JP5823756B2 - Method for producing sugar alcohol - Google Patents

Method for producing sugar alcohol Download PDF

Info

Publication number
JP5823756B2
JP5823756B2 JP2011158877A JP2011158877A JP5823756B2 JP 5823756 B2 JP5823756 B2 JP 5823756B2 JP 2011158877 A JP2011158877 A JP 2011158877A JP 2011158877 A JP2011158877 A JP 2011158877A JP 5823756 B2 JP5823756 B2 JP 5823756B2
Authority
JP
Japan
Prior art keywords
cellulose
sugar alcohol
catalyst
reaction
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011158877A
Other languages
Japanese (ja)
Other versions
JP2012041336A (en
Inventor
福岡 淳
淳 福岡
小林 広和
広和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Hokkaido University NUC
Original Assignee
Showa Denko KK
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hokkaido University NUC filed Critical Showa Denko KK
Priority to JP2011158877A priority Critical patent/JP5823756B2/en
Publication of JP2012041336A publication Critical patent/JP2012041336A/en
Application granted granted Critical
Publication of JP5823756B2 publication Critical patent/JP5823756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、糖アルコールの製造方法に関する。さらに詳しくいえば、糖類から直接糖アルコールを製造できる触媒を利用した糖類、特にセルロースから糖アルコールを製造する方法に関する。本発明において糖類としてセルロースを用いた場合、製造される糖アルコールはソルビトール及び/またはマンニトールである。   The present invention relates to a method for producing a sugar alcohol. More specifically, the present invention relates to a method for producing a sugar alcohol from a saccharide, particularly cellulose, using a catalyst capable of producing a sugar alcohol directly from the saccharide. In the present invention, when cellulose is used as the saccharide, the sugar alcohol produced is sorbitol and / or mannitol.

糖類を水素化分解して化学工業の基幹原料となる糖アルコールを合成することは極めて意義深い。特に、代表的な糖類の一つであるセルロースは極めて豊富に存在し、しかも非可食性であるため化学原料として使用しても食料と競合しない利点がある。しかし、セルロースは難分解性であるため、その利用はセルロースの化学構造の分解を伴わない紙などに限られてきた。このような現状を鑑みるに、セルロースなどの糖類から糖アルコールを効率良く合成できるプロセスを構築できればその意義は非常に大きい。   It is extremely significant to synthesize sugar alcohols, which are the basic raw materials for chemical industry, by hydrocracking sugars. In particular, cellulose, which is one of the typical sugars, is extremely abundant and non-edible, and therefore has the advantage of not competing with food even when used as a chemical raw material. However, since cellulose is hardly decomposable, its use has been limited to paper that does not involve decomposition of the chemical structure of cellulose. In view of such a current situation, if a process capable of efficiently synthesizing sugar alcohols from saccharides such as cellulose can be constructed, the significance is very large.

この反応を進行させるためには触媒が必須であるが、効率的に糖アルコールを生産するためには、容易に分離・再使用可能な固体触媒を用いる必要がある。このような合成法として、これまでにPt/Al23またはRu/Al23触媒による2MPa以上の加圧水素を用いたセルロースの水素化分解反応が報告されている(特許文献1〜3,非特許文献1)。また、Ru/C触媒による5〜6MPaの加圧水素を用いた同様の反応法も報告されている(非特許文献2,3)。しかし、いずれの場合にも水素ガスを2MPa以上の高圧で充填する必要があり、水素分圧を2MPa未満に低下させると糖アルコールの選択率が著しく低下し、糖アルコールを効率的に合成することはできない。 A catalyst is essential for proceeding with this reaction, but in order to efficiently produce sugar alcohol, it is necessary to use a solid catalyst that can be easily separated and reused. As such a synthesis method, a hydrocracking reaction of cellulose using pressurized hydrogen of 2 MPa or more with a Pt / Al 2 O 3 or Ru / Al 2 O 3 catalyst has been reported so far (Patent Documents 1 to 3). Non-patent document 1). A similar reaction method using pressurized hydrogen of 5 to 6 MPa with a Ru / C catalyst has also been reported (Non-patent Documents 2 and 3). However, in any case, it is necessary to fill hydrogen gas at a high pressure of 2 MPa or more. If the hydrogen partial pressure is reduced to less than 2 MPa, the selectivity of the sugar alcohol is remarkably lowered, and the sugar alcohol is efficiently synthesized. I can't.

また、ギ酸ナトリウムを還元剤に用いてイオン液体中でセルロースから糖アルコールを合成する反応が報告されている(非特許文献4)。しかし、ギ酸ナトリウムは還元剤としては高価であり、またイオン液体は粘度が高く撹拌性に問題がある上に非常に高価である。さらに、本反応では均一系触媒としてホウ素試薬を必要とするうえ、フェニルボロン酸誘導体など高価な試薬を用いて多段階反応で本ホウ素試薬を合成しなくてはならない。従って、生成した糖アルコールの分離が困難であるとともに、高コストであり経済的でない。   Moreover, the reaction which synthesize | combines sugar alcohol from a cellulose in an ionic liquid using sodium formate as a reducing agent has been reported (nonpatent literature 4). However, sodium formate is expensive as a reducing agent, and ionic liquids are very expensive due to their high viscosity and stirrability. Furthermore, this reaction requires a boron reagent as a homogeneous catalyst, and the boron reagent must be synthesized by a multi-step reaction using an expensive reagent such as a phenylboronic acid derivative. Therefore, it is difficult to separate the produced sugar alcohol, and it is expensive and not economical.

従って、いずれの方法にも改良の余地が多分にあり、温和な条件で糖類から糖アルコールを効率的に合成できる新規固体触媒反応系の開発が切望されている。   Therefore, there is much room for improvement in either method, and development of a novel solid catalytic reaction system capable of efficiently synthesizing a sugar alcohol from a saccharide under mild conditions is eagerly desired.

国際公開第2007/100052号パンフレットInternational Publication No. 2007/100052 Pamphlet 国際公開第2010/067795号パンフレットInternational Publication No. 2010/067795 Pamphlet 中国特許出願公告第100513381号明細書Chinese Patent Application Publication No. 100513381

Angew. Chem. Int. Ed., 45, 2006, 5161-5163.Angew. Chem. Int. Ed., 45, 2006, 5161-5163. Angew. Chem. Int. Ed., 46, 2007, 7636-7639.Angew. Chem. Int. Ed., 46, 2007, 7636-7639. Catal. Lett., 133, 2009, 167-174.Catal. Lett., 133, 2009, 167-174. ChemSusChem, 3, 2010, 67-70.ChemSusChem, 3, 2010, 67-70.

本発明の課題は、温和な条件で糖類から糖アルコールを効率的に合成できる糖アルコールの製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the sugar alcohol which can synthesize | combine a sugar alcohol efficiently from saccharides on mild conditions.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、炭素系担体に遷移金属を担持した触媒を用いることにより、従来に比べて低圧の水素ガスで糖類から糖アルコールが得られることを見出し本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor can obtain a sugar alcohol from a saccharide with hydrogen gas at a lower pressure than in the past by using a catalyst having a transition metal supported on a carbon-based support. And the present invention has been completed.

すなわち、本発明は下記[1]〜[9]の糖アルコールの製造方法及び[10]の糖アルコール製造用触媒に関する。
[1] 炭素系担体に遷移金属を担持した固体触媒を用いて、水存在下、0.1〜1MPaの水素分圧雰囲気下で、糖類を加水分解反応に付する工程、及び加水分解物を還元反応に付する工程を含むことを特徴とする糖アルコールの製造方法。
[2] 炭素系担体に遷移金属を担持した固体触媒を用いて、水存在下、0.1〜1MPaの水素分圧雰囲気下で、単糖及びオリゴ糖を還元反応に付することを特徴とする糖アルコールの製造方法。
[3] 前記遷移金属がルテニウムである前項[1]または[2]に記載の糖アルコールの製造方法。
[4] 前記炭素系担体にルテニウムを担持した触媒として粉末X線回折パターンがルテニウムに由来するピークを有さない触媒を用いる前項[3]に記載の糖アルコールの製造方法。
[5] 前記炭素系担体が活性炭またはカーボンブラックである前項[1]〜[4]のいずれかに記載の糖アルコールの製造方法。
[6] 糖類が、セルロースである前項[1]に記載の糖アルコールの製造方法。
[7] セルロースとして、結晶性低下処理したものを使用する前項[6]に記載の糖アルコールの製造方法。
[8] 水素分圧が0.5〜0.8MPaである前項[1]または[2]に記載の糖アルコールの製造方法。
[9] 反応時間が2〜25時間である前項[8]に記載の糖アルコールの製造方法。
[10] ルテニウムが活性炭またはカーボンブラックに担持されており、かつ、粉末X線回折パターンがルテニウムに由来するピークを有さないことを特徴とする糖アルコール製造用触媒。
That is, the present invention relates to the following methods [1] to [9] for producing a sugar alcohol and [10] a catalyst for producing a sugar alcohol.
[1] A step of subjecting a saccharide to a hydrolysis reaction in the presence of water under a hydrogen partial pressure atmosphere of 0.1 to 1 MPa using a solid catalyst having a transition metal supported on a carbon-based support, and a hydrolyzate The manufacturing method of the sugar alcohol characterized by including the process attached | subjected to a reductive reaction.
[2] The method is characterized in that a monosaccharide and an oligosaccharide are subjected to a reduction reaction in the presence of water in a hydrogen partial pressure atmosphere of 0.1 to 1 MPa using a solid catalyst having a transition metal supported on a carbon-based support. A method for producing sugar alcohol.
[3] The method for producing a sugar alcohol according to [1] or [2] above, wherein the transition metal is ruthenium.
[4] The method for producing a sugar alcohol according to the above [3], wherein a catalyst having a powder X-ray diffraction pattern having no peak derived from ruthenium is used as the catalyst having ruthenium supported on the carbon-based support.
[5] The method for producing a sugar alcohol according to any one of [1] to [4], wherein the carbon-based carrier is activated carbon or carbon black.
[6] The method for producing a sugar alcohol according to [1], wherein the saccharide is cellulose.
[7] The method for producing a sugar alcohol according to [6] above, wherein the cellulose is subjected to a crystallinity-reducing treatment.
[8] The method for producing a sugar alcohol according to [1] or [2] above, wherein the hydrogen partial pressure is 0.5 to 0.8 MPa.
[9] The method for producing a sugar alcohol according to [8], wherein the reaction time is 2 to 25 hours.
[10] A catalyst for producing a sugar alcohol, wherein ruthenium is supported on activated carbon or carbon black, and the powder X-ray diffraction pattern does not have a peak derived from ruthenium.

本発明の糖アルコールの製造方法によれば、従来に比べて低圧の0.1〜1MPaの水素分圧雰囲気下であっても反応が進行するので、反応器設計が容易になるとともに生産性が向上し、工業的に極めて意義深い。   According to the method for producing a sugar alcohol of the present invention, the reaction proceeds even under a hydrogen partial pressure atmosphere of 0.1 to 1 MPa, which is lower than that of the conventional one. Improving and industrially significant.

炭素系担体にルテニウム(Ru)を担持した触媒の調製法を示すフローチャートである。It is a flowchart which shows the preparation method of the catalyst which carry | supported ruthenium (Ru) on the carbon-type support | carrier. 低圧水素ガスを用いた各種触媒でのセルロース分解反応(実施例1及び比較例1〜2)による糖アルコールの収率を示す。The yield of the sugar alcohol by the cellulose decomposition | disassembly reaction (Example 1 and Comparative Examples 1-2) by the various catalysts using low pressure hydrogen gas is shown. AC(N)担体の粉末X線回折(XRD)パターン(a)、Ru/AC(N)触媒のXRDパターン(b)及び両者の差(c)を示す。The powder X-ray diffraction (XRD) pattern (a) of the AC (N) support, the XRD pattern (b) of the Ru / AC (N) catalyst, and the difference (c) therebetween are shown. Ru/AC(N)触媒、RuO2およびRu金属のRu3p3/2X線光電子分光(XPS)スペクトルを示す。 2 shows Ru3p 3/2 X-ray photoelectron spectroscopy (XPS) spectra of Ru / AC (N) catalyst, RuO 2 and Ru metal. Al23担体のXRDパターン(a)及びRu/Al23触媒のXRDパターン(b)及び両者の差(c)を示す。The XRD pattern (a) of the Al 2 O 3 support, the XRD pattern (b) of the Ru / Al 2 O 3 catalyst, and the difference (c) therebetween are shown.

本発明を具体的に説明する。
本発明の糖アルコールの製造方法は、炭素系担体に遷移金属が担持した触媒の存在下、0.1〜1MPaの水素分圧雰囲気下で、(1)糖類を加水分解し、加水分解物を還元する糖アルコールの製造方法、または(2)糖類の加水分解物を還元する糖アルコールの製造方法である。本発明の製造方法の反応雰囲気は水素分圧が上記範囲内であれば他の不活性ガス成分、例えば窒素、アルゴンまたはこれらの混合物が共存していてもよい。
The present invention will be specifically described.
In the method for producing a sugar alcohol of the present invention, (1) a saccharide is hydrolyzed in a hydrogen partial pressure atmosphere of 0.1 to 1 MPa in the presence of a catalyst having a transition metal supported on a carbon-based carrier, and the hydrolyzate is obtained. A method for producing a sugar alcohol to be reduced, or (2) a method for producing a sugar alcohol in which a hydrolyzate of a saccharide is reduced. In the reaction atmosphere of the production method of the present invention, other inert gas components such as nitrogen, argon or a mixture thereof may coexist as long as the hydrogen partial pressure is within the above range.

[糖類及びその加水分解物]
本発明で用いられる糖類は、セルロース、でん粉、デキストリン等のグリカン、ヘミセルロース、アラビノガラクタン、キシラン、マンナン等のグルカン、及び多糖類であり、糖類の加水分解物は、上記糖類を加水分解して得られるものであり、具体的には、グルコース、マンノース、キシロース等の単糖及びそれらのオリゴ糖が挙げられる。
[Sugars and their hydrolysates]
The saccharides used in the present invention are glycans such as cellulose, starch and dextrin, hemicelluloses, arabinogalactans, glucans such as xylan and mannan, and polysaccharides. The saccharide hydrolyzate is obtained by hydrolyzing the saccharides. Specific examples thereof include monosaccharides such as glucose, mannose, and xylose, and oligosaccharides thereof.

[触媒]
本発明においては、糖類の加水分解物を還元するために、すなわち糖類の加水分解物である単糖及びオリゴ糖を還元して糖アルコールを調製するために、あるいは糖類を加水分解し、かつ糖類の加水分解物を還元するために、すなわち、糖類を加水分解して単糖及びオリゴ糖とし、さらにこれらを還元して糖アルコールを調製するために、触媒が用いられる。
本発明で用いる触媒は、炭素系担体に遷移金属が担持された糖類(セルロース、ヘミセルロース、でん粉等)の加水分解用及び/または加水分解物の還元用触媒である。
[catalyst]
In the present invention, in order to reduce the hydrolyzate of saccharides, that is, to reduce monosaccharides and oligosaccharides that are hydrolysates of saccharides to prepare sugar alcohols, or to hydrolyze saccharides and In order to reduce the hydrolyzate, that is, to hydrolyze saccharides into monosaccharides and oligosaccharides, and further reduce them to prepare sugar alcohols, a catalyst is used.
The catalyst used in the present invention is a catalyst for hydrolysis of saccharides (cellulose, hemicellulose, starch, etc.) on which a transition metal is supported on a carbon-based support and / or reduction of a hydrolyzate.

(1)炭素系担体
本発明の触媒に用いられる炭素系担体とは、遷移金属が担持される部分が炭素からなる担体であり、その少なくとも一部が多孔質材料からなるものが適当である。すなわち、本発明の触媒に用いられる炭素系担体は、少なくとも遷移金属が担持される部分の表面が多孔質炭素材料からなることが適当であり、担体全体が多孔質炭素材料からなっていても、あるいは非多孔質炭素材料からなる支持体の表面が多孔質炭素材料で被覆されたものであってもよい。担体の支持体は炭素以外の材料からなっていてもよく、また、多孔質または非多孔質のいずれであってもよい。
(1) Carbon-based support The carbon-based support used in the catalyst of the present invention is a support in which the transition metal-supported portion is made of carbon, and at least a portion of the support is made of a porous material. That is, the carbon-based support used in the catalyst of the present invention is suitably at least the surface of the portion on which the transition metal is supported is made of a porous carbon material, and even if the entire support is made of a porous carbon material, Alternatively, the surface of a support made of a non-porous carbon material may be coated with a porous carbon material. The support of the carrier may be made of a material other than carbon, and may be porous or non-porous.

炭素系の固体担体の具体例としては活性炭またはカーボンブラックを挙げることができる。活性炭としては、例えば、和光純薬工業(株)製活性炭素(クロマトグラフ用,破砕状0.2〜1mm,破砕状2〜5mm,顆粒状,粉末,粉末酸洗浄,粉末アルカリ性,粉末中性,棒状)、関東化学(株)製活性炭素(粒状、粉末)、東京化成(株)製活性炭(酸化触媒用)、シグマアルドリッチジャパン(株)製Activated carbon granule 4-14 mesh、日本ノリット(株)製PK, PKDA 10x30 MESH (MRK), ELORIT, AZO, DARCO, HYDRODARCO 3000/4000, DARCO LI, PETRODARCO, DARCO MRX, GAC, GAC PLUS, DARCO VAPURE, GCN, C GRAN, ROW/ROY, RO, ROX, RB/W, R, R.EXTRA, SORBONORIT, GF 40/45, CNR, ROZ, RBAA, RBHG, RZN, RGM, SX, SX Ultra, SA, D 10, VETERINAIR, PN, ZN, SA-SW, W, GL, SAM, HB PLUS, A/B/C EUR/USP, CA, CN, CG, GB, CAP/CGP SUPER, S-51, S-51 A, S-51 HF, S-51 FF, DARCO GFP, HDB/HDC/HDR/HDW, GRO SAFE, DARCO INSUL, FM-1, DARCO TRS, DARCO FGD/FGL/Hg/Hg-LH, PAC 20/200、日本エンバイロケミカルズ(株)製白鷺(A、C、DO-2、DO-5、DO-11、FAC-10、M、P、PHC、エレメントDC)、アルデナイト、カルボラフィン、カルボラフィンDC、ハニカムカーボ白鷺、モルシーボン、強力白鷺、精製白鷺、特製白鷺、X-7000/X-7100、X-7000-3/X-7100-3、LPM006、LPM007、粒状白鷺(APRC、C2c、C2x、DC、G2c、G2x、GAAx、GH2x、GHxUG、GM2x、GOC、GOHx、GOX、GS1x、GS2x、GS3x、GTx、GTsx、KL、LGK-100、LGK-400、LGK-700、LH2c、MAC、MAC-W、NCC、S2x、SRCX、TAC、WH2c/W2c、WH2x、WH5c/W5c、WHA、X2M(モルシーボン5A)、XRC)、球状白鷺(X7000H/X7100H、X7000H-3/X7100H-3、DX7-3)、クラレケミカル(株)製気相用粒状活性炭GG/GS/GA、気相用活性炭GW/GL/GLC/KW/GWC、粉末活性炭PW/PK/PDX、カルゴンカーボンジャパン(株)製ダイヤホープ(006, 006S, 007, 008, 008B, 008S, 106, 6D, 6MD, 6MW, 6W, S60, C, DX, MM, MZ, PX, S60S, S61, S70, S80, S80A, S80J, S80S, S81, ZGA4, ZGB4, ZGN4, ZGR3, ZGR4, ZS, ZX-4, ZX-7)、ダイヤソープ(F, G4-8, W 8-32, W 10-30, XCA-C, XCA-AS, ZGR4-C)、カルゴン(AG 40, AGR, APA, AP3-60, AP4-60, APC, ASC, BPL, BPL 4x10, CAL, CENTAUR 4x6, CENTAUR 8x30, CENTAUR 12x40, CENTAUR HSV, CPG 8x30, CPG 12x40, F-AG 5, Filtrasorb 300, Filtrasorb 400, GRC 20, GRC 20 12x40, GRC 22, HGR, HGR-LH, HGR-P, IVP 4x6, OL 20x50, OLC 20x50, PCB, PCB 4x10, RVG, SGL, STL 820, URC, WS 460, WS 465, WS 480, WS490, WSC 470)、味の素ファインテクノ(株)製BA, BA-H, CL-H, CL-K, F-17, GS-A, GS-B, HF, HG, HG-S, HN, HP, SD, Y-180C, Y-4, Y-4S, Y-10S, Y-10SF, YF-4, YN-4, YP, ZN、(株)キャタラー製Aシリーズ、BC-9、BFGシリーズ、CTシリーズ、DSWシリーズ、FM-150、FW、FYシリーズ、GA、PGシリーズ 、WAシリーズ等が挙げられる。また、カーボンブラックとしては、例えば、キャボットコーポレーション(Cabot corporation)社製CRX 1444, CRX 4210, CRX 1346, REGAL 300, STERLING NS, STERLING NS-1, STERLING SO, STERLING VH, STERLING V, SPHERON 5000, SPHERON 6000, Black Pearls 2000, VULCAN 10H, VULCAN 1391, VULCAN 3, VULCAN 3H, VULCAN 6, VULCAN 7H, VULCAN 9, VULCAN J, VULCAN M, VULCAN XC72, VULCAN XC72R, VULCAN XC500, VULCAN XC200, VULCAN XC605, VULCAN XC305等が挙げられる。   Specific examples of the carbon-based solid support include activated carbon and carbon black. As the activated carbon, for example, activated carbon manufactured by Wako Pure Chemical Industries, Ltd. (for chromatograph, crushed 0.2-1 mm, crushed 2-5 mm, granular, powder, powdered acid washing, powder alkaline, powder neutral , Rod-shaped), activated carbon (granular, powder) manufactured by Kanto Chemical Co., Ltd., activated carbon (for oxidation catalyst) manufactured by Tokyo Chemical Industry Co., Ltd., activated carbon granule 4-14 mesh manufactured by Sigma Aldrich Japan Co., Ltd. ) PK, PKDA 10x30 MESH (MRK), ELORIT, AZO, DARCO, HYDRODARCO 3000/4000, DARCO LI, PETRODARCO, DARCO MRX, GAC, GAC PLUS, DARCO VAPURE, GCN, C GRAN, ROW / ROY, RO, ROX , RB / W, R, R.EXTRA, SORBONORIT, GF 40/45, CNR, ROZ, RBAA, RBHG, RZN, RGM, SX, SX Ultra, SA, D 10, VETERINAIR, PN, ZN, SA-SW, W, GL, SAM, HB PLUS, A / B / C EUR / USP, CA, CN, CG, GB, CAP / CGP SUPER, S-51, S-51 A, S-51 HF, S-51 FF, DARCO GFP, HDB / HDC / HDR / HDW, GRO SAFE, DARCO INSUL, FM-1, DARCO TRS, DARCO FGD / FGL / Hg / Hg-LH, PAC 20/200, Nippon Environment White rice cake (A, C, DO-2, DO-5, DO-11, FAC-10, M, P, PHC, element DC) manufactured by Rochemicals Co., Ltd., aldenite, carborafine, carborafine DC, honeycomb carbon White birch, molsiebon, strong white birch, refined white birch, special white birch, X-7000 / X-7100, X-7000-3 / X-7100-3, LPM006, LPM007, granular white birch (APRC, C2c, C2x, DC, G2c, G2x, GAAx, GH2x, GHxUG, GM2x, GOC, GOHx, GOX, GS1x, GS2x, GS3x, GTx, GTsx, KL, LGK-100, LGK-400, LGK-700, LH2c, MAC, MAC-W, NCC, S2x, SRCX, TAC, WH2c / W2c, WH2x, WH5c / W5c, WHA, X2M (Morcybon 5A), XRC), spherical white birch (X7000H / X7100H, X7000H-3 / X7100H-3, DX7-3), Kuraray Chemical ( Granular activated carbon GG / GS / GA manufactured by Co., Ltd., activated carbon GW / GL / GLC / KW / GWC for gas phase, powder activated carbon PW / PK / PDX, Diahope (006, 006S, manufactured by Calgon Carbon Japan Co., Ltd.) 007, 008, 008B, 008S, 106, 6D, 6MD, 6MW, 6W, S60, C, DX, MM, MZ, PX, S60S, S61, S70, S80, S80A, S80J, S8 0S, S81, ZGA4, ZGB4, ZGN4, ZGR3, ZGR4, ZS, ZX-4, ZX-7), diamond soap (F, G4-8, W 8-32, W 10-30, XCA-C, XCA- AS, ZGR4-C), Calgon (AG 40, AGR, APA, AP3-60, AP4-60, APC, ASC, BPL, BPL 4x10, CAL, CENTAUR 4x6, CENTAUR 8x30, CENTAUR 12x40, CENTAUR HSV, CPG 8x30, CPG 12x40, F-AG 5, Filtrasorb 300, Filtrasorb 400, GRC 20, GRC 20 12x40, GRC 22, HGR, HGR-LH, HGR-P, IVP 4x6, OL 20x50, OLC 20x50, PCB, PCB 4x10, RVG, SGL, STL 820, URC, WS 460, WS 465, WS 480, WS490, WSC 470), Ajinomoto Fine-Techno BA, BA-H, CL-H, CL-K, F-17, GS-A , GS-B, HF, HG, HG-S, HN, HP, SD, Y-180C, Y-4, Y-4S, Y-10S, Y-10SF, YF-4, YN-4, YP, ZN Cataler A series, BC-9, BFG series, CT series, DSW series, FM-150, FW, FY series, GA, PG series, WA series, etc. Moreover, as carbon black, for example, CRX 1444, CRX 4210, CRX 1346, REGAL 300, STERLING NS, STERLING NS-1, STERLING SO, STERLING VH, STERLING V, SPHERON 5000, SPHERON manufactured by Cabot Corporation 6000, Black Pearls 2000, VULCAN 10H, VULCAN 1391, VULCAN 3, VULCAN 3H, VULCAN 6, VULCAN 7H, VULCAN 9, VULCAN J, VULCAN M, VULCAN XC72, VULCAN XC72R, VULCAN XC500, VULCAN XC200, VULCAN XC605, VULCAN XC305 Etc.

また、メソポーラスシリカを鋳型として作製されるCMKに代表されるメソポーラスカーボンや、コークス、フェノール、あるいはヤシガラを熱処理し、アルカリまたは水蒸気により賦活して得られる多孔性炭素材料を用いることができる。これらの多孔性炭素材料の比表面積は800〜2500m2/gが好ましく、1000〜2000m2/gがより好ましい。 Moreover, a porous carbon material obtained by heat-treating mesoporous carbon typified by CMK produced using mesoporous silica as a template, coke, phenol, or coconut shell and activating with alkali or water vapor can be used. The specific surface area of these porous carbon material is preferably 800~2500m 2 / g, 1000~2000m 2 / g is more preferable.

固体担体の形状、形態は、特に制限されないが、例えば、粉体状、粒子状、顆粒状、ペレット状、ハニカム状、リング状、円柱状、リブ押出し型、リブリング状のものが挙げられる。粉体状、粒子状、顆粒状、ペレット状の担体は、例えば、前記の多孔性炭素材料のみからなることができる。それに対してハニカム構造の担体は、非多孔質材料、例えば、コージエライト等からなる支持体の表面に前記の多孔性炭素材料が被覆されたものでもよい。また、前述のように支持体は、別の多孔質材料からなるものでもよい。   The shape and form of the solid carrier are not particularly limited, and examples thereof include powder, particles, granules, pellets, honeycombs, rings, columns, rib extrusions, and rib rings. The carrier in the form of powder, particles, granules, or pellets can be made of, for example, only the porous carbon material. On the other hand, the carrier having a honeycomb structure may be a non-porous material, for example, a surface of a support made of cordierite or the like and coated with the porous carbon material. Further, as described above, the support may be made of another porous material.

(2)遷移金属
本発明の触媒に用いられる遷移金属は、0.1〜1MPaの水素分圧雰囲気下で糖類を加水分解かつ還元し、糖アルコールを生成し得るものであればいずれのものも使用することができる。例えば、ルテニウム(Ru)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、金(Au)及びコバルト(Co)が挙げられる。遷移金属は、単独で使用しても、2種以上を併用してもよい。遷移金属としては、触媒活性が高いという観点からは、特にルテニウムを使用すると高い収率が得られる点で好ましい。
(2) Transition metal Any transition metal can be used for the catalyst of the present invention as long as it can hydrolyze and reduce sugars under a hydrogen partial pressure atmosphere of 0.1 to 1 MPa to produce sugar alcohols. Can be used. Examples include ruthenium (Ru), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), gold (Au), and cobalt (Co). A transition metal may be used independently or may use 2 or more types together. As a transition metal, from the viewpoint of high catalytic activity, ruthenium is particularly preferable because a high yield can be obtained.

遷移金属の固体担体への担持量は、遷移金属の種類による活性の差異を考慮して適宜決定されるが、例えば、触媒の0.01〜50質量%、好ましくは0.01〜30質量%、より好ましくは0.01〜10質量%であることが適当である。   The amount of the transition metal supported on the solid support is appropriately determined in consideration of the difference in activity depending on the type of the transition metal. For example, 0.01 to 50% by mass, preferably 0.01 to 30% by mass of the catalyst. More preferably, the content is 0.01 to 10% by mass.

本発明で用いられる炭素系担体に遷移金属を担持した固体触媒は、通常の金属担持固体触媒の製造方法を参照して、例えば、含浸法により次のように調製することができる。
炭素系担体を150℃で1時間、真空乾燥する。次に水を加えて分散させ、ここに所定量の金属塩を含む水溶液を加えて15時間撹拌する。その後、減圧で水を留去して得られた固体を水素気流下、400℃で2時間還元して得られた固体を触媒とする(図1に示すフローチャート参照)。なお、後述の無機酸化物担体を使用した比較例では、水留去後還元処理前に酸素気流下、400℃で2時間の焼成を実施した。金属塩の具体例としては、市販の塩化ルテニウム(RuCl3・3H2O)、塩化白金酸(H2PtCl6・6H2O)、塩化パラジウム(PdCl2)、塩化ロジウム(RhCl3・3H2O)、塩化イリジウム(IrCl3・3H2O)、塩化金酸(HAuCl4・4H2O)、硝酸コバルト(Co(NO32・6H2O)等が挙げられる。なお、PdCl2は水に不溶性なので、Pdに対し4等量の塩酸を添加してH2PdCl4水溶液として用いることができる。また同様にIrCl3・3H2Oは、塩酸に溶解させて用いることができる。
The solid catalyst in which the transition metal is supported on the carbon-based support used in the present invention can be prepared as follows by, for example, an impregnation method with reference to a general method for producing a metal-supported solid catalyst.
The carbon-based support is vacuum dried at 150 ° C. for 1 hour. Next, water is added and dispersed, and an aqueous solution containing a predetermined amount of metal salt is added thereto and stirred for 15 hours. Thereafter, the solid obtained by distilling off water under reduced pressure is reduced at 400 ° C. for 2 hours under a hydrogen stream, and the solid obtained is used as a catalyst (see the flowchart shown in FIG. 1). In the comparative example using the inorganic oxide support described later, firing was carried out at 400 ° C. for 2 hours under an oxygen stream before water reduction and before reduction treatment. Specific examples of the metal salt include commercially available ruthenium chloride (RuCl 3 .3H 2 O), chloroplatinic acid (H 2 PtCl 6 .6H 2 O), palladium chloride (PdCl 2 ), rhodium chloride (RhCl 3 .3H 2). O), iridium chloride (IrCl 3 .3H 2 O), chloroauric acid (HAuCl 4 .4H 2 O), cobalt nitrate (Co (NO 3 ) 2 .6H 2 O), and the like. Since PdCl 2 is insoluble in water, 4 equivalents of hydrochloric acid can be added to Pd and used as an H 2 PdCl 4 aqueous solution. Similarly, IrCl 3 .3H 2 O can be used by dissolving in hydrochloric acid.

[糖アルコールの製造方法]
加水分解される糖類がセルロースである場合の糖アルコールの製造方法について以下に詳述する。
本発明による糖類からの糖アルコールの製造方法は、上記触媒及び水の存在下、0.1〜1MPaの水素分圧雰囲気下で、セルロースを加水分解する工程、及びセルロースの加水分解物を還元する工程を含む。
[Method for producing sugar alcohol]
A method for producing a sugar alcohol when the saccharide to be hydrolyzed is cellulose will be described in detail below.
The method for producing a sugar alcohol from a saccharide according to the present invention comprises a step of hydrolyzing cellulose and a hydrolyzate of cellulose in the presence of the catalyst and water in a hydrogen partial pressure atmosphere of 0.1 to 1 MPa. Process.

原料となる糖類には特に制限はなく、例えば市販されている粉末状のセルロースをそのまま用いることができる。例えば、脱脂木粉を塩素処理で漂白して得られる化学パルプ(ホロセルロース)をアルカリ処理してヘミセルロースを除いた、水に不溶のα−セルロースが挙げられる。   There is no restriction | limiting in particular in the saccharide | sugar used as a raw material, For example, the powdery cellulose marketed can be used as it is. For example, water-insoluble α-cellulose obtained by alkali treatment of chemical pulp (holocellulose) obtained by bleaching defatted wood flour by chlorination is used.

一般に、セルロースは、2本またはそれ以上のα−セルロースが水素結合により結合して、結晶性を示す。本発明では、そのような結晶性を有するセルロースを原料として使用することもできるが、そのような結晶性セルロースに結晶性を低下させる処理を施したセルロースも使用できる。結晶性を低下させたセルロースとしては、結晶性を部分的に低下させたものでも、完全にまたはほぼ完全に消失させたものでもよい。結晶性低下処理の方法には特に制限はないが、上記水素結合を切断して、1本鎖のα−セルロースを少なくとも部分的に生成できる結晶性低下処理であることが好ましい。少なくとも部分的に1本鎖のα−セルロースを含むセルロースを原料とすることにより、加水分解の効率を大幅に向上させることができる。   In general, in cellulose, two or more α-celluloses are bonded by hydrogen bonding to exhibit crystallinity. In the present invention, cellulose having such crystallinity can be used as a raw material, but cellulose obtained by subjecting such crystalline cellulose to a treatment for reducing crystallinity can also be used. Cellulose with reduced crystallinity may be partially reduced in crystallinity or completely or almost completely lost. There is no particular limitation on the crystallinity reduction treatment method, but it is preferably a crystallinity reduction treatment that can break the hydrogen bond and at least partially produce single-chain α-cellulose. By using cellulose containing at least partly single-chain α-cellulose as a raw material, hydrolysis efficiency can be greatly improved.

原料となるセルロースの結晶性低下処理としては、ボールミル法などの、物理的にα−セルロースの水素結合を切断して1本鎖のα−セルロースを得る方法(H. Zhao, J. H. Kwak, J. A. Franz, J. M. White, J. E. Holladay, Energy & Fuels, 20, 807 (2006)参照、その全記載は、ここに特に開示として援用される)や、リン酸処理などの、化学的にα−セルロースの水素結合を切断して1本鎖のα−セルロースを得る方法(Y. -H. P. Zhang, J. Cui, L. R. Lynd, L. Kuang, Biomacromolecules, 7, 644 (2006) 参照)を挙げることができる。セルロースの結晶性低下処理では、セルロースの結晶性低下を完全に消失させるまでの処理でなくても、処理前のセルロースが有する結晶性を部分的にでも低下させたセルロースを原料とすることで、加水分解の効率を大幅に向上させることができる。   As the crystallinity-reducing treatment of cellulose as a raw material, a method of physically cutting α-cellulose hydrogen bonds to obtain single-chain α-cellulose, such as a ball mill method (H. Zhao, JH Kwak, JA Franz , JM White, JE Holladay, Energy & Fuels, 20, 807 (2006), the entire description of which is specifically incorporated herein by reference) and chemically hydrogenated α-cellulose, such as phosphating And a method of obtaining a single-chain α-cellulose by cutting (see Y.-HP Zhang, J. Cui, LR Lynd, L. Kuang, Biomacromolecules, 7, 644 (2006)). In the crystallinity reduction treatment of cellulose, even if it is not a treatment until the crystallinity reduction of cellulose is completely eliminated, by using cellulose having reduced the crystallinity of cellulose before the treatment as a raw material, The efficiency of hydrolysis can be greatly improved.

さらに、原料となるセルロースの結晶性低下処理としては、例えば、加圧熱水処理(林信行、藤田修二、入江剛郎、坂本剛、柴田昌男、J. Jpn. Inst. Energy, 83, 805 (2004)、M. Sasaki, Z. Fang, Y. Fukushima, T. Adschiri, K. Arai, Ind. Eng. Chem. Res., 39, 2883 (2000)参照)を挙げることができる。   Furthermore, as the crystallinity lowering treatment of cellulose as a raw material, for example, pressurized hydrothermal treatment (Nobuyuki Hayashi, Shuji Fujita, Goro Irie, Go Sakamoto, Masao Shibata, J. Jpn. Inst. Energy, 83, 805 ( 2004), M. Sasaki, Z. Fang, Y. Fukushima, T. Adschiri, K. Arai, Ind. Eng. Chem. Res., 39, 2883 (2000)).

加水分解及び還元は、水の存在下0.1〜1MPaの水素分圧雰囲気下で行う。水素分圧が0.1MPa未満であると反応が著しく遅いか、あるいは進行せず、1MPaを超えると、より耐圧性の高い反応器が必要となるため経済性が低下する。後述の糖アルコールの反応収率を考慮すると、より好ましい水素分圧は0.3〜0.9MPaであり、さらに好ましくは0.5〜0.8MPaである。水の存在量は、少なくとも糖類の全量を加水分解できる量とし、より好ましくは、反応混合物の流動性や撹拌性等を考慮して、セルロースに対して、例えば、質量比5〜500の範囲とする。   Hydrolysis and reduction are performed in a hydrogen partial pressure atmosphere of 0.1 to 1 MPa in the presence of water. If the hydrogen partial pressure is less than 0.1 MPa, the reaction is remarkably slow or does not proceed. If the hydrogen partial pressure exceeds 1 MPa, a reactor with higher pressure resistance is required, resulting in lower economic efficiency. Considering the reaction yield of the sugar alcohol described later, the more preferable hydrogen partial pressure is 0.3 to 0.9 MPa, and further preferably 0.5 to 0.8 MPa. The amount of water present is an amount capable of hydrolyzing at least the total amount of saccharides, and more preferably, considering the fluidity and agitation of the reaction mixture, for example, in a mass ratio range of 5 to 500. To do.

触媒の使用量は、触媒の活性、反応条件(例えば、温度、時間、水素圧等)を考慮して、適宜決定できるが、例えば、セルロースに対して、質量比0.05〜5の範囲とすることが適当である。   The amount of the catalyst used can be appropriately determined in consideration of the activity of the catalyst and reaction conditions (for example, temperature, time, hydrogen pressure, etc.). It is appropriate to do.

加水分解及び還元は、例えば、150〜240℃の加熱下で行うことが適当である。好ましくは160〜230℃の加熱下、より好ましくは170〜220℃の加熱下で行うことが適当である。   The hydrolysis and reduction are suitably performed, for example, under heating at 150 to 240 ° C. The heating is preferably performed at 160 to 230 ° C, more preferably 170 to 220 ° C.

加水分解及び還元の反応時間は、反応の規模や、反応条件、触媒とセルロースの使用量等を考慮して適宜決定できるが、通常、1〜100時間とすることが適当である。加水分解は転化率が100%となるまで反応時間の経過と共に進行するが、糖アルコールの収率は転化率が100%となる前に飽和する傾向がある。好ましい反応時間は1.5〜50時間であり、より好ましくは2〜25時間である。また、反応の形式は、バッチ式または連続式等のいずれでもよい。さらに、反応は、反応混合物を撹拌しながら行うことが好ましい。   The reaction time for hydrolysis and reduction can be appropriately determined in consideration of the scale of the reaction, the reaction conditions, the amount of catalyst and cellulose used, etc., but it is usually suitably 1 to 100 hours. Hydrolysis proceeds with the passage of reaction time until the conversion rate reaches 100%, but the yield of sugar alcohol tends to saturate before the conversion rate reaches 100%. The preferred reaction time is 1.5 to 50 hours, more preferably 2 to 25 hours. Moreover, any of a batch type or a continuous type may be sufficient as the form of reaction. Furthermore, the reaction is preferably performed while stirring the reaction mixture.

加水分解及び還元終了後、反応混合物を固液分離に供し、液相として糖アルコールを含む水溶液を回収し、固相として少なくとも触媒及び未反応糖類を含む固体を分離する。固液分離方法には、特に制限はなく、触媒の形状、形態等や未反応セルロースの存在量等を考慮して常法から適宜決定できる。例えば、ろ過法、遠心分離法、沈降法等を利用できる。触媒及び未反応セルロースを含む固体は、次の反応にそのまま供することができる。   After completion of hydrolysis and reduction, the reaction mixture is subjected to solid-liquid separation, an aqueous solution containing sugar alcohol is recovered as a liquid phase, and a solid containing at least a catalyst and unreacted sugar is separated as a solid phase. The solid-liquid separation method is not particularly limited, and can be appropriately determined from conventional methods in consideration of the shape and form of the catalyst, the amount of unreacted cellulose, and the like. For example, a filtration method, a centrifugal separation method, a sedimentation method, or the like can be used. The solid containing the catalyst and unreacted cellulose can be directly used for the next reaction.

本発明で用いる触媒は、再使用に際して、特に活性化する必要はない。しかし、例えば、通常の金属担持固体触媒の活性化処理法を用いて、活性化して再使用することもできる。活性化処理としては、触媒を水で洗浄して乾燥後、水素気流下、200〜500℃で1〜5時間加熱することにより、担持金属表面を還元状態に戻すとともに金属及び担体上の残留有機物を熱分解する方法がある。   The catalyst used in the present invention does not need to be activated when reused. However, it can be activated and reused, for example, using a normal metal-supported solid catalyst activation treatment method. As the activation treatment, the catalyst is washed with water and dried, and then heated at 200 to 500 ° C. for 1 to 5 hours in a hydrogen stream, thereby returning the supported metal surface to a reduced state and residual organic substances on the metal and the support. There is a method to thermally decompose.

以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明は以下の例に限定されるものではない。
[触媒の調製]
前述した含浸法によりルテニウム、白金を担持金属とする触媒を各々調製した。具体的には、水に担体を分散させ、各々の前駆体である市販の塩化ルテニウム(RuCl3・3H2O)、塩化白金酸(H2PtCl6・6H2O)を用いた水溶液を添加して16時間撹拌した。水はイオン交換水を使用した。水を減圧留去した後、炭素系担体を用いた場合は触媒前駆体を400℃で2時間水素還元した。また無機酸化物担体を用いた場合は、触媒前駆体を400℃で2時間酸素焼成した後、同様に水素還元をすることにより担持金属触媒を調製した。金属の担持量は2質量%であった。
触媒担体に用いたものを以下に列挙する。炭素系担体としては、は、AC(N):日本ノリット(株)製活性炭 SX Ultra、BP2000:キャボットコーポレーション(Cabot corporation)社製カーボンブラック Black Pearls 2000を使用し、無機酸化物担体としては、Al23:触媒学会参照触媒JRC-ALO-2、TiO2:Degussa P-25、ZrO2:触媒学会参照触媒JRC-ZRO-2を使用した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to the following examples.
[Preparation of catalyst]
Catalysts using ruthenium and platinum as supported metals were prepared by the impregnation method described above. Specifically, a carrier is dispersed in water, and an aqueous solution using commercially available ruthenium chloride (RuCl 3 .3H 2 O) and chloroplatinic acid (H 2 PtCl 6 .6H 2 O) as precursors is added. And stirred for 16 hours. Water used was ion exchange water. After distilling off water under reduced pressure, the catalyst precursor was hydrogen reduced at 400 ° C. for 2 hours when a carbon-based support was used. When an inorganic oxide support was used, the catalyst precursor was subjected to oxygen calcination at 400 ° C. for 2 hours, and then subjected to hydrogen reduction to prepare a supported metal catalyst. The amount of metal supported was 2% by mass.
Those used for the catalyst carrier are listed below. As the carbon-based support, AC (N): activated carbon SX Ultra manufactured by Norit Japan Co., Ltd., BP2000: carbon black Black Pearls 2000 manufactured by Cabot Corporation was used, and as the inorganic oxide support, Al 2 O 3 : Reference Catalyst JRC-ALO-2, TiO 2 : Degussa P-25, ZrO 2 : Reference Catalyst JRC-ZRO-2 was used.

[非晶質セルロースの調製]
反応基質のセルロースには以下の処理をしたものを用いた。すなわち、セラミックポットミルの中に直径1cmのジルコニア球1kg分とセルロース(メルク社(Merck)製,Avicel)10gとを入れ、卓上ポットミル回転台にセットし、60rpmで96時間ボールミル処理した。本処理によりセルロースの結晶化度は65%から約10%に低下した。非晶質セルロースは結晶性セルロースに比較して高い反応性を示し、効率良く分解することができる。なお、結晶化度はNMR測定装置(Bruker社製,MSL-400核磁気共鳴装置)を用いて13C NMRを測定(測定条件:100.6 MHz (CP/MAS, 4kHzスピン))し、結晶ピークとアモルファスピークの面積比から算出した。
[Preparation of amorphous cellulose]
Cellulose subjected to the following treatment was used as the reaction substrate cellulose. That is, 1 kg of zirconia balls having a diameter of 1 cm and 10 g of cellulose (Merck, Avicel) were placed in a ceramic pot mill, set on a tabletop pot mill rotary table, and ball milled at 60 rpm for 96 hours. This treatment lowered the crystallinity of the cellulose from 65% to about 10%. Amorphous cellulose exhibits higher reactivity than crystalline cellulose and can be efficiently decomposed. The crystallinity was determined by measuring 13 C NMR (measurement condition: 100.6 MHz (CP / MAS, 4 kHz spin)) using an NMR measuring apparatus (manufactured by Bruker, MSL-400 nuclear magnetic resonance apparatus). It was calculated from the area ratio of the amorphous peak.

実施例1:セルロース分解反応
セルロース分解反応には、高圧反応器(内容積100mL,オーエムラボテック(株)製MMJ−100,SUS316製)を用いた。0.8MPaの水素ガス雰囲気下で、セルロース324mg(C6105単位で1.89〜1.90mmol,物理吸着水4.8〜5.5質量%)、Ru/AC(N)触媒50mg(担持金属10μmol)、水40mLを加え、600rpmで撹拌しながら190℃で18時間反応を実施した。
冷却後、反応液を遠心分離装置を用いて液相と固体残渣に分離した。高速液体クロマトグラフ(HPLC,(株)島津製作所製LC-10ATVP,カラムPhenomenex Rezex RPM Monosaccharide Pb++(8%),移動相 水0.6 mL/min,80℃,示差屈折率検出器)により、液相の生成物を定量分析し、以下の式より各成分の収率を求めた。

Figure 0005823756
また、固体残渣を110℃で24時間乾燥した後、未反応セルロースの質量から以下の式よりセルロース転化率を求め、その転化率から各生成物選択率を求めた。
Figure 0005823756
結果を表1及び図2に示す。糖アルコール(ソルビトール、マンニトール)が合計の収率38%で生成し、糖アルコールを効率良く合成できることが分かった。 Example 1: Cellulose decomposition reaction For the cellulose decomposition reaction, a high-pressure reactor (internal volume: 100 mL, OMJ Labtech Co., Ltd. MMJ-100, manufactured by SUS316) was used. Under a 0.8 MPa hydrogen gas atmosphere, 324 mg of cellulose (1.89 to 1.90 mmol in terms of C 6 H 10 O 5 units, 4.8 to 5.5% by mass of physically adsorbed water), Ru / AC (N) catalyst 50 mg (10 μmol of supported metal) and 40 mL of water were added, and the reaction was carried out at 190 ° C. for 18 hours while stirring at 600 rpm.
After cooling, the reaction solution was separated into a liquid phase and a solid residue using a centrifuge. Using a high performance liquid chromatograph (HPLC, LC-10ATVP manufactured by Shimadzu Corporation, column Phenomenex Rezex RPM Monosaccharide Pb ++ (8%), mobile phase water 0.6 mL / min, 80 ° C, differential refractive index detector) The product was quantitatively analyzed, and the yield of each component was determined from the following formula.
Figure 0005823756
Moreover, after drying a solid residue at 110 degreeC for 24 hours, the cellulose conversion rate was calculated | required from the following formula | equation from the mass of unreacted cellulose, and each product selectivity was calculated | required from the conversion rate.
Figure 0005823756
The results are shown in Table 1 and FIG. Sugar alcohol (sorbitol, mannitol) was produced with a total yield of 38%, and it was found that sugar alcohol could be synthesized efficiently.

比較例1:セルロース分解反応
Ru/AC(N)触媒の代わりにRu/Al23触媒を用いた以外は実施例1と同様の条件でセルロースの水素化分解反応を実施した。結果を表1及び図2に示す。
Comparative Example 1: Cellulose decomposition reaction The cellulose hydrogenolysis reaction was carried out under the same conditions as in Example 1 except that a Ru / Al 2 O 3 catalyst was used instead of the Ru / AC (N) catalyst. The results are shown in Table 1 and FIG.

比較例2:セルロース分解反応
Ru/AC(N)触媒の代わりにPt/Al23触媒を198mg用い、1MPaの水素ガス雰囲気下で24時間反応させた以外は、実施例1と同様の条件でセルロースの水素化分解反応を実施した。結果を表1及び図2に示す。
Comparative Example 2: Cellulose decomposition reaction The same conditions as in Example 1 except that 198 mg of Pt / Al 2 O 3 catalyst was used instead of the Ru / AC (N) catalyst and the reaction was carried out in a hydrogen gas atmosphere of 1 MPa for 24 hours. The hydrogenolysis reaction of cellulose was carried out. The results are shown in Table 1 and FIG.

Figure 0005823756
Figure 0005823756

[結果]
前述したように、特許文献1及び非特許文献1に活性な触媒として記載されているRu/Al23やPt/Al23などは5MPaの水素ガスを用いた場合には確かに高い活性を示すが、本反応条件ではいずれも活性は低かった。非特許文献2で報告されているRu/活性炭触媒は本発明のRu/AC(N)触媒と一見類似しているが、同文献では糖アルコールを合成するには2MPa以上の水素ガス加圧が必要であり、本発明の触媒とは触媒活性が明らかに異なる。水中で0.8MPaの低圧水素ガスを用いてセルロースから糖アルコールを効率良く合成できた触媒は報告されていない。従って、本発明のRu/AC(N)は本質的に新規な触媒であり、その触媒活性種は典型的な水素化触媒と異なると考えられる。
[result]
As described above, Ru / Al 2 O 3 and Pt / Al 2 O 3 described as active catalysts in Patent Literature 1 and Non-Patent Literature 1 are certainly high when 5 MPa hydrogen gas is used. Although it showed activity, the activity was low under these reaction conditions. The Ru / activated carbon catalyst reported in Non-Patent Document 2 is similar to the Ru / AC (N) catalyst of the present invention at first glance. However, in this document, hydrogen gas pressurization of 2 MPa or more is required to synthesize sugar alcohol. Necessary and clearly different in catalytic activity from the catalyst of the present invention. There has been no report of a catalyst that can efficiently synthesize sugar alcohol from cellulose using 0.8 MPa low-pressure hydrogen gas in water. Thus, the Ru / AC (N) of the present invention is essentially a novel catalyst, and its catalytically active species are believed to be different from typical hydrogenation catalysts.

実施例2〜3,比較例3〜5:ルテニウムを担持した固体触媒の担体の影響
水素分圧を0.7MPaとしたこと以外は実施例1と同様に、種々の担体を用いて同様に反応を実施した。なお、比較例3〜5に使用した無機酸化物担体を用いた触媒は比較例1及び2と同様の焼成を行った後、水素還元することにより調製した。結果を表2に示した。炭素系担体を用いた実施例2及び3では糖アルコール(ソルビトール、マンニトール)の収率が30%以上であり、糖アルコールを効率良く合成できることが分かった。これに対して、無機酸化物担体を用いた場合はTiO2で合計の収率が20%であり、Al23及びZrO2ではいずれも合計の収率が5%未満と低かった。これらの結果から、炭素系担体を用いた方が無機酸化物担体を用いるよりも活性が高いことが示唆された。
Examples 2-3 and Comparative Examples 3-5: Influence of the support of the solid catalyst supporting ruthenium The same reaction was carried out using various supports in the same manner as in Example 1 except that the hydrogen partial pressure was 0.7 MPa. Carried out. In addition, the catalyst using the inorganic oxide support | carrier used for Comparative Examples 3-5 was prepared by performing the baking similar to Comparative Examples 1 and 2, and carrying out hydrogen reduction. The results are shown in Table 2. In Examples 2 and 3 using a carbon-based carrier, the yield of sugar alcohol (sorbitol, mannitol) was 30% or more, and it was found that sugar alcohol could be synthesized efficiently. On the other hand, when the inorganic oxide support was used, the total yield was 20% with TiO 2 , and the total yield with both Al 2 O 3 and ZrO 2 was as low as less than 5%. From these results, it was suggested that the activity using the carbon-based support is higher than that using the inorganic oxide support.

Figure 0005823756
Figure 0005823756

実施例1,3,4:水素圧の影響
水素圧を0.5〜0.8MPaの範囲で変更したこと以外は実施例1と同様の条件で反応を実施した。結果を表3に示した。いずれも糖アルコール(ソルビトール、マンニトール)の収率は20%を超えているが、水素圧が0.7MPa及び0.8MPaで概ね同等(40%弱)の収率となっている。このことから水素圧の増加に伴い糖アルコールの収率は増加するが、0.7MPa付近で飽和する傾向があることが示唆された。
Examples 1, 3, and 4: Influence of hydrogen pressure The reaction was carried out under the same conditions as in Example 1 except that the hydrogen pressure was changed in the range of 0.5 to 0.8 MPa. The results are shown in Table 3. In either case, the yield of sugar alcohol (sorbitol, mannitol) exceeds 20%, but the hydrogen pressure is approximately equal (less than 40%) at 0.7 MPa and 0.8 MPa. This suggests that the sugar alcohol yield increases with increasing hydrogen pressure, but tends to saturate around 0.7 MPa.

Figure 0005823756
Figure 0005823756

実施例3,5〜8:反応時間の影響
反応時間を1〜18時間の範囲で変更したこと以外は実施例1と同様の条件で反応を実施した。結果を表4に示した。反応時間が1時間ではセルロースの転化率が低いため、糖アルコール(ソルビトール、マンニトール)の収率は20%未満と低いが、選択率は48%の高い値が得られた。2時間以上では収率は30%を超え、6時間以上では約35%まで向上した。糖アルコール(ソルビトール、マンニトール)の選択率は多少ばらつきはあるものの1〜18時間の範囲で45%以上を維持しており、反応時間によらず高い選択率が得られた。
Examples 3, 5 to 8: Influence of reaction time The reaction was carried out under the same conditions as in Example 1 except that the reaction time was changed within the range of 1 to 18 hours. The results are shown in Table 4. When the reaction time was 1 hour, the conversion rate of cellulose was low, so the yield of sugar alcohol (sorbitol, mannitol) was as low as less than 20%, but the selectivity was as high as 48%. The yield exceeded 30% after 2 hours, and improved to about 35% after 6 hours. The selectivity of sugar alcohol (sorbitol, mannitol) was maintained at 45% or more in the range of 1 to 18 hours, although there was some variation, and a high selectivity was obtained regardless of the reaction time.

Figure 0005823756
Figure 0005823756

[触媒のキャラクタリゼーション]
Ru/AC(N)触媒のRu活性種を明らかにするため、既報の水素化触媒であるRu/Al23触媒と粉末X線回折(X-ray diffraction,XRD)パターンを比較した。図3パターン(a)に示すように、AC(N)は無定形炭素のブロードな散乱ピーク及び不純物として1%程度含有されている結晶性シリカに由来する2θ=27°に代表される鋭い回折線を与えた。Ruを担持した後の触媒、すなわちRu/AC(N)でも、パターン(b)に示すように、同様のパターンが確認されたが、パターン(b)とパターン(a)の差分を取ることによりAC(N)の回折線を除去したパターン(c)では、Ruに由来するピークは観測されなかった。そこで、Ru/AC(N)のX線光電子分光(X-ray Photoelectron Spectroscopy,XPS)測定を実施したした。図4に示すように、Ru3p3/2軌道電子の束縛エネルギーはRuO2の462.9eVに近い463.1eVであり、Ru金属461.9eVよりも高いことから、Ruが完全には還元されていないことが明らかになった。すなわち、Ru/AC(N)では金属ナノ粒子が形成されていないと考えられる。
[Characteristic characterization]
In order to clarify the Ru active species of the Ru / AC (N) catalyst, a Ru / Al 2 O 3 catalyst which is a previously reported hydrogenation catalyst was compared with a powder X-ray diffraction (XRD) pattern. As shown in the pattern (a) of FIG. 3, AC (N) is a sharp diffraction typified by 2θ = 27 ° derived from crystalline silica containing a broad scattering peak of amorphous carbon and about 1% as an impurity. Gave a line. As shown in the pattern (b), the same pattern was confirmed in the catalyst after supporting Ru, that is, Ru / AC (N). By taking the difference between the pattern (b) and the pattern (a), In the pattern (c) from which the diffraction line of AC (N) was removed, no peak derived from Ru was observed. Therefore, X-ray photoelectron spectroscopy (XPS) measurement of Ru / AC (N) was performed. As shown in FIG. 4, the binding energy of the Ru3p 3/2 orbital electron is 463.1 eV, which is close to 462.9 eV of RuO 2 , and is higher than the Ru metal 461.9 eV, so that Ru is completely reduced. It became clear that there was no. That is, it is considered that no metal nanoparticles are formed in Ru / AC (N).

図5にAl23及びRu/Al23のXRDパターンを示す。パターン(a)に示すように、担体のAl23は典型的なγ−Al23の回折パターンを示した。Ru/Al23の回析パターンを示すパターン(b)では、Ruを担持することによりRu金属の回折線が2θ=44°に観測された。パターン(b)とパターン(a)の差分を取ることによりγ−Al23の回折線を除去したパターン(c)では、黒丸で示すRuのピークが明確に確認でき、Ruの平均粒子径が9nmと算出された。
以上の結果から、セルロースを低圧の水素で水素化して糖アルコールを合成可能な活性種は、完全に0価のルテニウム金属粒子ではなくカチオン性のルテニウム種であると考えられる。
FIG. 5 shows XRD patterns of Al 2 O 3 and Ru / Al 2 O 3 . As shown in the pattern (a), the support Al 2 O 3 exhibited a typical γ-Al 2 O 3 diffraction pattern. In pattern (b) showing a diffraction pattern of Ru / Al 2 O 3, a Ru metal diffraction line was observed at 2θ = 44 ° by supporting Ru. In the pattern (c) in which the diffraction line of γ-Al 2 O 3 is removed by taking the difference between the pattern (b) and the pattern (a), the Ru peak indicated by a black circle can be clearly confirmed, and the average particle diameter of Ru Was calculated to be 9 nm.
From the above results, it is considered that the active species capable of synthesizing sugar alcohol by hydrogenating cellulose with low-pressure hydrogen is not a completely zero-valent ruthenium metal particle but a cationic ruthenium species.

本発明は、セルロース等の糖類からの糖アルコールの製造技術分野において有用である。   The present invention is useful in the technical field of producing sugar alcohols from sugars such as cellulose.

Claims (4)

炭素系担体にルテニウムを担持した固体触媒を用いて、水存在下、0.5〜0.8MPaの水素分圧雰囲気下で、糖類を加水分解反応に付する工程、及び加水分解物を還元反応に付する工程を含み、前記加水分解および還元の反応時間が2〜18時間であることを特徴とする糖アルコールの製造方法。 Using a solid catalyst with ruthenium supported on a carbon-based support, subjecting the saccharide to a hydrolysis reaction in the presence of water under a hydrogen partial pressure atmosphere of 0.5 to 0.8 MPa, and reducing the hydrolyzate look including the step of subjecting the reaction, the production method of the sugar alcohol, wherein the reaction time of hydrolysis and reduction are 2 to 18 hours. 前記炭素系担体が活性炭またはカーボンブラックである請求項1に記載の糖アルコールの製造方法。 The method for producing a sugar alcohol according to claim 1, wherein the carbon-based carrier is activated carbon or carbon black. 糖類が、セルロースである請求項1に記載の糖アルコールの製造方法。   The method for producing a sugar alcohol according to claim 1, wherein the saccharide is cellulose. セルロースとして、結晶性低下処理したものを使用する請求項に記載の糖アルコールの製造方法。 The method for producing a sugar alcohol according to claim 3 , wherein the cellulose is subjected to a crystallinity-reducing treatment.
JP2011158877A 2010-07-21 2011-07-20 Method for producing sugar alcohol Active JP5823756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158877A JP5823756B2 (en) 2010-07-21 2011-07-20 Method for producing sugar alcohol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010164279 2010-07-21
JP2010164279 2010-07-21
JP2011158877A JP5823756B2 (en) 2010-07-21 2011-07-20 Method for producing sugar alcohol

Publications (2)

Publication Number Publication Date
JP2012041336A JP2012041336A (en) 2012-03-01
JP5823756B2 true JP5823756B2 (en) 2015-11-25

Family

ID=45898046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158877A Active JP5823756B2 (en) 2010-07-21 2011-07-20 Method for producing sugar alcohol

Country Status (1)

Country Link
JP (1) JP5823756B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109595A1 (en) * 2012-10-09 2014-04-24 Studiengesellschaft Kohle Mbh Process for obtaining sugar alcohols having five to six carbon atoms
KR101466826B1 (en) 2013-04-24 2014-11-28 한국화학연구원 Catalyst for the manufacture of sugar alcohol, method for the manufacture thereof and method for manufacture of sugar alcohol using the same
WO2015156846A1 (en) * 2014-04-10 2015-10-15 Archer Daniels Midland Company Dehydration of a sugar alcohol with mixed combination of acid catalysts
JP6521659B2 (en) * 2015-02-16 2019-05-29 株式会社日本触媒 Method for producing polyols or alcohols

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106630A (en) * 1980-12-23 1982-07-02 Towa Kasei Kogyo Kk Preparation of sugar alcohol
WO1984000778A1 (en) * 1982-08-20 1984-03-01 Cetus Corp Process for the production of mannitol and sorbitol
TW572878B (en) * 2001-05-11 2004-01-21 Fushimi Pharmaceutical Co Ltd Method for production of sugar alcohol
DE10128203A1 (en) * 2001-06-11 2002-12-12 Basf Ag Production of sorbitol a ruthenium catalyst prepared by impregnation of an amorphous silicon dioxide support material and drying followed by immediate hydrogen reduction.
EP2011569A4 (en) * 2006-03-01 2012-08-29 Univ Hokkaido Nat Univ Corp Catalyst for hydrolysis of cellulose and/or reduction of hydrolysis product thereof, and method for producing sugar alcohol from cellulose
EP2100972A1 (en) * 2008-03-13 2009-09-16 BIOeCON International Holding N.V. Process for converting polysaccharides in a molten salt hydrate
EP2374903B1 (en) * 2008-12-09 2016-06-08 National University Corporation Hokkaido University Method for producing a sugar-containing liquid in which the primary ingredient is glucose

Also Published As

Publication number Publication date
JP2012041336A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
ES2877375T3 (en) Method for preparing shaped porous products based on carbon black
CA3003665C (en) Shaped porous carbon products
EP2481479B1 (en) Catalyst for hydrolysis of cellulose or hemicellulose, and process for production of sugar-containing solution using the catalyst
JP5641504B2 (en) Method for producing a sugar-containing liquid mainly composed of glucose
US11820725B2 (en) Process for catalytic hydrogenation of halonitroaromatics
JP5823756B2 (en) Method for producing sugar alcohol
JP5894387B2 (en) Method for producing sugar alcohol
JP7371102B2 (en) Carbon-based noble metal-transition metal composite catalyst and method for producing the same
KR20070112457A (en) Method for preparing sugar alcohols using ruthenium zirconia catalyst
US11253839B2 (en) Shaped porous carbon products
JP2023526927A (en) Glycerol hydrocracking process
JP7141707B2 (en) Method for producing sugar-containing cellulose hydrolyzate
KR20210061123A (en) Heterogeneous Catalyst Complex for Carbon dioxide Conversion
Zhang et al. Efficient synthesis of sugar alcohols using a composite trimetallic Pt–Ni–Sn/MWCNTs catalyst based on metal element coordination and valence regulation
KR20120123189A (en) Preparing method from sugar to sugar alcohols by catalytic hydrogenation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151008

R150 Certificate of patent or registration of utility model

Ref document number: 5823756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350