JP5822099B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP5822099B2
JP5822099B2 JP2010050111A JP2010050111A JP5822099B2 JP 5822099 B2 JP5822099 B2 JP 5822099B2 JP 2010050111 A JP2010050111 A JP 2010050111A JP 2010050111 A JP2010050111 A JP 2010050111A JP 5822099 B2 JP5822099 B2 JP 5822099B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
capacitor
separator
electrolytic
cathode foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010050111A
Other languages
Japanese (ja)
Other versions
JP2011187602A (en
Inventor
総芳 遠藤
総芳 遠藤
一裕 畑中
一裕 畑中
等 小磯
等 小磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2010050111A priority Critical patent/JP5822099B2/en
Publication of JP2011187602A publication Critical patent/JP2011187602A/en
Application granted granted Critical
Publication of JP5822099B2 publication Critical patent/JP5822099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、陽極箔と陰極箔をセパレータを介して巻回したコンデンサ素子を、有底円筒状の外装ケースに収納してなる電解コンデンサの構造に関する。   The present invention relates to a structure of an electrolytic capacitor in which a capacitor element in which an anode foil and a cathode foil are wound via a separator is housed in a bottomed cylindrical outer case.

近年の電子機器には小型化、特に薄型化の要請が高まっている。このような薄型化の流れにおいて、電子機器に搭載されるスイッチング電源も薄型化が求められている。スイッチング電源の平滑コンデンサとしては、電解コンデンサが多用されているが、このような平滑コンデンサには、定格電圧200V以上の電解コンデンサが使用され、さらに出力電流に応じた静電容量が求められる。   In recent years, there is an increasing demand for downsizing, in particular, thinning of electronic devices. In such a trend of thinning, switching power supplies mounted on electronic devices are also required to be thin. As a smoothing capacitor for a switching power supply, an electrolytic capacitor is frequently used. For such a smoothing capacitor, an electrolytic capacitor having a rated voltage of 200 V or more is used, and a capacitance corresponding to an output current is required.

このような背景のもと、電解コンデンサの薄型化を図るには、電解コンデンサの外径を小さなものとし、このような電解コンデンサを横置きに配置することで、薄型化の要請に対応している。この結果、平滑コンデンサに求められる静電容量を実現するために電解コンデンサの長さ寸法が大きなものなる。すなち、電解コンデンサは定格電圧200〜450V、直径6〜10.5mm、長さ寸法25〜60mm程度のものが用いられるようになってきている。
Against this background, in order to reduce the thickness of electrolytic capacitors, the outer diameter of electrolytic capacitors should be reduced, and such electrolytic capacitors can be placed horizontally to meet the demand for thinning. Yes. As a result, the length dimension of the electrolytic capacitor to realize the electrostatic capacitance required for the smoothing capacitor becomes large. Chi I sand, electrolytic capacitors have come to the rated voltage 200~450V, diameter 6~10.5Mm, it is of about the length 25~60mm used.

このような小径で長さ寸法の長い電解コンデンサでは、従来の電解コンデンサでは、問題視されなかった課題が顕在化してきた。すなわち、電解コンデンサを単純な円筒形の部品と仮定すると、一定の静電容量を確保するためには、外装ケース内に収納するコンデンサ素子の空間容積も、相当の空間容積が必要となる。一定の空間容積を得るためには、通常の平滑用コンデンサとして使用される外径20mm〜35mm程度の電解コンデンサでは、長さ寸法には大きな影響は無く、必要とされる静電容量に応じて、外径と長さ寸法の比は、外径:長さ寸法外径=1:1〜2程度で実現することができる。しかしながら、外径10.5mm未満となると外装ケース内に一定の空間容積を得るためには、長さ寸法は指数関数的に増大していく。このため、外径10.5mm未満の電解コンデンサでは、外径:長さ寸法外径=1:3〜10程度となり、極めて細長い外観形状の電解コンデンサとなる。
With such an electrolytic capacitor having a small diameter and a long length, problems that have not been regarded as problems in the conventional electrolytic capacitor have become apparent. That is, assuming that the electrolytic capacitor is a simple cylindrical part, in order to secure a certain capacitance, the space volume of the capacitor element housed in the outer case also requires a considerable space volume. In order to obtain a certain space volume, an electrolytic capacitor having an outer diameter of about 20 mm to 35 mm used as a normal smoothing capacitor has no significant effect on the length dimension, and depends on the required capacitance. The ratio of the outer diameter to the length dimension can be realized by outer diameter: length dimension outer diameter = 1: 1-2. However, when the outer diameter is less than 10.5 mm, the length dimension increases exponentially in order to obtain a constant space volume in the outer case. For this reason, in an electrolytic capacitor having an outer diameter of less than 10.5 mm, outer diameter: length dimension outer diameter = 1: 3 to about 10, and the electrolytic capacitor has an extremely elongated external shape.

したがって、小径で長さ寸法のい電解コンデンサで、大きな静電容量を実現するには、外装ケース内の収納空間をより効率的に利用する必要が発生する。電解コンデンサの静電容量を決定する最大の要素は陽極箔であり、この陽極箔の有する静電容量を最大に引き出すために、陽極箔には対向する陰極箔が必須であり、陰極箔が陽極箔の外周を覆う構造となる。
Thus, long have electrolytic capacitors of length at a small diameter, to realize a large capacitance required is generated utilizing a storage space of the exterior case more efficiently. The largest factor that determines the capacitance of an electrolytic capacitor is the anode foil. In order to maximize the capacitance of the anode foil, the anode foil must have an opposing cathode foil, and the cathode foil is the anode foil. It becomes the structure which covers the outer periphery of foil.

通常の平滑用コンデンサでも、上記の構造を採用しているが、通常の平滑用コンデンサでは、上記の構造に加え、陰極箔の外周にセパレータを周回させ、ポリプロピレンやポリスチレンサルファイド等の樹脂テープによって巻き止めを行う構造を採用している。   The normal smoothing capacitor employs the above structure, but in addition to the above structure, the normal smoothing capacitor has a separator around the outer periphery of the cathode foil and is wound with a resin tape such as polypropylene or polystyrene sulfide. A structure that stops is used.

一方で、小径で長さ寸法の長い電解コンデンサでは、通常の平滑用コンデンサと同様の構造を採用することはできない。前述したように、直径10.5mm未満となると外装ケース内に一定の空間容積を得るためには、長さ寸法は指数関数的に増大していくため、コンデンサ素子の外周部にセパレータと巻き止めテープの両方を介在させることは、収納空間を効率的に利用することにはならず、長さ寸法の著しい増加を引き起こしてしまうためである。
On the other hand, an electrolytic capacitor having a small diameter and a long length cannot adopt the same structure as a normal smoothing capacitor. As described above, when the diameter is less than 10.5 mm, the length dimension increases exponentially in order to obtain a constant space volume in the outer case, so that the separator and the coil are fixed around the outer periphery of the capacitor element. By interposing both of the tapes, the storage space is not efficiently used, and the length dimension is significantly increased.

特に巻き止めテープとして樹脂素材の巻き止めテープを用いると、樹脂素材のテープ基材と接着剤の接着性が良好でない場合が多く、巻き止めテープをコンデンサ素子の外周に1周半から2周程度まで巻回しないと、巻き止めテープがはがれやすく、コンデンサ素子の形状を維持できない。この巻き止めテープを周回させる分、コンデンサ素子の外径は大きなものとなり、外装ケースも径大なものが必要となるという問題がある。   In particular, when a resin-made tape is used as the winding tape, the adhesive between the resin-based tape base and the adhesive is often not good, and the winding tape is placed on the outer circumference of the capacitor element for about one and a half to two rounds. Otherwise, the anti-winding tape is easily peeled off and the shape of the capacitor element cannot be maintained. There is a problem that the outer diameter of the capacitor element becomes larger and the outer case needs to have a larger diameter as the winding tape is rotated.

そのため、コンデンサ素子の外周にはセパレータを介在させず、コンデンサ素子の全面を巻き止めテープにてコンデンサ素子を巻き止め、外装ケースに収納する方法(特許文献1)や、セパレータを陰極箔の外周に巻回し、接着剤等で固定し、外装ケースの収納空間の効率的な利用を図ることが行われてきた(特許文献2)。   For this reason, a separator is not interposed on the outer periphery of the capacitor element, and the capacitor element is wound around the entire surface of the capacitor element with a winding tape and stored in an outer case (Patent Document 1), or the separator is placed on the outer periphery of the cathode foil. It has been practiced to wind and fix with an adhesive or the like to efficiently use the storage space of the outer case (Patent Document 2).

特開平03−96211号公報Japanese Patent Laid-Open No. 03-96211 特開昭60−163422号公報JP-A-60-163422

ところで、外径が小さい電解コンデンサでは、陽極リードと陰極リードのリード間距離も狭まる。例えば、直径10.5mmの電解コンデンサでは、リード間距離は5.0mm程度となり、直径8mmの電解コンデンサは、リード間距離は3.5mm程度となる。   By the way, in the electrolytic capacitor having a small outer diameter, the distance between the lead of the anode lead and the cathode lead is also narrowed. For example, in an electrolytic capacitor having a diameter of 10.5 mm, the distance between leads is about 5.0 mm, and in an electrolytic capacitor having a diameter of 8 mm, the distance between leads is about 3.5 mm.

また、リード線導出端面における外装ケースと両極端子との距離も狭まってくる。例えば、直径10.5mmの電解コンデンサでは、両極のリードと外装ケースの距離は1.5mm程度となり、直径8mmの電解コンデンサは、両極のリードと外装ケースの距離は0.8mm程度となる。   In addition, the distance between the outer case and the bipolar terminal on the lead wire lead-out end surface is also reduced. For example, in an electrolytic capacitor having a diameter of 10.5 mm, the distance between the leads of both electrodes and the outer case is about 1.5 mm, and in an electrolytic capacitor having a diameter of 8 mm, the distance between the leads of both electrodes and the outer case is about 0.8 mm.

この結果、外径が10.5mm未満の小径の電解コンデンサでは、陽極リードと陰極リード間のショート、あるいは、陽極リードと外装ケース間のショートが起こりやすい状態となる。そして、この傾向は外径寸法が小さくなれば、さらにショートの可能性はより高まる。なお、これらのショートの原因としては電解コンデンサのプリント基板実装時の半田流れ等によるものである。
As a result, in a small-diameter electrolytic capacitor having an outer diameter of less than 10.5 mm, a short circuit between the anode lead and the cathode lead or a short circuit between the anode lead and the outer case is likely to occur. This tendency further increases the possibility of short-circuiting when the outer diameter is reduced. Note that the cause of these short-circuits is due to the solder flow when the electrolytic capacitor is mounted on the printed board.

このうち、両極リード間のショートは電解コンデンサの封口部材に隔壁を設け、両極のリードが近接しないような構造上の工夫を施すことにより、ショートを引き起こさない対応をしている。   Among these, a short circuit between the two electrode leads is provided with a partition wall on the sealing member of the electrolytic capacitor, and a structure is devised so that the two electrode leads are not close to each other, thereby preventing a short circuit.

また、陽極リードと外装ケースの絶縁のためには、電解コンデンサの外部に絶縁性の外装スリーブを被覆することで、外装ケースのカーリング部を含め絶縁を図り、リード線と外装ケースの絶縁を図っている。   In addition, in order to insulate the anode lead from the outer case, an insulating outer sleeve is coated on the outside of the electrolytic capacitor to insulate the outer case, including the curling part, and to insulate the lead wire from the outer case. ing.

このような絶縁対策は、外径10.5mmを超えるような大きな径の電解コンデンサでは、極めて有効であるが、外径10.5mm未満の電解コンデンサでは、外装ケースのカーリング加工の精度や、外装スリーブの被覆位置制御の精度の影響が大きくなる。
Such an insulation measure is extremely effective for an electrolytic capacitor having a large diameter exceeding 10.5 mm, but for an electrolytic capacitor having an outer diameter of less than 10.5 mm, the accuracy of curling of the outer case, The influence of the accuracy of the sleeve covering position control increases.

特に外装スリーブには、熱収縮性の樹脂材料を電解コンデンサの外装ケースに被覆し、加熱することで、電解コンデンサの外装ケースに密着させているが、この外装スリーブの熱収縮率は温度の影響が大きい。小径の電解コンデンサでは、リード線導出面で、外装スリーブで被覆すべき部位のマージンが極めて小さくなるため、外装スリーブの被覆後の寸法精度には、製造過程での温度管理等が厳密なものが必要とされる。   In particular, the outer sleeve is coated with a heat-shrinkable resin material on the outer case of the electrolytic capacitor and heated to adhere closely to the outer case of the electrolytic capacitor. Is big. In small-diameter electrolytic capacitors, the margin of the portion to be covered with the outer sleeve on the lead wire lead-out surface is extremely small, so the dimensional accuracy after coating of the outer sleeve is strictly controlled by temperature during the manufacturing process. Needed.

なお、小径の電解コンデンサとしては、従来から、最小で外径が4mm程度のものも用いられてきた。したがって、上記のような外装スリーブの被覆位置の精度にはばらつきはあったものの、問題視されることはなかった。その理由としては、外径が4mm程度の電解コンデンサでは、長さ寸法は5〜7mm程度であり、このような電解コンデンサでは、CV積(電解コンデンサの静電容量と定格電圧の積)、すなわち電解コンデンサに蓄積される電荷量が小さいことにある。例えば外径が4mm、長さ寸法7mmで、定格電圧4〜100Vの電解コンデンサのCV積は、概ね0.0140×10−2C程度である。なお、外径寸法が10.5mm未満の電解コンデンサとしては、定格電圧が100V以下のいわゆる低圧用電解コンデンサである。
In addition, as a small-diameter electrolytic capacitor, one having a minimum outer diameter of about 4 mm has been conventionally used. Therefore, although there is a variation in the accuracy of the covering position of the outer sleeve as described above, it has not been regarded as a problem. The reason is that an electrolytic capacitor having an outer diameter of about 4 mm has a length of about 5 to 7 mm. In such an electrolytic capacitor, the CV product (product of the capacitance and the rated voltage of the electrolytic capacitor), that is, This is because the amount of charge accumulated in the electrolytic capacitor is small. For example, the CV product of an electrolytic capacitor having an outer diameter of 4 mm, a length dimension of 7 mm, and a rated voltage of 4 to 100 V is approximately 0.0140 × 10 −2 C. The electrolytic capacitor having an outer diameter of less than 10.5 mm is a so-called low voltage electrolytic capacitor having a rated voltage of 100 V or less.

このような外径が10.5mm未満の電解コンデンサでは、電解コンデンサに蓄積される電荷量が小さいことと、定格電圧が低いことから、外装スリーブの被覆位置の精度に多少のばらつきがあったとしても、リード線と外装ケースがショートするおそれが低かったためである。   In such an electrolytic capacitor having an outer diameter of less than 10.5 mm, the amount of charge accumulated in the electrolytic capacitor is small and the rated voltage is low. This is because the possibility that the lead wire and the outer case are short-circuited is low.

一方で、高圧用電解コンデンサとして利用される定格200V以上の電解コンデンサとしては外径寸法が10.5mm以上のものが実用されている。このような、外径が10.5mm、長さ寸法25mmで、定格電圧4〜100Vの電解コンデンサのCV積は1.5×10−2〜2.5×10−2C程度であり、外径が10.5mm、長さ寸法25mmで、定格電圧200〜450Vの電解コンデンサのCV積は0.7×10−2〜1.0×10−2Cである。
On the other hand, electrolytic capacitors having an outer diameter of 10.5 mm or more are in practical use as electrolytic capacitors having a rating of 200 V or more used as high-voltage electrolytic capacitors. Such an electrolytic capacitor having an outer diameter of 10.5 mm and a length dimension of 25 mm and a rated voltage of 4 to 100 V has a CV product of about 1.5 × 10 −2 to 2.5 × 10 −2 C. Is 10.5 mm, the length is 25 mm, and the CV product of an electrolytic capacitor having a rated voltage of 200 to 450 V is 0.7 × 10 −2 to 1.0 × 10 −2 C.

前述したとおり、直径10.5mmの電解コンデンサでは、リード間距離は5.0mm程度となり両極のリードと外装ケースの距離は2.0mm程度となっているため、定格電圧が200Vの電解コンデンサであっても、リード線間、およびリード線と外装ケースの絶縁は保たれていた。
ところが、直径10.5mm未満の電解コンデンサで、定格電圧200V以上の電解コンデンサを実現しようとすると、リード線間、およびリード線と外装ケースの絶縁の問題が顕著となる。特にこの発明の対象となる電解コンデンサは、定格電圧200〜450V、直径6〜10.5mm、長さ寸法25mm以上であり、このような電解コンデンサでもCV積は、0.7×10−2〜1.0×10−2Cを実現する必要がある。
このような外径10.5mm未満で、定格電圧が200V以上で、かつCV積が0.7×10−2を超えるような電解コンデンサでは、陽極のリード線と外装ケースが接触するおそれが高まる。
As described above, in the electrolytic capacitor having a diameter of 10.5 mm, the distance between the leads is about 5.0 mm, and the distance between the leads of both electrodes and the outer case is about 2.0 mm. However, insulation between the lead wires and between the lead wires and the outer case was maintained.
However, when an electrolytic capacitor having a rated voltage of 200 V or more is to be realized with an electrolytic capacitor having a diameter of less than 10.5 mm, the problem of insulation between the lead wires and between the lead wires and the outer case becomes significant. In particular, an electrolytic capacitor that is an object of the present invention has a rated voltage of 200 to 450 V, a diameter of 6 to 10.5 mm, and a length dimension of 25 mm or more. Even in such an electrolytic capacitor, the CV product is 0.7 × 10 −2 to It is necessary to realize 1.0 × 10 −2 C.
In such an electrolytic capacitor having an outer diameter of less than 10.5 mm, a rated voltage of 200 V or more, and a CV product exceeding 0.7 × 10 −2 , there is an increased risk of contact between the anode lead wire and the outer case. .

そして、陽極リード線と外装ケースが接触した場合の問題について述べる。電解コンデンサの外装ケースは、アルミニウムが用いられており、この外装ケースと陽極リード線が導通した場合には、外装ケースの内面が陽極酸化により酸化皮膜が成長する。すなわち、電解コンデンサに用いられる電解液には化成能力があり、電解液が接触した状態で、金属アルミニウムに正電荷が印加されると、酸化皮膜を形成してしまう。酸化皮膜の成長は印加される電圧に比例して成長するため、定格電圧が200V以上の電解コンデンサでは、酸化皮膜が厚く形成されることになる。そして、この酸化皮膜の形成時には発熱を伴い、特に印加電圧が高い場合には、この発熱状態が長く続くことになる。この発熱によって樹脂製の巻き止めテープを収縮、あるいは融断して、正電位の外装ケースと負電位の陰極箔の間でショートを引き起こしてしまう場合がある。   And the problem when an anode lead wire and an exterior case contact is described. The outer case of the electrolytic capacitor is made of aluminum. When the outer case and the anode lead wire are electrically connected, an oxide film grows on the inner surface of the outer case due to anodic oxidation. That is, the electrolytic solution used for the electrolytic capacitor has a chemical conversion ability, and when a positive charge is applied to the metal aluminum in a state where the electrolytic solution is in contact, an oxide film is formed. Since the growth of the oxide film grows in proportion to the applied voltage, a thick oxide film is formed in an electrolytic capacitor having a rated voltage of 200 V or more. When the oxide film is formed, heat is generated. In particular, when the applied voltage is high, the heat generation state continues for a long time. This heat generation may shrink or melt the resin winding tape, causing a short circuit between the positive potential outer case and the negative potential cathode foil.

一方で、このような外装ケースと陰極箔間のショートという問題は、外周にセパレータを巻回し、接着剤で固定した電解コンデンサでは発生するおそれは少ない。   On the other hand, such a problem of short between the outer case and the cathode foil is less likely to occur in an electrolytic capacitor in which a separator is wound around the outer periphery and fixed with an adhesive.

しかしながら、セパレータをコンデンサ素子の外周に周回させ、接着剤で固定する電解コンデンサでは、体積効率の悪化を招くという問題がある。   However, an electrolytic capacitor in which the separator is wound around the outer periphery of the capacitor element and fixed with an adhesive has a problem in that volumetric efficiency is deteriorated.

電解コンデンサのセパレータとしては、クラフト紙、マニラ麻紙等が一般に用いられている。このセパレータに求められる特性としては、陽極箔と陰極箔を絶縁するための十分な厚さ、電解液を保持する保持能力、電解液中でイオンが移動しやすいような密度がある。このような観点から、定格電圧200V以上の電解コンデンサでは、厚さが40μm程度で比較的低密度のセパレータが使用される。   Kraft paper, Manila hemp paper, etc. are generally used as separators for electrolytic capacitors. The characteristics required for this separator include a sufficient thickness for insulating the anode foil and the cathode foil, a holding capacity for holding the electrolytic solution, and a density at which ions can easily move in the electrolytic solution. From such a viewpoint, an electrolytic capacitor having a rated voltage of 200 V or more uses a separator having a thickness of about 40 μm and a relatively low density.

しかし、このようなセパレータを用いてコンデンサ素子の外周を巻き止めた場合には、コンデンサ素子の外径が大きくなる。上述のような厚さ40μmのセパレータを外周に巻回した場合には80μmの径大を引き起こす。   However, when the outer periphery of the capacitor element is wound using such a separator, the outer diameter of the capacitor element is increased. When a separator having a thickness of 40 μm as described above is wound around the outer periphery, a large diameter of 80 μm is caused.

コンデンサ素子の外周に用いられる巻き止めテープに求められる特性としては、高い絶縁性と耐熱性であり、電解液の保持能力は必要とされない。このため、コンデンサ素子のセパレータに求められる特性とコンデンサ素子の巻き止めテープに求められる特性は異なる。   The characteristics required for the anti-winding tape used on the outer periphery of the capacitor element are high insulation and heat resistance, and the electrolyte holding ability is not required. For this reason, the characteristics required of the capacitor element separator and the characteristics required of the capacitor element winding tape are different.

この発明は以上のような背景の下になされたものであり、外径10.5mm未満、長さ寸法30mm以上の小径で長さ寸法の長い電解コンデンサにおいて、電解コンデンサの小型化とともに、外装ケースと陽極リード線の短絡が生じた場合であっても電解コンデンサがショートすることがなく安全性の高い電解コンデンサを提供することを目的とする。
The present invention has been made under the background as described above. In an electrolytic capacitor having an outer diameter of less than 10.5 mm, a small diameter of 30 mm or more and a long diameter, the electrolytic capacitor is miniaturized and the outer case is provided. It is an object of the present invention to provide an electrolytic capacitor with high safety without short-circuiting the electrolytic capacitor even when the anode lead wire is short-circuited.

この出願の請求項1に係る発明は、陽極箔と陰極箔をセパレータを介して巻回してなるコンデンサ素子をアルミニウムからなる有底外装ケースに収納するとともに、外装ケースの開口端部を封口体で封口してなる電解コンデンサにおいて、電解コンデンサの外径と長さ寸法の比が1:3〜10であって、コンデンサ素子の最外周に陰極箔が配置されるとともに、片面に接着剤を設けた紙テープで素子を巻き止めたことを特徴とする電解コンデンサである。
これによると、小径でかつ長さ寸法が長い(外径が10.5mm未満で、高さ寸法長さ寸法が30mm以上)電解コンデンサにおいて、陽極リード線と外装ケースが接触した場合であっても、外装ケースの陽極酸化皮膜生成時における発熱等によって、従来の樹脂製の巻き止めテープでは、該発熱によって溶断し、陰極箔と外装ケースが接触してショートを引き起こす可能性があったが、この発明では、紙テープを用いるため、この紙テープでは、前記発熱等に対しても溶断等の虞がなく、陰極箔と外装ケースとの絶縁を確実に確保でき、安全性の高い電解コンデンサを提供することができる。
In the invention according to claim 1 of this application, a capacitor element formed by winding an anode foil and a cathode foil through a separator is housed in a bottomed outer case made of aluminum, and the opening end of the outer case is sealed with a sealing body. In the electrolytic capacitor formed by sealing, the ratio of the outer diameter and the length dimension of the electrolytic capacitor is 1: 3 to 10, the cathode foil is disposed on the outermost periphery of the capacitor element, and the adhesive is provided on one side. The electrolytic capacitor is characterized in that the element is wound with a paper tape.
According to this, even when the anode lead wire and the outer case are in contact with each other in an electrolytic capacitor having a small diameter and a long length (the outer diameter is less than 10.5 mm and the height and length are 30 mm or more). However, due to the heat generated during the generation of the anodized film of the outer case, the conventional resin-made anti-winding tape may be melted by the heat generation, causing the cathode foil and the outer case to come into contact with each other. In the invention, since a paper tape is used, the paper tape does not have a possibility of fusing or the like with respect to the heat generation, and the insulation between the cathode foil and the outer case can be reliably ensured, and a highly safe electrolytic capacitor is provided. Can do.

この出願の請求項2に係る発明は、請求項1に記載の電解コンデンサにおいて、電解コンデンサが定格電圧200V以上の高圧用電解コンデンサであることを特徴とする。これによると、小径でかつ長さ寸法が長い電解コンデンサであるにも関わらず、定格電圧が200Vと、スイッチング電源の1次平滑コンデンサとして使用できる電解コンデンサが実現できる。
The invention according to claim 2 of this application is characterized in that, in the electrolytic capacitor according to claim 1, the electrolytic capacitor is a high-voltage electrolytic capacitor having a rated voltage of 200 V or more. According to this, although the electrolytic capacitor has a small diameter and a long length, the electrolytic capacitor that can be used as a primary smoothing capacitor of a switching power supply with a rated voltage of 200 V can be realized.

この出願の請求項3に係る発明は、請求項1又は2に記載の電解コンデンサにおいて、前記紙テープが、前記セパレータよりも厚さが薄い紙テープであるとともに、紙テープがコンデンサ素子の外周長の1/3以下の長さの部分で重なりあうことを特徴とする。これによると、紙テープの厚さをセパレータの厚みより薄く、かつ紙テープの重なり長さをコンデンサ素子の外周長の1/3以下とすることで、コンデンサ素子の小型化が可能となり、外装ケースへの収納効率を高めることができる。   The invention according to claim 3 of this application is the electrolytic capacitor according to claim 1 or 2, wherein the paper tape is a paper tape having a thickness smaller than that of the separator, and the paper tape is 1 / of the outer peripheral length of the capacitor element. It is characterized by overlapping at a length of 3 or less. According to this, the thickness of the paper tape is thinner than the thickness of the separator, and the overlap length of the paper tape is 1/3 or less of the outer peripheral length of the capacitor element, so that the capacitor element can be reduced in size and applied to the outer case. Storage efficiency can be increased.

以上、この発明によると、小径でかつ長さ寸法が長い電解コンデンサにおいて、電解コンデンサの小型化とともに、外装ケースと陽極リード線の短絡が生じた場合であっても電解コンデンサがショートすることがなく、安全性の高い電解コンデンサを提供することができる。
As described above, according to the present invention, in an electrolytic capacitor having a small diameter and a long length , the electrolytic capacitor is not short-circuited even when the outer case and the anode lead wire are short-circuited along with downsizing of the electrolytic capacitor. It is possible to provide a highly safe electrolytic capacitor.

この発明の電解コンデンサについて以下詳細に説明する。   The electrolytic capacitor of the present invention will be described in detail below.

この発明に用いられる電解コンデンサとしては、弁作用金属、例えばアルミニウムやタンタル等の金属箔に、エッチング処理および陽極酸化処理を施した陽極箔、及びエッチング処理を施した陰極箔を、クラフト紙、マニラ紙等からなるセパレータを間に介して巻回してなるコンデンサ素子を、有底筒状のアルミニウム等の金属製や樹脂製の外装ケースに収納し、外装ケースの開口端部をゴム等からなる封口体で封口する。陽極箔や陰極箔には、予め引出端子が接続されており、前記封口体に設けられた貫通孔を通じて外部に引き出されている。   As an electrolytic capacitor used in the present invention, an anode foil obtained by subjecting a metal foil such as a valve action metal, such as aluminum or tantalum, to an etching treatment and an anodizing treatment, and a cathode foil obtained by carrying out an etching treatment are used for kraft paper, manila. Capacitor elements that are wound with a separator made of paper or the like sandwiched between them are housed in a metal or resin outer case made of bottomed cylindrical aluminum or the like, and the opening end of the outer case is made of rubber or the like Seal with your body. A lead terminal is connected in advance to the anode foil and the cathode foil, and the lead foil is drawn to the outside through a through hole provided in the sealing body.

このコンデンサ素子は、陰極箔と陽極箔がセパレータを介して積層されて巻回され、コンデンサ素子の最外周には、陰極箔が露出するようになっている。この最外周の陰極箔には、片面に接着剤が塗布された紙テープを貼り付けることでコンデンサ素子を巻き止めている。この紙テープは、最外周の陰極箔の露出部の全面を覆う寸法に設定され、陰極箔と外装ケースとが直接接触しないようになっている。セパレータの厚みは、陽極箔と陰極箔を絶縁するための十分な厚さ、電解液を保持する保持能力、電解液中でイオンが移動しやすいような密度がある。このような観点から、定格電圧200V以上の電解コンデンサでは、厚さが40μm程度で比較的低密度のセパレータが使用される。これに対して、巻き止め用の紙テープでは、前記セパレータに求められる特性とは異なり、高い絶縁性と耐熱性であり、電解液の保持能力は必要とされない。このため、巻き止め用の紙テープの厚みはセパレータの厚みより薄くすることが可能であり、接着剤を除く紙テープの厚さを15〜35μmにすることができ、コンデンサ素子の小型化が可能となる。また、紙テープの幅(コンデンサ素子の上下方向の幅)は、セパレータの幅よりも短くかつ陰極箔の幅よりも長く構成するとよい。これにより紙テープがコンデンサ素子の端面からはみ出ることを防止し、また陰極箔と外装ケースとの接触を防止することができる。   In this capacitor element, a cathode foil and an anode foil are laminated and wound via a separator, and the cathode foil is exposed at the outermost periphery of the capacitor element. The outermost cathode foil is attached with a paper tape coated with an adhesive on one side to prevent the capacitor element from being wound. This paper tape is set to a size that covers the entire exposed portion of the outermost cathode foil, so that the cathode foil and the outer case are not in direct contact with each other. The separator has a sufficient thickness for insulating the anode foil and the cathode foil, a holding capacity for holding the electrolytic solution, and a density such that ions can easily move in the electrolytic solution. From such a viewpoint, an electrolytic capacitor having a rated voltage of 200 V or more uses a separator having a thickness of about 40 μm and a relatively low density. On the other hand, the paper tape for winding is different from the characteristics required for the separator, and has high insulating properties and heat resistance, and does not require electrolyte holding ability. For this reason, the thickness of the paper tape for winding can be made thinner than the thickness of the separator, the thickness of the paper tape excluding the adhesive can be made 15 to 35 μm, and the capacitor element can be miniaturized. . The width of the paper tape (the width in the vertical direction of the capacitor element) is preferably shorter than the width of the separator and longer than the width of the cathode foil. As a result, the paper tape can be prevented from protruding from the end face of the capacitor element, and contact between the cathode foil and the outer case can be prevented.

また、この紙テープは、コンデンサ素子の最外周の陰極箔に貼り付けられているが、紙テープをコンデンサ素子の外周に沿って1周以上巻回するように貼り付け、紙テープが部分的に重なるようにするとよい。これは、紙テープを陰極箔に貼り付けるよりも、同材料である紙テープに貼り付ける方が固定強度は高まるからである。しかしながら、この紙テープの重なり部分が多いと、コンデンサ素子の外径が大きくなってしまうため、この重なり部分は、コンデンサ素子の外周長の1/3以下とすることが好ましい。   The paper tape is attached to the outermost cathode foil of the capacitor element. However, the paper tape is attached so as to be wound one or more times along the outer periphery of the capacitor element so that the paper tape partially overlaps. Good. This is because the fixing strength is higher when the paper tape is applied to the paper tape of the same material than when the paper tape is applied to the cathode foil. However, if the overlapping portion of the paper tape is large, the outer diameter of the capacitor element becomes large. Therefore, the overlapping portion is preferably set to 1/3 or less of the outer peripheral length of the capacitor element.

紙テープには、その片面(陰極箔への貼り付け側)に接着剤が塗布されている。この接着剤としては、耐熱性の高いものが好適であり、例えば、アクリル系接着剤やゴム系接着剤、シリコーン系接着剤等が挙げられる。これらの接着剤は、紙テープの片面に公知の塗布等の公知の手法で形成される。紙テープは、その材料や抄紙条件等により、紙テープの表裏面が異なる表面状態となる場合がある。接着剤は、紙テープの表裏のうち、平坦側の面に接着剤を形成することで、少ない塗布量にて所望の貼り付け強度を得ることができる。これは、セパレータの凹凸側の面は、塗布された接着剤が前記凹凸内に入り込むため、接着剤の塗布量が多くなってしまうのに対し、セパレータの平坦側の面では、接着剤は、平坦面上に最小限の接着剤の塗布量にて薄く形成することができるためである。またセパレータとして、複数のセパレータからなる2重紙を用いる場合があるが、この場合は、高密度のセパレータの表面に接着剤を形成し、陰極箔に貼り付けることがよい。高密度のセパレータの表面は、低密度のセパレータの表面に比べて平坦状であり、最小限の接着剤の塗布量にて薄く形成することができるからである。なお、接着剤の厚みは10〜30μmが好ましい。また接着剤は、セパレータの片面の全面に形成してもよく、また部分的(ドット状等)に形成してもよい。   An adhesive is applied to one side of the paper tape (on the side attached to the cathode foil). As this adhesive, those having high heat resistance are suitable, and examples thereof include acrylic adhesives, rubber adhesives, and silicone adhesives. These adhesives are formed on one side of a paper tape by a known technique such as known coating. A paper tape may be in a surface state where the front and back surfaces of the paper tape are different depending on the material, papermaking conditions, and the like. The adhesive can obtain desired adhesive strength with a small coating amount by forming the adhesive on the flat surface of the front and back of the paper tape. This is because the surface of the uneven side of the separator is coated with the applied adhesive, and the amount of adhesive applied increases, whereas on the flat side of the separator, the adhesive is This is because it can be thinly formed on a flat surface with a minimum amount of adhesive. In some cases, a double paper composed of a plurality of separators is used as the separator. In this case, it is preferable to form an adhesive on the surface of the high-density separator and attach it to the cathode foil. This is because the surface of the high-density separator is flat compared to the surface of the low-density separator and can be formed thin with a minimum amount of adhesive applied. In addition, as for the thickness of an adhesive agent, 10-30 micrometers is preferable. Further, the adhesive may be formed on the entire surface of one side of the separator, or may be formed partially (dots or the like).

次にこの発明の電解コンデンサの仕様について述べると、
この発明の電解コンデンサは、電子機器に搭載されるスイッチング電源に搭載される平滑コンデンサとして主に使用され、したがって定格電圧200V以上、そして薄型化の観点から、外装ケースの外径が10.5mm未満となり、外装ケース内に一定の空間容積を得るためには、長さ寸法を外径:長さ寸法外径=1:3〜10程度、つまり、30mm以上の電解コンデンサとなる。
Next, the specifications of the electrolytic capacitor of the present invention will be described.
The electrolytic capacitor of the present invention is mainly used as a smoothing capacitor mounted on a switching power supply mounted on an electronic device. Therefore, the outer diameter of the outer case is less than 10.5 mm from the viewpoint of a rated voltage of 200 V or more and reduction in thickness. Thus, in order to obtain a certain space volume in the exterior case, the length dimension is an outer diameter: length dimension outer diameter = 1: 3 to about 10, that is, an electrolytic capacitor of 30 mm or more.

このように、この発明は、平滑用のコンデンサとして用いられ、かつスイッチング電源の薄型化に伴い、電解コンデンサの小型化を成す上で、電解コンデンサにおいて新たに生じた課題(陰極箔とケースとの短絡によるショート不良)を解決するためになされたものである。   As described above, the present invention is used as a smoothing capacitor, and as the switching power supply is thinned, the electrolytic capacitor is reduced in size. This has been made to solve the short circuit failure due to a short circuit.

以下、実施例を用いてさらに詳述する。   Hereinafter, further detailed description will be made using examples.

(実施例1)
陽極箔としてエッチング処理および陽極酸化処理を施した厚さ110μmの陽極箔を用い、陰極箔としてエッチング処理を施した厚さ20μmの陰極箔を用いた。セパレータとしては厚さ60μmのクラフト紙を主体とする電解紙を用いて、これらを巻回してコンデンサ素子を作成した。コンデンサ素子の巻き終わり部は陽極箔に対向するようにセパレータと陰極箔を配置し、陰極箔が最外周となるようにした。この際のセパレータと陰極箔の巻き終わり位置は同一となるようにした。
そして、厚さ30μmのクラフト紙を30mmに切断して紙テープを用意し、紙テープの片面の先端部にアクリル系の接着剤を塗布した。そしてコンデンサの外周に周回させ、紙テープが7mm重なりあうようにして紙テープ同士を接着し、コンデンサ素子を巻き止めた。なおコンデンサ素子の外周は、23mmとなっている。
以上のように形成したコンデンサ素子を、封口ゴムとともに、外径8mm、長さ寸法50mmのアルミニウムの有底筒状ケースに収納し、外装ケースの開口端部をカーリング加工して、電解コンデンサの封口を行った。さらにポリエチレンテレフタレートからなる外装スリーブを、外装ケースに被覆して熱収縮を行い電解コンデンサの外装ケースの絶縁を行った。
Example 1
A 110 μm-thick anode foil subjected to etching treatment and anodizing treatment was used as the anode foil, and a 20 μm-thick cathode foil subjected to etching treatment was used as the cathode foil. As the separator, electrolytic paper mainly composed of kraft paper having a thickness of 60 μm was used, and these were wound to form a capacitor element. A separator and a cathode foil were disposed so that the winding end portion of the capacitor element was opposed to the anode foil, so that the cathode foil became the outermost periphery. At this time, the winding end positions of the separator and the cathode foil were made the same.
Then, a kraft paper having a thickness of 30 μm was cut into 30 mm to prepare a paper tape, and an acrylic adhesive was applied to the tip of one side of the paper tape. And it was made to wrap around the outer periphery of a capacitor | condenser, the paper tapes were adhere | attached so that the paper tape might overlap 7 mm, and the capacitor | condenser element was stopped. The outer periphery of the capacitor element is 23 mm.
The capacitor element formed as described above is housed in an aluminum bottomed cylindrical case having an outer diameter of 8 mm and a length of 50 mm together with a sealing rubber, and the opening end of the outer case is curled to seal the electrolytic capacitor. Went. Further, an exterior sleeve made of polyethylene terephthalate was coated on the exterior case and thermally contracted to insulate the exterior case of the electrolytic capacitor.

(従来例1)
陽極箔としてエッチング処理および陽極酸化処理を施した厚さ110μmの陽極箔を用い、陰極箔としてエッチング処理を施した厚さ20μmの陰極箔を用いた。セパレータとしては厚さ60μmのクラフト紙を主体とする電解紙を用いて、これらを巻回してコンデンサ素子を作成した。コンデンサ素子の巻き終わり部は陽極箔に対向するようにセパレータと陰極箔を配置し、陰極箔が最外周となるようにした。この際のセパレータと陰極箔の巻き終わり位置は同一となるようにした。
そして、厚さ30μmのポリフェニレンサルファイドテープを30mmに切断して巻き止めテープを用意し、巻き止めテープの片面の先端部にアクリル系の接着剤を塗布した。そしてコンデンサの外周に周回させ、巻き止めテープが7mm重なりあうようにして巻き止めテープ同士を接着し、コンデンサ素子を巻き止めた。なおコンデンサ素子の外周は、23mmとなっている。
以上のように形成したコンデンサ素子を、封口ゴムとともに、外径8mm、長さ寸法50mmのアルミニウムの有底筒状ケースに収納し、外装ケースの開口端部をカーリング加工して、電解コンデンサの封口を行った。さらにポリエチレンテレフタレートからなる外装スリーブを、外装ケースに被覆して熱収縮を行い電解コンデンサの外装ケースの絶縁を行った。
(Conventional example 1)
An anode foil having a thickness of 110 μm subjected to etching treatment and anodizing treatment was used as the anode foil, and a cathode foil having a thickness of 20 μm subjected to etching treatment was used as the cathode foil. As the separator, electrolytic paper mainly composed of kraft paper having a thickness of 60 μm was used, and these were wound to form a capacitor element. A separator and a cathode foil were disposed so that the winding end portion of the capacitor element was opposed to the anode foil, so that the cathode foil became the outermost periphery. At this time, the winding end positions of the separator and the cathode foil were made the same.
Then, prepared taped winding is cut polyphenylene sulfide tape having a thickness of 30μm to 30 mm, was coated with an acrylic adhesive on one surface of the distal end portion of the winding stop tape. And allowed to orbit the outer circumference of the capacitor winding stop tape to adhere the winding stop tape together as overlapping 7 mm, it stopped up the capacitor element. The outer periphery of the capacitor element is 23 mm.
The capacitor element formed as described above is housed in an aluminum bottomed cylindrical case having an outer diameter of 8 mm and a length of 50 mm together with a sealing rubber, and the opening end of the outer case is curled to seal the electrolytic capacitor. Went. Further, an exterior sleeve made of polyethylene terephthalate was coated on the exterior case and thermally contracted to insulate the exterior case of the electrolytic capacitor.

(従来例2)
陽極箔としてエッチング処理および陽極酸化処理を施した厚さ110μmの陽極箔を用い、陰極箔としてエッチング処理を施した厚さ20μmの陰極箔を用いた。セパレータとしては厚さ60μmのクラフト紙を主体とする電解紙を用いて、これらを巻回してコンデンサ素子を作成した。コンデンサ素子の巻き終わり部は陽極箔に対向するようにセパレータと陰極箔を配置し、陰極箔が最外周となるようにした。この際のセパレータと陰極箔の巻き終わり位置は同一となるようにした。
そして、厚さ30μmのポリプロピレンテープを30mmに切断して巻き止めテープを用意し、巻き止めテープの片面の先端部にアクリル系の接着剤を塗布した。そしてコンデンサの外周に周回させ、巻き止めテープが7mm重なりあうようにして巻き止めテープ同士を接着し、コンデンサ素子を巻き止めた。なおコンデンサ素子の外周は、23mmとなっている。
以上のように形成したコンデンサ素子を、封口ゴムとともに、外径8mm、長さ寸法50mmのアルミニウムの有底筒状ケースに収納し、外装ケースの開口端部をカーリング加工して、電解コンデンサの封口を行った。さらにポリエチレンテレフタレートからなる外装スリーブを、外装ケースに被覆して熱収縮を行い電解コンデンサの外装ケースの絶縁を行った。
(Conventional example 2)
An anode foil having a thickness of 110 μm subjected to etching treatment and anodizing treatment was used as the anode foil, and a cathode foil having a thickness of 20 μm subjected to etching treatment was used as the cathode foil. As the separator, electrolytic paper mainly composed of kraft paper having a thickness of 60 μm was used, and these were wound to form a capacitor element. A separator and a cathode foil were disposed so that the winding end portion of the capacitor element was opposed to the anode foil, so that the cathode foil became the outermost periphery. At this time, the winding end positions of the separator and the cathode foil were made the same.
And the 30-micrometer-thick polypropylene tape was cut | disconnected to 30 mm, the anti- winding tape was prepared, and the acrylic adhesive was apply | coated to the front-end | tip part of the single side | surface of the anti- winding tape . And allowed to orbit the outer circumference of the capacitor winding stop tape to adhere the winding stop tape together as overlapping 7 mm, it stopped up the capacitor element. The outer periphery of the capacitor element is 23 mm.
The capacitor element formed as described above is housed in an aluminum bottomed cylindrical case having an outer diameter of 8 mm and a length of 50 mm together with a sealing rubber, and the opening end of the outer case is curled to seal the electrolytic capacitor. Went. Further, an exterior sleeve made of polyethylene terephthalate was coated on the exterior case and thermally contracted to insulate the exterior case of the electrolytic capacitor.

(従来例3)
実施例と同様に、陽極箔としてエッチング処理および陽極酸化処理を施した厚さ110μmの陽極箔を用い、陰極箔としてエッチング処理を施した厚さ20μmの陰極箔を用いた。これらの陽極箔、陰極箔は実施例と同一に幅と長さのものを用いた。そして、実施例と同様、セパレータとしては厚さ60μmのクラフト紙を主体とする電解紙を用いて、これらを巻回してコンデンサ素子を作成した。コンデンサ素子の巻き終わり部は陽極箔に対向するように陰極箔を配置した。さらに、セパレータのみをコンデンサ素子の外周に周回させて、セパレータ同士をアクリル系接着剤で接着し、コンデンサ素子を巻き止めた。なおコンデンサ素子の外周は、25mmとなっている。
以上のように形成したコンデンサ素子を、封口ゴムとともに、外径8mm、長さ寸法50mmのアルミニウムの有底筒状の外装ケースに収納し外装ケースの開口端部をカーリング加工して、電解コンデンサの封口を行った。さらにポリエチレンテレフタレートからなる外装スリーブを、外装ケースに被覆して熱収縮を行い電解コンデンサの外装ケースの絶縁を行った。
(Conventional example 3)
Similarly to the example, an anode foil having a thickness of 110 μm subjected to etching treatment and anodizing treatment was used as the anode foil, and a cathode foil having a thickness of 20 μm subjected to the etching treatment was used as the cathode foil. These anode foil and cathode foil had the same width and length as in the examples. As in the example, electrolytic paper mainly composed of kraft paper having a thickness of 60 μm was used as the separator, and these were wound to form a capacitor element. The cathode foil was disposed so that the winding end portion of the capacitor element was opposed to the anode foil. Furthermore, only the separator was circulated around the outer periphery of the capacitor element, the separators were bonded together with an acrylic adhesive, and the capacitor element was unwound. The outer periphery of the capacitor element is 25 mm.
The capacitor element formed as described above, together with the sealing rubber, is housed in an aluminum bottomed cylindrical outer case having an outer diameter of 8 mm and a length of 50 mm, and the opening end of the outer case is curled to obtain an electrolytic capacitor. Sealed. Further, an exterior sleeve made of polyethylene terephthalate was coated on the exterior case and thermally contracted to insulate the exterior case of the electrolytic capacitor.

この完成した実施例1及び従来例1〜3の電解コンデンサにおいて、外装ケースと陽極端子とを接触させた状態で、所定電圧を陰極端子と陽極端子に印加して陰極箔と外装ケースとがショートにいたった電解コンデンサの個数を確認した。なお、各電解コンデンサの定格は、定格電圧450wv、静電容量21μFである。また、各3個での評価とした。   In the electrolytic capacitors of the completed Example 1 and Conventional Examples 1 to 3, a predetermined voltage is applied to the cathode terminal and the anode terminal in a state where the exterior case and the anode terminal are in contact, and the cathode foil and the exterior case are short-circuited. The number of electrolytic capacitors reached was confirmed. Each electrolytic capacitor has a rated voltage of 450 wv and a capacitance of 21 μF. Moreover, it was set as the evaluation by three each.

(表1)
(Table 1)

評価結果(表1)で示すとおり、従来例1及び2では、495vの電圧を印加するとショートが発生することがわかった。これに対してこの発明の実施例1では、585vを印加してもショートは生じていないことが分かる。また、従来例3では、セパレータにて巻き止めを行っているため、実施例1と同様に540vを印加してもショートは生じていないものの、コンデンサ素子の大きさが、実施例1のコンデンサ素子に比べて大きいため、各電圧印加後、数10分程度で外装ケースが膨れてしまう不具合が生じてしまった。


As shown in the evaluation results (Table 1), it was found that in the conventional examples 1 and 2, a short circuit occurs when a voltage of 495v is applied. On the other hand, in Example 1 of this invention, it turns out that a short circuit does not arise even if 585v is applied. Further, in the conventional example 3, since the winding is stopped by the separator, a short circuit does not occur even when 540v is applied as in the first embodiment, but the size of the capacitor element is the same as that of the first embodiment. Therefore, the exterior case swells in several tens of minutes after applying each voltage.


Claims (2)

陽極箔と陰極箔をセパレータを介して巻回してなるコンデンサ素子アルミニウムからなる有底外装ケースに収納されるとともに、外装ケースの開口端部封口体で封口されており、かつ電解コンデンサの外径が10.5mm未満、外径と長さ寸法の比が1:3〜10であって、コンデンサ素子の最外周に陰極箔が配置されるとともに、片面に接着剤を設けた紙テープで素子巻き止められた電解コンデンサにおいて、
前記紙テープが、前記セパレータよりも厚さが薄い紙テープであるとともに、紙テープがコンデンサ素子の外周長の1/3以下の長さの部分で重なりあっていることを特徴とする電解コンデンサ。
Capacitor element with an anode foil and a cathode foil formed by winding via a separator is housed in a bottomed outer case comprising aluminum Rutotomoni, open end of the outer case are sealed with a sealing member, and the outer of the electrolytic capacitor The diameter is less than 10.5 mm, the ratio of the outer diameter to the length dimension is 1: 3 to 10, the cathode foil is arranged on the outermost periphery of the capacitor element, and the element is made of a paper tape provided with an adhesive on one side. in winding unstoppable electrolytic capacitor,
Electrolytic capacitor wherein the paper tape, together with the a small thickness paper tape than the separator, characterized in that the paper tape're I Kasanaria at 1/3 or less of the length portion of the outer peripheral length of the capacitor element.
電解コンデンサが定格電圧200V以上の高圧用電解コンデンサである請求項1記載の電解コンデンサ。
2. The electrolytic capacitor according to claim 1, wherein the electrolytic capacitor is a high-voltage electrolytic capacitor having a rated voltage of 200 V or more.
JP2010050111A 2010-03-08 2010-03-08 Electrolytic capacitor Active JP5822099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050111A JP5822099B2 (en) 2010-03-08 2010-03-08 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050111A JP5822099B2 (en) 2010-03-08 2010-03-08 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2011187602A JP2011187602A (en) 2011-09-22
JP5822099B2 true JP5822099B2 (en) 2015-11-24

Family

ID=44793566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050111A Active JP5822099B2 (en) 2010-03-08 2010-03-08 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5822099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900404A (en) * 2015-03-22 2015-09-09 深圳江浩电子有限公司 Low-impedance electrolytic capacitor core cladding and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116723U (en) * 1989-03-07 1990-09-19
JPH0537467Y2 (en) * 1989-05-26 1993-09-22
JPH0732944U (en) * 1993-12-03 1995-06-16 日本ケミコン株式会社 Electrolytic capacitor
JPH08264393A (en) * 1995-03-24 1996-10-11 Matsushita Electric Ind Co Ltd Lead-type aluminum electrolytic capacitor
JPH10112424A (en) * 1996-10-04 1998-04-28 Sanyo Electric Co Ltd Solid electrolytic capacitor
KR100786762B1 (en) * 2000-03-27 2007-12-18 니폰 케미-콘 코포레이션 Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4484056B2 (en) * 2004-12-28 2010-06-16 エルナー株式会社 Aluminum solid electrolytic capacitor element

Also Published As

Publication number Publication date
JP2011187602A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5679275B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012064601A (en) Aluminum electrolytic capacitor
WO2013012056A1 (en) Electric double-layer capacitor
JP2007221090A (en) Electrode-lead connection structure, electric double-layer capacitor having same, and manufacturing method for electric double-layer capacitor
JP2020503668A (en) Hybrid polymer aluminum electrolytic capacitor and method of manufacturing capacitor
US8218293B2 (en) Winding-type electrolytic capacitor and method of manufacturing the same
WO2013099686A1 (en) Capacitor
JP5822099B2 (en) Electrolytic capacitor
WO2018107813A1 (en) Aluminum electrolytic capacitor
JP7087352B2 (en) Electrolytic capacitor modules, filter circuits and power converters
JP5696829B2 (en) Electrolytic capacitor
JP2010074089A (en) Electrolytic capacitor, and method of manufacturing the same
JP4798478B2 (en) Electrolytic capacitor
JP2010074083A (en) Electrolytic capacitor, and method of manufacturing the same
JP4697402B2 (en) Electrolytic capacitor
JP2009026853A (en) Electric double-layer capacitor
CN106024389A (en) Aluminum-titanium organic-metal electrolytic capacitor and preparation method thereof
JP2010098131A (en) Electrolytic capacitor and method for manufacturing the same
JP4953043B2 (en) Electrolytic capacitor
JP2012019061A (en) Electrolytic capacitor
JP3406245B2 (en) Aluminum electrolytic capacitor
CN106504898A (en) A kind of manufacture craft of takeup type solid-state aluminum electrolytic capacitor
JP7219084B2 (en) capacitor
JP2010199388A (en) Capacitor with screw terminal
JP3406247B2 (en) Aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150924

R150 Certificate of patent or registration of utility model

Ref document number: 5822099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150