置であって、管の先頭側の内側に管の推進方向と直交する回転中心線を回転中心として回転する回転掘削体を備えた管設置装置が知られている(例えば特許文献1等参照)。
また、断面円形状の曲管(管の中心線が曲線である管)を地中に設置するための管設置装置として、曲管の先頭側に曲管の推進方向に沿った回転中心線を回転中心として回転するカッタヘッドを備え、カッタヘッドの回転中心線を曲管の推進方向と交差する状態にしてカッタヘッドを揺動させることが可能な管設置装置が知られている(例えば特許文献2等参照)。
Conventionally, it is a pipe installation device for installing a pipe having a square cross section in the ground, and a rotary excavator that rotates around a rotation center line orthogonal to the propulsion direction of the pipe is provided inside the front side of the pipe. A pipe installation device is known (see, for example, Patent Document 1).
In addition, as a pipe installation device for installing a curved pipe with a circular cross section (a pipe whose center line is a curved line) in the ground, a rotation center line along the propulsion direction of the curved pipe is provided on the leading side of the curved pipe. 2. Description of the Related Art A pipe installation device is known that includes a cutter head that rotates as a rotation center, and that can swing the cutter head with the rotation center line of the cutter head intersecting the propulsion direction of the curved pipe (for example, Patent Documents) (See 2nd grade).

特開2011−52528号公報JP 2011-52528 A 特開2005−155056号公報JP 2005-1555056 A

しかしながら、特許文献1の管設置装置では、地山が硬質地盤である場合、先頭管の先端が硬質地盤に衝突して進行しなくなることがあった。
また、特許文献2の管設置装置では、カッタヘッドが回転可能なようにカッタヘッドの外周面が支持部材によって支持されているので、カッタヘッドの外周面と支持部材との接触支持構造として高精度な摺動装置が必要となり、また、摺動装置における支持部材とカッタヘッドとの接触部が磨耗しやすくなるので、耐久性、コスト等の面で問題がある。
さらに、特許文献1の管設置装置に特許文献2の管設置装置の接触支持構造を採用しようとした場合、上述した耐久性、コスト等の問題ばかりではなく、特許文献1の管設置装置の回転掘削体の回転中心線の向きと特許文献2の管設置装置のカッタヘッドの回転中心線の向きとが異なるため、特許文献1の管設置装置に特許文献2の管設置装置の接触支持構造を採用したとしても、管の進行に先立って管の前方において管の断面積よりも幅の広い断面積を掘削できる構成とはならず、先頭管の先端が硬質地盤に衝突して進行しなくなるという課題を解消できない。
本発明は、管の先頭側に管の推進方向と直交する回転中心線を回転中心として回転する回転掘削体を備え、管の進行に先立って管の前方において管の断面積よりも幅の広い断面積を掘削できるようにして、地山が硬質地盤である場合でも管を地中においてスムーズに推進させることができる管設置装置を提供することを目的とする。
However, in the pipe installation device disclosed in Patent Document 1, when the ground is a hard ground, the tip of the top pipe sometimes collides with the hard ground and does not advance.
Further, in the pipe installation device of Patent Document 2, since the outer peripheral surface of the cutter head is supported by the support member so that the cutter head can rotate, the contact support structure between the outer peripheral surface of the cutter head and the support member is highly accurate. A sliding device is required, and the contact portion between the support member and the cutter head in the sliding device is likely to be worn, and there are problems in terms of durability and cost.
Furthermore, when it is going to employ | adopt the contact support structure of the pipe installation apparatus of patent document 2 to the pipe installation apparatus of patent document 1, not only the above-mentioned problems of durability and cost but also rotation of the pipe installation apparatus of patent document 1 Since the direction of the rotation center line of the excavated body and the direction of the rotation center line of the cutter head of the pipe installation device of Patent Document 2 are different, the contact support structure for the pipe installation device of Patent Document 2 is added to the pipe installation device of Patent Document 1. Even if it is adopted, it is not configured to excavate a cross-sectional area that is wider than the cross-sectional area of the pipe in front of the pipe before the progress of the pipe, and the tip of the top pipe collides with the hard ground and does not advance The problem cannot be solved.
The present invention includes a rotary excavator that rotates about a rotation center line orthogonal to the propulsion direction of the pipe on the leading side of the pipe, and is wider than the cross-sectional area of the pipe in front of the pipe prior to the progress of the pipe. An object of the present invention is to provide a pipe installation device that can excavate a cross-sectional area and can smoothly promote a pipe in the ground even when a natural ground is hard ground.

本発明によれば、断面四角形状の管を地中に形成された空洞部から地中に設置する場合に、先に地中に入れる管の先頭開口の前方に管の推進方向と直交する面と平行な回転中心線を回転中心として回転する回転掘削体を設置し、管を進行させるとともに回転掘削体で地中を掘削することにより、管を推進させて地中に設置する管設置装置において、回転掘削体の支柱が固定された球体と、管の先頭開口側の内側に設置されて球体を球体の中心を回転中心として回転可能に保持する球体回転ガイド部材と、球体回転ガイド部材に連結されて推進力を球体回転ガイド部材に伝達する推進力伝達構成部と、管の先頭開口側の内面に固定されて球体回転ガイド部材の前方への移動を規制するとともに球体回転ガイド部材に伝達された推進力を管に伝達する推進力受け部と、管の互いに平行に対向する一方の一対の壁面と平行でかつ管の互いに平行に対向する他方の一対の壁面と交差するように延長する第1の回転中心線を回転中心として球体を回す第1の誘導用ジャッキと、回転掘削体の回転中心線と平行な第2の回転中心線を回転中心として球体を回す第2の誘導用ジャッキとを備え、第1の誘導用ジャッキは、一端が推進力伝達構成部に連結されるとともに他端が球体に連結され、第2の誘導用ジャッキは、一端が推進力伝達構成部に連結されるとともに他端が球体の球面より突出する上端部及び下端部を押圧するように構成されたので、管の進行に先立って管の前方において管の断面積よりも幅の広い断面積で地山を掘削できるようになり、管の前方での余堀が可能となるので、地山が硬質地盤である場合でも管を地中においてスムーズに推進させることが可能な管設置装置を提供できる。
また、本発明によれば、断面四角形状の管を地中に形成された空洞部から地中に設置する場合に、先に地中に入れる管の先頭開口の前方に管の推進方向と直交する面と平行な回転中心線を回転中心として回転する回転掘削体を設置し、管を進行させるとともに回転掘削体で地中を掘削することにより、管を推進させて地中に設置する管設置装置において、回転掘削体の支柱が固定された球体と、管の先頭開口側の内側に設置されて球体を球体の中心を回転中心として回転可能に保持する球体回転ガイド部材と、球体を球体の中心を回転中心として回す球体駆動手段として、管の中心線と平行な第3の回転中心線を回転中心として球体を回す球体駆動手段を備えたので、管の前方において管の断面積よりも幅の広い断面積で地山を掘削できるようになるので、地山が硬質地盤である場合でも管を地中においてスムーズに推進させることが可能な管設置装置を提供できる。
According to the present invention, when a pipe having a square cross section is installed in the ground from a hollow portion formed in the ground, a surface orthogonal to the propulsion direction of the pipe in front of the top opening of the pipe to be put in the ground first. In a pipe installation device that installs a rotary excavator that rotates around a rotation center line parallel to the axis of rotation, advances the pipe and excavates the ground with the rotary excavator, thereby propelling the pipe and installing it in the ground , A sphere with a rotating excavator fixed to the column, a sphere rotation guide member installed inside the top opening side of the pipe to hold the sphere rotatably about the center of the sphere, and a sphere rotation guide member And a propulsive force transmitting component that transmits propulsive force to the spherical rotation guide member, and fixed to the inner surface of the top opening side of the tube to restrict the forward movement of the spherical rotation guide member and transmitted to the spherical rotation guide member. The propulsive force transmitted to the pipe Rotating the first rotation center line extending so as to intersect with the other pair of wall surfaces parallel to each other and parallel to one pair of wall surfaces of the tube opposite to each other comprises a first guiding jacks turn the sphere around, and a second guiding jack turning sphere as the center of rotation parallel second rotational axis and the rotation center line of the rotary drilling member, a first induction of One end of the jack is connected to the propulsive force transmission component and the other end is connected to the sphere, and the second guide jack is connected to the propulsion force transmission component and the other end is a spherical surface of the sphere. Since the upper end and the lower end projecting more are pressed, it is possible to excavate natural ground with a cross-sectional area wider than the cross-sectional area of the pipe in front of the pipe before the pipe advances. Because it is possible to make a moat in front of The tube even if a hard ground can provide a tube installation device capable of propelling smoothly in the ground.
Further, according to the present invention, when a pipe having a quadrangular cross section is installed in the ground from the hollow portion formed in the ground, it is orthogonal to the propulsion direction of the pipe in front of the top opening of the pipe that is first placed in the ground. Install a rotating excavator that rotates around the rotation center line parallel to the surface to be rotated, and advance the pipe while excavating the underground with the rotating excavator to install the pipe to be installed in the ground In the apparatus, a sphere in which a column of a rotary excavator is fixed, a sphere rotation guide member that is installed on the inner side of the top opening side of the pipe and holds the sphere rotatably about the center of the sphere, Since the spherical drive means for turning the sphere with the third rotation center line parallel to the center line of the tube as the rotation center is provided as the spherical drive means for turning the center as the rotation center, the width is larger than the cross-sectional area of the tube in front of the tube. You can drill natural ground with a wide cross-sectional area Since, the natural ground can be provided a pipe installation apparatus capable of propelling smoothly in underground tubes even when it is hard ground.

管設置装置の横断面図(実施形態1)。A cross-sectional view of a pipe installation device (embodiment 1). 掘削機械揺動駆動装置の分解斜視図(実施形態1)Exploded perspective view of excavating machine swing drive device (Embodiment 1) 掘削機械揺動駆動装置の斜視図(実施形態1)Perspective view of excavating machine swing drive device (Embodiment 1) 先頭管の内部構造を示す斜視図(実施形態1)。The perspective view which shows the internal structure of a top pipe (embodiment 1). 管設置装置の縦断面図(実施形態1)Longitudinal sectional view of pipe installation device (Embodiment 1) 球体回転ガイド部材の後面側を後方側から見た図(図2のA−A断面相当図)(実施形態1)。The figure which looked at the rear surface side of the spherical body rotation guide member from the back side (AA cross-section equivalent view of FIG. 2) (Embodiment 1). 回転掘削体の左右揺動状態を示す図(実施形態1)。The figure which shows the left-right rocking | fluctuation state of a rotary excavation body (Embodiment 1). 回転掘削体の上下揺動状態を示す図(実施形態1)。The figure which shows the up-and-down rocking | fluctuation state of a rotary excavation body (Embodiment 1). 地中への管の設置方法を示す図(実施形態1)。The figure which shows the installation method of the pipe | tube in the ground (Embodiment 1). 直管を設置する管設置方法により構築される支保工の例を示す断面図(実施形態1)。Sectional drawing which shows the example of the support construction constructed | assembled by the pipe installation method which installs a straight pipe (embodiment 1). 曲管を設置する管設置方法により構築される支保工の例を示す断面図(実施形態1)。Sectional drawing which shows the example of the support construction constructed | assembled by the pipe installation method which installs a curved pipe (Embodiment 1). 管設置装置の断面図(実施形態6)。Sectional drawing of a pipe | tube installation apparatus (Embodiment 6). (a)は先頭管の先頭部分を示した斜視図、(b)一対の第2の掘削ビット群の関係を示す断面図(実施形態6)。(A) is the perspective view which showed the head part of the head pipe, (b) Sectional drawing which shows the relationship between a pair of 2nd excavation bit groups (Embodiment 6). (a)は回転掘削体の掘削時の状態を示す図、(b)は回転掘削体の回収時の姿勢状態を示す図(実施形態6)。(A) is a figure which shows the state at the time of excavation of a rotary excavation body, (b) is a figure which shows the attitude | position state at the time of collection | recovery of a rotary excavation body (Embodiment 6).

実施形態1
図1乃至図11に基づいて、実施形態1による地中への管設置方法を実現するための管設置装置1の基本構成及び動作について説明する。
図1に示すように、管設置装置1は、管2と、掘削装置3と、制御装置65とを備える。尚、以下、図1における上側を管2や管設置装置1の先頭あるいは前側と定義し、図1における下側を管2や管設置装置1の後側と定義し、図1における左右側を管2や管設置装置1の左右側と定義し、図1の紙面と直交する方向の上下側を管2や管設置装置1の上下側と定義して説明する。
Embodiment 1
Based on FIG. 1 thru | or FIG. 11, the basic composition and operation | movement of the pipe installation apparatus 1 for implement | achieving the pipe installation method in the underground by Embodiment 1 are demonstrated.
As shown in FIG. 1, the pipe installation device 1 includes a pipe 2, a drilling device 3, and a control device 65. In the following, the upper side in FIG. 1 is defined as the head or front side of the tube 2 or the tube installation device 1, the lower side in FIG. 1 is defined as the rear side of the tube 2 or the tube installation device 1, and the left and right sides in FIG. The left and right sides of the tube 2 and the tube installation device 1 are defined, and the upper and lower sides in the direction orthogonal to the paper surface of FIG.

管2は、図9;図11に示すような、円弧を描くように曲がって延長するように形成された曲管(管の中心線が曲線である管)、あるいは、図10に示すような、真っ直ぐに延長する管(管の中心線が直線である管(以下、直管という))であって、管の中心線と直交する面で管を切断した場合の断面形状が四角状の管により形成される。管2としては例えば鋼製の管が用いられる。管2の大きさは、例えば、管の長さ(前後長さ)が1.5m、左右幅が1.2m、上下幅が0.7mである。
そして、図9;図11に示すように、複数の曲管が順次連結されて地中10に設置されることによって円弧を描くように曲がって延長する支保工11が地中10に構築されたり、図10に示すように、複数の直管が順次連結されて地中10に設置されることによって真っ直ぐに延長する支保工11が地中10に構築される。
図9に示すように、実施形態1の管設置装置1及び管設置方法によって地中に構築される支保工11は、先頭に位置される管2(以下、先頭管という)と後続の複数の管2(以下、後続管という)とにより形成される。即ち、支保工11は、先頭に位置される曲管である先頭管6と先頭管6の後に続くように設けられる後続の複数の曲管である後続管7とにより形成される連続する曲管67によって構築される。
支保工11としては、図11(a)に示すように、地中10に形成された一方の空洞部100と他方の空洞部100との間に跨るように複数の管2としての複数の曲管を連続させて構築される支保工11や、図11(b)に示すように、地中10に形成された空洞部100から出発して当該空洞部100に戻るように複数の管2としての複数の曲管を連続させて構築される支保工11や、図10に示すように、一方の空洞部100と他方の空洞部100との間に跨るように複数の管2としての複数の直管を連続させて設置して構築される支保工11などがある。
The pipe 2 is a curved pipe formed so as to bend and extend so as to draw an arc as shown in FIG. 9; FIG. 11, or as shown in FIG. A tube that extends straight (a tube whose center line is a straight line (hereinafter referred to as a straight tube)) and has a square cross section when the tube is cut along a plane perpendicular to the center line of the tube. It is formed by. As the pipe 2, for example, a steel pipe is used. The size of the tube 2 is, for example, a tube length (front-rear length) of 1.5 m, a left-right width of 1.2 m, and a vertical width of 0.7 m.
Then, as shown in FIG. 9; FIG. 11, a support work 11 that is bent and extended so as to draw an arc is constructed in the underground 10 by connecting a plurality of bent pipes in order and installing them in the underground 10. As shown in FIG. 10, a support work 11 is constructed in the underground 10 that is straightly extended by connecting a plurality of straight pipes in order and installed in the underground 10.
As shown in FIG. 9, the support 11 constructed in the ground by the pipe installation device 1 and the pipe installation method according to the first embodiment includes a pipe 2 (hereinafter referred to as a top pipe) positioned at the head and a plurality of subsequent pipes. It is formed by the tube 2 (hereinafter, referred to as a subsequent tube). That is, the supporting work 11 is a continuous curved pipe formed by a leading pipe 6 which is a curved pipe located at the leading end and a succeeding pipe 7 which is a plurality of succeeding curved pipes provided so as to follow the leading pipe 6. 67.
As shown in FIG. 11 (a), the support work 11 includes a plurality of bends as a plurality of pipes 2 so as to straddle between one cavity 100 formed in the ground 10 and the other cavity 100. As shown in FIG. 11 (b), a plurality of pipes 2 starting from a cavity 100 formed in the ground 10 and returning to the cavity 100 as shown in FIG. As shown in FIG. 10, a plurality of support pipes 11 constructed by continuously connecting a plurality of bent pipes, and a plurality of pipes 2 as a plurality of pipes 2 so as to straddle between one cavity 100 and the other cavity 100. There is a support 11 constructed by installing straight pipes continuously.

図1に示すように、掘削装置3は、掘削機械26と、掘削機械揺動駆動装置25と、制御装置65と、推進装置70と、水供給装置75と、排泥装置76と、を備える。
掘削機械揺動駆動装置25は、球体30と、球体回転ガイド部材31と、球体駆動手段32とを備える。
As shown in FIG. 1, the excavating device 3 includes an excavating machine 26, an excavating machine swing drive device 25, a control device 65, a propulsion device 70, a water supply device 75, and a mud drain device 76. .
The excavating machine swing drive device 25 includes a sphere 30, a sphere rotation guide member 31, and a sphere drive means 32.

実施形態1による掘削装置3は、回転掘削体46が固定された球体30と、先頭管6の先頭開口6t側の内側に設置されて球体30を球体30の中心を回転中心として回転可能に保持する球体回転ガイド部材31と、先頭管6の互いに平行に対向する一方の一対の内壁面(例えば先頭管6の左右の内壁面6a;6b)と平行でかつ先頭管6の互いに平行に対向する他方の一対の内壁面(例えば先頭管6の上下の内壁面6c;6d)と交差するように延長する球体回転中心軸30a(第1の回転中心線)、及び、先頭管6の互いに平行に対向する前記一方の一対の内壁面及び前記球体回転中心軸30a(第1の回転中心線)と直交するように延長する球体回転中心線30b(第2の回転中心線)を回転中心として球体30を回す球体駆動手段32と、を有した掘削機械揺動駆動装置25を備える。
掘削機械揺動駆動装置25は、球体回転ガイド部材31が先頭管6の先頭開口6t側の内側に前方への移動が規制された状態で設置され、回転掘削体46の支柱42が球体30に固定され、球体30が球体30の中心を回転中心として回転可能なように球体回転ガイド部材31に保持され、球体駆動手段32が球体30を球体30の中心を回転中心として先頭管6の左右方向及び前後方向に回すことで、支柱42を介して球体30に固定された回転掘削体46が先頭管6の前方において先頭管6の左右方向又は上下方向に揺動するよう構成されている。
換言すれば、掘削機械揺動駆動装置25は、回転掘削体46の回転中心線Lが先頭管6の推進方向と直交する面及び先頭管6の互いに平行に対向する一対の内壁面(例えば先頭管6の上下の内壁面6c;6d)と平行な第1の状態、又は、回転掘削体46の回転中心線Lが先頭管6の互いに平行に対向する前記一対の内壁面と平行でかつ先頭管6の推進方向と直交する面と直交以外の状態で交差する第2の状態(回転掘削体46の左右揺動状態)、又は、回転掘削体46の回転中心線Lが先頭管6の互いに平行に対向する一対の内壁面(例えば先頭管6の上下の内壁面6c;6d)と平行な状態を維持しつつ先頭管6の前記一対の内壁面と直交する方向に移動する第3の状態(回転掘削体46の上下揺動状態)となるように、自由に設定することが可能な構成を備える。
The excavation apparatus 3 according to the first embodiment is installed inside the sphere 30 to which the rotary excavator 46 is fixed and the front opening 6t side of the top pipe 6 and holds the sphere 30 so that the center of the sphere 30 can be rotated about the center of rotation. The spherical rotation guide member 31 and the pair of inner walls of the leading pipe 6 facing each other in parallel (for example, the left and right inner wall surfaces 6a; 6b of the leading pipe 6) and the leading pipes 6 are opposed to each other in parallel. A spherical rotation center axis 30a (first rotation center line) extending so as to intersect with the other pair of inner wall surfaces (for example, upper and lower inner wall surfaces 6c; 6d) of the leading tube 6 and the leading tube 6 are parallel to each other. The sphere 30 with the sphere rotation center line 30b (second rotation center line) extending so as to be orthogonal to the pair of opposing inner wall surfaces and the sphere rotation center axis 30a (first rotation center line) as the rotation center. Sphere driving means 3 for turning It comprises excavating machine rocking mechanism 25 having the a.
The excavating machine swing drive device 25 is installed in a state where the spherical rotation guide member 31 is restricted from moving forward on the inner side of the leading opening 6 t of the leading pipe 6, and the column 42 of the rotating excavating body 46 is attached to the spherical body 30. The sphere 30 is fixed and held by the sphere rotation guide member 31 so that the sphere 30 can rotate around the center of the sphere 30, and the sphere driving means 32 moves the sphere 30 around the center of the sphere 30 as the center of rotation. The rotary excavator 46 fixed to the sphere 30 via the support column 42 is configured to swing in the left-right direction or the vertical direction of the top tube 6 in front of the top tube 6 by rotating in the front-rear direction.
In other words, the excavating machine rocking drive device 25 includes a pair of inner wall surfaces (for example, the top surface) where the rotation center line L of the rotary excavation body 46 is perpendicular to the propulsion direction of the top pipe 6 and the top pipe 6 faces each other in parallel. The first state parallel to the upper and lower inner wall surfaces 6c; 6d) of the pipe 6, or the rotation center line L of the rotary excavator 46 is parallel to the pair of inner wall surfaces of the leading pipe 6 facing each other in parallel and the leading edge A second state (a state in which the rotary excavator 46 swings left and right) intersecting with a plane orthogonal to the propulsion direction of the pipe 6 in a state other than orthogonal, or the rotational center line L of the rotary excavator 46 is mutually aligned with the leading pipe 6. A third state of moving in a direction perpendicular to the pair of inner wall surfaces of the top tube 6 while maintaining a state parallel to a pair of parallel inner wall surfaces (for example, the upper and lower inner wall surfaces 6c; 6d) of the head tube 6 Set freely so that (the rotary excavator 46 swings up and down) Door provided with a configuration capable.

球体30は、球体30の中心を通って上下の両端が球体30の球面より突出する球体回転中心軸30a(図4参照)を有する。この球体回転中心軸30aは球体回転ガイド部材31の後述する軸収容部34内に収容されて先頭管6の左右の内壁面6a;6bと平行な面上で軸が先頭管6の上下方向に延長するように設置され、かつ、先頭管6の左右の内壁面6a;6bと平行な面上において軸の上下端側が軸の中心点を回転中心として先頭管6の前後方向に揺動可能に設置される。そして、球体30は、球体回転ガイド部材31の後述する球体収容部内に収容されることによって、前記球体回転中心軸30aを回転中心として先頭管6の左右方向に回転可能で、かつ、球体30の中心を通って先頭管6の左右の内壁面6a;6b及び球体回転中心軸30aと直交する球体回転中心線30bを回転中心として先頭管6の前後方向に回転可能に構成される。
球体30は、球体30の中心を通り球体回転中心軸30a及び球体回転中心線30bと直交して球体30を貫通するように形成された支柱支持貫通孔13を備える。
回転掘削体46が取付けられる2つの分岐支柱43;43が先頭管6の左右の内壁面6a;6bに対して直交する状態となるように回転掘削体46の支柱42が支柱支持貫通孔13を貫通した状態で球体30に固定される。例えば、図1;2に示すように、球体30の支柱支持貫通孔13の前側開口の周囲は支柱支持貫通孔13の中心線と直交する取付平面30cに形成され、支柱42には当該取付平面30cに接触する取付平面42cを有した固定鍔42xが形成され、支柱42の後端が支柱支持貫通孔13を通過して球体30の後方に突出した状態において固定鍔42xの取付平面42cと球体30の取付平面30cとが付き合わされてこれら固定鍔42xの取付平面42cと球体30の取付平面30cとが溶接や固定ボルト等の固定手段により固定される。
The sphere 30 has a sphere rotation center axis 30 a (see FIG. 4) through which the upper and lower ends protrude from the spherical surface of the sphere 30 through the center of the sphere 30. The sphere rotation center shaft 30a is housed in a shaft housing portion 34 (to be described later) of the sphere rotation guide member 31 so that the shaft is parallel to the left and right inner wall surfaces 6a; Installed to extend, and on the plane parallel to the left and right inner wall surfaces 6a; 6b of the leading tube 6, the upper and lower ends of the shaft can swing in the front-rear direction of the leading tube 6 with the center point of the shaft as the center of rotation. Installed. The sphere 30 is housed in a sphere housing portion (described later) of the sphere rotation guide member 31 so that the sphere 30 can rotate in the left-right direction of the top tube 6 around the sphere rotation center axis 30a. It is configured to be able to rotate in the front-rear direction of the top tube 6 with the center of rotation as a center of rotation on a spherical rotation center line 30b orthogonal to the left and right inner wall surfaces 6a;
The sphere 30 includes a column support through-hole 13 formed so as to pass through the sphere 30 through the center of the sphere 30 and perpendicular to the sphere rotation center axis 30a and the sphere rotation center line 30b.
The struts 42 of the rotary excavator 46 pass through the strut support through holes 13 so that the two branch struts 43; 43 to which the rotary excavator 46 is attached are orthogonal to the left and right inner wall surfaces 6a; 6b of the top pipe 6. It is fixed to the sphere 30 in a penetrating state. For example, as shown in FIGS. 1 and 2, the periphery of the front opening of the column support through-hole 13 of the sphere 30 is formed in a mounting plane 30 c orthogonal to the center line of the column support through-hole 13. The fixing rod 42x having the mounting plane 42c that contacts the 30c is formed, and the mounting plane 42c of the fixing rod 42x and the sphere in a state where the rear end of the column 42 passes through the column support through hole 13 and protrudes rearward of the sphere 30 30 mounting planes 30c are attached to each other, and the mounting plane 42c of the fixing rod 42x and the mounting plane 30c of the spherical body 30 are fixed by fixing means such as welding or fixing bolts.

球体回転ガイド部材31は、外周寸法が先頭管6の断面(先頭管6の中心線と直交する断面)の四角形の内周寸法とほぼ同じ寸法の四角形状の平板31xに、球体収容部33と、軸収容部34と、排泥管保持貫通孔14(図4参照)と、水供給管保持貫通孔15(図4参照)とが形成された構成である。
球体回転ガイド部材31の平板31xの外周面31aには外周面31aを一周するようにゴムパッキン等の水密性能維持部材31bが設けられており、平板31xの外周面31aと先頭管6の内周面6xとが数mm程度(例えば5mm)の僅かな隙間を介して対向した状態で、かつ、水密性能維持部材31bと先頭管6の内周面6xとが接触して、平板の外周面31aと先頭管6の内周面6xとの間の水密性が維持されるように、球体回転ガイド部材31が先頭管6の先頭開口6t側の内側に設置される。水密性能維持部材31bは、平板31xの外周面31aを一周するように外周面31aに形成された溝31h内に収容されて外周面31aより突出するように設けられることにより、水密性能を十分に発揮できるよう平板31xの外周面31aに安定に設置できる。また、水密性能維持部材31bは、平板31xの外周面31aの前後側の両方に設けることが好ましい。
球体収容部33は、球体回転ガイド部材31の平板31xの板面の中央部を貫通する貫通孔により形成され、この貫通孔の内面は、球体30の球面と同じ曲率の凹状湾曲面により形成される。
球体収容部33の湾曲面には、当該湾曲面を形成する貫通孔の中心線の周囲を一周するようにゴムパッキン等の水密性能維持部材33bが設けられており、球体30の球面と球体収容部33の湾曲面とが数mm程度(例えば5mm)の僅かな隙間を介して対向した状態で、かつ、水密性能維持部材33bと球体30の球面とが接触して、球体30の球面と球体収容部33の湾曲面との間の水密性が維持されるように構成される。水密性能維持部材33bは、球体収容部33の湾曲面に形成された溝33h内に収容されて湾曲面より突出するように設けられることにより、水密性能を十分に発揮できるよう球体収容部33の湾曲面に安定に設置できる。
図3に示すように、軸収容部34は、球体収容部33の湾曲面より延長するよう平板31xに設けられた孔部により形成され、球体30が球体回転中心線30bを回転中心として回転運動した場合に球面より突出する球体回転中心軸30aの上下端部を前後方向に揺動可能なように収容する構成である。軸収容部34は、球体回転中心軸30aの上端部を前後方向に揺動可能なように収容する上側軸収容部34xと、球体回転中心軸30aの下端部を前後方向に移動可能なように収容する上側軸収容部34yとを備える。
The spherical rotation guide member 31 is formed on a rectangular flat plate 31x having an outer peripheral dimension that is substantially the same as the rectangular inner peripheral dimension of the cross section of the top tube 6 (cross section orthogonal to the center line of the top tube 6). The shaft housing 34, the sludge pipe holding through hole 14 (see FIG. 4), and the water supply pipe holding through hole 15 (see FIG. 4) are formed.
A watertight performance maintaining member 31b such as rubber packing is provided on the outer peripheral surface 31a of the flat plate 31x of the spherical rotation guide member 31 so as to go around the outer peripheral surface 31a, and the outer peripheral surface 31a of the flat plate 31x and the inner periphery of the top tube 6 are provided. The surface 6x is opposed to the surface 6x with a slight gap of about several mm (for example, 5 mm), and the watertight performance maintaining member 31b and the inner peripheral surface 6x of the top tube 6 are in contact with each other, so that the outer peripheral surface 31a of the flat plate The spherical body rotation guide member 31 is installed inside the top opening 6t side of the top pipe 6 so that watertightness between the top pipe 6 and the inner peripheral surface 6x of the top pipe 6 is maintained. The watertight performance maintaining member 31b is provided in the groove 31h formed in the outer peripheral surface 31a so as to make a round on the outer peripheral surface 31a of the flat plate 31x, and is provided so as to protrude from the outer peripheral surface 31a. It can be stably installed on the outer peripheral surface 31a of the flat plate 31x so that it can be exhibited. Moreover, it is preferable to provide the watertight performance maintaining member 31b on both the front and rear sides of the outer peripheral surface 31a of the flat plate 31x.
The spherical body accommodating portion 33 is formed by a through hole that penetrates the central portion of the plate surface of the flat plate 31 x of the spherical body rotation guide member 31, and the inner surface of the through hole is formed by a concave curved surface having the same curvature as the spherical surface of the spherical body 30. The
The curved surface of the spherical body accommodating portion 33 is provided with a watertight performance maintaining member 33b such as a rubber packing so as to make a round around the center line of the through hole forming the curved surface. The curved surface of the portion 33 is opposed to the curved surface of the spherical body 30 with a slight gap of about several mm (for example, 5 mm), and the watertight performance maintaining member 33b and the spherical surface of the spherical body 30 are in contact with each other. It is comprised so that the watertightness between the curved surfaces of the accommodating part 33 may be maintained. The watertight performance maintaining member 33b is housed in a groove 33h formed on the curved surface of the sphere housing portion 33 and provided so as to protrude from the curved surface, so that the watertight performance of the sphere housing portion 33 can be sufficiently exhibited. Can be installed stably on curved surfaces.
As shown in FIG. 3, the shaft accommodating portion 34 is formed by a hole provided in the flat plate 31x so as to extend from the curved surface of the sphere accommodating portion 33, and the sphere 30 rotates about the sphere rotation center line 30b. In this case, the upper and lower ends of the spherical rotation center shaft 30a protruding from the spherical surface are accommodated so as to be swingable in the front-rear direction. The shaft accommodating portion 34 is configured so that the upper shaft accommodating portion 34x that accommodates the upper end portion of the spherical rotation center shaft 30a so as to be swingable in the front-rear direction, and the lower end portion of the spherical rotation center shaft 30a is movable in the front-rear direction. And an upper shaft accommodating portion 34y for accommodating.

図2;図3に示すように、球体回転ガイド部材31を形成する平板31xは、前板31Aと後板31Bとが組み合わされて構成される。
図2に示すように、前板31Aは、前側球収容部33Aと前側軸収容部34Aとを備える。前側球収容部33Aは、前板31Aの板面の中央部を貫通するように形成されて球体30の前側球面を受ける凹状の湾曲面により形成される。
前側軸収容部34Aは、前側球収容部33Aの上部より延長するように前板31Aに設けられた前上側軸収容部34A1と前側球収容部33Aの下部より延長するように前板31Aに設けられた前下側軸収容部34A2とを備える。
前上側軸収容部34A1は、前板31Aの後側の板面及び前側球収容部33Aの湾曲面に開口し、かつ、前板31Aの前側の板面及び上端面に開口しない孔底部を有した孔部により構成される。前下側軸収容部34A2は、前板31Aの後側の板面及び前側球収容部33Aの湾曲面に開口し、かつ、前板31Aの前側の板面及び下端面に開口しない孔底部を有した孔部により構成される。
後板31Bは、後側球収容部33Bと後側軸収容部34Bとを備える。後側球収容部33Bは、後板31Bの板面の中央部を貫通するように形成されて球体30の後側球面を受ける凹状の湾曲面により形成される。
後側軸収容部34Bは、後側球収容部33Bの上部より延長するように後板に設けられた後上側軸収容部34B1と後側球収容部33Bの下部より延長するように後板に設けられた後下側軸収容部34B2とを備える。
後上側軸収容部34B1は、後板31Bの前後の板面及び後側球収容部33Bの湾曲面に開口し、かつ、後板31Bの上端面に開口しない孔底部を有した孔部により構成される。後下側軸収容部34B2は、後板31Bの前後の板面及び後側球収容部33Bの湾曲面に開口し、かつ、後板31Bの下端面に開口しない孔底部を有した孔部により構成される。
例えば、前板31Aと後板31Bとが同じ大きさに形成され、前板31A及び後板31Bを構成する平板の同じ位置に、一対の前上側軸収容部34A1及び後上側軸収容部34B1、一対の前下側軸収容部34A2及び後下側軸収容部34B2が設けられる。
As shown in FIG. 2; FIG. 3, the flat plate 31x forming the spherical body rotation guide member 31 is configured by combining a front plate 31A and a rear plate 31B.
As shown in FIG. 2, the front plate 31A includes a front side ball housing portion 33A and a front side shaft housing portion 34A. The front sphere accommodating portion 33A is formed by a concave curved surface that is formed so as to penetrate the central portion of the plate surface of the front plate 31A and receives the front spherical surface of the sphere 30.
The front shaft housing portion 34A is provided on the front plate 31A so as to extend from the front upper shaft housing portion 34A1 provided on the front plate 31A and the lower portion of the front ball housing portion 33A so as to extend from the upper portion of the front ball housing portion 33A. The front lower shaft accommodating portion 34A2 is provided.
The front upper shaft housing portion 34A1 has a hole bottom that opens to the rear plate surface of the front plate 31A and the curved surface of the front ball housing portion 33A and does not open to the front plate surface and upper end surface of the front plate 31A. It is comprised by the hole which was made. The front lower shaft housing portion 34A2 has a hole bottom that opens on the rear plate surface of the front plate 31A and the curved surface of the front ball housing portion 33A and does not open on the front plate surface and the lower end surface of the front plate 31A. It is comprised by the hole which had.
The rear plate 31B includes a rear ball housing portion 33B and a rear shaft housing portion 34B. The rear sphere accommodating portion 33B is formed by a concave curved surface that is formed so as to penetrate the central portion of the plate surface of the rear plate 31B and that receives the rear spherical surface of the sphere 30.
The rear shaft housing portion 34B is formed on the rear plate so as to extend from the rear upper shaft housing portion 34B1 provided on the rear plate so as to extend from the upper portion of the rear ball housing portion 33B and the lower portion of the rear ball housing portion 33B. And a rear lower shaft housing portion 34B2.
The rear upper shaft accommodating portion 34B1 is configured by a hole portion that has openings on the front and rear plate surfaces of the rear plate 31B and the curved surface of the rear ball accommodating portion 33B, and has a hole bottom portion that does not open on the upper end surface of the rear plate 31B. Is done. The rear lower shaft accommodating portion 34B2 is formed by a hole having a hole bottom that opens on the front and rear plate surfaces of the rear plate 31B and the curved surface of the rear sphere accommodating portion 33B and does not open on the lower end surface of the rear plate 31B. Composed.
For example, the front plate 31A and the rear plate 31B are formed in the same size, and a pair of front upper shaft housing portion 34A1 and rear upper shaft housing portion 34B1 are formed at the same position on the flat plate constituting the front plate 31A and the rear plate 31B. A pair of front lower shaft housing portion 34A2 and rear lower shaft housing portion 34B2 are provided.

球体30の前側球面が前板31Aの後側の板面側から前側球収容部33A内に収容され、かつ、球体30の後側球面が後板31Bの前側の板面側から後側球収容部33B内に収容されることにより、球体30が前側球収容部33Aと後側球収容部33Bとで囲まれた状態となって前側球収容部33Aと後側球収容部33Bとで形成された球収容部33に収容されるとともに、球体回転中心軸30aの上下の突出部である上端部30m;下端部30nが前側軸収容部34A又は後側軸収容部34Bに収容された状態で、前板31Aの後側の板面と後板31Bの前側の板面とが付き合わされて、後板31Bの前側の板面の開口と前板31Aの後側の板面の開口とが連通された状態とする。当該状態で前板31Aと後板31Bとが溶接等の連結手段で連結されることにより、球体回転中心軸31aの上端部30mが前上側軸収容部34A1と後上側軸収容部34B1とで形成された上側軸収容部34xに収容されるとともに、球体回転中心軸31aの下端部30nが前下側軸収容部34A2と後下側軸収容部34B2とで形成された下側軸収容部34yに収容され、球収容部33に収容された球体30が球体30の中心を回転中心として回転可能となった球体組立体300が得られる。尚、上側軸収容部34x及び後下側軸収容部34yは、先頭管6の上下の内壁面6c;6dと直交する垂直線上に設けられることが好ましいが、先頭管6の上下の内壁面6c;6dと交差する直線上に設けられていればよい。
そして、球体組立体300において、後板31Bの後側の板面よりも後方に突出する球体30の支柱支持貫通孔13の後側開口の左右両側の球面に球体側連結フランジ30d;30dを溶接等の固定手段で固定する。
The front spherical surface of the sphere 30 is accommodated in the front sphere accommodating portion 33A from the rear plate surface side of the front plate 31A, and the rear spherical surface of the sphere 30 is accommodated from the front plate surface side of the rear plate 31B. By being accommodated in the portion 33B, the sphere 30 is surrounded by the front sphere accommodating portion 33A and the rear sphere accommodating portion 33B, and is formed by the front sphere accommodating portion 33A and the rear sphere accommodating portion 33B. The upper end 30m that is the upper and lower protrusions of the sphere rotation central shaft 30a; the lower end 30n is received in the front shaft receiving portion 34A or the rear shaft receiving portion 34B. The plate surface on the rear side of the front plate 31A and the plate surface on the front side of the rear plate 31B are brought together, and the opening on the plate surface on the front side of the rear plate 31B and the opening on the plate surface on the rear side of the front plate 31A are communicated. State. In this state, the front plate 31A and the rear plate 31B are connected by connecting means such as welding, so that the upper end portion 30m of the spherical rotation center shaft 31a is formed by the front upper shaft housing portion 34A1 and the rear upper shaft housing portion 34B1. And the lower end 30n of the spherical rotation center shaft 31a is accommodated in the lower shaft accommodating portion 34y formed by the front lower shaft accommodating portion 34A2 and the rear lower shaft accommodating portion 34B2. A sphere assembly 300 is obtained in which the sphere 30 accommodated in the sphere accommodating portion 33 is rotatable about the center of the sphere 30 as a rotation center. The upper shaft housing portion 34x and the rear lower shaft housing portion 34y are preferably provided on a vertical line perpendicular to the upper and lower inner wall surfaces 6c and 6d of the leading tube 6, but the upper and lower inner wall surfaces 6c of the leading tube 6 are provided. It may be provided on a straight line intersecting 6d.
In the sphere assembly 300, the sphere-side coupling flanges 30d and 30d are welded to the left and right spherical surfaces of the rear opening of the support post support hole 13 of the sphere 30 protruding rearward from the rear plate surface of the rear plate 31B. Fix with fixing means such as.

球体駆動手段32は、球体回転中心軸30aを回転中心として球体30を先頭管6の左右方向に揺動させるための左右の揺動用ジャッキ35;35と、球体回転中心線30bを回転中心として球体30を先頭管6の上下方向に揺動させるための上下の揺動用ジャッキ36;36とを備える。   The spherical body driving means 32 includes a right and left swinging jack 35 for swinging the spherical body 30 in the left-right direction of the top tube 6 with the spherical rotation center axis 30a as a rotation center, and a spherical body with the spherical rotation center line 30b as a rotation center. And an upper / lower swinging jack 36 for swinging 30 in the vertical direction of the top pipe 6.

後述するように先頭管6の先頭開口6t側の内面に固定された推進力受け部63に球体組立体300の前板31Aの前側の板面を接触させて、球体組立体300の前方への移動が推進力受け部63で規制される状態に球体組立体300を設置する。
そして、揺動用ジャッキ35のピストン35aの先端側に設けたピストン側連結フランジ35bと球体30に取付けられた球体側連結フランジ30dとが図外のボルト・ナット等の固定手段により固定されるとともに、揺動用ジャッキ35のシリンダ35cの基端側に設けたシリンダ側連結フランジ35dと後述の推進力伝達構成部64に設けた固定側連結フランジ64rとが図外のボルト・ナット等の固定手段により固定される。
尚、揺動用ジャッキ35のピストン35aの先端及びシリンダ35cの基端には球面軸受35xが設けられており、球体30が回転するよう運動した場合に球面軸受35xにより揺動用ジャッキ35が姿勢を変更できるように構成されている。
また、上の揺動用ジャッキ36はピストン36aの先端に球体回転中心軸30aの球面より突出する上端部を押圧する押圧板36bを備え、下の揺動用ジャッキ36はピストン36aの先端に球体回転中心軸30aの球面より突出する下端部を押圧する押圧板36bを備える。押圧板36bは、先端形状が球体回転中心軸30aを取り込む凹部形状に形成される。上の揺動用ジャッキ36は、ピストン36aの先端に設けられた押圧板36bが上側軸収容部34x内を前後方向に移動可能なようにシリンダ36bの基端側が上側ジャッキ反力受部材18aに固定され、下の揺動用ジャッキ36は、ピストン36aの先端に設けられた押圧板36bが下側軸収容部34y内を前後方向に移動可能なようにシリンダ36bの基端側が下側ジャッキ反力受部材18bに固定される(図4参照)。
As will be described later, the front plate surface of the front plate 31A of the spherical assembly 300 is brought into contact with the propulsive force receiving portion 63 fixed to the inner surface of the front tube 6 on the front opening 6t side, and the front of the spherical assembly 300 is moved forward. The spherical body assembly 300 is installed in a state where the movement is restricted by the propulsive force receiving portion 63.
The piston-side connecting flange 35b provided on the front end side of the piston 35a of the swinging jack 35 and the sphere-side connecting flange 30d attached to the sphere 30 are fixed by fixing means such as bolts and nuts not shown in the figure, A cylinder side connecting flange 35d provided on the base end side of the cylinder 35c of the swinging jack 35 and a fixed side connecting flange 64r provided on a propulsive force transmitting component 64 described later are fixed by fixing means such as bolts and nuts not shown. Is done.
A spherical bearing 35x is provided at the distal end of the piston 35a of the swinging jack 35 and the base end of the cylinder 35c. When the spherical body 30 is rotated, the swinging jack 35 changes its posture by the spherical bearing 35x. It is configured to be able to.
Further, the upper swinging jack 36 is provided with a pressing plate 36b that presses the upper end protruding from the spherical surface of the spherical rotation center shaft 30a at the tip of the piston 36a, and the lower swinging jack 36 is at the tip of the spherical rotation center 36a. A pressing plate 36b that presses the lower end protruding from the spherical surface of the shaft 30a is provided. The pressing plate 36b is formed in a concave shape in which the tip shape takes in the spherical rotation center axis 30a. The upper swinging jack 36 is fixed at the base end side of the cylinder 36b to the upper jack reaction force receiving member 18a so that the pressing plate 36b provided at the front end of the piston 36a can move in the front-rear direction within the upper shaft accommodating portion 34x. The lower swinging jack 36 is configured such that the base end side of the cylinder 36b receives the lower jack reaction force so that the pressing plate 36b provided at the distal end of the piston 36a can move in the front-rear direction in the lower shaft accommodating portion 34y. It is fixed to the member 18b (see FIG. 4).

以上により、球体駆動手段32が球体30を球体30の中心を回転中心として先頭管6の左右方向及び前後方向に回すことで、支柱42を介して球体30に固定された回転掘削体46を先頭管6の前方において先頭管6の左右方向又は上下方向に揺動させることがでる掘削機械揺動駆動装置25が構成される。   As described above, the sphere driving means 32 rotates the sphere 30 around the center of the sphere 30 in the left-right direction and the front-rear direction of the top tube 6, so that the rotary excavation body 46 fixed to the sphere 30 via the support column 42 starts. An excavating machine rocking drive device 25 that can rock the head pipe 6 in the left-right direction or the up-down direction in front of the pipe 6 is configured.

先頭管6の先頭開口縁6zは、地山99に食い込みやすいように、先細の傾斜面に形成される(図5参照)。
排泥管保持貫通孔14は、球体回転ガイド部材31の平板31xの板面の下部側の左右をそれぞれ貫通するように2つ設けられる。水供給管保持貫通孔15は、球体回転ガイド部材31の平板31xの板面の上部側の左右をそれぞれ貫通するように2つ設けられる。排泥管保持貫通孔14;14には、排泥管76cの先端部が貫通した状態で保持される。水供給管保持貫通孔15;15は、水供給管75cの先端部が貫通した状態で保持される(図6参照)。
The leading opening edge 6z of the leading tube 6 is formed on a tapered inclined surface so as to easily bite into the natural ground 99 (see FIG. 5).
Two drainage pipe holding through-holes 14 are provided so as to penetrate the left and right sides of the lower side of the plate surface of the flat plate 31x of the spherical body rotation guide member 31, respectively. Two water supply pipe holding through holes 15 are provided so as to penetrate the left and right sides of the upper part of the plate surface of the flat plate 31x of the spherical body rotation guide member 31, respectively. The mud pipe holding through-holes 14 and 14 are held in a state where the tip of the mud pipe 76c penetrates. The water supply pipe holding through-holes 15; 15 are held in a state where the tip of the water supply pipe 75c penetrates (see FIG. 6).

掘削機械26は、支持部40と、回転部41とを備える。
支持部40は、1つの支柱42と2つの分岐支柱43とが組合されたT字状の中空支柱により形成される。2つの分岐支柱43は、支柱42の先端部より支柱42の延長方向と直交する一直線上において互いに離れる方向に延長する。
回転部41は、回転機構部45と、回転掘削体46とを備える。回転機構部45は、例えばモータ47により構成される。分岐支柱43の両方の先端には、それぞれモータマウント44が設けられ、各モータマウント44;44には、モータ47のケーシング48が固定される。2つのモータ47;47の回転軸49;49は、支柱42の先端部より支柱の延長方向と直交する一直線上(即ち、分岐支柱43の中心線線上)において互いに離れる方向に延長する。
回転掘削体46は、例えば円筒部50aと円筒部50aの他端を閉塞する底板50bとを有した一端開口他端閉塞の円形箱状の回転体50と、回転体50の円筒部50aの外周面51に設けられた複数の掘削ビット52とを備えた構成である。
尚、回転体50の回転中心線Lから回転中心線Lと直交する線上を経由した掘削ビット52の先端までの距離を掘削ビット52の掘削半径とした掘削ビット52による掘削径は、先頭管6の上下の内壁面6c;6d間の寸法よりも小さい。
The excavating machine 26 includes a support unit 40 and a rotating unit 41.
The support portion 40 is formed by a T-shaped hollow column in which one column 42 and two branch columns 43 are combined. The two branch columns 43 extend in a direction away from each other on a straight line perpendicular to the extending direction of the columns 42 from the distal end portion of the column 42.
The rotating unit 41 includes a rotating mechanism unit 45 and a rotating excavator 46. The rotation mechanism unit 45 is configured by a motor 47, for example. Motor mounts 44 are provided at both ends of the branch column 43, and a casing 48 of a motor 47 is fixed to each motor mount 44; 44. The rotating shafts 49; 49 of the two motors 47; 47 extend in directions away from each other on a straight line perpendicular to the extending direction of the support column (that is, on the center line of the branch support column 43) from the tip end of the support column 42.
The rotary excavator 46 includes, for example, a circular box-shaped rotary body 50 having one end opening and the other end closed, which includes a cylindrical portion 50a and a bottom plate 50b that closes the other end of the cylindrical portion 50a, and an outer periphery of the cylindrical portion 50a of the rotary body 50. A plurality of excavation bits 52 provided on the surface 51 are provided.
The excavation diameter by the excavation bit 52 with the excavation radius of the excavation bit 52 as the distance from the rotation center line L of the rotating body 50 to the tip of the excavation bit 52 passing through the line orthogonal to the rotation center line L is the leading pipe 6 Is smaller than the dimension between the upper and lower inner wall surfaces 6c; 6d.

モータ47は、例えば、流体圧により作動するモータ、あるいは、電気で作動するモータを用いる。例えば油圧モータ(以下、油圧モータ47と言う)を用いる場合、駆動源27としての油圧源55と油圧モータ47のケーシング48内とが圧油供給路56a及び油帰還路56bを形成する耐圧ホース56で繋がれる。即ち、耐圧ホース56は支持部40のT字状の中空路を介して油圧モータ47のケーシング48に接続される。油圧モータ47は、耐圧ホース56を介してケーシング48内に供給される圧油によって回転軸49が回転するように構成される。
例えば、回転掘削体46の回転体50の底板50bの内面53の円中心と回転軸49の回転中心とが一致するように、回転体50の底板50bの内面53と油圧モータ47により回転する回転軸49の先端に設けられた連結板54とがねじ等の連結具57により連結される。即ち、2つの回転掘削体46;46が先頭管6の先頭開口6tよりも前方に位置され、2つの回転掘削体46;46が2つの回転軸49;49に共通の1つの回転中心線Lを回転中心として回転するように構成される。このような2つの回転掘削体46;46を備えた構成は、ツインヘッダと呼ばれる。
実施形態1では、上述したように、2つの回転掘削体46;46の回転中心線Lが先頭管6の推進方向と直交する面と平行な状態及び先頭管6の上下の内壁面6c;6dと平行な第1の状態で地山99を掘削した場合、推進方向と直交する面内における回転掘削体46の掘削幅を大きくでき、さらに、断面四角形状に掘削できるので、掘削幅に応じた四角幅の管2を容易に地中10に設置できるようになる。
また、実施形態1では、掘削機械揺動駆動装置25の左右の揺動用ジャッキ35;35を作動させ、球体回転中心軸30aを回転中心として球体30を回すことにより、図7に示すように、2つの回転掘削体46;46の回転中心線Lが先頭管6の推進方向と直交する面と直交以外の状態で交差しかつ先頭管6の下の内壁面6dと平行な第2の状態で地山99を掘削した場合、先頭管6の前方において先頭管6の左右幅間隔よりも幅の広い左右幅間隔で地山99を掘削できるので、先頭管6が推進する際に先頭管6の先頭開口6tが地山99の硬質層に衝突する可能性が少なくなり、先頭管6をスムーズに推進させることができるようになる。
さらに、実施形態1では、掘削機械揺動駆動装置25の上下の揺動用ジャッキ36;36を作動させ、球体回転中心線30b(第2の回転中心線)を回転中心として球体30を回すことにより、図8に示すように、2つの回転掘削体46;46の回転中心線Lが先頭管6の下の内壁面6dと平行な状態を維持しつつ、先頭管6の上下方向に移動した第3の状態で地山99を掘削した場合、先頭管6の前方において先頭管6の上下幅間隔よりも幅の広い上下幅間隔で地山99を掘削できるので、先頭管6が推進する際に先頭管6の先頭開口6tが地山99の硬質層に衝突する可能性が少なくなり、先頭管6をスムーズに推進させることができるようになる。
As the motor 47, for example, a motor that operates by fluid pressure or a motor that operates by electricity is used. For example, when a hydraulic motor (hereinafter referred to as a hydraulic motor 47) is used, a pressure hose 56 in which a hydraulic source 55 as the drive source 27 and the casing 48 of the hydraulic motor 47 form a pressure oil supply path 56a and an oil return path 56b. Connected with That is, the pressure hose 56 is connected to the casing 48 of the hydraulic motor 47 through the T-shaped hollow path of the support portion 40. The hydraulic motor 47 is configured such that the rotating shaft 49 is rotated by pressure oil supplied into the casing 48 via the pressure hose 56.
For example, the rotation rotated by the hydraulic motor 47 and the inner surface 53 of the bottom plate 50b of the rotating body 50 so that the circle center of the inner surface 53 of the bottom plate 50b of the rotating body 50 of the rotary excavator 46 and the rotation center of the rotating shaft 49 coincide. A connecting plate 54 provided at the tip of the shaft 49 is connected by a connecting tool 57 such as a screw. That is, the two rotary excavating bodies 46; 46 are positioned in front of the leading opening 6t of the leading pipe 6, and the two rotary excavating bodies 46; 46 are one rotation center line L common to the two rotating shafts 49; 49. Is configured to rotate around the center of rotation. Such a configuration including two rotary excavating bodies 46; 46 is called a twin header.
In the first embodiment, as described above, the rotation center line L of the two rotary excavated bodies 46; 46 is parallel to the plane orthogonal to the propulsion direction of the leading pipe 6 and the upper and lower inner wall surfaces 6c; When the natural ground 99 is excavated in the first state parallel to the vertical direction, the excavation width of the rotary excavation body 46 in the plane orthogonal to the propulsion direction can be increased, and further, the excavation can be performed in a quadrangular cross section. The square-width tube 2 can be easily installed in the underground 10.
Further, in the first embodiment, as shown in FIG. 7, the left and right swinging jacks 35; 35 of the excavating machine swing drive device 25 are operated and the sphere 30 is rotated about the sphere rotation center axis 30a. In a second state in which the rotational center line L of the two rotary excavated bodies 46; 46 intersects with the surface perpendicular to the propulsion direction of the leading pipe 6 in a state other than perpendicular and parallel to the inner wall surface 6d below the leading pipe 6 When excavating the natural mountain 99, the natural mountain 99 can be excavated at the left and right width intervals wider than the left and right width intervals of the leading tube 6 in front of the leading tube 6, so that when the leading tube 6 propels, The possibility that the front opening 6t collides with the hard layer of the natural ground 99 is reduced, and the front pipe 6 can be smoothly promoted.
Furthermore, in the first embodiment, the upper and lower swinging jacks 36; 36 of the excavating machine swing driving device 25 are operated, and the sphere 30 is rotated about the sphere rotation center line 30b (second rotation center line). 8, the rotation center line L of the two rotary excavating bodies 46; 46 is moved in the vertical direction of the top pipe 6 while maintaining a state parallel to the inner wall surface 6d below the top pipe 6. When the natural ground 99 is excavated in the state 3, the natural ground 99 can be excavated at a vertical width interval wider than the vertical width interval of the leading pipe 6 in front of the leading pipe 6. The possibility that the leading opening 6t of the leading pipe 6 collides with the hard layer of the natural ground 99 is reduced, and the leading pipe 6 can be smoothly promoted.

推進装置70は、推進駆動源61と、上述した球体回転ガイド部材31と、推進駆動源61による推進力を球体回転ガイド部材31に伝達する推進力伝達手段62と、球体回転ガイド部材31に伝達された推進力を先頭管6に伝達する推進力受け部63とを備える。
推進力受け部63は、先頭管6の先頭開口6t側の内側に設置された球体回転ガイド部材31の前板31Aの前側の板面に接触して球体回転ガイド部材31の前方への移動を規制するとともに球体回転ガイド部材31に伝達された推進力を先頭管6に伝達することができるように、先頭管6の先頭開口6t側の内面に溶接、ボルト・ナット等の固定手段で固定されている。
推進力伝達手段62は、推進力伝達構成部64と、推進力伝達棒状体71と、推進力伝達用の当て材72とを備える。
推進力伝達構成部64は、例えば、H形鋼を組み合わせて形成される。例えば、球体回転ガイド部材31の左端後端面と連結されて上下に延長するよう設けられた前左側上下延長柱部64aと、球体回転ガイド部材31の右端後端面と連結されて上下に延長するよう設けられた前右側上下延長柱部64bと、ジャッキ反力受部材18a;18bの左端部と連結されて上下に延長するよう設けられた後左側上下延長柱部64cと、ジャッキ反力受部材18a;18bの右端部と連結されて上下に延長するよう設けられた後右側上下延長柱部64dと、前後方向に延長して先端と前左側上下延長柱部64aとが連結され後端と後左側上下延長柱部64cとが連結された左連結部64eと、前後方向に延長して先端と前右側上下延長柱部64bとが連結され後端と後右側上下延長柱部64dとが連結された右連結部64fとを備える。
The propulsion device 70 includes a propulsion drive source 61, the above-described spherical rotation guide member 31, a propulsive force transmission unit 62 that transmits the propulsive force generated by the propulsion drive source 61 to the spherical rotation guide member 31, and a transmission to the spherical rotation guide member 31. And a propulsive force receiving portion 63 for transmitting the propulsive force transmitted to the leading pipe 6.
The propulsive force receiving portion 63 contacts the front plate surface of the front plate 31A of the spherical rotation guide member 31 installed on the inner side of the front opening 6t of the front tube 6 and moves the spherical rotation guide member 31 forward. It is fixed to the inner surface of the leading opening 6t side of the leading pipe 6 by fixing means such as welding, bolts and nuts so that the propulsive force transmitted to the spherical rotation guide member 31 can be transmitted to the leading pipe 6 while being regulated. ing.
The propulsive force transmission means 62 includes a propulsive force transmission component 64, a propulsive force transmission rod 71, and a propulsion force transmitting member 72.
The propulsive force transmission component 64 is formed by combining, for example, H-section steel. For example, to extend the left vertical extension bar portion 64a before being connected to the left end rear surface provided so as to extend above and below the spherical rotary guide member 31, is connected to the right end rear end surface of the spherical rotary guide member 31 up and down The front left upper / lower extension post 64b, the rear left upper extension post 64c connected to the left end of the jack reaction force receiving member 18a; 18b and extended vertically, and the jack reaction receiving member 18a. A rear right upper and lower extension post 64d connected to the right end of 18b and extending vertically, and a front end and front left upper extension post 64a extending in the front and rear direction are connected to the rear end and rear left. The left connecting portion 64e connected to the vertical extending column portion 64c, the front end and the front right vertical extending column portion 64b extending in the front-rear direction, and the rear end and the rear right vertical extending column portion 64d connected. Right connecting part 64 Provided with a door.

推進力伝達棒状体71は、一端から他端までの長さが推進力伝達構成部64の後端面64xと先頭管6の後端面102eとの間の最短距離よりも長い寸法に形成された棒状体である。推進力伝達棒状体71としては例えばH形鋼を用いる。
推進力伝達棒状体71は、中心線が先頭管6の中心線と同一方向を向くように設置される。左側の推進力伝達棒状体71Aの先端面と後左側上下延長柱部64cの後面における上下の中央位置とが連結され、右側の推進力伝達棒状体71Bの先端面と後右側上下延長柱部64dの後面における上下の中央位置とが連結される。
The propulsive force transmitting rod-like body 71 is a rod-shaped member whose length from one end to the other end is longer than the shortest distance between the rear end surface 64x of the propulsive force transmitting component 64 and the rear end surface 102e of the leading pipe 6. Is the body. As the propulsive force transmission rod-shaped body 71, for example, H-shaped steel is used.
The propulsive force transmission rod-like body 71 is installed such that the center line faces the same direction as the center line of the leading pipe 6. The front end surface of the left propulsive force transmitting rod-like body 71A and the upper and lower center positions on the rear surface of the rear left upper / lower extension column portion 64c are connected, and the front end surface of the right propulsive force transmission rod-like body 71B and the rear right upper / lower extension column portion 64d. The upper and lower center positions on the rear surface are connected.

推進駆動源61は、例えば、油圧ジャッキ61Aにより構成される。油圧ジャッキ61Aのピストンロッド61aの先端には押圧板61bが設けられる。油圧ジャッキ61のシリンダ61cは図外のジャッキ反力受部材に固定されている。   The propulsion drive source 61 is constituted by, for example, a hydraulic jack 61A. A pressing plate 61b is provided at the tip of the piston rod 61a of the hydraulic jack 61A. The cylinder 61c of the hydraulic jack 61 is fixed to a jack reaction force receiving member (not shown).

そして、当て材72を、先頭管6の後端面102eより後方に突出する左右の推進力伝達棒状体71A;71Bの他端間に跨るように設置して左右の推進力伝達棒状体71A;71Bの他端に図外のボルトや万力装置などで連結し、当て材72における左右の推進力伝達棒状体71A;71Bの他端間の中央部分を油圧ジャッキ61Aの押圧板61bで押圧することにより、油圧ジャッキ61Aによる押圧力が、推進力伝達棒状体71、推進力伝達構成部64、球体回転ガイド部材31、推進力受け部63を介して先頭管6及び回転掘削体46;46に伝達されるので、先頭管6が前方に推進するとともに回転掘削体46;46が前方に推進する。
この場合、後右側上下延長柱部64dの後面における上下の中央位置に連結された右側の推進力伝達棒状体71Bと後左側上下延長柱部64cの後面における上下の中央位置に連結された左側の推進力伝達棒状体71Aとを介して推進力伝達構成部64に伝達された推進力が球体回転ガイド部材31の後端面31rの四隅部に伝達される構成としたので(図2;図3;図6参照)、球体回転ガイド部材31に推進力を均等に伝達でき、掘削機械揺動駆動装置25の揺動動作の安定化が図れる。
And the abutting material 72 is installed so as to straddle between the other ends of the left and right propulsive force transmitting rod-like bodies 71A; 71B projecting rearward from the rear end face 102e of the leading pipe 6, and the left and right propelling force transmitting rod-like bodies 71A; 71B Are connected to the other end by a bolt or a vise device not shown in the figure, and the central portion between the other ends of the left and right propulsive force transmitting rods 71A; 71B in the abutting member 72 is pressed by the pressing plate 61b of the hydraulic jack 61A. Thus, the pressing force by the hydraulic jack 61A is transmitted to the leading pipe 6 and the rotary excavating body 46; 46 via the propulsive force transmitting rod 71, the propulsive force transmitting component 64, the spherical rotation guide member 31, and the propulsive force receiving portion 63. Therefore, the leading pipe 6 propels forward and the rotary excavator 46; 46 propels forward.
In this case, the right propulsive force transmitting rod-like body 71B connected to the upper and lower central positions on the rear surface of the rear right upper and lower extension post 64d and the left side connected to the upper and lower central positions on the rear surface of the rear left upper and lower extension post 64c. The propulsive force transmitted to the propulsive force transmitting component 64 via the propulsive force transmitting rod 71A is transmitted to the four corners of the rear end surface 31r of the spherical rotation guide member 31 (FIG. 2; FIG. 3). As shown in FIG. 6, the propulsive force can be evenly transmitted to the spherical rotation guide member 31, and the swinging motion of the excavating machine swing drive device 25 can be stabilized.

水供給装置75は、水貯留タンク75aと、送水用のポンプ75bと、水供給管75cと、水供給管75cの前端開口部を保持する水供給管保持貫通孔15とを備える。
水供給管75cは例えば鋼管により形成される。前端開口を介して球体回転ガイド部材31の前面31fの前方の地山99に水を放出することが可能なように水供給管75cの前端開口側が球体回転ガイド部材31の水供給管保持貫通孔15に固定される。水供給管75cの後端開口と送水用のポンプ75bの吐出口とが連通可能に連結される。そして、送水用のポンプ75bの吸込口と水貯留タンク75aとが図外の連結管により連通可能に連結される。水供給装置75は、先頭管6の上部内側の左右側に2系統設けられる。
The water supply device 75 includes a water storage tank 75a, a pump 75b for water supply, a water supply pipe 75c, and a water supply pipe holding through hole 15 that holds a front end opening of the water supply pipe 75c.
The water supply pipe 75c is formed by a steel pipe, for example. The water supply pipe holding through-hole of the spherical rotation guide member 31 is located at the front end opening side of the water supply pipe 75c so that water can be discharged to the ground 99 in front of the front surface 31f of the spherical rotation guide member 31 through the front end opening. 15 is fixed. The rear end opening of the water supply pipe 75c and the discharge port of the water supply pump 75b are connected so as to be able to communicate with each other. And the suction port of the pump 75b for water supply and the water storage tank 75a are connected so that communication is possible by the connecting pipe outside a figure. Two systems of water supply devices 75 are provided on the left and right sides inside the upper portion of the top pipe 6.

排泥装置76は、排泥タンク76aと、排泥用のポンプ76bと、排泥管76cと、排泥管76cの前端開口部を保持する排泥管保持貫通孔14とを備える。
排泥管76cは例えば鋼管により形成される。球体回転ガイド部材31の前面30fの前方に集まった掘削土を前端開口を介して取り込むことが可能なように排泥管76cの前端開口側が球体回転ガイド部材31の排泥管保持貫通孔14に固定される。排泥管76cの後端開口と排泥用のポンプ76bの吸込口とが連通可能に連結される。そして、排泥用のポンプ76bの吐出口と排泥タンク76aとが図外の連結管により連通可能に連結される。排泥装置76は、先頭管6の下部内側の左右側に2系統設けられる。
The mud drain device 76 includes a mud tank 76a, a pump 76b for mud, a mud pipe 76c, and a mud pipe holding through hole 14 that holds the front end opening of the mud pipe 76c.
The mud drain pipe 76c is formed of a steel pipe, for example. The front end opening side of the mud pipe 76c is connected to the mud pipe holding through hole 14 of the sphere rotating guide member 31 so that the excavated soil gathered in front of the front surface 30f of the sphere rotating guide member 31 can be taken in through the front end opening. Fixed. The rear end opening of the mud pipe 76c and the suction port of the mud pump 76b are connected so that they can communicate with each other. And the discharge port of the pump 76b for mud and the mud tank 76a are connected so that communication is possible by a connecting pipe outside the figure. Two systems of the mud discharge device 76 are provided on the left and right sides inside the lower portion of the top pipe 6.

尚、水貯留タンク75a及び排泥タンク76aは、例えば水貯留タンク75aと排泥タンク76aとが一体となった集合タンク75Xにより構成される。即ち、集合タンク75Xの内部に仕切体75wを設けて集合タンク75Xの内部を2つの領域に区切り、一方の領域を水貯留タンク75aとして使用し、他方の領域を排泥タンク76aとして使用する。
つまり、最初に一定量の水を集合タンク75X内に満たしておき、送水用のポンプ75bを駆動して球体回転ガイド部材31の前方に水を圧送すると、球体回転ガイド部材31の前方に圧送された水と回転掘削体46;46により掘削された土砂とが混ざって泥水となる。そして、排泥用のポンプ76bを駆動することにより、球体回転ガイド部材31の前方の泥水が排泥タンク76aに排出される。排泥タンク76aに排出された泥水中の泥が排泥タンク76aの底に沈殿するとともに、仕切体75wを越えて水貯留タンク75aに入り込んだ泥水が再び送水用のポンプ75bによって球体回転ガイド部材31の前方に圧送される。即ち、泥水を循環させて球体回転ガイド部材31の前方に供給できるようになるので、水の使用量を減らすことができる。また、水よりも比重が大きい泥水を球体回転ガイド部材31の前方に供給できるので、地盤及び地下水の圧力に抵抗できて、地盤及び地下水の圧力と球体回転ガイド部材31の前方に供給した圧力とを均等にしやすくなるので、地盤沈下等、地中10に与える影響を少なくすることができる。また、球体回転ガイド部材31の前方が泥水化するので、排泥をスムーズに行えるようになり、掘削しやすくなる。
尚、最初から泥水を集合タンク75X内に満たしておき、送水用のポンプ75bを駆動して球体回転ガイド部材31の前方と集合タンク75X内との間で泥水を循環させてもよい。
In addition, the water storage tank 75a and the waste mud tank 76a are comprised by the collection tank 75X which the water storage tank 75a and the waste mud tank 76a integrated, for example. That is, the partition 75w is provided inside the collective tank 75X to divide the collective tank 75X into two regions, one region is used as the water storage tank 75a, and the other region is used as the mud tank 76a.
That is, when a certain amount of water is initially filled in the collecting tank 75X and the water pump 75b is driven to feed water forward of the spherical rotation guide member 31, the water is pumped forward of the spherical rotation guide member 31. The mixed water and the earth and sand excavated by the rotary excavator 46; 46 become muddy water. And the mud water ahead of the spherical body rotation guide member 31 is discharged to the mud tank 76a by driving the pump 76b for mud. Mud in the mud discharged to the mud tank 76a settles on the bottom of the mud tank 76a, and the mud that has entered the water storage tank 75a beyond the partition 75w is again fed by the spherical pump by the pump 75b for water supply. 31 is pumped forward. That is, since the muddy water can be circulated and supplied to the front of the spherical body rotation guide member 31, the amount of water used can be reduced. Further, since muddy water having a specific gravity greater than that of water can be supplied to the front of the spherical rotation guide member 31, the pressure of the ground and groundwater and the pressure supplied to the front of the spherical rotation guide member 31 can be resisted. Therefore, the influence on the underground 10 such as land subsidence can be reduced. Moreover, since the front of the spherical body rotation guide member 31 is muddy, the mud can be drained smoothly, and excavation is facilitated.
Alternatively, the muddy water may be filled in the collecting tank 75X from the beginning, and the muddy water may be circulated between the front of the spherical rotating guide member 31 and the collecting tank 75X by driving the water supply pump 75b.

次に管設置装置1による地中10への管2の設置方法を説明する。
掘削機械26と、掘削機械揺動駆動装置25と、当て材72を除いた推進装置70と、水供給管75cと、排泥管76cとが組立てられた組立体を、掘削回転体46側から先頭管6の後端開口を介して先頭管6内に入れていき、球体回転ガイド部材31の前端面31fと先頭管6の内側に固定された推進力受け部63とを接触させる。そして、先頭管6の後端面102eより後方に突出する左右の推進力伝達棒状体71A;71Bの他端間に跨るように当て材72を設置して当て材72を左右の推進力伝達棒状体71A;71Bの他端に図外のボルトや万力装置などで連結する。そして、送水用のポンプ75bを駆動して球体回転ガイド部材31の前方に泥水を供給し、球体回転ガイド部材31の前方と集合タンク75X内との間で泥水を循環させるとともに、制御装置65による制御によって、油圧源55から油圧モータ47に圧油を供給して回転掘削体46を回転させながら、推進駆動源61を作動させて当て材72に推進力を加えることで、推進力が、推進力伝達棒状体71、推進力伝達構成部64、球体回転ガイド部材31、推進力受け部63を介して先頭管6及び回転掘削体46;46に伝達され、先頭管6が前方に推進するとともに回転掘削体46;46が前方に推進する。この際、制御装置65による制御によって、左右の揺動用ジャッキ35;35を作動させ、球体30を球体回転中心軸30aを回転中心として回すことにより、掘削回転体46が先頭管6の前方において先頭管6の左右方向に首振りのように揺動して地山99を掘削する。これにより、先頭管6の前方において先頭管6の左右幅間隔よりも広い左右間隔幅で地山99が掘削されるので、先頭管6が推進する際に先頭管6の先端が硬質地盤の地山99に衝突する可能性が少なくなり、先頭管6をスムーズに推進させることができる。また、制御装置65による制御によって、上下の揺動用ジャッキ36;36を作動させ、球体30を球体回転中心線30bを回転中心として回すことにより、掘削回転体46が先頭管6の前方において先頭管6の上下方向に首振りのように揺動して地山99を掘削する。これにより、先頭管6の前方において先頭管6の上下幅間隔よりも広い上下間隔幅で地山99が掘削されるので、先頭管6が推進する際に先頭管6の先端が硬質地盤の地山99に衝突する可能性が少なくなり、先頭管6をスムーズに推進させることができる。
先頭管6の後端面102eを残して先頭管6が地中10に設置された後、先頭管6の後端面102eに後続管7を溶接、又は、ボルト等の固定具により接続し、さらに、先頭の推進力伝達棒状体71の他端と後続の推進力伝達棒状体71の一端とをボルト、又は、溶接により結合することにより、先頭の推進力伝達棒状体71の後ろに後続の推進力伝達棒状体71を継ぎ足すとともに、また、耐圧ホース56の他端に図外の延長耐圧ホースを継ぎ足し、水供給管75cの他端に図外の延長水供給管を継ぎ足し、排泥管76cの他端に図外の延長排泥管を継ぎ足していく。そして、当て材72を、後続管7の後端縁より後方に突出する左右の推進力伝達棒状体71A;71Bの他端間に跨るように設置して、当て材72を油圧ジャッキ61Aのピストンロッド61aで押圧しながら、回転掘削体46;46を回転駆動させることにより、回転掘削体46が掘削を行いながら先頭管6が推進し、後続管7が地中に設置される。
以後、同様に、前の後続管7の後端縁に後の後続管7を順次連結して地中10に設置していくことで、支保工11を構築できる。
Next, the installation method of the pipe | tube 2 to the underground 10 by the pipe installation apparatus 1 is demonstrated.
An assembly in which the excavating machine 26, the excavating machine swing drive device 25, the propulsion device 70 excluding the pad 72, the water supply pipe 75c, and the mud pipe 76c is assembled from the excavation rotating body 46 side. The lead pipe 6 is inserted into the lead pipe 6 through the rear end opening, and the front end face 31f of the spherical body rotation guide member 31 and the propulsive force receiving portion 63 fixed inside the lead pipe 6 are brought into contact with each other. And the abutting material 72 is installed so as to straddle between the other ends of the left and right propulsive force transmission rod-like bodies 71A; 71A; It connects with the other end of 71B with a volt | bolt outside a figure, a vise, etc. Then, the pump 75b for water supply is driven to supply muddy water to the front of the sphere rotation guide member 31, and the muddy water is circulated between the front of the sphere rotation guide member 31 and the inside of the collecting tank 75X. The propulsive force is propelled by supplying the propulsive force to the abutting material 72 by operating the propulsion drive source 61 while supplying the pressure oil from the hydraulic source 55 to the hydraulic motor 47 and rotating the rotary excavator 46 by the control. The force is transmitted to the leading pipe 6 and the rotary excavating body 46; 46 through the force transmission rod 71, the propulsive force transmitting component 64, the spherical body rotation guide member 31, and the propelling force receiving part 63, and the leading pipe 6 propels forward. A rotary excavator 46; 46 propels forward. At this time, the left and right swinging jacks 35; 35 are operated under the control of the control device 65, and the sphere 30 is rotated about the sphere rotation center axis 30a. The natural ground 99 is excavated by swinging like a swing in the horizontal direction of the pipe 6. As a result, the ground 99 is excavated with a width between the left and right widths wider than the left and right width of the top pipe 6 in front of the top pipe 6, so that when the top pipe 6 is propelled, the tip of the top pipe 6 is hard ground. The possibility of colliding with the mountain 99 is reduced, and the leading pipe 6 can be smoothly promoted. Further, by controlling the control device 65, the upper and lower swinging jacks 36; 36 are operated, and the sphere 30 is rotated about the sphere rotation center line 30 b, so that the excavation rotator 46 is in front of the leading pipe 6. 6 rocks like a swing in the vertical direction of 6 and excavates the natural ground 99. As a result, the ground 99 is excavated with a vertical interval width wider than the vertical interval of the leading pipe 6 in front of the leading pipe 6, so that when the leading pipe 6 is propelled, the tip of the leading pipe 6 is grounded on the hard ground. The possibility of colliding with the mountain 99 is reduced, and the leading pipe 6 can be smoothly promoted.
After the leading pipe 6 is installed in the ground 10 leaving the rear end face 102e of the leading pipe 6, the succeeding pipe 7 is connected to the rear end face 102e of the leading pipe 6 by welding or a fixture such as a bolt, By connecting the other end of the leading thrust transmission rod 71 and one end of the trailing thrust transmission rod 71 by bolts or welding, the following thrust is placed behind the leading thrust transmission rod 71. In addition to adding the transmission rod-like body 71, an extension pressure hose (not shown) is added to the other end of the pressure hose 56, and an extension water supply pipe (not shown) is added to the other end of the water supply pipe 75c. An extended sludge pipe (not shown) is added to the other end. Then, the abutting member 72 is installed so as to straddle between the other ends of the left and right propulsive force transmitting rod-like bodies 71A; 71B projecting rearward from the rear end edge of the succeeding pipe 7, and the abutting member 72 is disposed on the piston of the hydraulic jack 61A. By rotating and driving the rotary excavator 46; 46 while being pressed by the rod 61a, the leading pipe 6 is propelled while the rotary excavator 46 excavates, and the subsequent pipe 7 is installed in the ground.
Thereafter, similarly, the support work 11 can be constructed by sequentially connecting the subsequent succeeding pipe 7 to the rear end edge of the preceding succeeding pipe 7 and installing it in the ground 10.

支保工11を構築した後は、掘削始点となった出発側の空洞部100内に掘削機械26等を引き戻して回収する。実施形態1によれば、推進力伝達棒状体71を継ぎ足していくことから、掘削機械26等を回収する際には、最後尾の推進力伝達棒状体71側から推進力伝達棒状体71の1個長さ分ずつ空洞部100内に引き戻して、最後尾側から先頭まで順番に推進力伝達棒状体71を取り外していくことにより、掘削機械26等を容易に回収できるようになる。この場合、推進装置の一例である油圧ジャッキ61Aを掘削始点となる空洞部100内にのみ設置すればよいので、装置コストを低減できる。
尚、到達側の空洞部100内に掘削機械26等を押し出して回収するようしてもよい。
例えば、先頭管6を到達側の空洞部100に押し出して推進力受け部63を除去してから、到達側の空洞部100内に掘削機械26等を押し出して回収する。この場合、掘削機械26等を掘削始点となった空洞部100内に引き戻す作業よりも掘削機械26等を到達側の空洞部100内に押し出す作業の方が容易となるので、掘削機械26等の回収作業が容易となる。
図11(b)のように、地中10に形成された1つの空洞部100から出発して当該空洞部100に戻るように支保工11を構築する場合には、掘削機械26等が1つの空洞部100の到達口に到達したならば掘削機械26等を到達口から当該空洞部100内に押し出すようにして回収すれば、掘削機械26等の回収作業が容易となるとともに、油圧ジャッキ61Aを当該1つの空洞部100内にのみ設置すればよいので装置コストも低減できる。
After the support work 11 is constructed, the excavating machine 26 and the like are pulled back into the cavity 100 on the starting side that is the starting point of excavation and collected. According to the first embodiment, since the propulsive force transmission rod-shaped body 71 is added, when the excavating machine 26 and the like are collected, the propulsive force transmission rod-shaped body 71 1 is selected from the rearmost propulsive force transmission rod-shaped body 71 side. The excavating machine 26 and the like can be easily collected by pulling back into the cavity 100 by the length of each piece and detaching the propulsive force transmission rod-like body 71 in order from the last side to the top. In this case, the hydraulic jack 61A, which is an example of the propulsion device, needs to be installed only in the hollow portion 100 serving as the excavation start point, so that the device cost can be reduced.
Note that the excavating machine 26 and the like may be pushed into the cavity 100 on the reaching side and recovered.
For example, the leading pipe 6 is pushed out to the reaching-side cavity 100 to remove the propulsive force receiving portion 63, and then the excavating machine 26 and the like are pushed into the reaching-side cavity 100 and collected. In this case, the operation of pushing the excavating machine 26 and the like into the cavity 100 on the arrival side is easier than the operation of pulling the excavating machine 26 and the like back into the cavity 100 that is the starting point of excavation. Collection work becomes easy.
As shown in FIG. 11B, when the support work 11 is constructed so as to start from one cavity 100 formed in the ground 10 and return to the cavity 100, the excavating machine 26 or the like is If the excavating machine 26 or the like is recovered by pushing it out of the reaching port into the cavity 100 when the arrival port of the hollow part 100 is reached, the recovery operation of the excavating machine 26 or the like is facilitated and the hydraulic jack 61A is installed. Since it suffices to install only in one cavity 100, the apparatus cost can be reduced.

実施形態1によれば、管設置装置1が掘削機械揺動駆動装置25を備えたので、先頭管6の前方の地山99を回転掘削体46で掘削する際に球体回転ガイド部材駆動手段32を作動させて球体30を回すことにより、回転掘削体46を先頭管56の前方において先頭管6の左右方向又は上下方向に揺動させることができ、回転掘削体46が左右方向又は上下方向に揺動しない場合と比べて、掘削可能な左右幅又は上下幅を大きくできる。即ち、先頭管6の進行に先立って先頭管6の前方において先頭管6の断面積よりも左右幅又は上下幅の広い断面積を掘削でき、先頭管6の前方の左右上下において余堀を行えるようになるので、地山99が硬質地盤である場合でも、先頭管6を地中10においてスムーズに推進させることができる。
即ち、球体駆動手段32として、先頭管6の互いに平行に対向する上下の内壁面6c;6d(一方の一対の壁面)と平行でかつ先頭管6の互いに平行に対向する左右の内壁面6a;6b(他方の一対の壁面)と交差するように延長する回転中心軸30a(第1の回転中心線)を回転中心として球体を回すための左右一対の揺動用ジャッキ35;35と、回転掘削体46の回転中心線Lと平行な回転中心線30b(第2の回転中心線)を回転中心として球体を回す上下一対の揺動用ジャッキ36;36とを備えたので、先頭管6の前方において、先頭管6の左右の内壁面6a;6bと直交する方向である先頭管6の左右幅間隔よりも広い左右幅間隔で地山を掘削できるようになるとともに、先頭管6の上下の内壁面6c;6dと直交する方向である先頭管6の上下幅間隔よりも広い上下幅間隔で地山を掘削できるようになるので、地山が硬質地盤である場合でも管を地中においてスムーズに推進させることが可能な管設置装置を提供できる。
According to the first embodiment, since the pipe installation device 1 includes the excavating machine swing driving device 25, the spherical rotation guide member driving means 32 when excavating the natural ground 99 in front of the top pipe 6 with the rotary excavating body 46. The rotary excavator 46 can be swung in the horizontal direction or the vertical direction of the top tube 6 in front of the top tube 56 by rotating the sphere 30 by operating Compared with the case where it does not swing, it is possible to increase the lateral width or vertical width that allows excavation. In other words, prior to the advancement of the top tube 6, a cross-sectional area wider than the top tube 6 can be excavated in front of the top tube 6 and left and right and up and down in front of the top tube 6. Therefore, even when the natural ground 99 is a hard ground, the top pipe 6 can be smoothly promoted in the underground 10.
That is, as the spherical body driving means 32, the upper and lower inner wall surfaces 6c of the leading tube 6 facing each other in parallel with each other; the left and right inner wall surfaces 6a of the leading tube 6 facing with each other in parallel with 6d (one pair of wall surfaces); A pair of left and right rocking jacks 35; 35 for rotating the sphere around a rotation center shaft 30a (first rotation center line) extending so as to intersect with 6b (the other pair of wall surfaces), and a rotary excavation body 46, a pair of upper and lower swinging jacks 36 and 36 that rotate the sphere around the rotation center line 30b (second rotation center line) parallel to the rotation center line L of 46, and in front of the leading pipe 6, The left and right inner wall surfaces 6a; 6b of the leading pipe 6 can be excavated at a horizontal width wider than the horizontal width of the leading pipe 6 in the direction orthogonal to the leading pipe 6 and the inner wall 6c above and below the leading pipe 6 In a direction perpendicular to 6d Since the natural ground can be excavated at a wider vertical interval than the vertical interval of the leading pipe 6, the pipe installation device capable of smoothly propelling the pipe in the ground even when the natural ground is hard ground Can provide.

実施形態2
グリッパ装置を用いて先頭管6を推進させるようにしてもよい。この場合、グリッパ装置は、例えば、球体回転ガイド部材31の後板31Bに固定されて球体回転ガイド部材31の後方に延長するように設けられた図外の複数のジャッキ支持体と、ジャッキのシリンダがジャッキ支持体に固定されてジャッキのピストンが伸長することで先頭管6の内面に突っ張るように接触する複数のジャッキとを備えて構成される。
複数のジャッキのピストンを伸長させて先頭管6の内面に突っ張るように作動させた後、先頭管6の後端面102eを推進ジャッキ61Aで押圧して先頭管6を推進させた場合、先頭管6と、掘削機械揺動駆動装置25と、掘削機械26とを一緒に推進させることができ、推進力伝達手段62と推進力受け部63とを不要とできる。このため、掘削機械26等を到達側で回収できるようになる。
また、地山99側から球体回転ガイド部材31に加わる水圧に十分に対抗できるようになる。
Embodiment 2
The leading pipe 6 may be propelled using a gripper device. In this case, the gripper device includes, for example, a plurality of jack supports that are fixed to the rear plate 31B of the sphere rotation guide member 31 and extend rearward of the sphere rotation guide member 31, and a jack cylinder. Is fixed to the jack support body, and is configured to include a plurality of jacks that come into contact with the inner surface of the leading pipe 6 by extending the piston of the jack.
When the pistons of a plurality of jacks are extended and operated so as to be stretched against the inner surface of the leading pipe 6, the leading pipe 6 is propelled by pushing the rear end surface 102 e of the leading pipe 6 with the propulsion jack 61 </ b> A. In addition, the excavating machine swing driving device 25 and the excavating machine 26 can be propelled together, and the propulsive force transmitting means 62 and the propulsive force receiving portion 63 can be dispensed with. For this reason, the excavating machine 26 and the like can be collected on the arrival side.
Moreover, it becomes possible to sufficiently counter the water pressure applied to the spherical body rotation guide member 31 from the natural ground 99 side.

実施形態3
実施形態1では、球体回転中心軸30a及び球体回転中心線30bを回転中心として球体30を回すことで、回転掘削体46を先頭管6の前方において先頭管6の左右方向又は上下方向に揺動させるための第1の揺動用ジャッキとしての揺動用ジャッキ35;35、及び、第2の揺動用ジャッキとしての揺動用ジャッキ36;36を備えた構成を示したが、さらに、先頭管6の中心線(球体30の支柱支持貫通孔13及び支柱42の中心線)を第3の回転中心線とし、この第3の回転中心線を回転中心として球体30を回して回転掘削体46の回転中心線Lが先頭管6の左右の内壁面6c;6dと直交以外の状態で交差するように回転掘削体46を揺動させるための図外の第3の揺動用ジャッキを設けてもよい。第3の揺動用ジャッキは、例えばピストンが先頭管6の上下方向に伸縮するように設けられた一対の油圧ジャッキにより構成される。尚、球体30の支柱支持貫通孔13及び支柱42の中心線と先頭管6の中心線とが一致しないように回転掘削体46;46が設けられる場合には、第3の回転中心線は、先頭管6の中心線と平行な球体30の支柱支持貫通孔13及び支柱42の中心線となる。尚、この場合、球体30が第3の回転中心線を回転中心として回転する方向に球体30の軸部30m、30nも回転するので、軸部30m、30nを収容する上側軸収容部34x、下側軸収容部34yは、第3の回転中心線を回転中心として回転する球体30の回転方向に軸部30m、30nが移動可能な空間を備えた構成とする。
Embodiment 3
In the first embodiment, by rotating the sphere 30 around the sphere rotation center axis 30a and the sphere rotation center line 30b, the rotary excavation body 46 swings in the left-right direction or the up-down direction of the top tube 6 in front of the top tube 6. The configuration includes the swinging jacks 35; 35 as the first swinging jacks and the swinging jacks 36; 36 as the second swinging jacks. The line (center line of the support pillar through hole 13 of the sphere 30 and the support pillar 42) is set as the third rotation center line, and the sphere 30 is rotated around the third rotation center line as the rotation center line. A third rocking jack (not shown) for rocking the rotary excavator 46 may be provided so that L intersects with the left and right inner wall surfaces 6c; The third rocking jack is constituted by a pair of hydraulic jacks provided such that the piston extends and contracts in the vertical direction of the leading pipe 6, for example. In addition, when the rotary excavator 46; 46 is provided so that the center line of the column support through-hole 13 and the column 42 of the sphere 30 does not coincide with the center line of the top pipe 6, the third rotation center line is It becomes the center line of the column support through hole 13 and the column 42 of the sphere 30 parallel to the center line of the top tube 6. In this case, the shaft portions 30m and 30n of the sphere 30 also rotate in the direction in which the sphere 30 rotates around the third rotation center line, so that the upper shaft housing portion 34x that houses the shaft portions 30m and 30n, The side shaft accommodating portion 34y is configured to include a space in which the shaft portions 30m and 30n can move in the rotation direction of the sphere 30 that rotates about the third rotation center line.

実施形態4
実施形態3では、第1の揺動用ジャッキ、第2の揺動用ジャッキ、第3の揺動用ジャッキのすべてを備えた構成を示したが、第1の揺動用ジャッキ、第2の揺動用ジャッキ、第3の揺動用ジャッキのうちの1つ以上を備えた構成としてもよい。
Embodiment 4
In the third embodiment, the configuration including all of the first swinging jack, the second swinging jack, and the third swinging jack is shown. However, the first swinging jack, the second swinging jack, It is good also as a structure provided with one or more of the 3rd rocking jacks.

実施形態5
上記各実施形態では、一対のジャッキにより構成された第1の揺動用ジャッキ、第2の揺動用ジャッキ、第3の揺動用ジャッキを用いた例を示したが、第1の揺動用ジャッキ、第2の揺動用ジャッキ、第3の揺動用ジャッキを、それぞれ1つのジャッキで構成してもよい。
Embodiment 5
In each of the above embodiments, an example using the first swinging jack, the second swinging jack, and the third swinging jack configured by a pair of jacks has been described, but the first swinging jack, the second swinging jack, The two rocking jacks and the third rocking jack may each be constituted by one jack.

実施形態6
第1の揺動用ジャッキのみを備えた構成の場合には、回転掘削体として、図12乃至図14に示すような、回転体50の外周面51より突出するように設けられた掘削刃としての第1の掘削ビット80及び第2の掘削ビット81とを備えた構成の回転掘削体46Aを用いることにより、先頭管6の前方の上下において余堀を行えるようになる。
複数個の第2の掘削ビット81が回転体50の回転中心線Lに沿った方向に並べられて第2の掘削ビット群810が構成される。
回転体50の外周面51には複数のビット取付部83が点在するように設けられる。第1の掘削ビット80は、回転体50の外周面51に設けられた個々のビット取付部83に1つ1つ個別に着脱可能に取り付けられる。第2の掘削ビット81は、回転体50の外周面に設けられた複数のビット取付部83に着脱可能に取り付けられるビット設置板84に設けられる。即ち、第2の掘削ビット群810は、ビット取付部83に取り付けられて回転体50の回転中心線L(回転掘削体46の回転中心線L)に沿って回転体50の外周面51の周面幅(回転中心線Lに沿った方向の幅、即ち、回転体50の回転中心線Lに沿った方向の両方の端面)に渡って延長するビット設置板84のビット設置面84aに、複数の第2の掘削ビット81が回転中心線Lに沿った方向に並ぶように着脱可能又は固定的に設けられた構成である。
1つの1つの回転掘削体46Aは、複数の第2の掘削ビット群810;810を備え、2つの第2の掘削ビット群810;810は、回転体50の外周面51の周方向に互いに180°離れた位置にそれぞれ設けられた一対の2つの第2の掘削ビット群810;810が例えば三対設けられる。第1の掘削ビット80は、回転体50の外周面51上において第2の掘削ビット群810が設けられていない部分に設けられる。
図13(b)に示すように、回転体50の外周面51上で周方向に互いに180°離れた位置に設けられた各第2の掘削ビット群810;810の各掘削ビット81の先端は、回転体50の回転中心線Lと直交する同一の面85上に位置しないように設定されている。つまり、一方の第2の掘削ビット群810において互いに隣り合う各掘削ビット81間で掘削されない地盤部分を他方の第2の掘削ビット群810の各掘削ビット81で掘削できるように構成されている。要するに、1つの1つの回転掘削体46Aは、一方の第2の掘削ビット群810で掘削できない地盤部分を他方の第2の掘削ビット群810で掘削できるようにした相補的な一対の第2の掘削ビット群810;810を備えた構成である。
そして、図14(a)に示すように、回転体50の回転中心線Lから回転中心線Lと直交する線上を経由した第1の掘削ビット80の先端までの第1距離80x(即ち、第1の掘削ビット80による掘削半径)と回転体50の回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット81の先端までの第2距離81x(即ち、第2の掘削ビットによる掘削半径)とが異なる。
つまり、第1距離80xを掘削半径とした第1の掘削ビット80による掘削径が、先頭管6の上下の内壁面6c;6d間(先頭管6の一方の一対の壁面の内壁面間)の寸法9xよりも小さく設定され、かつ、第2距離81xを掘削半径とした第2の掘削ビット81による掘削径が、先頭管6の先頭管6の上下の内壁面6c;6d間の寸法9xよりも大きく設定されていることにより、回転掘削体46Aが先頭管6の先頭開口6tを介して先頭管6の前方及び先頭管6の内側に移動可能に構成されている。
即ち、第1距離80xは、回転掘削体46Aが先頭管6の内側で回転中心線Lを回転中心として回転可能な回転半径寸法に設定されたことによって、回転掘削体46Aが管2内を通過可能となり、掘削機械26を出発側の空洞部100に引き戻して回収できる。
また、第2距離81xは、回転掘削体46Aが先頭管6の内側で回転中心線Lを回転中心として回転不可能で、かつ、回転掘削体46Aが先頭管6の先頭開口6tの前方に位置された場合に回転可能な回転半径に設定される。
即ち、回転掘削体46Aが先頭管6の先頭開口6tの前方に位置された状態で回転駆動されることによって第1の掘削ビット80及び第2の掘削ビット81が先頭管6の先頭開口6tの前方位置の地盤を掘削可能であり、かつ、回転掘削体46Aが管2(先頭管6及び後続管7)内を通過して管2を出発させた空洞部100に回収可能に構成される。
以上のような回転掘削体46Aを備えたことにより、先頭管6の先頭開口6tの前方において先頭開口6tの断面よりも上下幅の大きい断面積の孔を掘削できるので、先頭管6の先頭開口縁6zが地盤に衝突する前に地盤を掘削できて、管2をよりスムーズに推進させることができる。
また、掘削機械26の回収時には、図14(b)に示すように、第2の掘削ビット群810の第2の掘削ビット81の先端が、先頭管6の上の内壁面6cと同一平面を示す位置より上方に位置せず、かつ、先頭管6の下の内壁面6dと同一平面を示す位置より下方に位置しない状態にしてから、回転掘削体46Aを管2内に引き戻して掘削機械26を出発側の空洞部100に回収する。
Embodiment 6
In the case of a configuration including only the first swinging jack, as a rotary excavator, as an excavating blade provided so as to protrude from the outer peripheral surface 51 of the rotary member 50 as shown in FIGS. By using the rotary excavator 46 </ b> A having the first excavation bit 80 and the second excavation bit 81, extra excavation can be performed on the upper and lower sides in front of the top pipe 6.
A plurality of second excavation bits 81 are arranged in a direction along the rotation center line L of the rotating body 50 to constitute a second excavation bit group 810.
A plurality of bit attachment portions 83 are provided on the outer peripheral surface 51 of the rotating body 50 so as to be scattered. The first excavation bits 80 are individually detachably attached to individual bit attachment portions 83 provided on the outer peripheral surface 51 of the rotating body 50. The 2nd excavation bit 81 is provided in the bit installation board 84 attached to the some bit attachment part 83 provided in the outer peripheral surface of the rotary body 50 so that attachment or detachment is possible. That is, the second excavation bit group 810 is attached to the bit attachment portion 83 and is rotated along the rotation center line L of the rotation body 50 (the rotation center line L of the rotation excavation body 46). A plurality of bit installation surfaces 84a of the bit installation plate 84 extending over the surface width (the width in the direction along the rotation center line L, that is, both end surfaces in the direction along the rotation center line L of the rotating body 50). The second excavation bit 81 is detachably or fixedly provided so as to be aligned in the direction along the rotation center line L.
One rotating excavator 46A includes a plurality of second excavation bit groups 810; 810, and the two second excavation bit groups 810; 810 are 180 mutually in the circumferential direction of the outer peripheral surface 51 of the rotary body 50. Three pairs of, for example, a pair of two second excavation bit groups 810; 810 respectively provided at positions apart from each other are provided. The first excavation bit 80 is provided on the outer peripheral surface 51 of the rotating body 50 at a portion where the second excavation bit group 810 is not provided.
As shown in FIG. 13 (b), the tips of the respective excavation bits 81 of the respective second excavation bit groups 810; 810 provided at positions 180 ° apart from each other on the outer peripheral surface 51 of the rotating body 50 are The rotation body 50 is set so as not to be located on the same plane 85 orthogonal to the rotation center line L. That is, the ground portion that is not excavated between the adjacent excavation bits 81 in one second excavation bit group 810 can be excavated by the excavation bits 81 of the other second excavation bit group 810. In short, one single rotary excavation body 46 </ b> A has a pair of complementary second second holes that enable excavation of a ground portion that cannot be excavated by one second excavation bit group 810 using the other second excavation bit group 810. It is the structure provided with the excavation bit group 810; 810.
Then, as shown in FIG. 14A, a first distance 80x (that is, the first distance) from the rotation center line L of the rotating body 50 to the tip of the first excavation bit 80 via a line orthogonal to the rotation center line L. A second radius 81x (that is, a second radius 81x) from the rotation center line L of the rotating body 50 to the tip of the second drill bit 81 via a line orthogonal to the rotation center line L. The excavation radius by the excavation bit is different.
That is, the excavation diameter by the first excavation bit 80 with the first distance 80x as the excavation radius is between the upper and lower inner wall surfaces 6c; 6d of the leading pipe 6 (between the inner wall surfaces of one pair of wall surfaces of the leading pipe 6). The diameter of excavation by the second excavation bit 81, which is set smaller than the dimension 9x and has the second distance 81x as the excavation radius, is based on the dimension 9x between the upper and lower inner wall surfaces 6c; In addition, the rotary excavator 46A is configured to be movable forward of the leading pipe 6 and inside the leading pipe 6 through the leading opening 6t of the leading pipe 6.
That is, the first excavation body 46A passes through the pipe 2 because the rotary excavation body 46A is set to have a rotation radius dimension that allows the rotation excavation body 46A to rotate around the rotation center line L inside the leading pipe 6. It becomes possible, and the excavating machine 26 can be pulled back into the cavity 100 on the starting side and collected.
The second distance 81x is such that the rotary excavator 46A cannot rotate around the rotation center line L inside the head pipe 6 and the rotary excavator 46A is positioned in front of the head opening 6t of the head pipe 6. When set, the rotation radius is set to be rotatable.
That is, the first excavation bit 80 and the second excavation bit 81 are positioned in the front opening 6t of the front pipe 6 by being driven to rotate while the rotary excavation body 46A is positioned in front of the front opening 6t of the front pipe 6. The ground at the front position can be excavated, and the rotary excavator 46A passes through the pipe 2 (the leading pipe 6 and the succeeding pipe 7) and can be recovered in the cavity 100 from which the pipe 2 has started.
By providing the rotary excavating body 46A as described above, a hole having a cross-sectional area larger than the cross section of the top opening 6t in front of the top opening 6t of the top pipe 6 can be excavated. The ground can be excavated before the edge 6z collides with the ground, and the pipe 2 can be pushed more smoothly.
When the excavating machine 26 is collected, the tip of the second excavation bit 81 of the second excavation bit group 810 is flush with the inner wall surface 6c on the top pipe 6 as shown in FIG. The rotary excavator 46A is pulled back into the pipe 2 after the rotary excavator 46A is pulled back into the pipe 2 after being not positioned above the position shown and not below the position showing the same plane as the inner wall surface 6d below the top pipe 6. Is recovered in the cavity 100 on the starting side.

即ち、実施形態6によれば、回転体50の回転中心線Lから回転中心線Lと直交する線上を経由した第1の掘削ビット80の先端までの第1距離80x(即ち、第1の掘削ビット80による掘削半径)と回転体50の回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット81の先端までの第2距離81x(即ち、第2の掘削ビットによる掘削半径)とが異なるように設定され、第1距離80xを掘削半径とした第1の掘削ビット80による掘削径が、先頭管6の案内刃管の上下の内壁面6c;6d間の寸法9xよりも小さく、第2距離81xを掘削半径とした第2の掘削ビット81による掘削径が、先頭管6の上下の内壁面6c;6d間の寸法9xよりも大きく設定された回転掘削体46Aを備えた。このため、先頭管6の先頭開口6tより前方に位置する回転掘削体46Aを回転させて掘削ビット80;81が地盤を掘削することにより、先頭管6の先頭開口6tの前方において、先頭管6の管の中心を中心とした四角断面であって先頭管6の先頭開口6tの四角断面の幅寸法(回転掘削体46Aの径方向に対応する幅寸法、例えば、先頭管6の上下の内壁面6c;6d間の寸法9x)より幅寸法の大きい四角断面の孔を掘削できる。よって、先頭管6の先頭開口縁6zが地盤に衝突する前に、先頭管6の先頭開口6tよりも前方に位置する地盤を掘削ビット80;81により確実に掘削できるので、先頭管6の先頭開口縁6zが硬質の地盤に衝突して先頭管6を推進できなくなるような事態を防止でき、地山99が硬質地盤である場合でも、管2をよりスムーズに推進させることができる。
即ち、第1の揺動用ジャッキを作動させることで、回転掘削体46Aによる左右方向の掘削幅が大きくなり、左右の余堀量を多くできるとともに、第2の掘削ビット群810を備えたので、第2の掘削ビット81による掘削によって、先頭管6の前方において先頭管6の上下の内壁面6c;6d(先頭管6の一方の一対の壁面)と直交する方向である先頭管6の上下幅間隔よりも広い上下幅間隔で地山99を掘削できるようになり、先頭管6の前方において先頭管6の上下幅方向での余堀が可能となるので、地山99が硬質地盤である場合でも管をよりスムーズに推進させることが可能となる。
また、第1の掘削ビット80による掘削径が先頭管6の上下の内壁面6c;6d間の寸法9xよりも小さいので、掘削機械26等の回収時には、図14(b)に示すように、回転掘削体46Aが管2内を通過できるようになるので、回転掘削体46Aを管2内に通して引き戻すことにより掘削機械26等を出発側の空洞部100に回収できる。
That is, according to the sixth embodiment, the first distance 80x (that is, the first excavation) from the rotation center line L of the rotating body 50 to the tip of the first excavation bit 80 via a line orthogonal to the rotation center line L. The second radius 81x (that is, depending on the second excavation bit) from the rotation center line L of the rotating body 50 to the tip of the second excavation bit 81 via a line orthogonal to the rotation center line L. The excavation diameter by the first excavation bit 80 with the first distance 80x as the excavation radius is the dimension 9x between the upper and lower inner wall surfaces 6c; A rotary excavator 46A having a drilling diameter of the second drilling bit 81 having a second drilling radius of the second distance 81x is set to be larger than the upper and lower inner wall surfaces 6c; Prepared. For this reason, by rotating the rotary excavating body 46A located in front of the top opening 6t of the top pipe 6 and excavating bits 80; 81 excavating the ground, the top pipe 6 is positioned in front of the top opening 6t of the top pipe 6. The width of the square section of the leading opening 6t of the leading pipe 6 (the width dimension corresponding to the radial direction of the rotary excavator 46A, for example, the upper and lower inner wall surfaces of the leading pipe 6) It is possible to excavate a hole with a square cross section having a width dimension larger than the dimension 9x) between 6c and 6d. Therefore, before the top opening edge 6z of the top pipe 6 collides with the ground, the ground positioned in front of the top opening 6t of the top pipe 6 can be reliably excavated by the excavation bits 80; 81. It is possible to prevent a situation in which the opening edge 6z collides with the hard ground and the front pipe 6 cannot be pushed, and the pipe 2 can be pushed more smoothly even when the ground 99 is hard ground.
That is, by operating the first swinging jack, the horizontal excavation width by the rotary excavator 46A is increased, the amount of left and right surplus can be increased, and the second excavation bit group 810 is provided. Due to excavation by the second excavation bit 81, the top and bottom widths of the top tube 6 in the direction perpendicular to the top and bottom inner wall surfaces 6c; 6d (one pair of wall surfaces of the top tube 6) in front of the top tube 6 When the natural ground 99 can be excavated in the vertical width direction of the top pipe 6 in front of the top pipe 6 and the ground 99 can be excavated at a vertical width interval wider than the interval. However, it is possible to propel the tube more smoothly.
In addition, since the excavation diameter by the first excavation bit 80 is smaller than the dimension 9x between the upper and lower inner wall surfaces 6c; 6d of the top pipe 6, when collecting the excavating machine 26 and the like, as shown in FIG. Since the rotary excavator 46A can pass through the pipe 2, the excavating machine 26 and the like can be collected in the cavity 100 on the starting side by pulling the rotary excavator 46A through the pipe 2 and pulling it back.

また、回転体50の外周面51上で周方向に互いに180°離れた位置に設けられた各第2の掘削ビット群810;810の各掘削ビット81の先端位置が、回転体50の回転中心線Lと直交する同一の面85上に位置しないように設定されている。つまり、回転体50の外周面51上で周方向に互いに180°離れた位置に設けられた一対の第2の掘削ビット群810;810は、回転掘削体46Aの回転により一方の第2の掘削ビット群810で掘削できない地盤部分を他方の第2の掘削ビット群810で掘削できるように構成されているので、先頭管6の先頭開口6tの四角断面の幅寸法より幅寸法の大きい四角断面の孔を効率的に掘削でき、管2をよりスムーズに推進させることができる。   The tip positions of the respective excavation bits 81 of the second excavation bit groups 810 and 810 provided at positions 180 ° apart from each other in the circumferential direction on the outer peripheral surface 51 of the rotator 50 are the rotation centers of the rotator 50. It is set so as not to be located on the same surface 85 orthogonal to the line L. In other words, the pair of second excavation bit groups 810; 810 provided at positions 180 ° apart from each other in the circumferential direction on the outer peripheral surface 51 of the rotating body 50 is rotated by one rotation of the rotating excavating body 46A. Since the ground portion that cannot be excavated by the bit group 810 can be excavated by the other second excavation bit group 810, a square section having a larger width dimension than the width dimension of the square section of the leading opening 6t of the leading pipe 6 is used. A hole can be excavated efficiently and the pipe 2 can be propelled more smoothly.

また、各第2の掘削ビット群810;810は、回転中心線Lを中心として回転体50の外周面51上で周方向に180°離れた位置にそれぞれ設けられたので、回転掘削体46Aの回転重心を一定に保てるようになり、回転掘削体46Aの回転がスムーズになって効率的に掘削できて、管2をよりスムーズに推進させることができる。
また、第2の掘削ビット81及び第1の掘削ビット80を備えたので、第2距離81xを掘削半径とした掘削径の孔を第2の掘削ビット81及び第1の掘削ビット80によってより効率的に掘削できるようになる。
Further, each of the second excavation bit groups 810; 810 is provided at a position 180 degrees apart in the circumferential direction on the outer peripheral surface 51 of the rotary body 50 with the rotation center line L as the center. The rotational center of gravity can be kept constant, the rotation of the rotary excavator 46A can be smoothed and excavated efficiently, and the tube 2 can be propelled more smoothly.
Further, since the second excavation bit 81 and the first excavation bit 80 are provided, the second excavation bit 81 and the first excavation bit 80 can make the hole having the excavation diameter with the second distance 81x as the excavation radius more efficient. Can be excavated.

尚、第2の掘削ビット群810は、回転体50の外周面51に設けられた個々の取付部83に個々に取付けられた第2の掘削ビット81の集合体により構成されてもよい。   The second excavation bit group 810 may be configured by an aggregate of second excavation bits 81 individually attached to individual attachment portions 83 provided on the outer peripheral surface 51 of the rotating body 50.

また、回転体50の外周面51上において回転体50の回転中心線Lに沿った方向の両方の端面に跨って回転中心線Lに沿った方向に直線状又は非直線状に個々の第2の掘削ビット81が個々に並ぶように配置されていたり、回転体50の外周面51上において回転体50の回転中心線Lに沿った方向の両方の端面に跨って回転中心線Lに沿った方向に直線状又は非直線状に延長する1つの掘削刃を有した第2の掘削ビットを備えた構成の回転掘削体46Aであって、回転掘削体46Aが管2の内側で回転中心線Lを中心として回転不可能で、かつ、先頭管6の先頭開口6tの前方位置で回転可能なように構成されていればよい。   In addition, on the outer peripheral surface 51 of the rotator 50, the individual second linearly or non-linearly in the direction along the rotation center line L across both end faces in the direction along the rotation center line L of the rotator 50. The excavation bits 81 are arranged so as to be lined up individually, or along the rotation center line L across both end surfaces in the direction along the rotation center line L of the rotating body 50 on the outer peripheral surface 51 of the rotating body 50. Rotating excavator 46A having a second excavating bit having one excavating blade extending linearly or non-linearly in the direction, the rotating excavator 46A being inside the pipe 2 and rotating centerline L It is only necessary to be configured so that it is not rotatable around the center of the head tube 6 and is rotatable at a position in front of the head opening 6t of the head tube 6.

第2の掘削ビット群810;810が回転体50の外周面51上で周方向に互いに180°離れた位置に設けられていなくてもよい。
要するに、回転掘削体46Aは、回転中心線Lから回転中心線Lと直交する線上を経由した第1の掘削ビット80の先端までの第1距離80xが、回転掘削体46Aが管6の内側で回転中心線Lを中心として回転可能な回転半径に設定され、回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット81の先端までの第2距離81xが、回転掘削体46Aが管2の内側で回転中心線Lを中心として回転不可能で、かつ、回転掘削体46Aが先頭管6の先頭開口6tの前方に位置された場合に回転中心線Lを中心として回転可能な回転半径に設定されればよい。
The second excavation bit groups 810; 810 may not be provided at positions 180 degrees apart from each other on the outer peripheral surface 51 of the rotating body 50 in the circumferential direction.
In short, the rotary excavator 46A has a first distance 80x from the rotation center line L to the tip of the first excavation bit 80 via a line orthogonal to the rotation center line L. A rotation radius that is rotatable about the rotation center line L is set, and a second distance 81x from the rotation center line L to the tip of the second excavation bit 81 via a line orthogonal to the rotation center line L is the rotation excavation. When the body 46A cannot rotate around the rotation center line L inside the pipe 2 and the rotary excavation body 46A is positioned in front of the top opening 6t of the top pipe 6, the body 46A rotates around the rotation center line L. What is necessary is just to set to the possible rotation radius.

実施形態7
実施形態6では、第1の掘削ビット80と第2の掘削ビット81とを有した回転掘削体を用いたが、掘削ビットとして第2の掘削ビット81のみを有した回転掘削体を用いてもよい。
要するに、回転掘削体が第1の掘削ビット80を備えない構成の場合において、回転中心線Lから回転中心線Lと直交する線上を経由した回転掘削体の回転体50の外周面51までの最短距離である第1距離が、回転掘削体が管6の内側で回転中心線Lを中心として回転可能な回転半径に設定され、回転中心線Lから回転中心線Lと直交する線上を経由した第2の掘削ビット81(掘削ビット)の先端までの第2距離81xが、回転掘削体が管2の内側で回転中心線Lを中心として回転不可能で、かつ、回転掘削体46が先頭管6の先頭開口6tの前方に位置された場合に回転中心線Lを中心として回転可能な回転半径に設定されればよい。
つまり、第1距離を半径とした回転体50の直径が、先頭管6の上下の内壁面6c;6d間の寸法よりも小さく設定され、かつ、第2距離81xを掘削半径とした第2の掘削ビット81による掘削径が、先頭管6の先頭管6の上下の内壁面6c;6d間の寸法9xよりも大きく設定されていることにより、回転掘削体46Aが先頭管6の先頭開口6tを介して先頭管6の前方及び先頭管6の内側に移動可能に構成される。
実施形態7によれば、第2の掘削ビット81による掘削によって、先頭管6の前方において先頭管6の上下の内壁面6c;6d(先頭管6の一方の一対の壁面)と直交する方向である先頭管6の上下幅間隔よりも広い上下幅間隔で地山99を掘削できるようになり、先頭管6の前方において先頭管6の上下幅方向での余堀が可能となるので、地山99が硬質地盤である場合でも管をよりスムーズに推進させることが可能となる。
Embodiment 7
In the sixth embodiment, the rotary excavator having the first excavation bit 80 and the second excavation bit 81 is used, but the rotary excavator having only the second excavation bit 81 may be used as the excavation bit. Good.
In short, in the case where the rotary excavator does not include the first excavation bit 80, the shortest distance from the rotation center line L to the outer peripheral surface 51 of the rotary body 50 of the rotary excavator passing through a line orthogonal to the rotation center line L. The first distance, which is the distance, is set to a rotation radius that allows the rotary excavator to rotate around the rotation center line L inside the pipe 6, and passes through a line perpendicular to the rotation center line L from the rotation center line L. The second distance 81x to the tip of the second excavation bit 81 (excavation bit) is such that the rotary excavator cannot rotate around the rotation center line L inside the pipe 2 and the rotary excavator 46 is not connected to the leading pipe 6 The rotation radius may be set to be rotatable around the rotation center line L when positioned in front of the top opening 6t.
That is, the diameter of the rotating body 50 with the first distance as the radius is set to be smaller than the dimension between the upper and lower inner wall surfaces 6c; 6d of the leading pipe 6, and the second distance 81x is the second digging radius. Since the excavation diameter by the excavation bit 81 is set to be larger than the dimension 9x between the upper and lower inner wall surfaces 6c; 6d of the front pipe 6 of the front pipe 6, the rotary excavator 46A opens the front opening 6t of the front pipe 6. It is configured to be movable in front of the leading pipe 6 and inside the leading pipe 6.
According to the seventh embodiment, by excavation by the second excavation bit 81, in the direction orthogonal to the upper and lower inner wall surfaces 6c; 6d (one pair of wall surfaces of the leading pipe 6) in front of the leading pipe 6. Since the natural ground 99 can be excavated at a vertical interval wider than the vertical interval of a certain leading pipe 6, and an excavation in the vertical width direction of the leading pipe 6 is possible in front of the leading pipe 6, Even when 99 is hard ground, the pipe can be more smoothly propelled.

実施形態8
支柱42の先端部に地山99に向けて高圧水を噴射させる図外の噴射ノズルを設け、回転掘削体46;46Aによる掘削とともに当該噴射ノズルより高圧水を噴射するようにした。これにより、回転掘削体46;46Aの前方にも水が行き届いて回転掘削体46;46Aの周囲を水が循環するので回転掘削体46;46Aの周囲の泥水の濃度を均一にでき、回転掘削体46;46Aの前方の泥水を確実に排泥できる。
Embodiment 8
An injection nozzle (not shown) that injects high-pressure water toward the natural ground 99 is provided at the tip of the support column 42, and high-pressure water is injected from the injection nozzle together with excavation by the rotary excavator 46; 46A. As a result, water reaches the front of the rotary excavator 46; 46A and the water circulates around the rotary excavator 46; 46A. Therefore, the concentration of mud around the rotary excavator 46; The muddy water in front of the body 46; 46A can be reliably discharged.

実施形態9
先頭管6の先頭開口縁6zは、先鋭部を備えた構成とした。例えば、先頭管6の左右の壁の先端形状が湾曲凹部状に形成されて先頭管6の先頭開口縁6zの4隅部が鋭利な先鋭部に形成された構成とすることで、先頭開口縁6zが地山に食い込みやすくなる。
Embodiment 9
The leading opening edge 6z of the leading tube 6 is configured to have a sharp point. For example, by adopting a configuration in which the front end shape of the left and right walls of the top tube 6 is formed in a curved concave shape and the four corners of the top opening edge 6z of the top tube 6 are formed into sharp sharp edges, the front opening edge 6z is easy to bite into natural ground.

回転掘削体を1つ又は3つ以上備えた掘削機械26を用いてもよい。
また、掘削機械26は、先頭管6の推進方向と交差する回転中心線を回転中心として回転する回転掘削体を備えたものであってもよい。
An excavating machine 26 including one or three or more rotary excavators may be used.
Further, the excavating machine 26 may include a rotating excavator that rotates about a rotation center line that intersects the propulsion direction of the leading pipe 6.

また、管を推進させる方法としては、実施形態1のように管2と掘削装置3とを一緒に押圧して管設置装置1を推進させる方法、実施形態2のように管2の後端面102eを押圧して管2を推進させるとともにグリッパ装置を介して掘削装置3を牽引させるように推進させる方法等のように、管2と掘削装置3とを一緒に推進させる方法、あるいは、管2と掘削装置3とを別々に押圧して管設置装置1を推進させる方法等がある。   Further, as a method of propelling the pipe, a method of pushing the pipe 2 and the excavator 3 together to push the pipe setting device 1 as in the first embodiment, and a rear end face 102e of the pipe 2 as in the second embodiment. A method of propelling the tube 2 and the excavator 3 together, such as a method of propelling the tube 2 by pushing and pushing the excavator 3 through the gripper device, or the tube 2 There is a method of pushing the excavator 3 separately and propelling the pipe installation device 1.

また、先に地中に入れる管の後端に後続管を連結しないようにし、地中に形成された空洞部から先に地中に入れる管のみを地中に設置して当該先に地中に入れる管のみ(即ち、1本の管)による支保工を形成するようにしてもよい。即ち、一方の空洞部100と他方の空洞部100とに跨る管を1本の管で形成するようにしてもよい。   Also, do not connect the following pipe to the rear end of the pipe that goes into the ground first, and install only the pipe that goes into the ground first from the cavity formed in the ground, and It is also possible to form a support with only the pipes to be put into the pipe (that is, one pipe). In other words, the pipe straddling the one cavity portion 100 and the other cavity portion 100 may be formed by a single tube.

また、管2は、断面形状が四角形状のものであればよい。尚、本発明でいう断面形状が四角形状とは、断面長方形、断面正方形、断面台形、断面平行四辺形などの四角形状を指し、四角の角部が面取りされた形状のものも含む。
また、本発明に使用する回転掘削体としては、図5;8に示すような片刃の掘削ビットを備えたものを用いてもよいし、図14に示すような両刃の掘削ビットを備えたものを用いてもよい。
Moreover, the pipe | tube 2 should just be a thing with a square cross-sectional shape. In addition, the cross-sectional shape referred to in the present invention is a quadrilateral shape such as a cross-sectional rectangle, a cross-sectional square, a cross-sectional trapezoid, a cross-sectional parallelogram, and includes a shape in which square corners are chamfered.
Moreover, as a rotary excavation body used for this invention, you may use the thing provided with the single-edged excavation bit as shown to FIG. 5; 8, or the thing provided with the double-edged excavation bit as shown in FIG. May be used.

本発明では、回転掘削体46の回転中心線Lが先頭管6の推進方向と直交する面及び先頭管6の互いに平行に対向する一対の内壁面としての先頭管6の上下の内壁面6c;6dと平行な第1の状態に設定されるように回転掘削体46が設置された構成を示したが、回転中心線Lが先頭管6の推進方向と直交する面及び先頭管6の互いに平行に対向する一対の内壁面としての先頭管6の左右の内壁面6a;6bと平行な第1の状態に設定されるように回転掘削体46が設置された構成であってもよい。   In the present invention, the rotation center line L of the rotary excavator 46 has a surface perpendicular to the propulsion direction of the front tube 6 and upper and lower inner wall surfaces 6c of the front tube 6 as a pair of inner wall surfaces opposite to each other in parallel. Although the structure in which the rotary excavator 46 is installed so as to be set in the first state parallel to 6d is shown, the plane in which the rotation center line L is perpendicular to the propulsion direction of the head pipe 6 and the head pipe 6 are parallel to each other. The rotary excavator 46 may be installed so as to be set in a first state parallel to the left and right inner wall surfaces 6a and 6b of the leading pipe 6 as a pair of inner wall surfaces facing each other.

本発明の空洞部100は、シールドトンネルのセグメントで囲まれた空洞部、又は、山岳トンネルの壁で囲まれたトンネル空洞部、又は、立坑内の空間等により形成される。そして、本発明により形成される地下空間としては、上述した地下鉄ホームを形成する空間、トンネルの道路や線路における往路空間及び復路空間、トンネルの道路や線路における合流部又は分岐部、トンネルの道路や線路における拡幅部等がある。   The cavity 100 of the present invention is formed by a cavity surrounded by a shield tunnel segment, a tunnel cavity surrounded by a mountain tunnel wall, or a space in a shaft. And as underground space formed by the present invention, the space forming the above-mentioned subway platform, the forward space and the return space in the tunnel road and railroad, the junction or branching portion in the tunnel road and railroad, the tunnel road and There is a widened portion on the track.

1 管設置装置、2 管、6 先頭管(管)、6t 先頭開口、7 後続管(管)、
10 地中、25 掘削機械揺動駆動装置、26 掘削機械、30 球体、
30a 回転中心軸(第1の回転中心線)、30b 回転中心線(第2の回転中心線)、31 球体回転ガイド部材、32 球体駆動手段、42 支柱、46 回転掘削体、
100 空洞部、L 回転中心線。
1 pipe installation device, 2 pipes, 6 leading pipe (pipe), 6t leading opening, 7 following pipe (pipe),
10 underground, 25 excavating machine swing drive device, 26 excavating machine, 30 sphere,
30a Rotation center axis (first rotation center line), 30b Rotation center line (second rotation center line), 31 Sphere rotation guide member, 32 Sphere drive means, 42 strut, 46 Rotation excavation body,
100 Cavity, L Center of rotation.

Claims (2)

断面四角形状の管を地中に形成された空洞部から地中に設置する場合に、先に地中に入れる管の先頭開口の前方に管の推進方向と直交する面と平行な回転中心線を回転中心として回転する回転掘削体を設置し、管を進行させるとともに回転掘削体で地中を掘削することにより、管を推進させて地中に設置する管設置装置において、
回転掘削体の支柱が固定された球体と、
管の先頭開口側の内側に設置されて球体を球体の中心を回転中心として回転可能に保持する球体回転ガイド部材と、
球体回転ガイド部材に連結されて推進力を球体回転ガイド部材に伝達する推進力伝達構成部と、
管の先頭開口側の内面に固定されて球体回転ガイド部材の前方への移動を規制するとともに球体回転ガイド部材に伝達された推進力を管に伝達する推進力受け部と、
管の互いに平行に対向する一方の一対の壁面と平行でかつ管の互いに平行に対向する他方の一対の壁面と交差するように延長する第1の回転中心線を回転中心として球体を回す第1の誘導用ジャッキと、
回転掘削体の回転中心線と平行な第2の回転中心線を回転中心として球体を回す第2の誘導用ジャッキとを備え
第1の誘導用ジャッキは、一端が推進力伝達構成部に連結されるとともに他端が球体に連結され、
第2の誘導用ジャッキは、一端が推進力伝達構成部に連結されるとともに他端が球体の球面より突出する上端部及び下端部を押圧するように構成されたことを特徴とする管設置装置
When a pipe with a square cross section is installed in the ground from a hollow part formed in the ground, the center of rotation is parallel to the plane perpendicular to the propulsion direction of the pipe in front of the head opening of the pipe that is first placed in the ground. In a pipe installation device that installs a rotary excavator that rotates around the center of rotation, advances the pipe and excavates the ground with the rotary excavator, thereby propelling the pipe and installing it in the ground,
A sphere with a fixed column of rotating excavator,
A sphere rotation guide member that is installed inside the top opening side of the tube and holds the sphere rotatably about the center of the sphere;
A propulsive force transmission component connected to the spherical rotation guide member to transmit the propulsive force to the spherical rotation guide member;
A propulsive force receiver fixed to the inner surface of the top opening side of the tube and restricting the forward movement of the spherical rotation guide member and transmitting the propulsive force transmitted to the spherical rotation guide member to the tube;
A first rotating sphere with a first rotation center line extending so as to intersect with one pair of wall surfaces facing parallel to each other and intersecting with another pair of wall surfaces facing each other in parallel with each other. The induction jack,
And a second guiding jacks turn spheres second rotation axis parallel to the rotation center line of the rotary drilling member as the center of rotation,
The first induction jack has one end connected to the propulsive force transmission component and the other end connected to the sphere,
The second guiding jack is configured such that one end is connected to the propulsive force transmitting component and the other end is configured to press the upper end and the lower end protruding from the spherical surface of the sphere. .
断面四角形状の管を地中に形成された空洞部から地中に設置する場合に、先に地中に入れる管の先頭開口の前方に管の推進方向と直交する面と平行な回転中心線を回転中心として回転する回転掘削体を設置し、管を進行させるとともに回転掘削体で地中を掘削することにより、管を推進させて地中に設置する管設置装置において、
回転掘削体の支柱が固定された球体と、
管の先頭開口側の内側に設置されて球体を球体の中心を回転中心として回転可能に保持する球体回転ガイド部材と、球体を球体の中心を回転中心として回す球体駆動手段として、管の中心線と平行な第3の回転中心線を回転中心として球体を回す球体駆動手段を備えたことを特徴とする管設置装置。
When a pipe with a square cross section is installed in the ground from a hollow part formed in the ground, the center of rotation is parallel to the plane perpendicular to the propulsion direction of the pipe in front of the head opening of the pipe that is first placed in the ground. In a pipe installation device that installs a rotary excavator that rotates around the center of rotation, advances the pipe and excavates the ground with the rotary excavator, thereby propelling the pipe and installing it in the ground,
A sphere with a fixed column of rotating excavator,
The center line of the tube as a sphere rotation guide member installed inside the top opening side of the tube and holding the sphere rotatably about the center of the sphere, and as a sphere driving means for rotating the sphere about the center of the sphere a tube installation apparatus you comprising the spherical drive means rotating the sphere as a rotation about a third rotation axis parallel.
JP2011244670A 2011-11-08 2011-11-08 Pipe installation device Active JP5826602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244670A JP5826602B2 (en) 2011-11-08 2011-11-08 Pipe installation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244670A JP5826602B2 (en) 2011-11-08 2011-11-08 Pipe installation device

Publications (2)

Publication Number Publication Date
JP2013100675A JP2013100675A (en) 2013-05-23
JP5826602B2 true JP5826602B2 (en) 2015-12-02

Family

ID=48621501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244670A Active JP5826602B2 (en) 2011-11-08 2011-11-08 Pipe installation device

Country Status (1)

Country Link
JP (1) JP5826602B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438808B2 (en) * 2015-03-17 2018-12-19 株式会社熊谷組 Pipe installation device
JP6438809B2 (en) * 2015-03-17 2018-12-19 株式会社熊谷組 Pipe installation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196139A (en) * 1975-02-20 1976-08-23
JP2857682B2 (en) * 1990-09-21 1999-02-17 西松建設株式会社 Rectangular shield machine
JP5547577B2 (en) * 2009-08-03 2014-07-16 株式会社熊谷組 Pipe installation method and excavation equipment in the ground

Also Published As

Publication number Publication date
JP2013100675A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6055220B2 (en) Pipe installation device
JP5826602B2 (en) Pipe installation device
JP5826601B2 (en) Pipe installation device
JP5547577B2 (en) Pipe installation method and excavation equipment in the ground
JP5718083B2 (en) Pipe installation device and pipe installation method
JP5771122B2 (en) Pipe installation device
JP6062677B2 (en) tube
JP4797124B2 (en) Excavation mechanism and machine
JP6055221B2 (en) Pipe installation method and pipes used for the method, bent pipes, pipe split bodies
JP6006571B2 (en) Pipe installation method
JP6243609B2 (en) Tunnel construction method
JP6430864B2 (en) Pipe installation method, pipe installation apparatus and pipe propulsion direction adjusting apparatus
JP6465707B2 (en) Pipe installation device
JP6006570B2 (en) Pipe installation method
JP6223751B2 (en) Invert construction method for existing tunnels
JP2012117276A (en) Pipe installation device
JP4226197B2 (en) Rectangular cross section tunnel excavator
JP3810405B2 (en) Cutter head
JP5597112B2 (en) How to install pipes in the ground
JP6392546B2 (en) Pipe installation method and pipe with guide member used in the method
JP2017155435A (en) Tunnel widening method
JP6055219B2 (en) Propulsion transmission device
JP6438808B2 (en) Pipe installation device
JP6325892B2 (en) Tube installation method and tube with correction guide member used in the method
JP6438809B2 (en) Pipe installation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R150 Certificate of patent or registration of utility model

Ref document number: 5826602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350