JP5824821B2 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
JP5824821B2
JP5824821B2 JP2011039509A JP2011039509A JP5824821B2 JP 5824821 B2 JP5824821 B2 JP 5824821B2 JP 2011039509 A JP2011039509 A JP 2011039509A JP 2011039509 A JP2011039509 A JP 2011039509A JP 5824821 B2 JP5824821 B2 JP 5824821B2
Authority
JP
Japan
Prior art keywords
flow path
impeller
storage chamber
centrifugal compressor
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011039509A
Other languages
Japanese (ja)
Other versions
JP2012177311A (en
Inventor
龍介 沼倉
龍介 沼倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011039509A priority Critical patent/JP5824821B2/en
Publication of JP2012177311A publication Critical patent/JP2012177311A/en
Application granted granted Critical
Publication of JP5824821B2 publication Critical patent/JP5824821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0253Surge control by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • F04D29/464Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps adjusting flow cross-section, otherwise than by using adjustable stator blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、圧縮性流体を昇圧する遠心圧縮機に関するものである。   The present invention relates to a centrifugal compressor that pressurizes a compressible fluid.

圧縮性流体を昇圧する遠心圧縮機の作動領域を制限するものとして、低流量時に於ける流体の逆流によるサージングの発生がある。サージングが発生すると遠心圧縮機の運転が不能になるので、サージングの発生を抑制することが遠心圧縮機の作動領域拡大につながる。   As a limitation of the operating range of the centrifugal compressor that pressurizes the compressive fluid, there is surging due to the back flow of the fluid at a low flow rate. Since the operation of the centrifugal compressor becomes impossible when surging occurs, suppressing the occurrence of surging leads to the expansion of the operating range of the centrifugal compressor.

遠心圧縮機は、高速で回転するインペラと、インペラを収納し、インペラの周囲にスクロール流路を形成するケーシングを有しており、該ケーシングは非軸対称の形状を有している。この非軸対称性の影響により、流体がインペラより流出するインペラの出口圧力は均一ではなく、インペラの周縁の周方向で圧力分布が生じる。   The centrifugal compressor has an impeller that rotates at high speed, and a casing that houses the impeller and forms a scroll channel around the impeller, and the casing has a non-axisymmetric shape. Due to this non-axisymmetric effect, the outlet pressure of the impeller from which the fluid flows out of the impeller is not uniform, and a pressure distribution is generated in the circumferential direction of the peripheral edge of the impeller.

このインペラ出口の圧力分布は、インペラの入口迄伝播し、インペラの入口も周方向に圧力分布を有する。又、サージングの発生限界値が決定される要因の1つにインペラの出口の圧力があり、インペラの出口の圧力が所定値を超えるとサージングが発生する。従って、現状では、遠心圧縮機の流量を減少させた場合、インペラの出口の圧力が高い部分で最初にサージングが発生すると考えられる。   The pressure distribution at the outlet of the impeller propagates to the inlet of the impeller, and the inlet of the impeller also has a pressure distribution in the circumferential direction. Further, one of the factors that determine the surging generation limit value is the pressure at the impeller outlet, and surging occurs when the pressure at the impeller outlet exceeds a predetermined value. Therefore, at present, when the flow rate of the centrifugal compressor is decreased, it is considered that surging first occurs at a portion where the pressure at the outlet of the impeller is high.

尚、サージングの発生を抑制する手段の1つとしてケーシングトリートメントがあり、特許文献1に示される遠心圧縮機はケーシングトリートメントにより、サージング抑制による遠心圧縮機の作動領域拡大を図っている。   Incidentally, there is a casing treatment as one of means for suppressing the occurrence of surging, and the centrifugal compressor disclosed in Patent Document 1 is intended to expand the operating range of the centrifugal compressor by suppressing surging by the casing treatment.

ケーシングトリートメントによるサージング抑制は、圧力比の高い場合に効果があるが圧力比が低くなるとサージング抑制効果も少なくなる。一方現在では、遠心圧縮機のより広い作動領域での使用が求められており、この為、低圧力比、低流量でのサージング抑制が必要とされている。   Surge suppression by the casing treatment is effective when the pressure ratio is high, but the surging suppression effect is also reduced when the pressure ratio is low. On the other hand, at present, there is a demand for use of a centrifugal compressor in a wider operating range, and for this reason, suppression of surging at a low pressure ratio and a low flow rate is required.

特開2009−257177号公報JP 2009-257177 A

本発明は斯かる実情に鑑み、低圧力比、低流量でのサージング抑制作用を有する遠心圧縮機を提供するものである。   In view of such circumstances, the present invention provides a centrifugal compressor having a surging suppression action at a low pressure ratio and a low flow rate.

本発明は、インペラと、該インペラを回転自在に収納するケーシングとを有し、該ケーシングには前記インペラを収納するインペラ収納室と、該インペラ収納室の周囲に形成された環洞流路と、該環洞流路に連通する流体吐出口と、前記ケーシングと同心に形成され、前記インペラ収納室に連通する吸入空気導入部とが形成され、前記インペラ収納室入口の上流側に絞り部を形成した遠心圧縮機に係るものである。   The present invention has an impeller and a casing that rotatably stores the impeller, and the casing includes an impeller storage chamber that stores the impeller, and an annular passage formed around the impeller storage chamber. A fluid discharge port that communicates with the annular passage and a suction air introduction portion that is concentric with the casing and communicates with the impeller storage chamber, and a throttle portion is formed upstream of the impeller storage chamber inlet. This relates to the formed centrifugal compressor.

又本発明は、前記絞り部の外周側に、該絞り部をバイパスし、該絞り部の上流側と下流側とを連通させる二次流路を設け、該二次流路に該二次流路を開閉する弁体が設けられ、該弁体は開閉手段によって開閉される遠心圧縮機に係るものである。   Further, the present invention provides a secondary flow path that bypasses the throttle section and communicates the upstream side and the downstream side of the throttle section on the outer peripheral side of the throttle section, and the secondary flow path is provided in the secondary flow path. A valve element that opens and closes the passage is provided, and the valve element relates to a centrifugal compressor that is opened and closed by an opening and closing means.

又本発明は、前記二次流路は円筒状の空間であり、前記二次流路の少なくとも一部は内周面、外周面が同心の球面で構成された球状流路であり、前記内周面、前記外周面の曲率中心は前記ケーシングの中心線上で合致し、前記弁体は円周方向に所定数前記球状流路に設けられると共に前記曲率中心を通過する軸心を中心に回転可能であり、前記弁体は前記中心線と平行な状態で、前記二次流路を全開し、全開から略90°回転した状態で前記二次流路を全閉する遠心圧縮機に係るものである。   According to the present invention, the secondary flow path is a cylindrical space, and at least a part of the secondary flow path is a spherical flow path constituted by an inner peripheral surface and a concentric spherical surface. The center of curvature of the peripheral surface and the outer peripheral surface coincides on the center line of the casing, and the valve body is provided in the spherical flow path in a circumferential direction and is rotatable about an axis passing through the center of curvature. The valve body relates to a centrifugal compressor that fully opens the secondary flow path in a state parallel to the center line, and fully closes the secondary flow path in a state rotated by approximately 90 ° from the full opening. is there.

又本発明は、流体の圧力比、流量に応じて、前記弁体の開度を設定する遠心圧縮機に係るものである。   The present invention also relates to a centrifugal compressor that sets the opening degree of the valve body in accordance with the pressure ratio and flow rate of the fluid.

本発明によれば、インペラと、該インペラを回転自在に収納するケーシングとを有し、該ケーシングには前記インペラを収納するインペラ収納室と、該インペラ収納室の周囲に形成された環洞流路と、該環洞流路に連通する流体吐出口と、前記ケーシングと同心に形成され、前記インペラ収納室に連通する吸入空気導入部とが形成され、前記インペラ収納室入口の上流側に絞り部を形成したので、低圧力比、低流量で前記絞り部がインペラ入口部で生じた逆流現象が上流側に波及することを抑止し、遠心圧縮機の作動領域の拡大が図れるという優れた効果を発揮する。   According to the present invention, there is provided an impeller and a casing that rotatably stores the impeller, and the casing includes an impeller storage chamber that stores the impeller, and an annular flow formed around the impeller storage chamber. A passage, a fluid discharge port communicating with the annular passage, and an intake air introduction portion formed concentrically with the casing and communicating with the impeller storage chamber, and is throttled upstream of the impeller storage chamber inlet. As the part is formed, it is possible to prevent the backflow phenomenon generated at the impeller inlet portion from spreading to the upstream side at a low pressure ratio and low flow rate, and to increase the operating range of the centrifugal compressor. Demonstrate.

本発明の第1の実施例に係る遠心圧縮機の半断面図である。1 is a half sectional view of a centrifugal compressor according to a first embodiment of the present invention. 遠心圧縮機の作動特性を示すグラフである。It is a graph which shows the operating characteristic of a centrifugal compressor. (A)(B)は、本実施例の作動を示す模式図であり、(A)は従来例、(B)は本実施例を示す。(A) (B) is a schematic diagram which shows the action | operation of a present Example, (A) is a prior art example, (B) shows a present Example. (A)は本発明の第2の実施例に係る遠心圧縮機の半断面図、(B)は図4のA矢視図である。(A) is a half sectional view of a centrifugal compressor according to a second embodiment of the present invention, (B) is a view taken in the direction of arrow A in FIG. (A)(B)は、第2の実施例の作動を示す模式図であり、(A)は二次流路を全閉した状態、(B)は全開した状態を示す。(A) (B) is a schematic diagram which shows the action | operation of a 2nd Example, (A) shows the state which closed the secondary flow path fully, and (B) shows the state which opened fully. (A)(B)は、本発明の実施例と従来例との作動の比較を示しており、(A)は第1の実施例と従来例との比較、(B)は第2の実施例と従来例との比較を示している。(A) and (B) show a comparison of operation between the embodiment of the present invention and the conventional example, (A) shows a comparison between the first embodiment and the conventional example, and (B) shows a second embodiment. The comparison with an example and a prior art example is shown.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明の第1の実施例に係る遠心圧縮機1について説明する。   First, referring to FIG. 1, a centrifugal compressor 1 according to a first embodiment of the present invention will be described.

図1中、2はケーシング、3は該ケーシング2の中心線を示している。前記ケーシング2はインペラ収納室4と前記中心線3と同心上に設けられた吸入口5とを有し、前記インペラ収納室4にはインペラ6が収納され、該インペラ6は回転軸7を介して回転自在に支持されている。又、前記インペラ6の周囲には環洞流路8が形成され、該環洞流路8と前記インペラ収納室4とはディフューザ流路9によって連通されている。   In FIG. 1, 2 indicates a casing, and 3 indicates a center line of the casing 2. The casing 2 has an impeller storage chamber 4 and a suction port 5 provided concentrically with the center line 3. An impeller 6 is stored in the impeller storage chamber 4, and the impeller 6 is interposed via a rotating shaft 7. And is supported rotatably. An annular channel 8 is formed around the impeller 6, and the annular channel 8 and the impeller storage chamber 4 are communicated with each other by a diffuser channel 9.

前記インペラ収納室4の上流側(図1中左側)には、中心に向って壁面を隆起させて縮径した絞り部11が形成され、該絞り部11の直径D1は、前記インペラ収納室4の入口の直径D2より小さくなっている。又、前記絞り部11から上流側に向って漸次拡径し、吸入空気導入部12(直径D3)に至り、更に前記吸入口5へと連続している。ここで、D1<D2<D3となっている。   On the upstream side (left side in FIG. 1) of the impeller storage chamber 4 is formed a throttle portion 11 whose diameter is reduced by raising the wall surface toward the center, and the diameter D1 of the throttle portion 11 is equal to the impeller storage chamber 4. It is smaller than the diameter D2 of the inlet. Further, the diameter gradually increases from the throttle portion 11 toward the upstream side, reaches the intake air introduction portion 12 (diameter D3), and continues to the suction port 5. Here, D1 <D2 <D3.

前記遠心圧縮機1は前記回転軸7を介して排気タービン等に連結され、排気タービンは内燃機関の排気ガスによって駆動される。排気タービンの駆動により、前記回転軸7を介して前記インペラ6が回転され、前記吸入口5より空気が吸引され、吸引された空気は前記インペラ6内に吸引されると共に該インペラ6の回転による遠心力で圧縮され、前記ディフューザ流路9、前記環洞流路8を経て図示しない吐出口より吐出される。   The centrifugal compressor 1 is connected to an exhaust turbine or the like via the rotary shaft 7, and the exhaust turbine is driven by the exhaust gas of the internal combustion engine. By driving the exhaust turbine, the impeller 6 is rotated through the rotating shaft 7, air is sucked from the suction port 5, and the sucked air is sucked into the impeller 6 and is rotated by the rotation of the impeller 6. It is compressed by centrifugal force and discharged from a discharge port (not shown) through the diffuser flow path 9 and the annular flow path 8.

又、吸引された空気は、前記インペラ6に吸引される前に前記絞り部11を通過することで絞られる。該絞り部11は、遠心圧縮機1の吐出量が減少した場合に発生する、前記インペラ6入口部で発生する逆流現象が上流に波及するのを抑止する。   The sucked air is squeezed by passing through the throttle portion 11 before being sucked by the impeller 6. The throttle part 11 suppresses the reverse flow phenomenon that occurs when the discharge amount of the centrifugal compressor 1 decreases and that occurs at the inlet part of the impeller 6 spills upstream.

図2は、前記遠心圧縮機1の作動領域を、圧力比と流量との関係で示したものであり、図中、各曲線A〜Dは圧力比の小さい場合から大きい場合の動作特性曲線を示しており、圧力比はA<B<C<Dとなっている。本実施例では、圧力比の小さい場合でのサージングの発生を抑制する。   FIG. 2 shows the operating region of the centrifugal compressor 1 in relation to the pressure ratio and the flow rate. In the figure, the curves A to D show operating characteristic curves when the pressure ratio is small to large. The pressure ratio is A <B <C <D. In this embodiment, surging is suppressed when the pressure ratio is small.

以下、第1の実施例の作用について、従来との比較により説明する。   Hereinafter, the operation of the first embodiment will be described by comparison with the prior art.

図3(A)(B)は、図1で示される前記吸入空気導入部12から前記ディフューザ流路9に至る流体流路を模式的に示したものであり、図3(A)は従来の絞り部11が形成されていないもの、図3(B)は第1の実施例の遠心圧縮機であり、絞り部11が形成されたものである。尚、図3(A)(B)中、破線は流体の流れを示している。   3A and 3B schematically show a fluid flow path from the intake air introduction section 12 shown in FIG. 1 to the diffuser flow path 9, and FIG. FIG. 3B shows the centrifugal compressor according to the first embodiment, in which the throttle portion 11 is formed. In FIGS. 3A and 3B, the broken line indicates the flow of fluid.

図3(A)に示される様に、サージングが発生する直前では、前記インペラ6の入口部に局部的な高圧部が発生し、流路壁面に沿って逆流現象13が発生する。この逆流現象13は、流量が減少すると共に成長し、又上流側に伝播し、ついにはサージングを発生する。   As shown in FIG. 3A, immediately before surging occurs, a local high-pressure portion is generated at the inlet portion of the impeller 6 and a backflow phenomenon 13 occurs along the flow path wall surface. The reverse flow phenomenon 13 grows as the flow rate decreases, propagates upstream, and finally generates surging.

図3(B)に示される様に、第1の実施例では前記インペラ6の入口部に局部的な高圧部が発生し、逆流現象13が発生した場合でも、前記絞り部11が逆流現象13の上流側への成長を阻止する。即ち、前記絞り部11で絞られ、速度が増加した流体は、前記絞り部11の壁面に沿って流れ、前記絞り部11を乗越えようとする逆流現象13を押戻す。従って、サージングの発生が抑制される。   As shown in FIG. 3B, in the first embodiment, a local high pressure portion is generated at the inlet portion of the impeller 6, and even when the backflow phenomenon 13 occurs, the throttle portion 11 has the backflow phenomenon 13. To prevent upstream growth. That is, the fluid that has been squeezed by the squeezing part 11 and increased in speed flows along the wall surface of the squeezing part 11 and pushes back a reverse flow phenomenon 13 that attempts to get over the squeezing part 11. Therefore, the occurrence of surging is suppressed.

図6(A)は、従来の遠心圧縮機と第1の実施例の低圧力比での動作特性曲線を示しており、例えば図2の曲線Aに相当する。又、図6(A)中、白丸のプロットが第1の実施例の遠心圧縮機(絞り部11が設けられているもの)、黒丸のプロットが従来の遠心圧縮機(絞り部11がないもの)に対応している。   FIG. 6A shows an operating characteristic curve at a low pressure ratio of the conventional centrifugal compressor and the first embodiment, and corresponds to, for example, the curve A in FIG. In FIG. 6A, the white circle plot represents the centrifugal compressor of the first embodiment (with the throttle unit 11), and the black circle plot represents the conventional centrifugal compressor (without the throttle unit 11). ).

図6(A)に示される様に第1の実施例では、サージングが発生する流量限界が小流量側にシフトしており、サージング抑制効果がはっきりと現れている。尚、前記絞り部11により、流量が絞られることからチョークが発生する流量限界も小流量側にシフトしている。   As shown in FIG. 6A, in the first embodiment, the flow limit at which surging occurs shifts to the small flow rate side, and the surging suppression effect clearly appears. Since the flow rate is throttled by the throttle unit 11, the flow limit at which choke is generated is also shifted to the small flow rate side.

図4は、本発明の第2の実施例を示している。   FIG. 4 shows a second embodiment of the present invention.

第2の実施例では、インペラ6入口に開口し、又吸入空気導入部12に開口し、絞り部11をバイパスする二次流路15を形成し、更に該二次流路15を開閉可能としたものである。   In the second embodiment, a secondary flow path 15 is formed which opens at the inlet of the impeller 6 and opens at the intake air introduction section 12 and bypasses the throttle section 11, and the secondary flow path 15 can be opened and closed. It is a thing.

前記二次流路15は中心線3を中心とする円筒状の空間であり、円周所要ピッチでリブ(図示せず)が設けられている。又前記二次流路15の少なくとも一部は内周面、外周面が同心の球面で構成された球状流路15aとなっており、前記内周面の半径Ri、外周面の半径Roの中心Oは前記中心線3上に存在する。   The secondary flow path 15 is a cylindrical space centered on the center line 3 and is provided with ribs (not shown) at a required circumferential pitch. Further, at least a part of the secondary flow path 15 is a spherical flow path 15a having an inner peripheral surface and a concentric spherical surface on the outer peripheral surface, and the center of the radius Ri of the inner peripheral surface and the radius Ro of the outer peripheral surface. O exists on the center line 3.

前記球状流路15aには、弁体である開閉弁16が所定数設けられる。該開閉弁16は円弧形状で、且つ略矩形体であり、外周は前記外円周の半径Roと等しい曲率を有する曲線、内周は前記内円周の半径Riと等しい曲率を有する曲線となっており、回転軸17を介して回転自在に支持され、該回転軸17と前記開閉弁16とは一体に回転する。前記回転軸17の軸心は前記球面の中心を通過する様になっており、前記回転軸17を回転することで、前記開閉弁16の内周は前記球状流路15aの内球面に沿って摺動し、前記開閉弁16の外周は前記球状流路15aの外球面に沿って摺動する。該開閉弁16は所要の回転手段によって同期回転される。   A predetermined number of on-off valves 16 serving as valve bodies are provided in the spherical flow path 15a. The on-off valve 16 has an arc shape and a substantially rectangular body, the outer periphery is a curve having a curvature equal to the radius Ro of the outer circumference, and the inner circumference is a curve having a curvature equal to the radius Ri of the inner circumference. The rotary shaft 17 and the on-off valve 16 rotate integrally. The axis of the rotary shaft 17 passes through the center of the spherical surface. By rotating the rotary shaft 17, the inner periphery of the on-off valve 16 is along the inner spherical surface of the spherical flow path 15a. The outer periphery of the on-off valve 16 slides along the outer spherical surface of the spherical flow path 15a. The on-off valve 16 is rotated synchronously by a required rotating means.

回転手段としては、例えば以下のものがある。   Examples of the rotating means include the following.

前記回転軸17はケーシング2の外部に突出し、突出した端部にはリンクアーム18が固着され、リンクアーム18同士はリンクプレート19によって連結されている。従って、前記開閉弁16は、前記リンクアーム18、前記リンクプレート19及び前記回転軸17を介して同期して回転する様になっている。又、前記リンクプレート19のいずれか1つにシリンダ等のアクチュエータ(図示せず)が連結され、該アクチュエータの駆動で前記リンクプレート19、前記リンクアーム18を介して前記開閉弁16が同期して回転する。   The rotating shaft 17 protrudes outside the casing 2, and a link arm 18 is fixed to the protruding end, and the link arms 18 are connected to each other by a link plate 19. Therefore, the on-off valve 16 rotates in synchronization with the link arm 18, the link plate 19, and the rotating shaft 17. Also, an actuator (not shown) such as a cylinder is connected to any one of the link plates 19, and the on-off valve 16 is synchronized with the link plate 19 and the link arm 18 by driving the actuator. Rotate.

前記複数の開閉弁16は、図4(B)に示される様に、略90°回転可能であり、前記開閉弁16が開状態(図4(B)中、2点鎖線で示す)の場合は、前記中心線3と平行となり、閉状態(図4(B)中、実線で示す)では該中心線3と直角の位置になり、開閉弁16,16同士は端縁が重なり合う様になっている。   As shown in FIG. 4B, the plurality of on-off valves 16 can rotate approximately 90 °, and the on-off valves 16 are in an open state (indicated by a two-dot chain line in FIG. 4B). Is parallel to the center line 3 and in a closed state (indicated by a solid line in FIG. 4B), it is at a position perpendicular to the center line 3, and the opening / closing valves 16 and 16 are overlapped with each other. ing.

尚、図4(B)では、2つの開閉弁16を図示しているが、実際には所定ピッチで前記二次流路15全周に亘り設けられている。従って、前記開閉弁16を前記中心線3と平行とすることで、前記二次流路15が全開になり、前記開閉弁16を90°回転させることで、前記二次流路15が全閉となる。   In FIG. 4B, two on-off valves 16 are shown, but in actuality, they are provided over the entire circumference of the secondary flow path 15 at a predetermined pitch. Accordingly, by making the on-off valve 16 parallel to the center line 3, the secondary flow path 15 is fully opened, and by rotating the on-off valve 16 by 90 °, the secondary flow path 15 is fully closed. It becomes.

尚、前記開閉弁16は回転式ではなく、スライド式としてもよい。即ち、前記回転軸17を軸心方向に摺動可能とし、前記開閉弁16を前記二次流路15に進入、後退させ、前記二次流路15を開閉する。   The on-off valve 16 may be a slide type instead of a rotary type. That is, the rotary shaft 17 is slidable in the axial direction, the on-off valve 16 is moved into and out of the secondary flow path 15 to open and close the secondary flow path 15.

第2の実施例の作動について、図5(A)、図5(B)を参照して説明する。   The operation of the second embodiment will be described with reference to FIGS. 5 (A) and 5 (B).

前記開閉弁16は、所定流量、例えば流量がQ1(図6(B)参照)以下の時には全閉され、流量がQ1を超えると、全開にされる。   The on-off valve 16 is fully closed when a predetermined flow rate, for example, the flow rate is equal to or lower than Q1 (see FIG. 6B), and is fully opened when the flow rate exceeds Q1.

全閉状態では、図3で説明した前記二次流路15が設けられていない状態と同様であり、前記インペラ6入口部分で発生した逆流現象13は、前記絞り部11によって上流側への波及が抑制される。   In the fully closed state, it is the same as the state where the secondary flow path 15 described in FIG. 3 is not provided, and the backflow phenomenon 13 generated at the inlet portion of the impeller 6 is propagated upstream by the throttle portion 11. Is suppressed.

次に、前記流量Q1を超える流量では、前記開閉弁16を全開にする。   Next, at the flow rate exceeding the flow rate Q1, the on-off valve 16 is fully opened.

前記開閉弁16を全開にすることで、前記絞り部11の上流側と下流側が前記二次流路15によって連通され、該二次流路15を通って流体が前記インペラ6に流入する。この為、前記開閉弁16を全開とした場合、前記絞り部11を形成しない場合と同様、又は略同様となり、チョークが発生する流量限界も大流量側にシフトする。   By opening the on-off valve 16 fully, the upstream side and the downstream side of the throttle portion 11 are communicated by the secondary flow path 15, and the fluid flows into the impeller 6 through the secondary flow path 15. For this reason, when the on-off valve 16 is fully opened, it becomes the same as or substantially the same as when the throttle portion 11 is not formed, and the flow limit at which choke is generated is also shifted to the large flow rate side.

図6(B)は、従来の遠心圧縮機と第2の実施例の低圧力比での動作特性曲線を示しており、例えば図2の曲線Aに相当する。又、図6(B)中、白丸のプロットが第2の実施例を示し、流量Q1より小流量の場合は、前記開閉弁16が閉じられ、流量Q1より大流量の場合は前記開閉弁16が開放されている。又、黒丸のプロットが従来の遠心圧縮機に対応している。   FIG. 6B shows an operating characteristic curve at a low pressure ratio of the conventional centrifugal compressor and the second embodiment, and corresponds to, for example, the curve A in FIG. In FIG. 6B, the white circle plot shows the second embodiment. When the flow rate is smaller than the flow rate Q1, the on-off valve 16 is closed, and when the flow rate is larger than the flow rate Q1, the on-off valve 16 is closed. Is open. The black circle plot corresponds to the conventional centrifugal compressor.

従って、図6(B)に見られる様に、前記二次流路15の開閉により、サージングが発生する限界の流量が小流量側へシフトし、大流量側ではチョークが発生する限界は従来と変らない。   Accordingly, as shown in FIG. 6B, the limit flow rate at which surging occurs is shifted to the small flow rate side by opening and closing the secondary flow path 15, and the limit at which choke is generated on the large flow rate side is the conventional level. It does n’t change.

而して、前記絞り部11を設け、更に前記二次流路15、前記開閉弁16を設け、流量に応じて前記開閉弁16を開閉することで、チョークが発生する流量限界を減少させることなく、サージングが発生する流量限界を減少させることができ、一層の作動領域拡大を図ることができる。   Thus, by providing the throttle 11, further providing the secondary flow path 15 and the opening / closing valve 16, and opening / closing the opening / closing valve 16 according to the flow rate, the flow limit at which choke is generated is reduced. In addition, the flow limit at which surging occurs can be reduced, and the operating range can be further expanded.

尚、前記二次流路15は前記絞り部11の上流側と下流側を連通すればよく、円筒状に限らず、貫通孔を円周方向に所要ピッチで複数穿設してもよい。この場合、前記開閉弁16は貫通孔の直線部に設けられ、貫通孔の内径に略等しい外径を有する円板となる。   The secondary flow path 15 only needs to communicate between the upstream side and the downstream side of the throttle portion 11 and is not limited to a cylindrical shape, and a plurality of through holes may be formed at a required pitch in the circumferential direction. In this case, the on-off valve 16 is provided in a straight portion of the through hole and becomes a disc having an outer diameter substantially equal to the inner diameter of the through hole.

又、上記実施例では、前記開閉弁16を全閉、全開の2態様としたが、圧力比、流量に対応させ、開度を設定する様にしてもよい。又、開度を設定する際の開閉弁16の向きは、二次流路15内の流れがインペラ6回転方向に対して、順方向、逆方向どちらになる様に設定してもよい。   In the above embodiment, the on-off valve 16 is fully closed and fully open. However, the opening degree may be set according to the pressure ratio and flow rate. Further, the direction of the on-off valve 16 when setting the opening degree may be set so that the flow in the secondary flow path 15 is either forward or reverse with respect to the rotation direction of the impeller 6.

1 遠心圧縮機
2 ケーシング
3 中心線
4 インペラ収納室
6 インペラ
7 回転軸
8 環洞流路
9 ディフューザ流路
11 絞り部
12 吸入空気導入部
13 逆流現象
15 二次流路
DESCRIPTION OF SYMBOLS 1 Centrifugal compressor 2 Casing 3 Centerline 4 Impeller storage chamber 6 Impeller 7 Rotating shaft 8 Ring tunnel 9 Diffuser channel 11 Restriction part 12 Intake air introduction part 13 Backflow phenomenon 15 Secondary flow path

Claims (6)

インペラと、該インペラを回転自在に収納するケーシングとを有し、該ケーシングには前記インペラを収納するインペラ収納室と、該インペラ収納室の周囲に形成された環洞流路と、該環洞流路に連通する流体吐出口と、前記ケーシングと同心に形成され、前記インペラ収納室に連通する吸入空気導入部とが形成され、前記インペラ収納室入口の上流側に絞り部を形成し、該絞り部の直径を前記インペラ収納室入口の直径より小さくしており、前記絞り部の外周側に、該絞り部をバイパスし、該絞り部の上流側と下流側とを連通させる二次流路を設け、該二次流路に該二次流路を開閉する弁体が設けられ、該弁体は開閉手段によって開閉されることを特徴とする遠心圧縮機。 An impeller, and a casing for rotatably storing the impeller. The casing includes an impeller storage chamber for storing the impeller, a ring-shaped passage formed around the impeller storage chamber, and the ring-shaped tunnel A fluid discharge port that communicates with the flow path; and a suction air introduction portion that is formed concentrically with the casing and communicates with the impeller storage chamber; and a throttle portion is formed upstream of the impeller storage chamber inlet, The diameter of the throttle part is smaller than the diameter of the impeller storage chamber inlet, and the secondary flow path bypasses the throttle part on the outer peripheral side of the throttle part and communicates the upstream side and the downstream side of the throttle part And a valve body for opening and closing the secondary flow path is provided in the secondary flow path, and the valve body is opened and closed by an opening and closing means . 前記二次流路は円筒状の空間であり、前記二次流路の少なくとも一部は内周面、外周面が同心の球面で構成された球状流路であり、前記内周面、前記外周面の曲率中心は前記ケーシングの中心線上で合致し、前記弁体は円周方向に所定数前記球状流路に設けられると共に前記曲率中心を通過する軸心を中心に回転可能であり、前記弁体は前記中心線と平行な状態で、前記二次流路を全開し、全開から略90°回転した状態で前記二次流路を全閉する請求項の遠心圧縮機。 The secondary flow path is a cylindrical space, and at least a part of the secondary flow path is a spherical flow path having an inner peripheral surface and an outer peripheral surface formed of concentric spherical surfaces, and the inner peripheral surface and the outer peripheral surface. The center of curvature of the surface coincides with the center line of the casing, and the valve body is provided in a predetermined number of circumferential passages in the circumferential direction and is rotatable about an axis passing through the center of curvature. The centrifugal compressor according to claim 1 , wherein the body is fully open with the body parallel to the center line, and the secondary flow path is fully closed with the body rotated approximately 90 ° from the fully open position. 流体の圧力比、流量に応じて、前記弁体の開度を設定する請求項又は請求項の遠心圧縮機。 The centrifugal compressor according to claim 1 or 2 , wherein the opening degree of the valve body is set according to a pressure ratio and a flow rate of fluid. インペラ収納室を含むケーシングを含む遠心圧縮機であって、前記ケーシングは、前記インペラ収納室の上流側に前記インペラ収納室の入口の直径よりも小さい直径を有する絞り部と、前記絞り部の直径よりも大きい直径を有する吸入空気導入部と、前記絞り部の上流側と下流側とを連通し前記絞り部をバイパスする二次流路と、該二次流路に設けられた開閉弁とを有する、遠心圧縮機。 A centrifugal compressor including a casing including an impeller storage chamber, wherein the casing has a throttle portion having a diameter smaller than a diameter of an inlet of the impeller storage chamber on the upstream side of the impeller storage chamber, and a diameter of the throttle portion An intake air introduction portion having a larger diameter, a secondary flow path that connects the upstream side and the downstream side of the throttle portion and bypasses the throttle portion, and an on-off valve provided in the secondary flow path. Having a centrifugal compressor. 前記吸入空気導入部の直径は、前記インペラ収納室の入口の直径よりも大きい、請求項に記載の遠心圧縮機。 The centrifugal compressor according to claim 4 , wherein a diameter of the intake air introduction portion is larger than a diameter of an inlet of the impeller storage chamber. 前記ケーシングは、前記絞り部から前記吸入空気導入部に向って漸次拡径している、請求項又は請求項に記載の遠心圧縮機。 The centrifugal compressor according to claim 4 or 5 , wherein the casing gradually increases in diameter from the throttle portion toward the intake air introduction portion.
JP2011039509A 2011-02-25 2011-02-25 Centrifugal compressor Active JP5824821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039509A JP5824821B2 (en) 2011-02-25 2011-02-25 Centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039509A JP5824821B2 (en) 2011-02-25 2011-02-25 Centrifugal compressor

Publications (2)

Publication Number Publication Date
JP2012177311A JP2012177311A (en) 2012-09-13
JP5824821B2 true JP5824821B2 (en) 2015-12-02

Family

ID=46979310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039509A Active JP5824821B2 (en) 2011-02-25 2011-02-25 Centrifugal compressor

Country Status (1)

Country Link
JP (1) JP5824821B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004228A1 (en) * 2017-06-28 2019-01-03 株式会社Ihi Centrifugal compressor
US11168701B2 (en) 2017-02-08 2021-11-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
US11199198B2 (en) 2018-08-23 2021-12-14 Ihi Corporation Centrifugal compressor
US11378094B2 (en) 2017-06-28 2022-07-05 Ihi Corporation Centrifugal compressor
US11549521B2 (en) 2018-05-14 2023-01-10 Ihi Corporation Centrifugal compressor
US11725668B2 (en) 2019-03-19 2023-08-15 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
US11976667B2 (en) 2019-03-19 2024-05-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109548B2 (en) * 2012-11-30 2017-04-05 三菱重工業株式会社 Compressor
DE102014224285A1 (en) 2014-11-27 2016-06-02 Robert Bosch Gmbh Compressor with a sealing channel
CN107208658B (en) 2015-02-18 2019-07-05 株式会社Ihi Centrifugal compressor and booster
JP6371259B2 (en) * 2015-07-02 2018-08-08 本田技研工業株式会社 Compressor structure
JP2017015025A (en) * 2015-07-02 2017-01-19 本田技研工業株式会社 Compressor structure
CN105545810A (en) * 2015-12-18 2016-05-04 清华大学 Case of centrifugal compressor
JP7001438B2 (en) * 2017-11-24 2022-01-19 三菱重工業株式会社 Compressor
CN113217464B (en) * 2021-03-31 2022-08-19 江苏科技大学 Combined type compressor casing structure
WO2022230663A1 (en) * 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 Centrifugal separator, and washing machine comprising centrifugal separator
KR102596031B1 (en) * 2021-09-08 2023-10-31 (주)대주기계 A Centrifugal Compressor Impeller with Backside Cavity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027174A1 (en) * 1990-08-28 1992-03-05 Kuehnle Kopp Kausch Ag MAP STABILIZATION WITH A RADIAL COMPRESSOR
JP2006002650A (en) * 2004-06-17 2006-01-05 Toyota Motor Corp Centrifugal compressor interlocking inlet vane with bypass control valve
JP2009068372A (en) * 2007-09-11 2009-04-02 Ihi Corp Centrifugal compressor
JP5125718B2 (en) * 2008-04-16 2013-01-23 株式会社Ihi Centrifugal compressor
JP5182519B2 (en) * 2009-02-17 2013-04-17 株式会社Ihi Centrifugal compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168701B2 (en) 2017-02-08 2021-11-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
WO2019004228A1 (en) * 2017-06-28 2019-01-03 株式会社Ihi Centrifugal compressor
US11215190B2 (en) 2017-06-28 2022-01-04 Ihi Corporation Centrifugal compressor
US11378094B2 (en) 2017-06-28 2022-07-05 Ihi Corporation Centrifugal compressor
US11549521B2 (en) 2018-05-14 2023-01-10 Ihi Corporation Centrifugal compressor
US11199198B2 (en) 2018-08-23 2021-12-14 Ihi Corporation Centrifugal compressor
US11725668B2 (en) 2019-03-19 2023-08-15 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
US11976667B2 (en) 2019-03-19 2024-05-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger

Also Published As

Publication number Publication date
JP2012177311A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5824821B2 (en) Centrifugal compressor
CN105715360B (en) Trim-adjustable centrifugal compressor and turbocharger having the same
EP3018356B1 (en) Adjustable-trim centrifugal compressor with ported shroud, and turbocharger having same
JP5369723B2 (en) Centrifugal compressor
JP4797788B2 (en) Turbocharger
WO2015114971A1 (en) Variable nozzle unit and variable displacement supercharger
CN108571462A (en) The centrifugal compressor of adjustable TRIM for turbocharger
WO2015064272A1 (en) Centrifugal compressor and supercharger
JP2010101271A (en) Variable displacement turbine
JP2015194092A (en) Variable nozzle unit and variable displacement type supercharger
JP2012255440A (en) Axial turbo compressor
JP4735455B2 (en) Turbocharger
JP2012149619A (en) Centrifugal compressor
WO2013008599A1 (en) Centrifugal compressor
JP2008309111A (en) Variable nozzle mechanism
JP2010112223A (en) Turbocharger
JP2014218945A (en) Flow rate variable valve mechanism and supercharger
CN210135111U (en) Compressor and turbocharger
JP5853721B2 (en) Centrifugal compressor
WO2015093143A1 (en) Variable nozzle unit and variable-capacity supercharger
US10519851B2 (en) Turbocharger
JP4438524B2 (en) Turbocharger
JP6146507B2 (en) Variable nozzle unit and variable capacity turbocharger
WO2019004228A1 (en) Centrifugal compressor
JP2009243298A (en) Centrifugal compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5824821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250