JP5821672B2 - Acrylic acid production method - Google Patents

Acrylic acid production method Download PDF

Info

Publication number
JP5821672B2
JP5821672B2 JP2012024172A JP2012024172A JP5821672B2 JP 5821672 B2 JP5821672 B2 JP 5821672B2 JP 2012024172 A JP2012024172 A JP 2012024172A JP 2012024172 A JP2012024172 A JP 2012024172A JP 5821672 B2 JP5821672 B2 JP 5821672B2
Authority
JP
Japan
Prior art keywords
acrylic acid
tower
weight
quenching
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012024172A
Other languages
Japanese (ja)
Other versions
JP2013159586A (en
Inventor
小川 寧之
寧之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012024172A priority Critical patent/JP5821672B2/en
Publication of JP2013159586A publication Critical patent/JP2013159586A/en
Application granted granted Critical
Publication of JP5821672B2 publication Critical patent/JP5821672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はアクリル酸の製造方法に関し、特に、プロピレン等の気相酸化により生成させたアクリル酸含有ガスからアクリル酸を分離精製して製品アクリル酸を製造するに当たり、アクリル酸の蒸留精製工程におけるアクリル酸の重合を防止するアクリル酸の製造方法に関する。   The present invention relates to a method for producing acrylic acid, and in particular, in the production of acrylic acid by separating and purifying acrylic acid from an acrylic acid-containing gas produced by gas phase oxidation of propylene or the like, in the acrylic acid distillation purification process, The present invention relates to a method for producing acrylic acid for preventing acid polymerization.

アクリル酸を製造する方法としては、例えば、次の(1)〜(5)の工程を経る方法が知られている。
(1) 炭素数3(C3)の炭化水素であるプロピレン、あるいはプロパンと分子状酸素とを触媒存在下で気相酸化反応させて、アクリル酸を含有する反応ガスを生成させる酸化反応工程
(2) 得られたアクリル酸含有ガスを水と接触させてアクリル酸を吸収させることによりアクリル酸水溶液を得る捕集工程
(3) 得られたアクリル酸水溶液中の水を溶媒を用いた共沸蒸留により除去する脱水蒸留工程
(4) 脱水により得られたアクリル酸中の軽沸物を蒸留により除去して粗アクリル酸を得る軽沸分離工程
(5) 粗アクリル酸を蒸留して製品アクリル酸を得る精製工程
なお、上記(3)脱水蒸留工程の代りに、溶媒による抽出工程で、アクリル酸水溶液中のアクリル酸を溶媒に抽出し、抽出液を蒸留精製する場合もある。
As a method for producing acrylic acid, for example, a method through the following steps (1) to (5) is known.
(1) Oxidation reaction step (2) in which propylene, which is a hydrocarbon having 3 carbon atoms (C3), or propane and molecular oxygen is subjected to a gas phase oxidation reaction in the presence of a catalyst to generate a reaction gas containing acrylic acid. ) Collection step for obtaining an acrylic acid aqueous solution by bringing the obtained acrylic acid-containing gas into contact with water to absorb acrylic acid (3) Water in the obtained acrylic acid aqueous solution is azeotropically distilled using a solvent. Dehydration-distillation step to remove (4) Light-boiling separation step to remove crude boiling acid in acrylic acid obtained by dehydration to obtain crude acrylic acid (5) Distilling crude acrylic acid to obtain product acrylic acid Purification step In some cases, instead of the above (3) dehydration distillation step, acrylic acid in the acrylic acid aqueous solution is extracted into a solvent in a solvent extraction step, and the extract is purified by distillation.

上記捕集工程として、旧来、アクリル酸含有反応生成ガスを急冷塔で散水により冷却し、次いで間接熱交換器に導入して冷却することによりアクリル酸水溶液を得、更にその廃ガスを吸収塔に送給して未捕集の残存アクリル酸を水に捕集させる方法が知られている(特許文献1)。
また、他の一般的な方法の一つとして、アクリル酸含有反応生成ガスを捕集塔の塔底部に導入し、塔頂から吸収用の水を供給し、塔底液の一部や、塔の中段から抜き出した液を熱交換器により冷却した後、吸収塔に循環させる方法がある(非特許文献1)。
As the above-mentioned collection step, conventionally, the acrylic acid-containing reaction product gas is cooled by watering in a quenching tower, then introduced into an indirect heat exchanger and cooled to obtain an aqueous acrylic acid solution, and the waste gas is further absorbed into an absorption tower. A method of feeding and collecting uncollected residual acrylic acid in water is known (Patent Document 1).
In addition, as another general method, an acrylic acid-containing reaction product gas is introduced into the bottom of the collection tower, and water for absorption is supplied from the top of the tower. There is a method in which the liquid extracted from the middle stage is cooled by a heat exchanger and then circulated through an absorption tower (Non-Patent Document 1).

このようなアクリル酸の捕集工程は、後工程のアクリル酸精製に要する負荷を低減するために、得られるアクリル酸水溶液の濃度は、よりアクリル酸濃度が高くなるよう、工夫がなされている。
例えば、吸収塔の内挿物として、ガーゼ型規則充填物等、非常に分離性能の高いものを用いる方法(特許文献2)、気相酸化反応に供される原料ガス中の水分濃度を下げる方法(特許文献3)、吸収塔の中段部より粗アクリル酸を取り出すと共に、塔底部に下流工程からの重質液を循環して濃縮する方法(特許文献4)、吸収塔の塔底液を部分的に揮発させて、アクリル酸を濃縮すると共に、揮発ガスを吸収塔の中段に循環する方法(特許文献5)などが提案されている。
Such a collection step of acrylic acid is devised so that the concentration of the resulting acrylic acid aqueous solution is higher in order to reduce the load required for purification of acrylic acid in the subsequent step.
For example, a method using a gauze-type ordered packing or the like having an extremely high separation performance as an interpolator in an absorption tower (Patent Document 2), a method for reducing the moisture concentration in a raw material gas used for a gas phase oxidation reaction (Patent Document 3), a method of extracting crude acrylic acid from the middle stage of an absorption tower and circulating and concentrating a heavy liquid from a downstream process to the tower bottom (Patent Document 4), partially absorbing the tower bottom liquid of the absorption tower A method of concentrating acrylic acid by volatilizing automatically and circulating volatile gas to the middle stage of the absorption tower (Patent Document 5) has been proposed.

アクリル酸は、非常に重合し易い化合物であり、特に、水が共存する所定の温度以上の条件下では、アクリル酸の重合が促進される。アクリル酸の製造工程内でアクリル酸が重合すると、重合により生成した固形物により装置・配管設備が閉塞し、著しい場合には運転を継続することが不可能となる。また、装置・配管設備の閉塞による運転停止に至らずとも、例えば、通常運転時におけるストレーナの清掃頻度や所要重合防止剤量の増加、定期保全時における装置内清掃の負荷の増大など、数多くの問題が発生する。   Acrylic acid is a compound that is very easy to polymerize. In particular, polymerization of acrylic acid is promoted under conditions of a predetermined temperature or higher in which water coexists. When acrylic acid is polymerized in the acrylic acid production process, the apparatus and piping equipment are blocked by the solid matter produced by the polymerization, and if it is remarkable, the operation cannot be continued. In addition, even if the operation is not stopped due to the blockage of the equipment and piping facilities, there are a number of things such as the frequency of strainer cleaning during normal operation and the amount of required polymerization inhibitor, and the increase in internal cleaning load during regular maintenance. A problem occurs.

このため、アクリル酸の製造工程では、アクリル酸の重合を防止することが重要な課題となっており、従来、アクリル酸水溶液を得る捕集工程では、アクリル酸の重合を防止するために、吸収水中に重合防止剤が添加され、更に必要に応じて、操作温度の低下、滞留時間の短縮、装置内滞留部の解消、固形物の付着を起こしにくい装置内挿物の採用、等々の閉塞対策も講じられている。   For this reason, in the acrylic acid production process, it has become an important issue to prevent the polymerization of acrylic acid. Conventionally, in the collection process of obtaining an aqueous solution of acrylic acid, absorption is performed to prevent the polymerization of acrylic acid. A polymerization inhibitor is added to the water, and if necessary, measures such as lowering the operating temperature, shortening the residence time, eliminating the residence part in the device, and adopting an insert in the device that is less likely to cause solids to adhere, etc. Has also been taken.

なお、捕集工程で得られたアクリル酸水溶液には芳香族化合物やタール状物質などの比較的高沸点な副生物が溶解しており、以降のアクリル酸精製工程において数々のトラブルの原因や製品純度低下の要因となることが知られている(特許文献6)。
また、アクロレイン等のアルデヒドに関する影響も検討されており、アクリル酸含有反応生成ガス中の残存アクロレイン濃度を下げる、又は捕集工程で得られたアクリル酸水溶液を放散塔に導き、アクロレイン濃度を低減する方法も示されている(特許文献7)。
In the acrylic acid aqueous solution obtained in the collection process, relatively high boiling by-products such as aromatic compounds and tar-like substances are dissolved, causing numerous troubles and products in the subsequent acrylic acid purification process. It is known that it becomes a factor of a purity fall (patent document 6).
In addition, the effects on aldehydes such as acrolein have been studied, and the concentration of residual acrolein in the reaction product gas containing acrylic acid is reduced, or the aqueous solution of acrylic acid obtained in the collection process is led to a diffusion tower to reduce the acrolein concentration. A method is also shown (Patent Document 7).

特開昭50−95217号公報JP 50-95217 A 特開2001−19655号公報Japanese Patent Laid-Open No. 2001-19655 特開2004−359611号公報JP 2004-359611 A 特開2007−217401号公報JP 2007-217401 A 特開2009−263348号公報JP 2009-263348 A 特開昭61−218556号公報JP-A-61-218556 特開2000−290221号公報JP 2000-290221 A

Encyclopedia of chemical processing and design Vol−1Encyclopedia of chemical processing and design Vol-1

上述した様々な工夫により、アクリル酸水溶液を得る捕集工程におけるアクリル酸の重合に起因する閉塞の問題は大幅に改善されたが、捕集工程より後の精製工程では依然としてアクリル酸の重合に伴う多くの問題を抱えているのが現状である。これらの問題は、幾つかの特定化合物を除いては、該精製工程自体の問題として検討され、相応の対処法が見出されているが、未だ充分では無く、捕集工程における影響が疑われつつも、因果関係については解明されていない。   Although various problems described above have greatly improved the blockage problem caused by the polymerization of acrylic acid in the collection process for obtaining an aqueous acrylic acid solution, the purification process after the collection process still involves acrylic acid polymerization. The current situation has many problems. Except for some specific compounds, these problems have been studied as problems in the purification process itself, and appropriate countermeasures have been found, but they are still not sufficient and the effects on the collection process are suspected. However, the causal relationship has not been elucidated.

本発明は上記従来の実状に鑑みてなされたものであり、アクリル酸水溶液からアクリル酸を分離精製する工程におけるアクリル酸の重合を防止するアクリル酸の製造方法を提供することを課題とする。   This invention is made | formed in view of the said conventional actual condition, and makes it a subject to provide the manufacturing method of acrylic acid which prevents the superposition | polymerization of acrylic acid in the process of separating and refining acrylic acid from acrylic acid aqueous solution.

本発明者は、上記課題を解決すべく検討を行ったところ、アクリル酸の捕集工程を経て最終的に得られるアクリル酸水溶液の組成がほぼ同等であっても、その捕集方法の差異により、その後のアクリル酸の分離精製工程におけるアクリル酸の重合の発生状況に差異が生じることを見出した。そして、更に検討を進めたところ、アクリル酸含有反応生成ガス中のアクリル酸を、特定の割合で2種のアクリル酸水溶液として捕集してアクリル酸の分離精製工程に送給することにより、この工程におけるアクリル酸の重合を防止することができることを見出した。   The present inventor has studied to solve the above problems, and even if the composition of the acrylic acid aqueous solution finally obtained through the step of collecting acrylic acid is substantially equivalent, due to the difference in the collection method. Then, it was found that there was a difference in the occurrence of acrylic acid polymerization in the subsequent acrylic acid separation and purification step. And further investigation, when the acrylic acid in the acrylic acid-containing reaction product gas is collected as two kinds of acrylic acid aqueous solution at a specific ratio and sent to the separation and purification step of acrylic acid, It has been found that polymerization of acrylic acid in the process can be prevented.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 炭素数3の炭化水素を気相接触酸化反応処理してアクリル酸含有反応生成ガスを得る酸化反応工程と、該アクリル酸含有反応生成ガスを急冷塔に導入してアクリル酸含有反応生成ガス中のアクリル酸の一部を凝縮させる急冷工程と、該急冷工程から排出されるアクリル酸含有ガスを、吸収水が塔頂より供給される吸収塔に導入してアクリル酸水溶液を得る吸収工程とを有し、前記急冷工程からの凝縮液と前記吸収工程からのアクリル酸水溶液とをアクリル酸分離精製工程に送給してアクリル酸を分離するアクリル酸の製造方法であって、前記急冷工程において、前記アクリル酸含有反応生成ガス中のアクリル酸の25〜65%を凝縮させ、前記吸収工程において加熱や冷却を行わず、前記吸収工程からのアクリル酸水溶液を、前記急冷工程を経ることなく前記アクリル酸分離精製工程に送給することを特徴とするアクリル酸の製造方法。 [1] An oxidation reaction step of obtaining a reaction product gas containing acrylic acid by subjecting a hydrocarbon having 3 carbon atoms to gas phase catalytic oxidation, and introducing the reaction product gas containing acrylic acid into a quenching tower to produce a reaction containing acrylic acid A quenching process for condensing a part of acrylic acid in the gas, and an absorption process for obtaining an acrylic acid aqueous solution by introducing the acrylic acid-containing gas discharged from the quenching process into an absorption tower to which absorption water is supplied from the top of the tower A method for producing acrylic acid, wherein the condensate from the quenching step and the acrylic acid aqueous solution from the absorption step are fed to an acrylic acid separation and purification step to separate the acrylic acid, the quenching step In the method, the acrylic acid-containing reaction product gas is condensed with 25 to 65% of the acrylic acid, and the aqueous solution of acrylic acid from the absorption step is rapidly quenched without heating or cooling in the absorption step. A method for producing acrylic acid, which is fed to the acrylic acid separation and purification step without passing through the step.

] [1]において、前記急冷工程で得られる凝縮液のホルムアルデヒド濃度が0.3重量%以下であることを特徴とするアクリル酸の製造方法。 [2] Oite to [1], the production method of acrylic acid, wherein the formaldehyde concentration of the condensate obtained in said rapid cooling step is 0.3 wt% or less.

本発明によれば、接触気相酸化反応で得られたアクリル酸含有反応生成ガスからアクリル酸を捕集し、得られたアクリル酸水溶液を蒸留精製して製品アクリル酸を製造するに当たり、アクリル酸の捕集工程において、アクリル酸含有反応生成ガス中のアクリル酸の一部を急冷工程で液化(凝縮)させ、残部を吸収工程で水に吸収させてアクリル酸水溶液とし、このアクリル酸水溶液を急冷工程に循環させることなく、次の分離精製工程に送給することにより、アクリル酸分離精製工程におけるアクリル酸の重合を効果的に防止することができる。このため、装置・配管設備の閉塞を防止すると共に、通常運転時におけるストレーナの清掃頻度、所要重合防止剤量、定期保全時における装置内清掃の負荷を低減して、長期に亘り、安定かつ効率的なアクリル酸の製造を行える。   According to the present invention, acrylic acid is collected from an acrylic acid-containing reaction product gas obtained by a catalytic gas phase oxidation reaction, and an acrylic acid aqueous solution is distilled and purified to produce a product acrylic acid. In the collection step, a part of acrylic acid in the reaction product gas containing acrylic acid is liquefied (condensed) in the rapid cooling step, and the remaining part is absorbed in water in the absorption step to form an aqueous acrylic acid solution. Polymerization of acrylic acid in the acrylic acid separation and purification step can be effectively prevented by feeding it to the next separation and purification step without circulation to the step. For this reason, the blockage of equipment and piping facilities is prevented, and the strainer cleaning frequency during normal operation, the amount of polymerization inhibitor required, and the internal cleaning load during regular maintenance are reduced, ensuring stable and efficient performance over the long term. A typical acrylic acid can be produced.

本発明の方法を実施するためのアクリル酸の製造設備の一例を概略的に示す系統図である。It is a systematic diagram which shows roughly an example of the manufacturing equipment of acrylic acid for enforcing the method of this invention.

以下に本発明のアクリル酸の製造方法の実施の形態を詳細に説明する。   Embodiments of the method for producing acrylic acid of the present invention will be described in detail below.

本発明のアクリル酸の製造方法は、炭素数3の炭化水素を気相接触酸化反応処理してアクリル酸含有反応生成ガスを得る酸化反応工程と、該アクリル酸含有反応生成ガスを急冷塔に導入してアクリル酸含有反応生成ガス中のアクリル酸の一部を凝縮させる急冷工程と、該急冷工程から排出されるアクリル酸含有ガスを、吸収水が塔頂より供給される吸収塔に導入してアクリル酸水溶液を得る吸収工程とを有し、前記急冷工程からの凝縮液と前記吸収工程からのアクリル酸水溶液とを次のアクリル酸分離精製工程に送給してアクリル酸を分離するアクリル酸の製造方法であって、前記吸収工程からのアクリル酸水溶液を、前記急冷工程を経ることなく前記アクリル酸分離精製工程に送給することを特徴とする。   The method for producing acrylic acid according to the present invention comprises an oxidation reaction step of obtaining a reaction product gas containing acrylic acid by subjecting a hydrocarbon having 3 carbon atoms to a gas phase catalytic oxidation reaction, and introducing the reaction product gas containing acrylic acid into a quenching tower Then, a quenching step for condensing a part of acrylic acid in the acrylic acid-containing reaction product gas, and an acrylic acid-containing gas discharged from the quenching step are introduced into an absorption tower to which absorbed water is supplied from the top of the tower. An acrylic acid aqueous solution having an absorption step of obtaining an acrylic acid aqueous solution, and supplying the condensed liquid from the quenching step and the acrylic acid aqueous solution from the absorption step to the next acrylic acid separation and purification step to separate the acrylic acid. It is a manufacturing method, Comprising: The acrylic acid aqueous solution from the said absorption process is supplied to the said acrylic-acid separation refinement | purification process, without passing through the said rapid cooling process.

本発明において、上述のようにアクリル酸含有反応生成ガス中のアクリル酸の一部を急冷塔で凝縮、液化させ、急冷塔の排出ガス中のアクリル酸を吸収塔で水に吸収させてアクリル酸水溶液とし、このアクリル酸水溶液を急冷塔に循環させることなく、急冷塔からのアクリル酸含有液と共に次工程へ送給することにより、次のアクリル酸分離精製工程におけるアクリル酸の重合を防止することができる作用機構の詳細は明らかではないが、その一因として、以下のことが推定される。   In the present invention, as described above, a part of acrylic acid in the acrylic acid-containing reaction product gas is condensed and liquefied in the quenching tower, and the acrylic acid in the exhaust gas of the quenching tower is absorbed in water by the absorption tower and acrylic acid is obtained. Prevent the polymerization of acrylic acid in the next acrylic acid separation and purification step by supplying it to the next step together with the acrylic acid-containing liquid from the quenching tower without circulating this acrylic acid aqueous solution to the quenching tower. The details of the mechanism of action that can be performed are not clear, but one reason is presumed as follows.

アクリル酸含有反応生成ガス中には、アクリル酸よりも沸点の高い物質(重質)や、アクリル酸よりも沸点の低い物質(軽質)も含まれている。このようなアクリル酸含有反応生成ガスを急冷してアクリル酸の一部を液化(凝縮)させた場合、アクリル酸と共に、アクリル酸含有反応生成ガス中の重質分も凝縮する。最も多い重質分はマレイン酸であり、それ以外にフタル酸や安息香酸、トリメリット酸など多種の副生物が微量ずつ存在する。また、定量化が困難な量ながら、酸化触媒の粉や炭化物等の存在も確認されている。一方、急冷塔の排出ガス中のアクリル酸を水に吸収させる吸収塔では、アクリル酸と共に軽質分が水に吸収される。この軽質分の一つにホルムアルデヒドがある。ホルムアルデヒドは、非常に沸点の低い(沸点−21℃)物質であるが、水中では多種多様な水和物を形成し、蒸留、凝縮時の挙動は水(沸点100℃)と類似したものとなる。このため、このようなホルムアルデヒドを含む吸収塔のアクリル酸水溶液を、アクリル酸と重質分を凝縮させる急冷塔に循環させると、急冷塔内において、高温の反応ガスと、重質分と軽質分を含む液が接触する状態が形成される。これがアクリル酸の重合を促進するか、又はアクリル酸の重合を促進する物質の形成に関与する。   The acrylic acid-containing reaction product gas contains a substance having a higher boiling point than acrylic acid (heavy) and a substance having a lower boiling point than acrylic acid (light). When such an acrylic acid-containing reaction product gas is quenched and a part of acrylic acid is liquefied (condensed), heavy components in the acrylic acid-containing reaction product gas are condensed together with the acrylic acid. The most abundant heavy component is maleic acid, and in addition there are various by-products such as phthalic acid, benzoic acid and trimellitic acid. In addition, the presence of oxidation catalyst powder, carbides and the like has been confirmed in an amount that is difficult to quantify. On the other hand, in an absorption tower in which acrylic acid in the exhaust gas of the quenching tower is absorbed by water, light components are absorbed by water together with acrylic acid. One of these light forms is formaldehyde. Formaldehyde is a substance with a very low boiling point (boiling point -21 ° C), but forms a wide variety of hydrates in water, and its behavior during distillation and condensation is similar to that of water (boiling point 100 ° C). . For this reason, when the acrylic acid aqueous solution of the absorption tower containing such formaldehyde is circulated to the quenching tower for condensing acrylic acid and heavy components, the high-temperature reaction gas, the heavy components and the light components are contained in the quenching tower. A state is formed in which the liquid containing the liquid comes into contact. This promotes the polymerization of acrylic acid or participates in the formation of substances that promote the polymerization of acrylic acid.

本発明では、このようなホルムアルデヒド等の軽質分を含む吸収塔からのアクリル酸水溶液を、急冷塔に循環させないことにより、急冷塔内における何らかの好ましくない反応を防ぎ、蒸留精製工程におけるアクリル酸の重合を抑制する。   In the present invention, the acrylic acid aqueous solution from the absorption tower containing light components such as formaldehyde is not circulated to the quenching tower to prevent any undesired reaction in the quenching tower, and polymerization of acrylic acid in the distillation purification process. Suppress.

以下に、本発明の方法を実施するためのアクリル酸の製造設備のうち、主として捕集工程の一例を概略的に示す系統図である図1を参照して、本発明を、アクリル酸の製造の代表例として、プロピレンを原料としたアクリル酸の製造を例示して説明する。ただし、本発明はプロピレンを原料としたアクリル酸の製造に限らず、炭素数3の炭化水素を原料とするアクリル酸の製造全般に適用することができる。   In the following, referring to FIG. 1 which is a system diagram schematically showing an example of a collection step in an acrylic acid production facility for carrying out the method of the present invention, the present invention will be described. As a representative example, production of acrylic acid using propylene as a raw material will be described as an example. However, the present invention is not limited to the production of acrylic acid using propylene as a raw material, but can be applied to the overall production of acrylic acid using a hydrocarbon having 3 carbon atoms as a raw material.

[酸化反応工程]
酸化反応工程では、空気、希釈剤としての水蒸気及び/又は窒素、更に反応原料としてのプロピレンを第1の酸化反応器(前段反応器)に供給してプロピレンをアクロレインに変換し、この第1の酸化反応器の反応生成ガスを第2の酸化反応器(後段反応器)に供給してアクロレインをアクリル酸に転化する。前段反応器に供給される反応原料ガスのプロピレンの濃度は通常6〜10容量%、酸素/プロピレン比は通常1.5〜2.5である。前段反応器には、モリブデン(Mo)−ビスマス(Bi)系の複合金属酸化物からなる固体酸化触媒が充填され、熱媒体の循環で300〜350℃に温度制御される。前段反応器の構造は、一般的には多管式熱交換器タイプやプレート熱交換器タイプである。後段反応器には、モリブデン(Mo)−バナジウム(V)系の複合金属酸化物からなる固体酸化触媒が充填され、熱媒体の循環で250〜300℃に温度制御されている。後段反応器には空気などが添加されることもある。後段反応器の構造は、前段反応器と同様なものが用いられる。なお、前段反応器及び後段反応器の反応圧力は、通常0.02〜0.2MPa−G(メガパスカル−ゲージ)である。
[Oxidation reaction process]
In the oxidation reaction step, air, steam and / or nitrogen as a diluent, and propylene as a reaction raw material are supplied to a first oxidation reactor (previous reactor) to convert propylene into acrolein. The reaction product gas of the oxidation reactor is supplied to the second oxidation reactor (the latter reactor) to convert acrolein into acrylic acid. The concentration of propylene in the reaction raw material gas supplied to the preceding reactor is usually 6 to 10% by volume, and the oxygen / propylene ratio is usually 1.5 to 2.5. The pre-reactor is filled with a solid oxidation catalyst composed of molybdenum (Mo) -bismuth (Bi) -based composite metal oxide, and the temperature is controlled to 300 to 350 ° C. by circulation of a heat medium. The structure of the former reactor is generally a multi-tube heat exchanger type or a plate heat exchanger type. The latter reactor is filled with a solid oxidation catalyst composed of a molybdenum (Mo) -vanadium (V) -based composite metal oxide, and the temperature is controlled to 250 to 300 ° C. by circulation of a heat medium. Air or the like may be added to the latter reactor. The structure of the latter reactor is the same as that of the former reactor. In addition, the reaction pressure of a front | former stage reactor and a back | latter stage reactor is 0.02-0.2 MPa-G (megapascal gauge) normally.

[急冷工程]
酸化反応工程で得られたアクリル酸を含有する反応生成ガスは、通常250〜300℃程度の高温ガスであり、反応器出口側に設けられた間接熱交換器により140〜200℃程度に冷却された後、図1の配管11を経て急冷塔1に導入され、ガス中のアクリル酸の一部が凝縮され、液化される。
この急冷塔1における急冷方式は、図示のように、急冷塔1の塔底の凝縮液の一部をポンプPを有する配管12で抜き出して、熱交換器Hで40〜70℃程度に冷却した後急冷塔1の塔上部に循環させる直接急冷方式が好ましい。この循環冷却液は、図1に示すように急冷塔1の一箇所から散布する形式に限定されず、急冷塔1の高さ方向の複数箇所で散布してもよい。
[Rapid cooling process]
The reaction product gas containing acrylic acid obtained in the oxidation reaction step is usually a high-temperature gas of about 250 to 300 ° C. and is cooled to about 140 to 200 ° C. by an indirect heat exchanger provided on the reactor outlet side. Then, it introduce | transduces into the quenching tower 1 through the piping 11 of FIG. 1, and a part of acrylic acid in gas is condensed and liquefied.
Quenching method in the quenching tower 1, as shown, a portion of the condensate in the bottom of the quenching tower 1 is extracted through a pipe 12 having a pump P 1, in the heat exchanger H 1 to about 40 to 70 ° C. A direct quenching method is preferred in which after cooling it is circulated to the top of the quenching tower 1. As shown in FIG. 1, the circulating cooling liquid is not limited to a form in which the circulating cooling liquid is sprayed from one place in the quenching tower 1, and may be sprayed in a plurality of places in the height direction of the quenching tower 1.

この急冷塔1では、アクリル酸と共に水蒸気の一部と反応副生成物であるマレイン酸の大半を凝縮させて酸性度の高いアクリル酸水溶液を得ることができる。   In the quenching tower 1, a part of water vapor and most of the maleic acid which is a reaction by-product can be condensed together with acrylic acid to obtain an acrylic acid aqueous solution having high acidity.

滞留時間を極力短くするため、急冷塔1内には、棚段や充填物などは設けず、循環冷却液をシャワーノズルで散布する形態が好ましいが、塔内を上昇するガスに偏流が生じると、該循環冷却液と反応ガスとの熱交換の効率が低下してしまい、つまり充分な量の凝縮液を得る事が出来なくなってしまう。この傾向は塔が大型化するほど強まる。そこで、塔内を上昇するガスの流れを整える為に、整流板、邪魔板、棚段等を必要に応じて追加するが、棚段を設ける場合でも、段数は2,3段以下とすることが好ましい。挿入された板類の表面が該循環冷却液で濡れていれば、該部は熱交換の効率上昇に役立つ。循環冷却液をノズルで細分化することにより、反応生成ガスとの熱交換を速めることができる。但し、散布される冷却液が霧状になると、急冷塔内を上昇する反応生成ガスと共に冷却液の微小な液滴も舞い上がってしまうため、噴霧化は避けるか、又は急冷塔1のより下方に設けられたノズルのみ、噴霧化する仕様とすることが好ましい。この急冷塔1で凝縮する凝縮液(アクリル酸水溶液)は、従来の吸収塔で取り扱われるアクリル酸水溶液に比べて少量であり、従って、通常の機器設計においても、急冷塔1の液保持量は少なくなる。この急冷塔1は、塔底部を縮径させたり、逆円錐形としたりして、液保持量の低減に対応することが望ましい。   In order to shorten the residence time as much as possible, the quenching tower 1 is preferably not provided with shelves or packing, and a form in which the circulating cooling liquid is sprayed with a shower nozzle is preferable. However, when drift occurs in the gas rising in the tower As a result, the efficiency of heat exchange between the circulating cooling liquid and the reaction gas is lowered, that is, a sufficient amount of condensate cannot be obtained. This tendency becomes stronger as the tower becomes larger. Therefore, in order to adjust the flow of the gas that rises in the tower, rectifying plates, baffle plates, shelves, etc. are added as necessary, but even if shelves are provided, the number of stages should be 2 or 3 or less. Is preferred. If the surface of the inserted plates is wet with the circulating cooling liquid, the part helps increase the efficiency of heat exchange. By subdividing the circulating coolant with a nozzle, heat exchange with the reaction product gas can be accelerated. However, if the sprayed coolant becomes mist, minute droplets of the coolant will rise with the reaction product gas rising in the quenching tower. Therefore, atomization should be avoided or lower than the quenching tower 1. It is preferable that only the provided nozzles are atomized. The condensate condensed in the quenching tower 1 (acrylic acid aqueous solution) is a small amount compared to the acrylic acid aqueous solution handled in the conventional absorption tower. Therefore, even in normal equipment design, the liquid holding amount of the quenching tower 1 is Less. The quenching tower 1 is preferably adapted to reduce the amount of liquid retained by reducing the diameter of the bottom of the tower or by forming an inverted cone.

急冷塔1の操作温度は75〜90℃と比較的高温となるため、重合防止剤を供給することが好ましい。このため、図1では、循環冷却液の配管12に配管13より重合防止剤を添加している。また、Michael付加によるアクリル酸二量体の増加を抑えるためには、水の供給は極力控えることが好ましく、重合防止剤の溶解液の溶媒としてはアクリル酸を用いることが好ましい。但し、供給する重合防止剤溶液の量は、凝縮液に比べて通常1重量%未満と僅かなので、重合防止剤を水や凝縮液に溶解して供給することも可能である。溶媒としてアクリル酸を用いる場合、フェノチアジン等の非水溶性重合防止剤を用いることができる。このような非水溶性重合防止剤は、より下流の蒸留精製工程まで重合防止効果を維持し得るという利点がある。   Since the operation temperature of the quenching tower 1 is relatively high at 75 to 90 ° C., it is preferable to supply a polymerization inhibitor. For this reason, in FIG. 1, the polymerization inhibitor is added to the circulating coolant pipe 12 from the pipe 13. Moreover, in order to suppress the increase of the acrylic acid dimer by Michael addition, it is preferable to refrain from supplying water as much as possible, and it is preferable to use acrylic acid as a solvent for the solution of the polymerization inhibitor. However, since the amount of the polymerization inhibitor solution to be supplied is usually a little less than 1% by weight compared to the condensate, the polymerization inhibitor can be dissolved and supplied in water or condensate. When acrylic acid is used as the solvent, a water-insoluble polymerization inhibitor such as phenothiazine can be used. Such a water-insoluble polymerization inhibitor has an advantage that the polymerization prevention effect can be maintained until a further downstream purification step.

急冷塔1に供給される反応生成ガス中には、酸化反応系から運ばれてくる固形物や微粒子も含まれているため、凝縮液の循環配管12にはフィルター等の固形物除去装置を設置することが望ましい。フィルターのメッシュサイズは、シャワーノズルの仕様に合わせ、該機器メーカーの推奨値などに適宜合わせれば良い。この場合、急冷塔1内に不溶性のポリマーが発生した場合に備え、該フィルターの手前に、より目の粗いフィルターを設置しておくと、シャワーノズルの詰りによる運転停止をより確実に回避することができる。   Since the reaction product gas supplied to the quenching tower 1 also contains solids and fine particles carried from the oxidation reaction system, a solids removal device such as a filter is installed in the condensate circulation pipe 12. It is desirable to do. The mesh size of the filter may be appropriately adjusted to the recommended value of the device manufacturer according to the specifications of the shower nozzle. In this case, if an insoluble polymer is generated in the quenching tower 1, a coarser filter is installed in front of the filter to more reliably avoid operation stoppage due to clogging of the shower nozzle. Can do.

急冷塔1において、冷却する熱量は、凝縮する液量や液温度、急冷塔1の塔頂ガス温度や後述する吸収塔2の塔頂温度の何れか一つ以上が一定範囲値になるように制御するのが望ましい。冷却する熱量の変更方法としては、熱交換器Hのプロセス側流体出口温度が一定になるよう、熱交換器Hに供給する冷媒量を変化させつつ、熱交換器Hに循環供給されるプロセス流体の流量を増減させる方法、又は、熱交換器Hに循環供給されるプロセス流体の流量を一定に保ったまま、熱交換器Hに供給する冷媒量を変化させる事で、熱交換器Hのプロセス側流体出口温度を変化させる方法、などがある。例えば、急冷塔1の塔底から配管19を経て一定速度で塔底液を抜き出す際、急冷塔塔底の液面高さが一定となるよう、冷却する熱量を調整すれば、凝縮する液量が一定に保たれる。 In the quenching tower 1, the amount of heat to be cooled is such that one or more of the amount and temperature of the liquid to be condensed, the gas temperature at the top of the quenching tower 1, and the temperature at the top of the absorption tower 2 described later are within a certain range. It is desirable to control. As changing the cooling to heat, like the process side fluid outlet temperature of the heat exchanger H 1 becomes constant, while changing the amount of refrigerant supplied to the heat exchanger H 1, is circulated and supplied to the heat exchanger H 1 By changing the amount of refrigerant supplied to the heat exchanger H 1 while keeping the flow rate of the process fluid circulated and supplied to the heat exchanger H 1 constant. There is a method of changing the process side fluid outlet temperature of the exchanger H 1 . For example, when the tower bottom liquid is extracted from the bottom of the quenching tower 1 through the pipe 19 at a constant speed, the amount of liquid to be condensed is adjusted by adjusting the amount of heat to be cooled so that the liquid level height at the bottom of the quenching tower is constant. Is kept constant.

急冷塔1の塔底液は通常下記の組成を有するアクリル酸水溶液であり、配管12を経て循環させる循環冷却液の残部は、ポンプPを有する配管19を経て、後段のアクリル酸分離精製工程3に送給される。 The tower bottom liquid of the quenching tower 1 is usually an acrylic acid aqueous solution having the following composition, and the remainder of the circulating cooling liquid to be circulated through the pipe 12 passes through the pipe 19 having the pump P 2 , and the subsequent acrylic acid separation and purification step. 3 is sent.

<塔底液組成>
アクリル酸 :65〜80重量%
マレイン酸 :0.5〜3重量%
酢酸 :1.5〜3重量%
ホルムアルデヒド:0.05〜0.3重量%
水 :15〜35重量%
<Tower liquid composition>
Acrylic acid: 65-80% by weight
Maleic acid: 0.5 to 3% by weight
Acetic acid: 1.5 to 3% by weight
Formaldehyde: 0.05-0.3% by weight
Water: 15-35% by weight

一方、急冷塔1の塔頂ガスは、配管14より吸収塔2に送給される。   On the other hand, the top gas of the quenching tower 1 is fed to the absorption tower 2 through the pipe 14.

本発明において、この急冷塔1で凝縮させるアクリル酸量(以下「アクリル酸凝縮割合」と称す。)はアクリル酸含有反応生成ガス中のアクリル酸の25〜65%とすることが好ましい。アクリル酸凝縮割合を上記下限よりも低くする場合、急冷塔1の安定運転が困難であり、一方、アクリル酸凝縮割合が上記上限よりも多いと、アクリル酸と共に多量の水蒸気も凝縮し、本発明によるアクリル酸分離精製工程3におけるアクリル酸の重合防止効果を十分に得ることができなくなる。   In the present invention, the amount of acrylic acid condensed in the quenching tower 1 (hereinafter referred to as “acrylic acid condensation ratio”) is preferably 25 to 65% of acrylic acid in the acrylic acid-containing reaction product gas. When the acrylic acid condensation rate is lower than the lower limit, stable operation of the quenching tower 1 is difficult. On the other hand, when the acrylic acid condensation rate is higher than the upper limit, a large amount of water vapor is condensed together with acrylic acid. It is impossible to sufficiently obtain the effect of preventing polymerization of acrylic acid in the step 3 for separating and purifying acrylic acid.

急冷塔1の安定運転と、アクリル酸分離精製工程3におけるアクリル酸の重合防止効果の面から、急冷塔におけるアクリル酸凝縮割合は25〜65%、特に25〜50%とすることが好ましく、急冷塔1で得られる凝縮液のホルムアルデヒド濃度は0.3重量%以下であることが好ましい。   In view of the stable operation of the quenching tower 1 and the effect of preventing polymerization of acrylic acid in the acrylic acid separation and purification step 3, the condensation ratio of acrylic acid in the quenching tower is preferably 25 to 65%, particularly preferably 25 to 50%. The formaldehyde concentration of the condensate obtained in the column 1 is preferably 0.3% by weight or less.

[吸収工程]
急冷塔1の塔頂より得られる排ガスは、反応生成ガス中の未凝縮のアクリル酸や軽質分などを含むものであり、配管14より吸収塔2の塔下部に送給される。吸収塔2は実質的に塔体のみから成り、加熱や冷却を行う熱交換器や、その循環ラインなどは有さないものが望ましい。吸収塔2は、塔頂よりアクリル酸吸収用の水ないし水溶液が供給され、アクリル酸を吸収した後、塔底より取り出されるという単純な構成であるため、塔内の滞留時間を短くすることができる。アクリル酸を効率良く吸収するには、相応の理論段数が必要である。理論段数の増加は設備費の増加を伴う為、経済性を加味した所要理論段数は状況により異なるが、通常、少なくとも10理論段、好ましくは20理論段程度である。塔内挿物として棚段と充填物があるが、より滞留時間を短くする為、吸収塔2は充填塔が望ましい。吸収塔2内の温度は通常55℃〜75℃程度と比較的低く、滞留時間も短く、更にマレイン酸も殆ど存在しない為、Michael付加によるアクリル酸二量体の生成量は急冷塔1に比べて無視し得る程に少ない。
[Absorption process]
The exhaust gas obtained from the top of the quenching tower 1 contains uncondensed acrylic acid and light components in the reaction product gas, and is sent from the pipe 14 to the lower part of the absorption tower 2. It is desirable that the absorption tower 2 is substantially composed only of a tower body and does not have a heat exchanger for heating or cooling, or a circulation line thereof. Since the absorption tower 2 has a simple structure in which water or an aqueous solution for absorbing acrylic acid is supplied from the top of the tower, and the acrylic acid is absorbed and then taken out from the bottom of the tower, the residence time in the tower can be shortened. it can. In order to absorb acrylic acid efficiently, a corresponding number of theoretical plates is required. Since the increase in the number of theoretical plates is accompanied by an increase in the equipment cost, the number of required theoretical plates in consideration of economics varies depending on the situation, but is usually at least 10 theoretical plates, preferably about 20 theoretical plates. Although there are a shelf and a packing as the insertion in the tower, the absorption tower 2 is preferably a packed tower in order to shorten the residence time. The temperature in the absorption tower 2 is usually relatively low, about 55 ° C. to 75 ° C., the residence time is short, and there is almost no maleic acid. Therefore, the amount of acrylic acid dimer produced by Michael addition is higher than that of the quenching tower 1. It is so small that it can be ignored.

吸収塔2では、重合閉塞のリスクは低いが、より安定な運転を実現するために、少量の重合防止剤を塔頂より供給することが望ましい。重合防止剤を溶解する溶媒は、吸収に用いる水ないし水溶液が最適であるため、図1では、吸収水の導入配管15に配管16より水溶性の重合防止剤を添加する構成とされている。ここで用いられる水溶性の重合防止剤としては例えばフェノール化合物、マンガンや銅の酢酸塩化合物、アルキルピリジルオキシド化合物などが挙げられる。   In the absorption tower 2, although the risk of polymerization blockage is low, in order to realize a more stable operation, it is desirable to supply a small amount of polymerization inhibitor from the top of the tower. As the solvent for dissolving the polymerization inhibitor, water or an aqueous solution used for absorption is optimal. In FIG. 1, a water-soluble polymerization inhibitor is added to the absorption water introduction pipe 15 from the pipe 16. Examples of the water-soluble polymerization inhibitor used here include phenol compounds, manganese and copper acetate compounds, and alkyl pyridyl oxide compounds.

吸収塔2は塔頂から供給する吸収水及び重合防止剤溶液の流量以外、実質的に変更するものは存在せず、一定条件で運転する限りにおいて変更ないし調整を要する運転条件は存在しない。但し、運転が安定していることを確認するため、塔底からの抜き出し液流量、及び塔頂/塔底の圧力、塔内温度は監視することが好ましい。   The absorption tower 2 has substantially no change other than the flow rate of the absorption water and the polymerization inhibitor solution supplied from the top of the tower, and there is no operation condition that needs to be changed or adjusted as long as the absorption tower 2 is operated under a constant condition. However, in order to confirm that the operation is stable, it is preferable to monitor the flow rate of the liquid extracted from the column bottom, the pressure at the column top / column bottom, and the temperature in the column.

吸収塔2において、得られるアクリル酸水溶液は、通常以下のような組成を有する、55〜75℃程度のものであり、熱交換器Hで20〜40℃程度に冷却された後、吸収塔2下部の液留め部2Aを経てポンプPを有する配管18よりアクリル酸分離精製工程3に送給される。但し、吸収溶媒として水以外の不純物を含有する水溶液が用いられた場合は、それに応じて得られるアクリル酸水溶液の該不純物濃度も上昇する。 In the absorption tower 2, the resulting acrylic acid aqueous solution is usually about 55 to 75 ° C. having the following composition, and after being cooled to about 20 to 40 ° C. by the heat exchanger H 2 , the absorption tower from the pipe 18 having a pump P 3 through the second lower liquid retaining portion 2A is fed to the acrylic acid separation purification step 3. However, when an aqueous solution containing impurities other than water is used as the absorbing solvent, the impurity concentration of the aqueous acrylic acid solution obtained accordingly increases.

<アクリル酸水溶液組成>
アクリル酸 :50〜65重量%
マレイン酸 :0.2重量%以下
酢酸 :2〜3重量%
ホルムアルデヒド:1〜3重量%
水 :35〜60重量%
<Acrylic acid aqueous solution composition>
Acrylic acid: 50-65% by weight
Maleic acid: 0.2% by weight or less Acetic acid: 2-3% by weight
Formaldehyde: 1-3% by weight
Water: 35-60% by weight

なお、吸収塔2の塔頂から配管17を経て排出される排ガスは、通常、水、酸素(2〜6容量%)、二酸化炭素と共に、酢酸、ホルムアルデヒドやアクリル酸等の有機物を含むものであり、必要に応じて空気等の酸素源が追加され、通常触媒燃焼方式で処理された後、系外へ排出される。   The exhaust gas discharged from the top of the absorption tower 2 via the pipe 17 usually contains water, oxygen (2 to 6% by volume), carbon dioxide, and organic substances such as acetic acid, formaldehyde, and acrylic acid. If necessary, an oxygen source such as air is added, and after being treated by a normal catalytic combustion method, it is discharged out of the system.

[凝縮液とアクリル酸水溶液の送液]
本発明において、急冷塔1の塔底からの凝縮液と、吸収塔2からのアクリル酸水溶液は、混合して次のアクリル酸分離精製工程3である抽出塔や蒸留塔に供給してもよいが、組成の差異に応じて、供給箇所を変えることが望ましいことから、混合せずにそれぞれアクリル酸分離精製工程3に送給することが望ましい。具体的には、共沸脱水蒸留塔においては、よりアクリル酸濃度の高い急冷塔からの凝縮液を、吸収塔2からのアクリル酸水溶液よりもより蒸留塔の下方に供給し、抽出塔においては反対に、より上方に供給することが望ましい。
[Transmission of condensate and acrylic acid aqueous solution]
In the present invention, the condensate from the bottom of the quenching tower 1 and the acrylic acid aqueous solution from the absorption tower 2 may be mixed and supplied to the extraction tower or distillation tower which is the next acrylic acid separation and purification step 3. However, since it is desirable to change a supply location according to the difference in composition, it is desirable to feed each to the acrylic acid separation and purification step 3 without mixing. Specifically, in the azeotropic dehydration distillation tower, the condensate from the quenching tower having a higher acrylic acid concentration is supplied below the distillation tower than the acrylic acid aqueous solution from the absorption tower 2, and in the extraction tower, On the other hand, it is desirable to supply more upward.

いずれの場合においても、本発明では、吸収塔2からのアクリル酸水溶液を急冷塔1に循環させることなく、アクリル酸分離精製工程3に送給する。また、急冷塔1からの凝縮液についても当然吸収塔2を経ることなくアクリル酸分離精製工程3に送給する。   In any case, in the present invention, the acrylic acid aqueous solution from the absorption tower 2 is fed to the acrylic acid separation and purification step 3 without being circulated to the quenching tower 1. Also, the condensate from the quenching tower 1 is naturally fed to the acrylic acid separation and purification step 3 without passing through the absorption tower 2.

[アクリル酸分離精製工程]
本発明において、急冷塔1からの凝縮液と吸収塔2からのアクリル酸水溶液が導入されるアクリル酸分離精製工程については特に制限はなく、溶媒を用いた抽出塔を経て、アクリル酸を蒸留精製する蒸留塔に送給するものであってもよく、溶媒を用いた共沸蒸留塔を経て更にアクリル酸を蒸留精製する蒸留塔に送給するものであってもよい。また、アクリル酸蒸留精製工程は、軽沸分離蒸留塔、重沸分離蒸留塔及び精製蒸留塔で順次処理する多段蒸留方式であってもよい。
[Acrylic acid separation and purification process]
In this invention, there is no restriction | limiting in particular about the acrylic acid separation refinement | purification process in which the condensate from the quenching tower 1 and the acrylic acid aqueous solution from the absorption tower 2 are introduce | transduced, Acrylic acid is purified by distillation through the extraction tower using a solvent. It may be supplied to a distillation column, or may be supplied to a distillation column through which an acrylic acid is further purified by distillation through an azeotropic distillation column using a solvent. Further, the acrylic acid distillation purification step may be a multistage distillation system in which treatment is sequentially performed in a light boiling separation distillation column, a heavy boiling separation distillation column, and a purification distillation column.

以下に、実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[酸化反応例]
<酸化反応例1>
反応原料ガスとして、9容量%のプロピレン、空気及び水蒸気からなる混合ガスを、Mo−Bi系固体酸化触媒を充填した内径25mm、長さ3mの単管式前段反応器に供給し、該反応器内で、プロピレンをアクロレインに酸化させ、次いで該ガスを、Mo−V系固体酸化触媒が充填された内径25mm、長さ2.5mの単管式後段反応器に供給し、該反応器から、窒素及び酸素65.4容量%、水蒸気23.8容量%、アクリル酸8.1容量%を含み、アクリル酸として650g/h相当を有する反応生成ガス1を得た。
[Example of oxidation reaction]
<Oxidation reaction example 1>
As a reaction raw material gas, a mixed gas composed of 9% by volume of propylene, air and water vapor is supplied to a single-tube first stage reactor having an inner diameter of 25 mm and a length of 3 m filled with a Mo—Bi-based solid oxidation catalyst. In which propylene is oxidized to acrolein, and then the gas is supplied to a single-tube post-stage reactor having an inner diameter of 25 mm and a length of 2.5 m, which is filled with a Mo-V solid oxidation catalyst, and from the reactor, A reaction product gas 1 containing 65.4% by volume of nitrogen and oxygen, 23.8% by volume of water vapor, and 8.1% by volume of acrylic acid and having 650 g / h equivalent as acrylic acid was obtained.

<酸化反応例2>
反応原料ガスとして、9容量%のプロピレン、空気、水蒸気及び窒素からなる混合ガスを用いたこと以外は酸化反応例1と同様にして気相接触酸化反応を行って、窒素及び酸素69.8容量%、水蒸気19.3容量%、アクリル酸8.0容量%を含み、アクリル酸として640g/h相当を有する反応生成ガス2を得た。
<Oxidation reaction example 2>
A gas phase catalytic oxidation reaction was carried out in the same manner as in Oxidation Reaction Example 1 except that a mixed gas consisting of 9% by volume of propylene, air, water vapor and nitrogen was used as the reaction raw material gas, and nitrogen and oxygen 69.8 volumes. %, Water vapor 19.3% by volume, acrylic acid 8.0% by volume, and a reaction product gas 2 having an acrylic acid equivalent of 640 g / h was obtained.

<酸化反応例3>
反応原料ガスとして、7.5容量%のプロピレン、空気、水蒸気及び窒素からなる混合ガスを用いたこと以外は酸化反応例1と同様にして、窒素及び酸素62.6容量%、水蒸気28.6容量%、アクリル酸6.8容量%を含み、アクリル酸として500g/h相当を有する反応生成ガス3を得た。
<Oxidation reaction example 3>
Nitrogen and oxygen 62.6% by volume, water vapor 28.6 in the same manner as in the oxidation reaction example 1 except that a mixed gas composed of 7.5% by volume propylene, air, water vapor and nitrogen was used as the reaction raw material gas. A reaction product gas 3 containing vol% and acrylic acid 6.8 vol% and having an acrylic acid equivalent to 500 g / h was obtained.

[装置の構成及び運転条件]
以下の実施例、参考例及び比較例で用いた急冷塔及び吸収塔の構成及び運転条件は以下の通りである。
[Device configuration and operating conditions]
The structures and operating conditions of the quenching tower and the absorption tower used in the following examples, reference examples and comparative examples are as follows.

<急冷塔>
急冷塔は、内径100mm、高さ400mmの縦型円筒形であり、塔内には、塔底部から塔の高さ方向の中間位置までの領域に4枚の板が20mm間隔で立設されている。該板は、塔内における反応ガスの流れを整えると共に、該板面上での循環冷却液と反応ガスとの熱交換を意図したものである。反応生成ガスは蒸気により140℃以上に維持された二重管によって、この急冷塔の側面下部に供給される。急冷塔の塔底より配管で抜き出した塔内凝縮液の大半は、送液ポンプにより二重管式の熱交換器で40℃に冷却された後、循環冷却液として急冷塔に循環され、残部は塔底の配管先で分岐され、送液ポンプにより系外に抜き出される。
循環冷却液の配管には、重合防止剤としてフェノチアジン1.5重量%を有するアクリル酸が、5mL/hの割合で添加される。循環冷却液の配管は二分され、急冷塔の側面の高さ方向の中央位置と上部にそれぞれ循環冷却液が供給されるように構成されている。該供給配管の先には、シャワーノズルが各々設置されている。
この急冷塔の塔頂と、後述の吸収塔の側面下部が、未凝縮ガスを導くための配管で繋がれている。
<Quenching tower>
The quenching tower is a vertical cylindrical shape having an inner diameter of 100 mm and a height of 400 mm. Within the tower, four plates are erected at intervals of 20 mm from the bottom of the tower to the middle position in the height direction of the tower. Yes. The plate is intended to arrange the flow of the reaction gas in the tower and to exchange heat between the circulating coolant and the reaction gas on the plate surface. The reaction product gas is supplied to the lower part of the side of the quenching tower by a double pipe maintained at 140 ° C. or higher by steam. Most of the condensate in the tower extracted from the bottom of the quenching tower by piping is cooled to 40 ° C. with a double-pipe heat exchanger by a feed pump, and then circulated to the quenching tower as a circulating cooling liquid, with the remainder Is branched off at the piping tip at the bottom of the tower and extracted from the system by a liquid feed pump.
Acrylic acid having 1.5% by weight of phenothiazine as a polymerization inhibitor is added to the circulating coolant pipe at a rate of 5 mL / h. The piping of the circulating cooling liquid is divided into two parts, and the circulating cooling liquid is supplied to the center position and the upper part of the side surface of the quenching tower in the height direction. A shower nozzle is installed at each end of the supply pipe.
The tower top of the quenching tower and the lower part of the side face of the absorption tower described later are connected by a pipe for introducing uncondensed gas.

<吸収塔>
吸収塔は内径50mm、高さ900mmで、内挿物として5mmのコイルパックを有する充填塔である。吸収塔の塔頂より排出される残ガスは、苛性ソーダによる洗浄装置を経て、排ガス燃焼装置に送られる。吸収塔の塔上部側面より、吸収用の水が、運転条件に応じて流量を調整しつつ供給される。また、該吸収水には、重合防止剤としてハイドロキノンを5重量%含む水溶液が、5mL/hの割合で添加される。吸収塔の塔底部より抜き出されたアクリル酸水溶液は、そのまま系外に抜き出すことも、急冷塔に循環することもできるよう、配管と切替バルブが設けられている。
<Absorption tower>
The absorption tower is a packed tower having an inner diameter of 50 mm, a height of 900 mm, and a coil pack of 5 mm as an insert. The residual gas discharged from the top of the absorption tower is sent to an exhaust gas combustion apparatus through a cleaning device using caustic soda. Absorption water is supplied from the upper side of the absorption tower while adjusting the flow rate according to the operating conditions. Further, an aqueous solution containing 5% by weight of hydroquinone as a polymerization inhibitor is added to the absorbed water at a rate of 5 mL / h. A piping and a switching valve are provided so that the aqueous acrylic acid solution extracted from the bottom of the absorption tower can be extracted out of the system as it is or can be circulated to the quenching tower.

[比較例1]
<アクリル酸の捕集>
反応生成ガス1を急冷塔に導き、また、吸収塔の塔底液は全て急冷塔に循環するようにした。吸収塔への吸収水は400g/hの割合で供給した。急冷塔の熱交換器に供給される循環冷却液量を調整し、急冷塔の凝縮液のアクリル酸濃度が60重量%程度になるよう調整した。急冷塔で得られた塔底液は、アクリル酸60.9重量%、水34.6重量%、酢酸2.6重量%、ホルムアルデヒド0.9重量%、マレイン酸0.5重量%を含むアクリル酸水溶液であった。
[Comparative Example 1]
<Collection of acrylic acid>
The reaction product gas 1 was led to the quenching tower, and all the bottom liquid of the absorption tower was circulated to the quenching tower. Absorption water to the absorption tower was supplied at a rate of 400 g / h. The amount of circulating coolant supplied to the heat exchanger of the quenching tower was adjusted so that the acrylic acid concentration of the condensate in the quenching tower was about 60% by weight. The bottom liquid obtained in the quenching tower is acrylic containing 60.9% by weight of acrylic acid, 34.6% by weight of water, 2.6% by weight of acetic acid, 0.9% by weight of formaldehyde and 0.5% by weight of maleic acid. It was an acid aqueous solution.

<濃度調整・濾過・脱水蒸留>
得られたアクリル酸水溶液に少量の蒸留水を添加してアクリル酸濃度を60重量%に調整し、メッシュサイズ1μmのフィルターで吸引濾過を行い、その内200gをトルエン20gと共に丸底フラスコに加え、このフラスコに3mmのコイルパックを充填した高さ600mmのカラムを設置した。カラムの塔頂圧を10kPaになるように減圧し、カラム塔頂よりフェノチアジン50重量ppmを含むトルエンを300ml/hの割合で供給して脱水蒸留を行った。また蒸留操作中、フラスコ内の液に5ml/分の割合で空気を連続的に吹き込んだ。
加熱用の油浴温度は98℃に固定し、フラスコ内の水やトルエンが実質的に無くなったことを示す指標として、フラスコ内の液温度が85℃になるまで約80分、脱水蒸留を継続した。
<Concentration adjustment, filtration, dehydration distillation>
A small amount of distilled water was added to the resulting aqueous acrylic acid solution to adjust the acrylic acid concentration to 60% by weight, and suction filtration was performed with a filter having a mesh size of 1 μm. 200 g of that was added to a round bottom flask together with 20 g of toluene, A 600 mm high column filled with a 3 mm coil pack was placed in the flask. The column top pressure was reduced to 10 kPa, and toluene containing 50 wt ppm of phenothiazine was supplied from the column top at a rate of 300 ml / h for dehydration distillation. During the distillation operation, air was continuously blown into the liquid in the flask at a rate of 5 ml / min.
The oil bath temperature for heating was fixed at 98 ° C., and dehydration distillation was continued for about 80 minutes until the liquid temperature in the flask reached 85 ° C. as an indicator that water and toluene in the flask were substantially lost. did.

<吸引濾過>
得られた粗アクリル酸を20℃に冷却後、メッシュサイズ1μmのフィルターで、−50kPaの減圧で吸引濾過を行ったところ、目詰まりが観測された。吸引濾過に供した粗アクリル酸量に対する濾液量の割合で算出した回収率は40%であった。
<Suction filtration>
When the obtained crude acrylic acid was cooled to 20 ° C. and subjected to suction filtration at a reduced pressure of −50 kPa with a filter having a mesh size of 1 μm, clogging was observed. The recovery rate calculated by the ratio of the amount of filtrate to the amount of crude acrylic acid subjected to suction filtration was 40%.

[実施例1]
比較例1において、吸収塔の塔底液は急冷塔に循環せず取り出した。
急冷塔より得られた凝縮液は、アクリル酸78重量%、水17.3重量%、酢酸2.4重量%、マレイン酸1.9重量%、ホルムアルデヒド0.1重量%を含み、凝縮したアクリル酸は、反応生成ガス1中の30%(アクリル酸凝縮割合=30%)であった。
また、吸収塔における吸収水の供給量を450g/hに調整することで、急冷塔の凝縮液と吸収塔の塔底液を混合した混合液の組成を、アクリル酸61.3重量%、水34.3重量%、酢酸2.5重量%、ホルムアルデヒド1.0重量%、マレイン酸0.5重量%とした。
この混合液について、比較例1と同様にして濃度調整と濾過、脱水蒸留、次いで吸引濾過を行ったところ、目詰まり等は確認されず、−30kPaの減圧で全量を吸引濾過することができた(回収率100%)。
[Example 1]
In Comparative Example 1, the bottom liquid of the absorption tower was taken out without being circulated to the quenching tower.
The condensed liquid obtained from the quenching tower contained 78% by weight of acrylic acid, 17.3% by weight of water, 2.4% by weight of acetic acid, 1.9% by weight of maleic acid, and 0.1% by weight of formaldehyde. The acid was 30% in the reaction product gas 1 (acrylic acid condensation ratio = 30%).
In addition, by adjusting the amount of water absorbed in the absorption tower to 450 g / h, the composition of the mixed liquid in which the condensate in the quenching tower and the bottom liquid in the absorption tower were mixed was 61.3% by weight of acrylic acid, water The content was 34.3% by weight, acetic acid 2.5% by weight, formaldehyde 1.0% by weight, and maleic acid 0.5% by weight.
When this mixture was subjected to concentration adjustment, filtration, dehydration distillation, and suction filtration in the same manner as in Comparative Example 1, clogging and the like were not confirmed, and the entire amount could be suction filtered at a reduced pressure of −30 kPa. (Recovery rate 100%).

[実施例2]
実施例1において、吸収塔へ供給する吸収水中に、マレイン酸を3g/hの割合で添加したこと以外は同様にして反応生成ガス1からのアクリル酸の捕集を行った。
急冷塔の凝縮液と吸収塔の塔底液を混合した混合液の組成は、アクリル酸60.3重量%、水35.2重量%、酢酸2.6重量%、ホルムアルデヒド1.0重量%、マレイン酸0.8重量%となった。
この混合液について、比較例1と同様にして濾過、脱水蒸留、次いで吸引濾過を行ったところ、明らかな目詰まり等は確認されず、−30kPaの減圧で全量を吸引濾過することができた(回収率100%)。
[Example 2]
In Example 1, acrylic acid was collected from the reaction product gas 1 in the same manner except that maleic acid was added at a rate of 3 g / h in the absorption water supplied to the absorption tower.
The composition of the mixed liquid obtained by mixing the condensate of the quenching tower and the bottom liquid of the absorption tower is 60.3% by weight of acrylic acid, 35.2% by weight of water, 2.6% by weight of acetic acid, 1.0% by weight of formaldehyde, Maleic acid was 0.8% by weight.
When this mixed solution was filtered, dehydrated and distilled and then suction filtered in the same manner as in Comparative Example 1, no obvious clogging or the like was confirmed, and the entire amount was suction filtered at a reduced pressure of −30 kPa ( Recovery rate 100%).

[参考例1]
実施例1において、急冷塔の循環冷却液に、ホルムアルデヒドを10g/hの割合で添加したこと以外は同様にして反応生成ガス1からのアクリル酸の捕集を行った。
急冷塔より得られた凝縮液は、アクリル酸76.3重量%、水19.0重量%、酢酸2.3重量%、マレイン酸1.9重量%、ホルムアルデヒド0.4重量%を含み、凝縮したアクリル酸は、反応生成ガス1中の30%であった(アクリル酸凝縮割合=30%)。
また、急冷塔の凝縮液と吸収塔の塔底液を混合した混合液の組成は、アクリル酸60.3重量%、水34.7重量%、酢酸2.5重量%、ホルムアルデヒド1.8重量%、マレイン酸0.5重量%となった。
この混合液について、比較例1と同様にして濾過、脱水蒸留、次いで吸引濾過を行ったところ、目詰まりが観測され、液量は−50kPaの減圧で全体の70%であった(回収率70%)。
この参考例1では、急冷塔の循環冷却液にホルムアルデヒドを添加したことにより、目詰まりが生じたものと推定される。
[Reference Example 1]
In Example 1, acrylic acid was collected from the reaction product gas 1 in the same manner except that formaldehyde was added at a rate of 10 g / h to the circulating coolant of the quenching tower.
The condensate obtained from the quenching tower contains 76.3% by weight of acrylic acid, 19.0% by weight of water, 2.3% by weight of acetic acid, 1.9% by weight of maleic acid, and 0.4% by weight of formaldehyde. Acrylic acid was 30% in the reaction product gas 1 (condensation ratio of acrylic acid = 30%).
The composition of the mixed liquid obtained by mixing the condensate of the quenching tower and the bottom liquid of the absorption tower was 60.3% by weight of acrylic acid, 34.7% by weight of water, 2.5% by weight of acetic acid, and 1.8% by weight of formaldehyde. % And maleic acid 0.5% by weight.
When this mixed liquid was filtered, dehydrated and distilled and then suction filtered in the same manner as in Comparative Example 1, clogging was observed, and the liquid volume was 70% of the total at a reduced pressure of −50 kPa (recovery rate 70). %).
In Reference Example 1, it is estimated that clogging occurred due to the addition of formaldehyde to the circulating coolant in the quenching tower.

[実施例3]
実施例1において、急冷塔の熱交換器に供給される冷却水量を増やすことで、該急冷塔の塔底液として、アクリル酸67重量%、水29.1重量%、酢酸2.4重量%、マレイン酸1.0重量%、ホルムアルデヒド0.3重量%の凝縮液を得た。凝縮したアクリル酸は反応生成ガス中の55%であった(アクリル酸凝縮割合=55%)。
また、吸収塔における吸収水の供給量を300g/hに調整することで、急冷塔の凝縮液と吸収塔の塔底液を混合した混合液として、アクリル酸60.0重量%、水35.3重量%、酢酸2.4重量%、ホルムアルデヒド1.1重量%、マレイン酸0.5重量%の組成の混合液を得た。
この混合液について、比較例1と同様にして濃度調整と濾過、脱水蒸留、次いで吸引濾過を行ったところ、目詰まりによる濾過速度の低下が確認されたが、−50kPa未満の減圧で全量を吸引濾過することができた(回収率100%)。
[Example 3]
In Example 1, by increasing the amount of cooling water supplied to the heat exchanger of the quenching tower, 67% by weight of acrylic acid, 29.1% by weight of water, and 2.4% by weight of acetic acid are used as the bottom liquid of the quenching tower. A condensate of 1.0% by weight maleic acid and 0.3% by weight formaldehyde was obtained. The condensed acrylic acid was 55% in the reaction product gas (acrylic acid condensation ratio = 55%).
In addition, by adjusting the supply amount of absorbed water in the absorption tower to 300 g / h, 60.0% by weight of acrylic acid and 35. A liquid mixture having a composition of 3% by weight, acetic acid 2.4% by weight, formaldehyde 1.1% by weight and maleic acid 0.5% by weight was obtained.
When this mixture was subjected to concentration adjustment, filtration, dehydration distillation, and suction filtration in the same manner as in Comparative Example 1, a decrease in filtration rate due to clogging was confirmed, but the entire amount was sucked at a reduced pressure of less than -50 kPa. It could be filtered (100% recovery).

[比較例2]
実施例3において、急冷塔の熱交換器に供給される冷却水量を更に増やすことで、該急冷塔の塔底液として、アクリル酸62.5重量%、水33.5重量%、酢酸2.4重量%、マレイン酸0.7重量%、ホルムアルデヒド0.4重量%の凝縮液を得た。凝縮したアクリル酸は反応生成ガス中の70%であった(アクリル酸凝縮割合=70%)。
また、吸収塔において、吸収水の供給量を200g/hに調整することで、急冷塔の凝縮液と吸収塔の塔底液を混合した混合液として、アクリル酸62.0重量%、水33.1重量%、酢酸2.5重量%、ホルムアルデヒド1.1重量%、マレイン酸0.5重量%の組成の混合液を得た。
この混合液について、比較例1と同様にして濃度調整と濾過、脱水蒸留、次いで吸引濾過を行ったところ、−50kPaの減圧で濾過できた濾液は全体の20%であった(回収率20%)。更に吸引圧を−80kPaまで引き下げたが、濾液量は全体の25%であった(回収率25%)。
また、急冷塔及び吸収塔に供給される重合防止剤の量を2倍にする以外は上記と同様の操作を行ったが、最終的に吸引濾過できた濾液量は全体の20%であった(回収率20%)。
[Comparative Example 2]
In Example 3, by further increasing the amount of cooling water supplied to the heat exchanger of the quenching tower, 62.5% by weight of acrylic acid, 33.5% by weight of water, acetic acid, 2. A condensate of 4% by weight, 0.7% by weight maleic acid and 0.4% by weight formaldehyde was obtained. The condensed acrylic acid was 70% in the reaction product gas (acrylic acid condensation ratio = 70%).
Further, in the absorption tower, by adjusting the supply amount of absorbed water to 200 g / h, 62.0% by weight of acrylic acid and water 33 are obtained as a mixed liquid in which the condensate of the quenching tower and the bottom liquid of the absorption tower are mixed. A mixed solution having a composition of 1% by weight, 2.5% by weight of acetic acid, 1.1% by weight of formaldehyde and 0.5% by weight of maleic acid was obtained.
When this mixture was subjected to concentration adjustment, filtration, dehydration distillation, and suction filtration in the same manner as in Comparative Example 1, the filtrate that could be filtered at a reduced pressure of -50 kPa was 20% of the total (recovery rate 20%). ). The suction pressure was further reduced to -80 kPa, but the filtrate amount was 25% of the total (recovery rate 25%).
Further, the same operation as described above was performed except that the amount of the polymerization inhibitor supplied to the quenching tower and the absorption tower was doubled, but the amount of the filtrate that could be finally suction filtered was 20% of the whole. (Recovery rate 20%).

[比較例3]
実施例1において、急冷塔の熱交換器に供給される冷却水量を減らすことで、該急冷塔の塔底液として、アクリル酸80.1重量%、水14.5重量%、酢酸2.2重量%、マレイン酸2.7重量%、ホルムアルデヒド0.05重量%の凝縮液を得た。凝縮したアクリル酸は反応生成ガス中の20%であった(アクリル酸凝縮割合20%)。
また、吸収塔の吸収水の供給量を480g/hに調整することで、急冷塔の凝縮液と吸収塔の塔底液を混合した混合液として、アクリル酸60.7重量%、水34.4重量%、酢酸2.4重量%、ホルムアルデヒド0.8重量%、マレイン酸0.5重量%の組成の混合液を得た。
しかし、急冷塔内に不溶性のポリマー発生が確認され、また該混合液は、濃度調整後の吸引濾過処理が不可能であった。
また、急冷塔及び吸収塔に供給される重合防止剤の量を2倍にする以外は上記と同様の操作を行ったが、やはり吸引濾過処理は不可能であった。
[Comparative Example 3]
In Example 1, by reducing the amount of cooling water supplied to the heat exchanger of the quenching tower, the bottom liquid of the quenching tower was 80.1% by weight of acrylic acid, 14.5% by weight of water, 2.2% of acetic acid. A condensate of 5% by weight, 2.7% by weight maleic acid and 0.05% by weight formaldehyde was obtained. The condensed acrylic acid was 20% in the reaction product gas (acrylic acid condensation ratio 20%).
In addition, by adjusting the amount of absorption water supplied to the absorption tower to 480 g / h, a mixed liquid of the condensate of the quenching tower and the bottom liquid of the absorption tower was mixed with 60.7% by weight of acrylic acid, 34. A liquid mixture having a composition of 4 wt%, acetic acid 2.4 wt%, formaldehyde 0.8 wt%, and maleic acid 0.5 wt% was obtained.
However, generation of insoluble polymer was confirmed in the quenching tower, and the mixed solution was not capable of suction filtration after concentration adjustment.
Further, the same operation as described above was performed except that the amount of the polymerization inhibitor supplied to the quenching tower and the absorption tower was doubled, but the suction filtration treatment was impossible.

[比較例4]
反応生成ガス2を急冷塔に導き、また、吸収塔の塔底液は全て急冷塔に循環するようにした。吸収塔への吸収水は370g/hの割合で供給した。急冷塔の熱交換器に供給される冷却水量を調整し、急冷塔の凝縮液のアクリル酸濃度が60重量%程度になるよう調整した。急冷塔で得られた塔底液は、アクリル酸61.1重量%、水34.4重量%、酢酸2.7重量%、ホルムアルデヒド0.9重量%、マレイン酸0.5重量%を含んでいた。
この塔底液について、比較例1と同様にして濃度調整と濾過、脱水蒸留、次いで吸引濾過を行ったところ、目詰まりが観測され、濾液量は全体の20%であった(回収率20%)。
[Comparative Example 4]
The reaction product gas 2 was introduced to the quenching tower, and the bottom liquid of the absorption tower was circulated to the quenching tower. Absorbed water to the absorption tower was supplied at a rate of 370 g / h. The amount of cooling water supplied to the heat exchanger of the quenching tower was adjusted so that the acrylic acid concentration in the condensate of the quenching tower was about 60% by weight. The bottom liquid obtained in the quenching tower contains 61.1% by weight of acrylic acid, 34.4% by weight of water, 2.7% by weight of acetic acid, 0.9% by weight of formaldehyde, and 0.5% by weight of maleic acid. It was.
When this tower bottom liquid was subjected to concentration adjustment, filtration, dehydration distillation, and suction filtration in the same manner as in Comparative Example 1, clogging was observed, and the filtrate amount was 20% of the total (recovery rate 20%). ).

[実施例4]
比較例4において、吸収塔の塔底液は急冷塔に循環せず取り出した。急冷塔より得られた凝縮液は、アクリル酸78.9重量%、水16.2重量%、酢酸2.4重量%、マレイン酸1.9重量%、ホルムアルデヒド0.1重量%を含み、凝縮したアクリル酸は、反応生成ガス2中の30%であった(アクリル酸凝縮割合=30%)。
また、吸収塔における吸収水の供給量を410g/hに調整することで、急冷塔の凝縮液と吸収塔の塔底液を混合した混合液として、アクリル酸60.2重量%、水35.3重量%、酢酸2.6重量%、ホルムアルデヒド0.9重量%、マレイン酸0.5重量%の組成の混合液を得た。
この混合液について、比較例1と同様にして濾過、脱水蒸留、次いで吸引濾過を行ったところ、僅かに目詰まりによる濾過速度の低下が確認されたが、−30kPaの減圧で全量を吸引濾過することができた(回収率100%)。
[Example 4]
In Comparative Example 4, the bottom liquid of the absorption tower was taken out without being circulated to the quenching tower. The condensate obtained from the quenching tower contains 78.9% by weight of acrylic acid, 16.2% by weight of water, 2.4% by weight of acetic acid, 1.9% by weight of maleic acid, and 0.1% by weight of formaldehyde. Acrylic acid was 30% in the reaction product gas 2 (acrylic acid condensation ratio = 30%).
Moreover, by adjusting the supply amount of absorbed water in the absorption tower to 410 g / h, as a mixed liquid in which the condensate of the quenching tower and the bottom liquid of the absorption tower are mixed, 60.2% by weight of acrylic acid, 35. A mixed solution having a composition of 3 wt%, acetic acid 2.6 wt%, formaldehyde 0.9 wt%, and maleic acid 0.5 wt% was obtained.
The mixture was filtered, dehydrated and distilled in the same manner as in Comparative Example 1, and then suction filtration was performed. A slight decrease in filtration rate due to clogging was confirmed, but the entire amount was suction filtered at a reduced pressure of -30 kPa. (Recovery rate 100%).

[比較例5]
反応生成ガス3を急冷塔に導き、また、吸収塔の塔底液は全て急冷塔に循環するようにした。吸収塔への吸収水は360g/hの割合で供給した。急冷塔の熱交換器に供給される冷却水量を調整し、急冷塔の凝縮液のアクリル酸濃度が60重量%程度になるよう調整した。急冷塔で得られた塔底液は、アクリル酸60.4重量%、水35.1重量%、酢酸2.6重量%、ホルムアルデヒド1.0重量%、マレイン酸0.5重量%を含んでいた。
この塔底液について、比較例1と同様にして濾過、脱水蒸留、次いで吸引濾過を行ったところ、目詰まりが観測され、吸引圧−80kPでの濾液量は全体の20%であった(回収率20%)。
[Comparative Example 5]
The reaction product gas 3 was introduced to the quenching tower, and the bottom liquid of the absorption tower was circulated to the quenching tower. Absorption water to the absorption tower was supplied at a rate of 360 g / h. The amount of cooling water supplied to the heat exchanger of the quenching tower was adjusted so that the acrylic acid concentration in the condensate of the quenching tower was about 60% by weight. The bottom liquid obtained in the quenching tower contains 60.4% by weight of acrylic acid, 35.1% by weight of water, 2.6% by weight of acetic acid, 1.0% by weight of formaldehyde and 0.5% by weight of maleic acid. It was.
When this column bottom liquid was filtered, dehydrated and distilled and then suction filtered in the same manner as in Comparative Example 1, clogging was observed, and the filtrate amount at a suction pressure of −80 kP was 20% of the total (recovery). Rate 20%).

[実施例5]
比較例5において、吸収塔の塔底液は急冷塔に循環せず取り出した。急冷塔より得られた凝縮液は、アクリル酸65.7重量%、水30.5重量%、酢酸2.1重量%、マレイン酸1.2重量%、ホルムアルデヒド0.2重量%を含み、凝縮したアクリル酸は、反応生成ガス3中の40%であった(アクリル酸凝縮割合=40%)。
また、吸収塔における吸収水の供給量を330g/hに調整することで、急冷塔の凝縮液と吸収塔の塔底液を混合した混合液として、アクリル酸61.2重量%、水34.8重量%、酢酸2.6重量%、ホルムアルデヒド0.9重量%、マレイン酸0.5重量%の組成の混合液を得た。
この混合液について、比較例1と同様にして濃度調整と濾過、脱水蒸留、次いで吸引濾過を行ったところ、目詰まり等は確認されず、−30kPaの減圧で全量を吸引濾過することができた(回収率100%)。
[Example 5]
In Comparative Example 5, the liquid at the bottom of the absorption tower was taken out without circulating to the quenching tower. The condensate obtained from the quenching tower contains 65.7% by weight acrylic acid, 30.5% by weight water, 2.1% by weight acetic acid, 1.2% by weight maleic acid and 0.2% by weight formaldehyde. Acrylic acid was 40% in the reaction product gas 3 (condensation ratio of acrylic acid = 40%).
Moreover, by adjusting the supply amount of absorbed water in the absorption tower to 330 g / h, a mixed liquid of the condensate in the quenching tower and the bottom liquid in the absorption tower is mixed with 61.2% by weight of acrylic acid and 34. A liquid mixture having a composition of 8 wt%, acetic acid 2.6 wt%, formaldehyde 0.9 wt%, and maleic acid 0.5 wt% was obtained.
When this mixture was subjected to concentration adjustment, filtration, dehydration distillation, and suction filtration in the same manner as in Comparative Example 1, clogging and the like were not confirmed, and the entire amount could be suction filtered at a reduced pressure of −30 kPa. (Recovery rate 100%).

1 急冷塔
2 吸収塔
3 アクリル酸分離精製工程
,P,P ポンプ
,H 熱交換器
1 quenching tower 2 absorption tower 3 acrylic acid separation and purification process P 1 , P 2 , P 3 pump H 1 , H 2 heat exchanger

Claims (2)

炭素数3の炭化水素を気相接触酸化反応処理してアクリル酸含有反応生成ガスを得る酸化反応工程と、
該アクリル酸含有反応生成ガスを急冷塔に導入してアクリル酸含有反応生成ガス中のアクリル酸の一部を凝縮させる急冷工程と、
該急冷工程から排出されるアクリル酸含有ガスを、吸収水が塔頂より供給される吸収塔に導入してアクリル酸水溶液を得る吸収工程とを有し、
前記急冷工程からの凝縮液と前記吸収工程からのアクリル酸水溶液とをアクリル酸分離精製工程に送給してアクリル酸を分離するアクリル酸の製造方法であって、
前記急冷工程において、前記アクリル酸含有反応生成ガス中のアクリル酸の25〜65%を凝縮させ、
前記吸収工程において加熱や冷却を行わず、
前記吸収工程からのアクリル酸水溶液を、前記急冷工程を経ることなく前記アクリル酸分離精製工程に送給することを特徴とするアクリル酸の製造方法。
An oxidation reaction step of obtaining a reaction product gas containing acrylic acid by subjecting a hydrocarbon having 3 carbon atoms to a gas phase catalytic oxidation reaction;
A quenching step of introducing the acrylic acid-containing reaction product gas into a quenching tower and condensing a part of the acrylic acid in the acrylic acid-containing reaction product gas;
An absorption step of introducing an acrylic acid-containing gas discharged from the quenching step into an absorption tower to which absorption water is supplied from the top of the tower to obtain an aqueous acrylic acid solution,
A method for producing acrylic acid, wherein the condensate from the quenching step and the acrylic acid aqueous solution from the absorption step are fed to an acrylic acid separation and purification step to separate the acrylic acid,
In the quenching step, 25 to 65% of acrylic acid in the acrylic acid-containing reaction product gas is condensed,
Without heating or cooling in the absorption step,
A method for producing acrylic acid, wherein the aqueous acrylic acid solution from the absorption step is fed to the acrylic acid separation and purification step without going through the quenching step.
請求項1において、前記急冷工程で得られる凝縮液のホルムアルデヒド濃度が0.3重量%以下であることを特徴とするアクリル酸の製造方法。 Oite to claim 1, method for producing acrylic acid, wherein the formaldehyde concentration of the condensate obtained in said rapid cooling step is 0.3 wt% or less.
JP2012024172A 2012-02-07 2012-02-07 Acrylic acid production method Active JP5821672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024172A JP5821672B2 (en) 2012-02-07 2012-02-07 Acrylic acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024172A JP5821672B2 (en) 2012-02-07 2012-02-07 Acrylic acid production method

Publications (2)

Publication Number Publication Date
JP2013159586A JP2013159586A (en) 2013-08-19
JP5821672B2 true JP5821672B2 (en) 2015-11-24

Family

ID=49172139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024172A Active JP5821672B2 (en) 2012-02-07 2012-02-07 Acrylic acid production method

Country Status (1)

Country Link
JP (1) JP5821672B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214075B (en) * 2021-04-14 2022-10-18 平湖石化有限责任公司 Device and method for producing high-quality acrylic acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742618B2 (en) * 1973-12-25 1982-09-09
IN151108B (en) * 1978-09-13 1983-02-19 Standard Oil Co
CN1930108B (en) * 2004-08-02 2010-12-29 Lg化学株式会社 Method for producing (meth)acrylic acid
JP5507111B2 (en) * 2008-05-30 2014-05-28 ローム アンド ハース カンパニー Method for producing aqueous (meth) acrylic acid

Also Published As

Publication number Publication date
JP2013159586A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP4673483B2 (en) Acrylic acid production method
KR101546464B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR102327728B1 (en) Process and system for producing acrylic acid
JP2000290221A (en) Purification of (meth)acrylic acid
JP2012232996A (en) Process for producing (meth)acrylic acid
KR20040108610A (en) Method for production of acrylic acid
JPH08239342A (en) Method of isolating (meth)acrylic acid from mixture
WO2018216699A1 (en) Method for producing (meth)acrylic acid
JP2007217401A (en) Method for producing (meth)acrylic acid
TW201500344A (en) Process for preparation of methacrylic acid and methacrylic acid esters
JP5378207B2 (en) Method for producing (meth) acrylic acid
JP4016650B2 (en) Method for producing (meth) acrylic acid
EP3197856B1 (en) Production of an aromatic dicarboxylic acid
JP3905810B2 (en) Method for preventing polymerization in acrylic acid production process
JP5821672B2 (en) Acrylic acid production method
JP6391596B2 (en) Separation of acrolein from process gas of oxidation by heterogeneous catalysis of propene
JP2017095391A (en) Manufacturing method of aromatic dicarboxylic acid
JP6858314B1 (en) Method for producing methyl methacrylate
JP4628653B2 (en) Method for treating distillation residue of maleic anhydride
JP5998063B2 (en) Method for producing (meth) acrylic acid
JP2017509604A (en) Process for the production of acrylic acid of biological origin
JP2010163383A (en) Method for purifying acrylic acid
JP6300387B1 (en) Acrylonitrile purification method, production method, and distillation apparatus
JP4050187B2 (en) (Meth) acrylic acid collection method
JP5344741B2 (en) Purification method of acrylonitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350