JP5821146B2 - Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus - Google Patents

Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus Download PDF

Info

Publication number
JP5821146B2
JP5821146B2 JP2012069929A JP2012069929A JP5821146B2 JP 5821146 B2 JP5821146 B2 JP 5821146B2 JP 2012069929 A JP2012069929 A JP 2012069929A JP 2012069929 A JP2012069929 A JP 2012069929A JP 5821146 B2 JP5821146 B2 JP 5821146B2
Authority
JP
Japan
Prior art keywords
gas
heat storage
chamber
port
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012069929A
Other languages
Japanese (ja)
Other versions
JP2013200101A (en
Inventor
竹内 誠二
誠二 竹内
慶一 林
慶一 林
朋孝 三輪
朋孝 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2012069929A priority Critical patent/JP5821146B2/en
Publication of JP2013200101A publication Critical patent/JP2013200101A/en
Application granted granted Critical
Publication of JP5821146B2 publication Critical patent/JP5821146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は塗装ブースや塗装乾燥炉からの排出空気に含まれる揮発性有機成分を燃焼させて排出空気を浄化する排出空気処理などに用いる蓄熱式ガス処理装置の運転方法、及び、その運転方法を実施する蓄熱式ガス処理装置に関する。   The present invention relates to an operation method of a regenerative gas processing apparatus used for exhaust air treatment for purifying exhaust air by burning volatile organic components contained in exhaust air from a paint booth or a paint drying furnace, and an operation method thereof. The present invention relates to a heat storage type gas processing apparatus to be implemented.

更に詳しくは(図6,図7参照)、燃焼用加熱器5aを備える燃焼処理室5に一端を連通させた4室以上の蓄熱室8(8i,8o,8p,8s)の夫々に通気性の蓄熱材層を配備し、これら蓄熱室8夫々の他端を各別の切換弁装置4に接続し、この切換弁装置4は、弁板20を備える回転弁体18と受板21を備える分配器15とを有して、弁板20を受板21に近接対向させた状態で回転弁体18と分配器15とを相対回転させる構成にし、分配器15には、蓄熱室8夫々の他端に対して各別に常時連通する複数の分配室22を前記相対回転の回転軸芯周りに並べて区画形成し、分配器15における受板21には、分配室22を受板21において各別に開口させる分配口22aを前記相対回転の回転軸芯周りで等ピッチpに並べて形成し、回転弁体18には、ガス導入路10に常時連通する給気室23と、パージ用ガス路28に常時連通するパージ用室25と、ガス送出路11に常時連通する排気室24とを前記相対回転の回転軸芯周りに並べて区画形成し、回転弁体18における弁板20には、隣り合わない2つの分配口22aに対し前記相対回転において同時にかつ各別に正対する第1及び第2の2つの遮風板部分20a,20bを形成し、これら第1及び第2の2つの遮風板部分20a,20bのうち第1遮風板部分20aには、パージ用室25を弁板20において開口させるパージ用口25aを形成し、前記2つの遮風板部分20a,20bどうしの間の弁板部分のうち、前記相対回転において第1遮風板部分20aよりも先行する先行側の弁板部分には、給気室23を弁板20において開口させる給気口23aを形成し、前記相対回転において第1遮風板部分20aよりも後行する後行側の弁板部分には、排気室24を弁板20において開口させる排気口24aを形成した蓄熱式ガス処理装置の運転方法、及び、その運転方法を実施する蓄熱式ガス処理装置に関する。   More specifically (see FIG. 6 and FIG. 7), each of the four or more heat storage chambers 8 (8i, 8o, 8p, 8s) having one end communicating with the combustion processing chamber 5 including the combustion heater 5a is breathable. These heat storage material layers are arranged, and the other end of each of the heat storage chambers 8 is connected to each separate switching valve device 4, and this switching valve device 4 includes a rotary valve body 18 including a valve plate 20 and a receiving plate 21. The rotary valve body 18 and the distributor 15 are rotated relative to each other in a state in which the valve plate 20 is closely opposed to the receiving plate 21, and the distributor 15 includes the distributor 15. A plurality of distribution chambers 22 that are always in communication with the other end are divided and formed around the rotation axis of the relative rotation, and the distribution chamber 22 is separately provided in the receiving plate 21 in the receiving plate 21 in the distributor 15. Distributing ports 22a to be opened are formed at an equal pitch p around the rotation axis of the relative rotation, The valve body 18 includes an air supply chamber 23 that is always in communication with the gas introduction path 10, a purge chamber 25 that is always in communication with the purge gas path 28, and an exhaust chamber 24 that is in constant communication with the gas delivery path 11. A first and a second first and second facing each other simultaneously and in the relative rotation with respect to the two distribution ports 22a which are not adjacent to the valve plate 20 in the rotary valve body 18 are formed side by side around the rotation axis of the relative rotation. Two wind shielding plate portions 20a and 20b are formed, and the purge chamber 25 is provided in the valve plate 20 in the first wind shielding plate portion 20a of the first and second two wind shielding plate portions 20a and 20b. A purge port 25a to be opened is formed, and of the valve plate portions between the two wind shield plate portions 20a and 20b, the preceding valve plate preceding the first wind shield plate portion 20a in the relative rotation. In the part, there is an air supply chamber 23 An air supply port 23a that is opened in the plate 20 is formed, and an exhaust that opens the exhaust chamber 24 in the valve plate 20 in the valve plate portion on the downstream side that follows the first wind shielding plate portion 20a in the relative rotation. The present invention relates to an operation method of a regenerative gas processing apparatus in which an opening 24a is formed, and a regenerative gas processing apparatus that implements the operation method.

つまり、この蓄熱式ガス処理装置では、給気口23aとそれに対して対向連通状態にある分配口22aとを通じてガス導入路10に連通する蓄熱室8を入口側蓄熱室8iとするとともに、排気口24aとそれに対して対向連通状態にある分配口22aとを通じてガス送出路11に連通する蓄熱室8を出口側蓄熱室8oとする。   That is, in this heat storage type gas processing apparatus, the heat storage chamber 8 that communicates with the gas introduction path 10 through the air supply port 23a and the distribution port 22a that is opposed to the air supply port 23a is used as the inlet side heat storage chamber 8i, and the exhaust port. The heat storage chamber 8 that communicates with the gas delivery path 11 through 24a and the distribution port 22a that communicates with the distribution port 22a is referred to as an outlet side heat storage chamber 8o.

また、第1遮風板部分20aのパージ用口25aとそれに対して対向連通状態にある分配口22aとを通じてパージ用ガス路28に連通する蓄熱室8をパージ対象蓄熱室8pとするとともに、第2遮風板部分20bにより閉塞される分配口22aに対応する蓄熱室8を遮風蓄熱室8sとする。   In addition, the heat storage chamber 8 communicating with the purge gas passage 28 through the purge port 25a of the first wind shielding plate portion 20a and the distribution port 22a opposed to the purge port 25a is defined as a purge target heat storage chamber 8p. 2 Let the heat storage chamber 8 corresponding to the distribution port 22a obstruct | occluded by the wind-shielding board part 20b be the wind-shield heat storage chamber 8s.

そして、切換弁装置4における回転弁体18と分配器15との相対回転により、分配器15の受板21における各分配口22aを、弁板20における給気口23aとパージ用口25aと排気口24aと第2遮風板部分20bとに対しその順で順次に対向させることで、入口側蓄熱室8iとする蓄熱室、パージ対象蓄熱室8pとする蓄熱室、出口側蓄熱室8oとする蓄熱室、遮風蓄熱室8sとする蓄熱室の夫々を4室以上の蓄熱室8のうちでサイクル的に順次に切り換え、この切り換えにより、ガス処理運転における先の工程において出口側蓄熱室8oとした蓄熱室8の蓄熱材層に燃焼処理室5からの高温の処理済ガスG′を通過させて、その蓄熱材層に高温処理済ガスG′の保有熱を蓄熱し、その後の工程では、その蓄熱室8を入口側蓄熱室8iにして、先の工程で蓄熱した状態にある蓄熱材層に被処理ガスGを通過させることで、燃焼処理室5に導く被処理ガスGを予熱し、これにより、燃焼処理室5における燃焼用加熱器5aの必要加熱量を低減する。   Then, due to the relative rotation of the rotary valve body 18 and the distributor 15 in the switching valve device 4, each distribution port 22 a in the receiving plate 21 of the distributor 15 is exhausted from the air supply port 23 a and the purge port 25 a in the valve plate 20. By sequentially facing the opening 24a and the second wind shielding plate portion 20b in that order, a heat storage chamber serving as the inlet side heat storage chamber 8i, a heat storage chamber serving as the purge target heat storage chamber 8p, and an outlet side heat storage chamber 8o are provided. Each of the heat storage chambers, which are the heat storage chamber and the wind-insulated heat storage chamber 8s, is sequentially switched cyclically among the four or more heat storage chambers 8. By this switching, the outlet-side heat storage chamber 8o The high temperature processed gas G ′ from the combustion processing chamber 5 is passed through the heat storage material layer of the heat storage chamber 8 and the heat stored in the high temperature processed gas G ′ is stored in the heat storage material layer. The heat storage chamber 8 is connected to the inlet side heat storage chamber. i to preheat the gas to be processed G that is guided to the combustion processing chamber 5 by passing the gas to be processed G through the heat storage material layer that has been stored in the previous step, and thereby the combustion in the combustion processing chamber 5 The required heating amount of the heater 5a is reduced.

また、入口側蓄熱室8iにした蓄熱室8は次に出口側蓄熱室8oに切り換えるのに先立ちパージ対象蓄熱室8pに切り換えて、そのパージ対象蓄熱室8pにパージ用ガスG″を通過させることで、入口側蓄熱室8iからの切り換えにおいてその蓄熱室8に残る未処理の被処理ガスGをパージ用ガスG″により掃気する。   Further, the heat storage chamber 8 which is the inlet side heat storage chamber 8i is switched to the purge target heat storage chamber 8p prior to the next switching to the outlet side heat storage chamber 8o, and the purge gas G ″ is passed through the purge target heat storage chamber 8p. Thus, the untreated gas G remaining in the heat storage chamber 8 in the switching from the inlet side heat storage chamber 8i is scavenged by the purge gas G ″.

ところで従来、この種の蓄熱式ガス処理装置では、ガス導入路10を通じて被処理ガスGを切換弁装置4に送るガス処理運転において、切換弁装置4における回転弁体18と分配器15とを連続的に相対回転させることに対し、一般的には図11に示す如く、弁板20においてパージ用口25aを形成する第1遮風板部分20aは、受板21における隣り合う2つの分配口22aに対して同時に正対し得る遮風幅θa′(回転方向における幅、換言すれば中心角)を備えるものにしていた。   Conventionally, in this type of regenerative gas processing apparatus, in the gas processing operation in which the gas G to be processed is sent to the switching valve device 4 through the gas introduction path 10, the rotary valve body 18 and the distributor 15 in the switching valve device 4 are continuously connected. In general, as shown in FIG. 11, the first wind shielding plate portion 20 a that forms the purge port 25 a in the valve plate 20 has two adjacent distribution ports 22 a in the receiving plate 21. The windshield width θa ′ (the width in the rotation direction, in other words, the central angle) that can be directly opposed to each other.

即ち、このことにより、受板21における1つの分配口22aに対して弁板20における給気口23aとパージ用口25aとが同時に連通状態になることを防止するとともに、受板21における1つの分配口22aに対して排気口24aとパージ用口25aとが同時に連通状態になることを防止するようにしていた。(特許文献1,2参照)   That is, this prevents the air supply port 23a and the purge port 25a in the valve plate 20 from being in communication with one distribution port 22a in the receiving plate 21 at the same time. The exhaust port 24a and the purge port 25a are prevented from simultaneously communicating with the distribution port 22a. (See Patent Documents 1 and 2)

なお、弁板20における第1及び第2の2つの遮風板部分20a,20bのうち他方の第2遮風板部分20bには、回転弁体18と分配器15との連続的な相対回転において、受板21における1つの分配口22aに対して弁板20における給気口23aと排気口24aとを同時に連通させないだけの遮風幅θbを備えさせてある。   Of the first and second wind shield plate portions 20a and 20b in the valve plate 20, the other second wind shield plate portion 20b has a continuous relative rotation between the rotary valve body 18 and the distributor 15. The air supply width 23b of the air supply port 23a and the exhaust port 24a of the valve plate 20 is not provided at the same time with respect to one distribution port 22a of the receiving plate 21.

特開平7−305824JP-A-7-305824 特開平10−61940JP 10-61940 A

しかし、上記の従来装置では、弁板20における第1遮風板部分20aの遮風幅θa′が大きいことで弁板20における給気口23a及び排気口24aの開口幅θs′,θr′(中心角)が小さく制限されて、給気口23aとそれに対して対向連通する分配口22aとで形成される給気側通気路の断面積、及び、排気口24aとそれに対して対向連通する分配口22aとで形成される排気側通気路の断面積が小さくなり、このため、ガスの通気抵抗が大きくて送風動力が嵩む、また、装置のガス処理風量が小さく制限されるなどの問題があった。   However, in the above-described conventional device, since the wind shielding width θa ′ of the first wind shielding plate portion 20a in the valve plate 20 is large, the opening widths θs ′ and θr ′ ( The central angle) is limited to a small size, and the cross-sectional area of the air supply side air passage formed by the air supply port 23a and the distribution port 22a opposed to the air supply port 23a, and the distribution that communicates with the exhaust port 24a and the air supply side. The cross-sectional area of the exhaust-side air passage formed with the opening 22a is reduced, which causes problems such as a large gas ventilation resistance and increased blowing power, and a limited amount of gas processing air in the apparatus. It was.

この実情に鑑み、本発明の主たる課題は、合理的な改良により上記の如き問題を効果的に解消するとともに、いわゆる空焼き運転を簡略に行なえるようにする点にある。   In view of this situation, the main object of the present invention is to effectively solve the above-described problems by rational improvements and to perform a so-called idling operation in a simplified manner.

本発明の第1特徴構成は、蓄熱式ガス処理装置の運転方法に係り、その特徴は次の通りである。(なお、理解を容易にするため、図面で用いたのと同じ符号を参照符号として付す。特に図6〜図8、及び、図9,図10参照)。
燃焼用加熱器5aを備える燃焼処理室5に一端を連通させた4室以上の蓄熱室8(8i,8o,8p,8s)の夫々に通気性の蓄熱材層8aを配備し、これら蓄熱室8夫々の他端を切換弁装置4に接続し、
この切換弁装置4は、弁板20を備える回転弁体18と受板21を備える分配器15とを有して、前記弁板20を前記受板21に近接対向させた状態で前記回転弁体18と前記分配器15とを相対回転させる構成にし、
前記分配器15には、前記蓄熱室8夫々の他端に対して各別に常時連通する複数の分配室22を前記相対回転の回転軸芯周りに並べて区画形成し、
前記分配器15における前記受板21には、前記分配室22を前記受板21において各別に開口させる分配口22aを前記相対回転の回転軸芯周りで等ピッチpに並べて形成し、
前記回転弁体18には、ガス導入路10に常時連通する給気室23と、パージ用ガス路28に常時連通するパージ用室25と、ガス送出路11に常時連通する排気室24とを前記相対回転の回転軸芯周りに並べて区画形成し、
前記回転弁体18における前記弁板20には、隣り合わない2つの前記分配口22aに対し前記相対回転において同時にかつ各別に正対する第1及び第2の2つの遮風板部分20a,20bを形成し、
これら第1及び第2の2つの遮風板部分20a,20bのうち第1遮風板部分20aには、前記パージ用室25を前記弁板20において開口させるパージ用口25aを形成し、
前記2つの遮風板部分20a,20bどうしの間の弁板部分のうち、前記相対回転において前記第1遮風板部分20aよりも先行する先行側の弁板部分には、前記給気室23を前記弁板20において開口させる給気口23aを形成し、
前記相対回転において前記第1遮風板部分20aよりも後行する後行側の弁板部分には、前記排気室24を前記弁板20において開口させる排気口24aを形成した蓄熱式ガス処理装置の運転方法であって、
前記弁板20における前記2つの遮風板部分20a,20bと前記給気口23aと前記排気口24aとの相対的な配置関係を、前記2つの遮風板部分20a,20bの各々が1つの前記分配口22aに正対した状態において、その正対分配口22aに隣接する2つの前記分配口22aのうちの一方の分配口が前記給気口23aに対して全開になり、かつ、他方の分配口22aが前記排気口24aに対して全開になる配置関係にしておき、
前記ガス導入路10を通じて被処理ガスGを前記切換弁装置4に送るガス処理運転では、前記2つの遮風板部分20a,20bの各々が1つの前記分配口22aに正対する回転位置を間欠回転における各回の停止位置とした状態で、前記回転弁体18と前記分配器15とを前記分配口22aの並設ピッチpずつ間欠的に相対回転させ、
被処理ガスGに代え空焼き用の清浄ガスOAを前記ガス導入路10を通じて前記切換弁装置4に送る空焼き運転では、
前記2つの遮風板部分20a,20bの各々が隣り合う2つの前記分配口22aに跨る状態になって前記分配口22aの半数が前記給気口23aに連通し、かつ、前記分配口22aの他の半数が前記排気口24aに連通する回転位置において前記相対回転を停止させた状態で、空焼き用の清浄ガスOAを前記ガス導入路10を通じて前記切換弁装置4に送る空焼き前半工程を実施し、
その後、前記回転弁体18と前記分配器15とを空焼き前半工程における回転停止位置から180度だけ相対回転させて停止させた状態で、空焼き用の清浄ガスOAを前記ガス導入路10を通じて前記切換弁装置4に送る空焼き後半工程を実施する点にある。
A first characteristic configuration of the present invention relates to an operation method of a regenerative gas processing apparatus, and the characteristics are as follows. (For the sake of easy understanding, the same reference numerals as those used in the drawings are attached as reference numerals. In particular, refer to FIGS. 6 to 8 and FIGS. 9 and 10).
A breathable heat storage material layer 8a is disposed in each of four or more heat storage chambers 8 (8i, 8o, 8p, 8s) having one end communicating with the combustion processing chamber 5 including the combustion heater 5a, and these heat storage chambers. The other end of each of the 8 is connected to the switching valve device 4,
The switching valve device 4 includes a rotary valve body 18 having a valve plate 20 and a distributor 15 having a receiving plate 21, and the rotary valve is in a state where the valve plate 20 is closely opposed to the receiving plate 21. A configuration in which the body 18 and the distributor 15 are relatively rotated;
In the distributor 15, a plurality of distribution chambers 22 that are always in communication with the other end of each of the heat storage chambers 8 are arranged and arranged around the rotation axis of the relative rotation,
The receiving plate 21 in the distributor 15 is formed with a distribution port 22a for opening the distribution chamber 22 separately in the receiving plate 21, arranged at an equal pitch p around the rotation axis of the relative rotation,
The rotary valve body 18 includes an air supply chamber 23 that is always in communication with the gas introduction path 10, a purge chamber 25 that is always in communication with the purge gas path 28, and an exhaust chamber 24 that is in constant communication with the gas delivery path 11. A section is formed side by side around the rotation axis of the relative rotation,
The valve plate 20 of the rotary valve body 18 has first and second wind shielding plate portions 20a and 20b facing each other simultaneously and separately in the relative rotation with respect to the two non-adjacent distribution ports 22a. Forming,
Of these first and second wind shield plate portions 20a, 20b, the first wind shield plate portion 20a is formed with a purge port 25a for opening the purge chamber 25 in the valve plate 20,
Of the valve plate portions between the two wind shield plate portions 20a and 20b, the preceding valve plate portion preceding the first wind shield plate portion 20a in the relative rotation has the air supply chamber 23. Is formed in the valve plate 20 to form an air supply port 23a,
A regenerative gas processing apparatus in which an exhaust port 24a for opening the exhaust chamber 24 in the valve plate 20 is formed in a valve plate portion on the subsequent side following the first wind shielding plate portion 20a in the relative rotation. Driving method,
In the valve plate 20, the two wind shielding plate portions 20a, 20b, the air supply port 23a, and the exhaust port 24a are arranged in a relative arrangement relationship. In a state of facing the distribution port 22a, one of the two distribution ports 22a adjacent to the directly-facing distribution port 22a is fully open with respect to the air supply port 23a, and the other The arrangement is such that the distribution port 22a is fully open with respect to the exhaust port 24a.
In the gas processing operation in which the gas G to be processed is sent to the switching valve device 4 through the gas introduction path 10, the rotational positions at which the two wind shielding plate portions 20a and 20b are opposed to the one distribution port 22a are intermittently rotated. In the state of the stop position of each time, the rotating valve body 18 and the distributor 15 are intermittently relatively rotated by the parallel pitch p of the distribution ports 22a,
In the air baking operation in which the clean gas OA for air baking is sent to the switching valve device 4 through the gas introduction path 10 instead of the gas G to be processed,
Each of the two wind shielding plate portions 20a, 20b is in a state of straddling two adjacent distribution ports 22a, and half of the distribution ports 22a communicate with the air supply port 23a, and the distribution ports 22a An empty baking first half step of sending an empty baking clean gas OA to the switching valve device 4 through the gas introduction passage 10 in a state where the relative rotation is stopped at the rotational position where the other half communicates with the exhaust port 24a. Carried out,
Thereafter, with the rotary valve body 18 and the distributor 15 rotated by 180 degrees relative to the rotation stop position in the first half of the baking process, the cleaning gas OA for baking is supplied through the gas introduction path 10. It is in the point which implements the empty baking second half process sent to the said switching valve apparatus 4. FIG.

この運転方法によれば、先ず装置構成として、弁板20における第1及び第2の2つの遮風板部分20a,20bの各々が1つの分配口22aに正対した状態において、その正対分配口22aに隣接する2つの分配口22aのうちの一方の分配口が給気口23a(図8において薄いグレー部分)に対して全開になり、かつ、他方の分配口22aが排気口24a(図8において濃いグレー部分)に対して全開になる配置関係にしてあるから、先述の従来装置(図11)に比べ、弁板20における給気口23a及び排気口24aの回転方向での開口幅θs,θr(中心角)を大きく確保することができる。   According to this operating method, first, as the device configuration, in the state where each of the first and second wind shielding plate portions 20a and 20b in the valve plate 20 is directly facing one distribution port 22a, the facing distribution is performed. One of the two distribution ports 22a adjacent to the port 22a is fully open with respect to the air supply port 23a (the light gray portion in FIG. 8), and the other distribution port 22a is the exhaust port 24a (FIG. 8, the opening width θs in the rotation direction of the air supply port 23a and the exhaust port 24a in the valve plate 20 as compared with the above-described conventional device (FIG. 11). , Θr (center angle) can be secured large.

そして、このように給気口23a及び排気口24aの開口幅θs,θr(中心角)を大きく確保しながらも、ガス処理運転では(図8(a)〜(b)参照)、2つの遮風板部分20a,20bの各々が1つの分配口22aに正対する回転位置を間欠回転における各回の停止位置とした状態で、回転弁体18と分配器15とを分配口22aの並設ピッチpずつ間欠的に相対回転させるから、1つの分配口22aに対して給気口23aとパージ用口25aとが同時に連通状態になることや、1つの分配口22aに対して排気口24aとパージ用口25aとが同時に連通状態になることも実質的に確実に防止することができる。   In this way, in the gas processing operation (see FIGS. 8A to 8B), the opening widths θs and θr (center angles) of the air supply port 23a and the exhaust port 24a are ensured to be large. With the rotational position where each of the wind plate portions 20a, 20b is directly facing one distribution port 22a being the stop position for each rotation in intermittent rotation, the rotary valve body 18 and the distributor 15 are arranged in parallel with the pitch p of the distribution ports 22a. Since the relative rotation is intermittently performed at a time, the supply port 23a and the purge port 25a are simultaneously in communication with one distribution port 22a, or the exhaust port 24a and the purge port are connected to one distribution port 22a. It is possible to substantially reliably prevent the opening 25a from being in communication with each other at the same time.

つまり、この運転方法によれば、給気口23aとパージ用口25aとの間でのガスリーク、及び、排気口24aとパージ用口25aとの間でのガスリークを従来装置と同様に防止しながらも、給気口23aとそれに対して対向連通する分配口22aとで形成される給気側通気路の断面積、及び、排気口24aとそれに対して対向連通する分配口22aとで形成される排気側通気路の断面積を大きく確保することができて、それら給気側通気路及び排気側通気路を通じて被処理ガスGや処理済ガスG′を通気抵抗の小さい状態で円滑に通気することができる   That is, according to this operation method, while preventing the gas leak between the air supply port 23a and the purge port 25a and the gas leak between the exhaust port 24a and the purge port 25a as in the conventional apparatus. Also, the cross-sectional area of the air supply side air passage formed by the air supply port 23a and the distribution port 22a facing and communicating with the air supply port 23a, and the exhaust port 24a and the distribution port 22a facing and communicating with the air supply port 23a are formed. A large cross-sectional area of the exhaust-side air passage can be secured, and the gas to be treated G and the treated gas G ′ can be smoothly ventilated through the air supply-side air passage and the exhaust-side air passage with a low airflow resistance. Can

そして、これらのことにより、被処理ガスG及び処理済ガスG′の送風動力を増大させることなく、装置の処理風量を増大させることができ、また、通気抵抗の低減とともに給気側と排気側との通気抵抗も均一化することができて、装置運転の安定性も高めることができる。   And by these things, the process air volume of an apparatus can be increased, without increasing the ventilation power of to-be-processed gas G and processed gas G ', and also the supply side and exhaust side with reduction of ventilation resistance. Can be made uniform, and the stability of the operation of the apparatus can be improved.

ところで、この種の蓄熱式ガス処理装置では、ガス処理運転において各蓄熱室8の室内で被処理ガスG中のヤニ成分が凝結して室内各部(特に蓄熱材層における被処理ガスGの流入部)に付着し、その付着量が次第に増加するため、適時にガス処理運転に代えて、清浄な高温ガスを各蓄熱室8に通過させることで、付着した凝結ヤニ成分を蒸散(又は乾燥剥離又は酸化)させて除去するいわゆる空焼き運転を行なう必要がある。   By the way, in this type of heat storage type gas processing apparatus, in the gas processing operation, the spear component in the gas to be processed G condenses in each of the heat storage chambers 8 and each part of the chamber (particularly the inflow portion of the gas to be processed G in the heat storage material layer). ) And the amount of adhesion gradually increases. Instead of gas treatment operation in a timely manner, a clean high-temperature gas is allowed to pass through each of the heat storage chambers 8 to evaporate (or dry exfoliate or adhere the condensed condensation component). It is necessary to perform a so-called empty-burning operation in which it is removed by oxidation).

これに対し、上記方法によれば、空焼き前半工程では(図9(a),図10(a)参照)、弁板20における2つの遮風板部分20a,20bの各々が受板21における隣り合う2つの分配口22aに跨る状態になって分配口22aの半数が弁板20における給気口23a(図10において薄いグレー部分)に連通し、かつ、分配口22aの他の半数が弁板20における排気口24a(図10において濃いグレー部分)に連通する回転位置において回転弁体18と分配器15との相対回転を停止させた状態で、空焼き用の清浄ガスOAをガス導入路10を通じて切換弁装置4に送るから、この空焼き前半工程では、給気口23aに連通する半数の分配口22aに対応する半数の蓄熱室8を入口側蓄熱室8iにするとともに、排気口24aに連通する他の半数の分配口22aに対応する残りの半数の蓄熱室8を出口側蓄熱室8oにした状態で、空焼き用の清浄ガスOAをガス導入路10−切換弁装置4−入口側蓄熱室8i−燃焼処理室5−出口側蓄熱室8o−切換弁装置4−ガス送出路11の順に通過させて、出口側蓄熱室8oとした半数の蓄熱室8に対して空焼き処理を施すことができる。   On the other hand, according to the above method, in the first half of the baking process (see FIGS. 9A and 10A), each of the two wind shielding plate portions 20a and 20b in the valve plate 20 is in the receiving plate 21. Half of the distribution ports 22a communicate with the air supply port 23a (the light gray portion in FIG. 10) in the valve plate 20, and the other half of the distribution ports 22a are valves. In a state where the relative rotation between the rotary valve body 18 and the distributor 15 is stopped at a rotational position communicating with the exhaust port 24a (the dark gray portion in FIG. 10) in the plate 20, the clean gas OA for empty baking is introduced into the gas introduction path. 10, the half-heat storage chamber 8 corresponding to half of the distribution ports 22a communicating with the air supply port 23a is changed to the inlet-side heat storage chamber 8i and the exhaust port 24a. Ream In the state where the remaining half of the heat storage chambers 8 corresponding to the other half of the distribution ports 22a are set as the outlet side heat storage chamber 8o, the clean gas OA for baking is supplied to the gas introduction path 10—the switching valve device 4—the inlet side heat storage. The half-burning process is performed on half of the heat storage chambers 8 which are passed through the chamber 8i, the combustion processing chamber 5, the outlet side heat storage chamber 8o, the switching valve device 4 and the gas delivery path 11 in this order. Can do.

また、空焼き後半工程では(図9(b),図10(b)参照)、回転弁体18と分配器15とを空焼き前半工程における回転停止位置から180度だけ相対回転させて停止させた状態で、空焼き用の清浄ガスOAをガス導入路10を通じて切換弁装置4に送るから、先の空焼き前半工程で出口側蓄熱室8oとした半数の蓄熱室8を入口側蓄熱室8iにするとともに、先の空焼き前半工程で入口側蓄熱室8iとした残りの半数の蓄熱室8を出口側蓄熱室8oとした状態で、空焼き前半工程と同様、空焼き用の清浄ガスOAをガス導入路10−切換弁装置4−入口側蓄熱室8i−燃焼処理室5−出口側蓄熱室8o−切換弁装置4−ガス送出路11の順に通過させて、出口側蓄熱室8oとした残りの半数の蓄熱室8に対して空焼き処理を施すことができる。   Further, in the second half baking process (see FIGS. 9B and 10B), the rotary valve body 18 and the distributor 15 are relatively rotated by 180 degrees from the rotation stop position in the first half baking process and stopped. In this state, since the clean gas OA for empty baking is sent to the switching valve device 4 through the gas introduction path 10, the half of the heat storage chambers 8 made into the outlet side heat storage chamber 8o in the previous half baking step is the inlet side heat storage chamber 8i. In the same manner as in the first half of the baking process, the clean gas OA for empty baking is used with the remaining half of the heat storage chambers 8i used as the inlet side heat storage chamber 8i in the first half of the previous baking process as the outlet heat storage chamber 8o. Gas passage 10-switching valve device 4-inlet side heat storage chamber 8i-combustion treatment chamber 5-outlet side heat storage chamber 8o-switching valve device 4-gas delivery path 11 in this order to form outlet side heat storage chamber 8o. The remaining half of the heat storage chambers 8 can be baked Kill.

即ち、上記方法によれば、空焼き前半工程及び空焼き後半工程の夫々において4室以上の蓄熱室8のうち半数の蓄熱室に対して一挙に空焼き処理を施すことができて、それら前半工程と後半工程との2工程で4室以上の蓄熱室8の全てに対する空焼き処理を完了することができ、これにより、空焼き運転の所要時間を効果的に短縮するとともに、空焼き運転を簡略化することができる。   That is, according to the above method, half of the four or more heat storage chambers 8 in the first half of the baking process and the second half of the baking process can be subjected to a single baking process at a time. It is possible to complete the baking process for all of the four or more heat storage chambers 8 in two processes, the second process and the latter process, thereby effectively reducing the time required for the baking process and performing the baking process. It can be simplified.

なお、この方法の実施において、空焼き運転では、導入した空焼き用の清浄ガスOAを燃焼用加熱器5aの運転により必要空焼き温度に加熱する加熱器運転方式、あるいは、燃焼用加熱器5aを運転するガス処理運転の終了に続き、そのガス処理運転時からの残留熱が燃焼処理室5及び蓄熱室8に残存する状態で空焼き運転を実施して、導入した空焼き用の清浄ガスOAを残留熱により必要空焼き温度に昇温させる残留熱利用方式のいずれを採用してもよい。   In the implementation of this method, in the empty baking operation, a heater operation method in which the introduced empty burning clean gas OA is heated to the required empty baking temperature by the operation of the combustion heater 5a, or the combustion heater 5a. After the end of the gas processing operation, the empty burning operation is performed in a state where the residual heat from the gas processing operation remains in the combustion processing chamber 5 and the heat storage chamber 8, and the introduced clean gas for baking Any of the residual heat utilization methods for raising the OA to the required baking temperature by residual heat may be adopted.

また、残留熱利用方式を採用すれば、上記方法により空焼き運転の所要時間を効果的に短縮し得ることとも相俟って、1日のガス処理運転の終了に続き空焼き運転を実施することができて、ガス処理運転のない休日に空焼き運転を行なうといったことを回避することができ、この点、残留熱利用方式の採用により空焼き運転の運転コストを効果的に低減し得ることに加えて、空焼き運転を含む装置メンテナンスの負担を効果的に軽減することができる。   In addition, if the residual heat utilization method is adopted, the time required for the empty baking operation can be effectively shortened by the above method, and the empty baking operation is performed following the end of the gas treatment operation for one day. It is possible to avoid performing the baking operation on a holiday without gas treatment operation, and in this respect, the operating cost of the baking operation can be effectively reduced by adopting the residual heat utilization method. In addition, it is possible to effectively reduce the burden of apparatus maintenance including empty baking operation.

本発明の第2特徴構成は、蓄熱式ガス処理装置に係り、その特徴は、
燃焼用加熱器を備える燃焼処理室に一端を連通させた4室以上の蓄熱室の夫々に通気性の蓄熱材層を配備し、これら蓄熱室夫々の他端を切換弁装置に接続し、
この切換弁装置は、弁板を備える回転弁体と受板を備える分配器とを有して、前記弁板を前記受板に近接対向させた状態で前記回転弁体と前記分配器とを相対回転させる構成にし、
前記分配器には、前記蓄熱室夫々の他端に対して各別に常時連通する複数の分配室を前記相対回転の回転軸芯周りに並べて区画形成し、
前記分配器における前記受板には、前記分配室を前記受板において各別に開口させる分配口を前記相対回転の回転軸芯周りで等ピッチに並べて形成し、
前記回転弁体には、ガス導入路に常時連通する給気室と、パージ用ガス路に常時連通するパージ用室と、ガス送出路に常時連通する排気室とを前記相対回転の回転軸芯周りに並べて区画形成し、
前記回転弁体における前記弁板には、隣り合わない2つの前記分配口に対し前記相対回転において同時にかつ各別に正対する第1及び第2の2つの遮風板部分を形成し、
これら第1及び第2の2つの遮風板部分のうち第1遮風板部分には、前記パージ用室を前記弁板において開口させるパージ用口を形成し、
前記2つの遮風板部分どうしの間の弁板部分のうち、前記相対回転において前記第1遮風板部分よりも先行する先行側の弁板部分には、前記給気室を前記弁板において開口させる給気口を形成し、
前記相対回転において前記第1遮風板部分よりも後行する後行側の弁板部分には、前記排気室を前記弁板において開口させる排気口を形成した蓄熱式ガス処理装置であって、
前記弁板における前記2つの遮風板部分と前記給気口と前記排気口との相対的な配置関係を、前記2つの遮風板部分の各々が1つの前記分配口に正対した状態において、その正対分配口に隣接する2つの前記分配口のうちの一方の分配口が前記給気口に対して全開になり、かつ、他方の分配口が前記排気口に対して全開になる配置関係にし、
前記切換弁装置を操作する制御手段を設け、
この制御手段は、前記ガス導入路を通じて被処理ガスを前記切換弁装置に送るガス処理運転において、前記2つの遮風板部分の各々が1つの前記分配口に正対する回転位置を間欠回転における各回の停止位置とした状態で、前記回転弁体と前記分配器とを前記分配口の並設ピッチずつ間欠的に相対回転させ、
被処理ガスに代え空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き運転では、
前記2つの遮風板部分の各々が隣り合う2つの前記分配口に跨る状態になって前記分配口の半数が前記給気口に連通し、かつ、前記分配口の他の半数が前記排気口に連通する回転位置において前記相対回転を停止させた状態で、空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き前半工程を実施し、
その後、前記回転弁体と前記分配器とを空焼き前半工程における回転停止位置から180度だけ相対回転させて停止させた状態で、空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き後半工程を実施する構成にしてある点にある。
The second characteristic configuration of the present invention relates to a regenerative gas processing apparatus,
A breathable heat storage material layer is provided in each of the four or more heat storage chambers having one end communicating with a combustion processing chamber having a combustion heater, and the other end of each of the heat storage chambers is connected to a switching valve device;
The switching valve device includes a rotary valve body including a valve plate and a distributor including a receiving plate, and the rotary valve body and the distributor are disposed in a state where the valve plate is closely opposed to the receiving plate. With a relative rotation configuration,
In the distributor, a plurality of distribution chambers that always communicate with each other with respect to the other end of each of the heat storage chambers are arranged around the rotation axis of the relative rotation to form a partition,
In the receiving plate in the distributor, a distribution port for opening the distribution chamber separately in the receiving plate is formed side by side at an equal pitch around the rotation axis of the relative rotation,
The rotary valve body includes a supply chamber that is always in communication with the gas introduction path, a purge chamber that is always in communication with the purge gas path, and an exhaust chamber that is in continuous communication with the gas delivery path. Form the compartments side by side,
The valve plate in the rotary valve body is formed with two first and second wind shielding plate portions that face each other simultaneously and separately in the relative rotation with respect to the two distribution ports that are not adjacent to each other,
Of the first and second wind shielding plate portions, the first wind shielding plate portion is formed with a purge port for opening the purge chamber in the valve plate,
Among the valve plate portions between the two wind shield plate portions, the valve chamber on the leading side preceding the first wind shield plate portion in the relative rotation is provided with the air supply chamber in the valve plate. Form an air supply opening to open,
In the relative rotation, a regenerative gas processing device in which an exhaust port that opens the exhaust chamber in the valve plate is formed in a valve plate portion on the subsequent side that follows the first wind shielding plate portion,
The relative arrangement relationship between the two wind shielding plate portions, the air supply port, and the exhaust port in the valve plate is such that each of the two wind shielding plate portions faces one distribution port. An arrangement in which one of the two distribution ports adjacent to the directly-distributed distribution port is fully open with respect to the air supply port, and the other distribution port is fully open with respect to the exhaust port. Relationship,
A control means for operating the switching valve device;
In the gas processing operation in which the gas to be processed is sent to the switching valve device through the gas introduction path, the control means sets the rotational position at which each of the two wind shielding plate portions directly faces one of the distribution ports in each intermittent rotation. In the state of the stop position, the rotating valve body and the distributor are intermittently relatively rotated by the pitch of the distribution ports arranged in parallel,
In the air baking operation in which the clean gas for air baking is sent to the switching valve device through the gas introduction path instead of the gas to be treated,
Each of the two wind shielding plate portions straddles two adjacent distribution ports so that half of the distribution ports communicate with the air supply port, and the other half of the distribution ports are the exhaust ports. In the state where the relative rotation is stopped at the rotational position communicating with the air, the first half step of empty baking is performed in which the clean gas for baking is sent to the switching valve device through the gas introduction path.
After that, in the state where the rotary valve body and the distributor are relatively rotated by 180 degrees from the rotation stop position in the first half of the baking process and stopped, the switching valve device supplies the clean gas for baking through the gas introduction path. It is in the point which has the structure which implements the empty baking second half process sent to No.1.

この構成によれば、制御手段による切換弁装置の操作により回転弁体と分配器とを分配口の並設ピッチずつ間欠的に相対回転させる形態で、前述した第1特徴構成の運転方法によるガス処理運転を自動的に実施することができ、また、制御手段による切換弁装置の操作により空焼き前半工程及び空焼き後半工程の夫々において所定の停止位置で回転弁体と分配器との相対回転を停止させる形態で、前述した第1特徴構成の運転方法による空焼き運転を自動的に実施することができる。   According to this configuration, the gas according to the operation method of the first characteristic configuration described above is configured in such a manner that the rotary valve body and the distributor are intermittently rotated relative to each other by the parallel pitch of the distribution ports by the operation of the switching valve device by the control means. The processing operation can be carried out automatically, and the relative rotation between the rotary valve body and the distributor at a predetermined stop position in each of the first half of the baking process and the second half of the baking process by operating the switching valve device by the control means. Can be automatically performed by the operation method of the first characteristic configuration described above.

本発明の第3特徴構成は、第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記パージ用口は、前記空焼き運転において前記受板のうち前記第1遮風板部分が跨る2つの前記分配口どうしの間の受板部分に正対する状態に配設してある点にある。
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the second feature configuration.
The purge port is disposed in a state of facing the receiving plate portion between the two distribution ports between the first wind shielding plate portions of the receiving plate in the empty baking operation. .

この構成によれば、前記空焼き運転においてパージ用口が、受板のうち第1遮風板部分が跨る2つの分配口どうしの間の受板部分に正対する状態になって、その受板部分により閉塞される状態になることで、空焼き運転下にある燃焼処理室や蓄熱室における高温の空焼き用清浄ガスがパージ用ガスの通気経路を通じて装置外部に持ち出されることや、逆に装置外部の低温ガスがパージ用ガスの通気経路を通じて空焼き運転下にある燃焼処理室や蓄熱室に持ち込まれることを回避することができる。   According to this configuration, in the empty baking operation, the purge port is in a state of facing the receiving plate portion between the two distribution ports between the first wind shielding plate portions of the receiving plate, and the receiving plate. By being in a state of being blocked by the part, high-temperature air-cleaning clean gas in the combustion processing chamber or heat storage chamber under air-burning operation is taken out of the device through the ventilation path of the purge gas, and conversely It is possible to avoid the external low-temperature gas from being brought into the combustion processing chamber or the heat storage chamber under the idling operation through the purge gas ventilation path.

即ち、このことにより、空焼き運転での熱ロスを効果的に低減することができて、空焼き運転を一層効率的に実施することができ、そして、前記の加熱器運転方式を採用する空焼き運転では、上記熱ロスの低減分だけ空焼き運転の運転コストもさらに低減することができる。   That is, this makes it possible to effectively reduce the heat loss in the air-burning operation, perform the air-burning operation more efficiently, and use the heater operation method described above. In the baking operation, the operating cost of the empty baking operation can be further reduced by the amount of reduction in the heat loss.

また、前記残留熱利用方式を採用する空焼き運転では、上記熱ロスの低減分だけ残留熱を一層有効に空焼き用清浄ガスの昇温に利用することができ、前述した第1特徴構成の運転方法による空焼き運転所要時間の短縮と相俟って、残留熱利用方式を採りながらも空焼き運転の所要時間をさらに効果的に短縮することができる。   Further, in the baking operation employing the residual heat utilization method, the residual heat can be used more effectively for raising the temperature of the clean gas for baking by the amount corresponding to the reduction of the heat loss. Combined with the shortening of the time required for the baking operation by the operation method, the time required for the baking operation can be further effectively reduced while adopting the residual heat utilization method.

なお、上記構成の実施において、受板部分によりパージ用口が閉塞されるとは、パージ用口が正対する受板部分により完全に閉塞される形態に限らず、パージ用口が正対する受板部分により半閉塞状態なる形態も含むものであり、この半閉塞状態の場合でも上記効果は相応程度に得ることができる。   In the implementation of the above configuration, the purge port being blocked by the receiving plate portion is not limited to the form in which the purge port is completely closed by the directly facing receiving plate portion. It includes a form in which the portion is semi-closed, and even in this semi-closed state, the above-described effect can be obtained to an appropriate extent.

また、第1特徴構成の運転方法によるガス処理運転においてパージ対象蓄熱室に通過させるパージ用ガスは、燃焼処理室からパージ対象蓄熱室へ直接に流入させる処理済ガスの一部や、ガス送出路から分流した処理済ガスの一部、あるいは、他のガス原から導くガスなど、パージ対象蓄熱室のパージ処理に用いることができるガスであれば、種々のガスを採用することができ、また、パージ対象蓄熱室におけるパージ用ガスの通過向きも燃焼処理室の側からパージ対象蓄熱室に流入する通過向き、あるいは、それとは逆にパージ対象蓄熱室から燃焼処理室の側に流出する通過向きのいずれであってもよい。   In addition, the purge gas that passes through the purge target heat storage chamber in the gas processing operation by the operation method of the first characteristic configuration is a part of the processed gas that directly flows from the combustion processing chamber to the purge target heat storage chamber, or a gas delivery path. Various gases can be adopted as long as they can be used for purging of the heat storage chamber to be purged, such as a part of the treated gas diverted from the gas, or a gas derived from another gas source, The purge gas passage direction in the purge target heat storage chamber is also the direction in which the purge gas flows into the purge target heat storage chamber from the side of the combustion processing chamber, or conversely the direction of flow out of the purge target heat storage chamber to the combustion processing chamber side. Either may be sufficient.

ガス処理装置の側面図Side view of gas processing equipment ガス処理装置の平面図Plan view of gas processing equipment 4種蓄熱室の移行過程を示す概略平面図Schematic plan view showing the transition process of the four heat storage chambers 切換弁装置の側面視断面図Side view sectional view of switching valve device 切換弁装置の側面視断面図Side view sectional view of switching valve device 回転弁体の分解斜視図Exploded perspective view of rotary valve body ガス処理運転におけるガス流れの説明図Explanatory drawing of gas flow in gas processing operation ガス処理運転における回転弁体の切り換え動作の説明図Explanatory drawing of switching operation of rotary valve body in gas processing operation 空焼き運転におけるガス流れの説明図Explanatory drawing of gas flow in empty baking operation 空焼き運転における回転弁体の切り換え動作の説明図Explanatory drawing of the switching operation of the rotary valve body in the idling operation 従来装置における切換弁装置の概略構成図Schematic configuration diagram of switching valve device in conventional device

図1,図2は蓄熱式ガス処理装置を示し、この蓄熱式ガス処理装置は、室壁1の内壁面に断熱材2を付設した直方体形状の断熱室3と、その横一側方に設置した切換弁装置4とを備え、断熱室3の内部は、互いに開放された上側の燃焼処理室5とその下に位置する蓄熱室領域6とに区分し、燃焼処理室5には、燃焼用加熱器としてのバーナ5aを配備してある。   1 and 2 show a heat storage type gas treatment device, which is installed in a rectangular parallelepiped heat insulation chamber 3 in which a heat insulating material 2 is attached to the inner wall surface of the chamber wall 1 and on the lateral side thereof. The inside of the heat insulation chamber 3 is divided into an upper combustion processing chamber 5 that is open to each other and a heat storage chamber region 6 located therebelow. A burner 5a as a heater is provided.

断熱室3の蓄熱室領域6には、その領域を耐熱金属製の内部仕切壁7により区画することで、それぞれの上端部が燃焼処理室5に開口する8室の蓄熱室8を区画形成してあり、この区画形成において8室の蓄熱室8は全て横一列に並べた状態に配置してある。   In the heat storage chamber region 6 of the heat insulation chamber 3, the region is partitioned by an internal partition wall 7 made of heat-resistant metal, so that eight heat storage chambers 8 whose upper ends open to the combustion processing chamber 5 are partitioned. In this partition formation, the eight heat storage chambers 8 are all arranged in a horizontal row.

各蓄熱室8には、ハニカム構造にした通気性の蓄熱材層8aを配備してあり、各蓄熱室8の下部は、蓄熱材層8aに対する通風用のチャンバ部分8b(小室部分)にしてある。   Each heat storage chamber 8 is provided with a breathable heat storage material layer 8a having a honeycomb structure, and the lower portion of each heat storage chamber 8 is a chamber portion 8b (small chamber portion) for ventilating the heat storage material layer 8a. .

各蓄熱室8の下部チャンバ部分8bは、各別の給排路9を通じて切換弁装置4に接続してあり、また、切換弁装置4には、揮発性有機成分などを含む被処理ガスGを切換弁装置4に送るガス導入路10を接続するとともに、断熱室3の燃焼処理室5で処理して浄化した処理済ガスG′を切換弁装置4から送出するガス送出路11を接続してある。   The lower chamber portion 8b of each heat storage chamber 8 is connected to the switching valve device 4 through a separate supply / exhaust passage 9, and the gas to be treated G containing volatile organic components and the like is supplied to the switching valve device 4. A gas introduction path 10 to be sent to the switching valve device 4 is connected, and a gas delivery path 11 for sending the treated gas G ′ processed and purified in the combustion processing chamber 5 of the heat insulation chamber 3 from the switching valve device 4 is connected. is there.

切換弁装置4は、図3,図7に示す如く8室の蓄熱室8のうち、3室を被処理ガスGが通過する入口側蓄熱室8iとし、他の3室を処理済ガスG′が通過する出口側蓄熱室8oとし、他の1室をパージ用ガスG″が通過するパージ対象蓄熱室8pにし、残りの1室をガス通過を遮断した遮風蓄熱室8sとして、それら4種の蓄熱室8i,8o,8p,8sを8室の蓄熱室8のうちでサイクル的に順次に切り換えるものである。   As shown in FIGS. 3 and 7, the switching valve device 4 includes three heat storage chambers 8 as inlet side heat storage chambers 8i through which the gas to be processed G passes, and the other three chambers as processed gas G ′. The outlet side heat storage chamber 8o through which the gas passes, the other one chamber as the purge target heat storage chamber 8p through which the purge gas G ″ passes, and the remaining one chamber as the wind-insulated heat storage chamber 8s that blocks gas passage, these four types The heat storage chambers 8i, 8o, 8p, and 8s are sequentially switched among the eight heat storage chambers 8 in a cycle.

つまり、切換弁装置4は、基本的には、ガス導入路10から送られる被処理ガスGを、対応給排路9を通じて3室の入口側蓄熱室8iの下部チャンバ部分8bに送ることで、その被処理ガスGを入口側蓄熱室8iの蓄熱材層8aに上向きに通過させて燃焼処理室5に導く。   That is, the switching valve device 4 basically sends the processing gas G sent from the gas introduction path 10 to the lower chamber portion 8b of the three inlet side heat storage chambers 8i through the corresponding supply / discharge path 9, The gas to be treated G is passed upward through the heat storage material layer 8a of the inlet side heat storage chamber 8i and guided to the combustion processing chamber 5.

また、これに伴い、燃焼処理室5から出口側蓄熱室8oに送り出されて出口側蓄熱室8oの蓄熱材層8aを下向きに通過する高温の処理済ガスG′を、出口側蓄熱室8の下部チャンバ部分8bから対応給排路9を通じ切換弁装置4に戻してガス送出路11へ送出する。   Further, along with this, the high temperature processed gas G ′ that is sent from the combustion processing chamber 5 to the outlet side heat storage chamber 8 o and passes downward through the heat storage material layer 8 a of the outlet side heat storage chamber 8 o is converted into the outlet side heat storage chamber 8. From the lower chamber portion 8 b, it returns to the switching valve device 4 through the corresponding supply / discharge passage 9 and is sent out to the gas delivery passage 11.

このガス処理運転において、上記4種の蓄熱室8i,8o,8p,8sを切換弁装置4によりサイクル的に順次に切り換えることで、先の工程において高温処理済ガスG′の通過により蓄熱された出口側蓄熱室8oの蓄熱材層8aを、後の工程では入口側蓄熱室8iの蓄熱材層8aにして、その蓄熱材層8aに被処理ガスGを通過させることで、燃焼処理室5に導く被処理ガスGを予熱する。   In this gas processing operation, the four types of heat storage chambers 8i, 8o, 8p, and 8s are sequentially switched cyclically by the switching valve device 4 so that heat is stored by passing the high-temperature processed gas G 'in the previous step. The heat storage material layer 8a of the outlet-side heat storage chamber 8o is used as the heat storage material layer 8a of the inlet-side heat storage chamber 8i in a later step, and the gas G to be processed is passed through the heat storage material layer 8a. The gas G to be treated is preheated.

なお、切換弁装置4は、4種の蓄熱室8i,8o,8p,8sのサイクル的な順次切り換えとして、入口側蓄熱室8iにした蓄熱室8は次に出口側蓄熱室8oに切り換えるのに先立ちパージ対象蓄熱室8pに切り換えて、そのパージ対象蓄熱室8pにパージ用ガスG″(本例では燃焼処理室5から送出される処理済ガスの一部)を通過させることで、入口側蓄熱室8iからの切り換えにおいて蓄熱材層8aに残る被処理ガスGをパージ用ガスG″により掃気する。   The switching valve device 4 is configured to sequentially switch the four types of heat storage chambers 8i, 8o, 8p, and 8s so that the heat storage chamber 8 that has been changed to the inlet side heat storage chamber 8i is then switched to the outlet side heat storage chamber 8o. Prior to switching to the purge target heat storage chamber 8p, the purge gas G ″ (a part of the processed gas delivered from the combustion processing chamber 5 in this example) is passed through the purge target heat storage chamber 8p, so that the inlet side heat storage The gas to be processed G remaining in the heat storage material layer 8a in the switching from the chamber 8i is scavenged by the purge gas G ″.

また、切換弁装置4は、4種の蓄熱室8i,8o,8p,8sをサイクル的に順次に切り換えるのに、同図3に示す如く、横一列の蓄熱室8列における終端(図中右端)から始端(図中左端)への戻り移行時を除いて、3室の入口側蓄熱室8iが隣接状態で蓄熱室8列の始端から終端へ移行するとともに、同じく3室の出口側蓄熱室8oが隣接状態で蓄熱室8列の始端から終端へ移行し、さらに、入口側蓄熱室8iと出口側蓄熱室8oとの境界部が2箇所存在することに対し、パージ対象蓄熱室8pが一方の境界部に位置して蓄熱室8列の始端から終端へ移行するとともに、遮風蓄熱室8sが他方の境界部に位置して蓄熱室8列の始端から終端へ移行する状態に、4種の蓄熱室8i,8o,8p,8sを相互切り換えする構成にしてある。   In addition, the switching valve device 4 switches the four types of heat storage chambers 8i, 8o, 8p, and 8s sequentially in a cycle. As shown in FIG. ) To the start end (the left end in the figure), and the three inlet side heat storage chambers 8i move from the start end to the end of the eight rows of heat storage chambers in the adjacent state, and are also the three outlet side heat storage chambers. 8o shifts from the start to the end of the 8 rows of heat storage chambers in the adjacent state, and furthermore, there are two boundary portions between the inlet side heat storage chamber 8i and the outlet side heat storage chamber 8o, whereas the purge target heat storage chamber 8p has one side. 4 states in which the wind-insulated heat storage chamber 8s is located at the other boundary portion and moves from the start end to the end of the heat storage chamber 8 row. The heat storage chambers 8i, 8o, 8p, and 8s are switched to each other.

即ち、8室の蓄熱室8を横一列に並べて配置するとともに、4種の蓄熱室8i,8o,8p,8sの切り換えを上記の如く行なうことで、入口側蓄熱室8iから被処理ガスGが漏出したとしても、その漏出した被処理ガスGが出口側蓄熱室8oを通過する処理済ガスG′に混入して、未処理のままで処理済ガスG′とともに装置外に持ち出されることを防止する。   That is, the eight heat storage chambers 8 are arranged in a horizontal row, and the four types of heat storage chambers 8i, 8o, 8p, and 8s are switched as described above, so that the gas G to be treated is supplied from the inlet side heat storage chamber 8i. Even if it leaks, the leaked gas to be processed G is mixed into the processed gas G ′ passing through the outlet side heat storage chamber 8o and prevented from being taken out of the apparatus together with the processed gas G ′ without being processed. To do.

切換弁装置4は、蓄熱室8の横一列の並び方向に対して平面視で直交する方向で断熱室3の横一側方に配置してあり、また、切換弁装置4から延出する8本の給排路9は全て、断熱室3の側壁のうち切換弁装置4の側に位置する1つの側壁1aに接続して対応蓄熱室8の下部チャンバ部分8bに開口させてある。   The switching valve device 4 is arranged on one lateral side of the heat insulating chamber 3 in a direction orthogonal to the arrangement direction of the horizontal row of the heat storage chambers 8 in a plan view, and extends from the switching valve device 4. All the supply / discharge passages 9 are connected to one side wall 1 a located on the switching valve device 4 side of the side wall of the heat insulation chamber 3 and opened to the lower chamber portion 8 b of the corresponding heat storage chamber 8.

そして、断熱室3の側壁のうち切換弁装置4とは反対側に位置する側壁1bには、8室の全ての蓄熱室8に対する各別の点検保守用扉12を蓄熱室8列とともに横一列に並べて配設してあり、このような配設形態にすることで、各給排路9の通気抵抗を均一化して上記4種の蓄熱室8i,8o,8p,8sの相互切り換えを伴うガス処理運転を安定化するように、また、点検保守用扉12を給排路9による場所的制約を受けずに使用し易い状態に配設し得るようにしてある。   And in the side wall 1b located in the opposite side to the switching valve apparatus 4 among the side walls of the heat insulation chamber 3, each separate maintenance door 12 with respect to all the eight heat storage chambers 8 is arranged in a horizontal row with the eight heat storage chambers. By arranging in such an arrangement form, the gas flow resistance of each of the supply and exhaust passages 9 is made uniform, and the gas accompanied by mutual switching of the four types of heat storage chambers 8i, 8o, 8p, and 8s is provided. In order to stabilize the processing operation, the inspection / maintenance door 12 can be arranged in an easy-to-use state without being restricted by the supply / exhaust path 9.

各給排路9は縦長長方形の断面形状で断熱室3の側壁1aに接続して各蓄熱室8の下部チャンバ部分8bに開口させてあり、また、各蓄熱室8の下部チャンバ部分8bには、給排路9の接続口9aと蓄熱材層8aとにわたるガス流を案内する案内手段として複数のガイドベーン13を、給排路接続口9aから見て手前に配置するガイドベーン13ほど高い位置に配置して並設してある。   Each supply / discharge path 9 has a vertically long rectangular cross section and is connected to the side wall 1a of the heat insulating chamber 3 so as to open to the lower chamber portion 8b of each heat storage chamber 8, and the lower chamber portion 8b of each heat storage chamber 8 includes As a guide means for guiding the gas flow between the connection port 9a of the supply / discharge passage 9 and the heat storage material layer 8a, a position higher than the guide vane 13 disposed in front of the supply / discharge passage connection port 9a. Arranged side by side.

つまり、これらのことで、給排路接続口9aから流入した被処理ガスGの蓄熱材層8aに向う過程での横向きから上向きへの向き変化、及び、蓄熱材層8aを通過した処理済ガスG′の給排気接続口9aに向う過程での下向きから横向きへの向き変化を円滑にするとともに、給排路接続口9aから流入した被処理ガスGを蓄熱材層8aに対して偏りなく均一に通過させる。   That is, by these things, the direction change from the horizontal direction to the upward direction in the process which goes to the thermal storage material layer 8a of the to-be-processed gas G which flowed in from the supply / discharge channel connection port 9a, and the processed gas which passed the thermal storage material layer 8a In the process of G ′ toward the air supply / exhaust connection port 9a, the direction change from the downward direction to the horizontal direction is made smooth, and the gas to be treated G flowing from the supply / exhaust path connection port 9a is uniform with respect to the heat storage material layer 8a. To pass through.

切換弁装置4は、具体的には図4〜図6に示すように、蓄熱室8の横一列の並び方向に対して平面視で直交する方向に延びる回転軸14を備え、この回転軸14を中心として断熱室3の側から順に分配器15と弁体器16と気室器17とを並設して構成してある。   Specifically, as shown in FIGS. 4 to 6, the switching valve device 4 includes a rotating shaft 14 that extends in a direction perpendicular to the arrangement direction of the horizontal row of the heat storage chambers 8 in a plan view. The distributor 15, the valve body 16 and the air chamber 17 are arranged in order from the heat insulation chamber 3 side.

弁体器16には回転弁体18を収容してあり、この回転弁体18は、回転駆動手段としてのモータ19による回転軸14の駆動回転により回転軸14と一体的に回転し、これに対し、回転軸14が貫通する分配器15、弁体器16,気室器17は、回転軸14の回転を許す状態にして固定されている。   A rotary valve body 18 is accommodated in the valve body 16, and the rotary valve body 18 rotates integrally with the rotary shaft 14 by driving rotation of the rotary shaft 14 by a motor 19 as a rotary drive means. On the other hand, the distributor 15, the valve body 16, and the air chamber unit 17 through which the rotating shaft 14 passes are fixed so as to allow the rotating shaft 14 to rotate.

回転弁体18は、回転軸14に対して直交する姿勢の円板状の弁板20を備え、分配器15は、回転軸14に対して直交する姿勢で回転弁体18の弁板20に対して近接状態で対向する受板21を備えており、弁板20は、回転弁体18の回転に伴い受板21に対する近接対向状態を保って回転する。   The rotary valve body 18 includes a disc-like valve plate 20 in a posture orthogonal to the rotary shaft 14, and the distributor 15 is attached to the valve plate 20 of the rotary valve body 18 in a posture orthogonal to the rotary shaft 14. On the other hand, a receiving plate 21 that is opposed to each other in the proximity state is provided, and the valve plate 20 rotates while maintaining the proximity facing state with respect to the receiving plate 21 as the rotary valve body 18 rotates.

分配器15には、各蓄熱室8の下部チャンバ部分8bを対応給排路9を通じて各別に連通させた8室の分配室22を回転軸14周りに並べて区画形成してあり、分配器15における受板21には、これら分配室22を受板21において各別に開口させる分配口22aを回転軸14周りで等ピッチpに並べて形成してある。   In the distributor 15, eight distribution chambers 22 in which the lower chamber portions 8 b of the respective heat storage chambers 8 are individually communicated with each other through the corresponding supply / exhaust passages 9 are arranged around the rotating shaft 14. In the receiving plate 21, distribution ports 22 a that open the distribution chambers 22 in the receiving plate 21 are arranged at equal pitches p around the rotation shaft 14.

一方、回転弁体18の内部には、給気室23と排気室24とパージ用室25とを回転軸14周りに並べて区画形成してあり、給気室23は、回転弁体18の回転にかかわらず、気室器17に接続したガス導入路10に対し、気室器17の内部空間17a及び回転弁体18に形成した流入口26を通じて常時連通する。   On the other hand, an air supply chamber 23, an exhaust chamber 24, and a purge chamber 25 are arranged around the rotation shaft 14 inside the rotary valve body 18, and the air supply chamber 23 is a rotation of the rotary valve body 18. Regardless, the gas introduction path 10 connected to the air chamber 17 is always in communication with the internal space 17a of the air chamber 17 and the inlet 26 formed in the rotary valve body 18.

また同様に、排気室24は、回転弁体18の回転にかかわらず、弁体器16に接続したガス送出路11に対し、弁体器16の内部空気16a及び回転弁体18に形成した流出口27を通じて常時連通する。   Similarly, the exhaust chamber 24 has a flow formed in the internal air 16 a of the valve body 16 and the rotary valve body 18 with respect to the gas delivery path 11 connected to the valve body 16 regardless of the rotation of the rotary valve body 18. It always communicates through the exit 27.

そしてまた、パージ用室25は、回転弁体18の回転にかかわらず、気室器17に接続したパージ用ガス路28に対し、回転軸14に形成した導入口14a、回転軸14の内部に形成した軸内路14b、回転軸14に形成した導出口14c、気室器17内の区画室17bを通じて常時連通する。   In addition, the purge chamber 25 has an introduction port 14 a formed in the rotary shaft 14 inside the rotary shaft 14 with respect to the purge gas path 28 connected to the gas chamber 17 regardless of the rotation of the rotary valve body 18. It always communicates through the formed in-shaft path 14 b, the outlet 14 c formed in the rotating shaft 14, and the compartment 17 b in the air chamber 17.

なお、本例では、燃焼処理室5から送出される処理済ガスG′の一部をパージ用ガスG″としてパージ対象蓄熱室8pに通過させるようにしてあり、パージ対象蓄熱室8pを通過したパージ用ガスG″(即ち、残留被処理ガスGを含んだパージ用ガスG″)は上記パージ用ガス路28を通じガス導入路10の被処理ガスGに混合して再処理する。   In this example, a part of the processed gas G ′ delivered from the combustion processing chamber 5 is passed through the purge target heat storage chamber 8p as the purge gas G ″ and passed through the purge target heat storage chamber 8p. The purge gas G ″ (that is, the purge gas G ″ containing the residual process gas G) is mixed with the process gas G in the gas introduction path 10 through the purge gas path 28 and reprocessed.

回転弁体18の弁板20には、回転弁体18の回転において、分配器15の受板21における隣り合わない2つの分配口22aに対して同時かつ各別に遮蔽状態に正対する第1及び第2の2つの遮風板部分20a,20bを形成してあり、これら2つの遮風板部分20a,20bのうち第1遮風板部分20aには、回転弁体18内のパージ用室25を弁板20において開口させるパージ用口25aを形成してある。   The valve plate 20 of the rotary valve body 18 includes a first and a second which face each other simultaneously and separately with respect to two non-adjacent distribution ports 22a in the receiving plate 21 of the distributor 15 when the rotary valve body 18 rotates. The second two wind shielding plate portions 20a and 20b are formed, and the purge chamber 25 in the rotary valve body 18 is provided in the first wind shielding plate portion 20a of the two wind shielding plate portions 20a and 20b. Is formed in the valve plate 20.

また、弁板20において、これら第1及び第2の2つの遮風板部分20a,20bどうしの間の一対の弁板部分のうち、回転弁体18の回転において第1遮風板部分20aよりも先行する先行側の弁板部分には、回転弁体18内の給気室23を弁板20において開口させる給気口23aを形成してあり、同様に、回転弁体18の回転において第1遮風板部分20aよりも後行する後行側の弁板部分には、回転弁体18内の排気室24を弁板20において開口させる排気口24aを形成してある。   Further, in the valve plate 20, of the pair of valve plate portions between the first and second two wind shielding plate portions 20a and 20b, the rotation of the rotary valve body 18 causes the first wind shielding plate portion 20a to rotate. The leading valve plate portion is also provided with an air supply port 23a for opening the air supply chamber 23 in the rotary valve body 18 in the valve plate 20. Similarly, in the rotation of the rotary valve body 18 An exhaust port 24 a that opens the exhaust chamber 24 in the rotary valve body 18 in the valve plate 20 is formed in the valve plate portion on the downstream side that follows the one wind shielding plate portion 20 a.

この構成により、図8に示すように、回転弁体18の回転に伴い、分配器15の受板21における各分配口22aに対し、回転弁体18の弁板20における給気口23a(図において薄いグレー部分)、パージ用口25a、排気口24a(図において濃いグレー部分)、開口のない第2遮風板部分20bをその順で順次に対向させ、ガス導入路10から送られる被処理ガスGは、給気口23aとそれに対して対向連通状態にある分配口22aとで形成される給気側通気路を通じて入口側蓄熱室8iとする蓄熱室8に送る。   With this configuration, as shown in FIG. 8, as the rotary valve body 18 rotates, the air supply port 23 a (see FIG. 8) in the valve plate 20 of the rotary valve body 18 with respect to each distribution port 22 a in the receiving plate 21 of the distributor 15. In FIG. 5, the purging port 25 a, the exhaust port 24 a (dark gray portion in the figure), and the second wind shielding plate portion 20 b having no opening are sequentially opposed to each other in this order and are processed from the gas introduction path 10. The gas G is sent to the heat storage chamber 8 serving as the inlet-side heat storage chamber 8i through the air supply side air passage formed by the air supply port 23a and the distribution port 22a in communication with the air supply port 23a.

また、燃焼処理室5からパージ対象蓄熱室8pを通過したパージ用ガスG″は、パージ用口25aとそれに対して対向連通状態にある分配口22aとで形成されるパージ用通気路を通じてパージ用ガス路28に送る。   The purge gas G ″ that has passed through the purge target heat storage chamber 8p from the combustion processing chamber 5 is purged through a purge vent formed by the purge port 25a and the distribution port 22a that is in communication with the purge port 25a. Send to gas path 28.

これに併行して、出口側蓄熱室8oとする蓄熱室8から送出される処理済ガスG′は、排気口24aとそれに対して対向連通状態にある分配口22aとで形成される排気側通気路を通じてガス送出路11へ導く。   At the same time, the treated gas G ′ delivered from the heat storage chamber 8 serving as the outlet-side heat storage chamber 8o is an exhaust-side ventilation formed by the exhaust port 24a and the distribution port 22a in an opposed communication state with the exhaust port 24a. It leads to the gas delivery path 11 through the path.

また、1つの分配口22aは開口のない第2遮風板部分20bの正対により閉塞し、これにより、その閉塞分配口22aに対応する蓄熱室8を遮風蓄熱室8sとして、その蓄熱室8に対するガス通過を遮断する。   Further, one distribution port 22a is closed by the direct facing of the second wind shielding plate portion 20b having no opening, whereby the heat storage chamber 8 corresponding to the closed distribution port 22a is defined as the wind shield heat storage chamber 8s and the heat storage chamber. The gas passage to 8 is blocked.

そして、このように回転弁体18の回転により入口側蓄熱室8iとパージ対象蓄熱室8pと出口側蓄熱室8oと遮風蓄熱室8sとの4種の蓄熱室8をサイクル的に相互切り換えするのに対して、横一列の蓄熱室8列におけるそれら4種の蓄熱室8i,8p,8o,8sの始端から終端への移行が前述の図3に示す如き移行形態になるように配列して、切換弁装置4から延出する8本の給排路9を各蓄熱室8にわたらせてある。   Then, the four types of heat storage chambers 8 of the inlet side heat storage chamber 8i, the purge target heat storage chamber 8p, the outlet side heat storage chamber 8o, and the wind-shielded heat storage chamber 8s are switched cyclically by the rotation of the rotary valve body 18 in this way. On the other hand, the transition from the start end to the end of the four types of heat storage chambers 8i, 8p, 8o, 8s in the eight rows of heat storage chambers in the horizontal row is arranged so as to have a transition form as shown in FIG. The eight supply / exhaust passages 9 extending from the switching valve device 4 are extended to each heat storage chamber 8.

この切換弁装置4において、回転弁体18の弁板20における第1及び第2の2つの遮風板部分20a,20bと給気口23aと排気口24bとは、それらの相対的な配置関係として、第1及び第2の遮風板部分20a,20bの各々が、1つの分配口22aに正対したとき、その正対分配口22aの回転方向前後に隣接する2つの分配口22aのうちの一方が給気口23aに対して全開になり、かつ、他方が排気口24aに対して全開になる配置関係にしてある。   In the switching valve device 4, the first and second wind shielding plate portions 20 a, 20 b, the air supply port 23 a, and the exhaust port 24 b in the valve plate 20 of the rotary valve body 18 are relative to each other. As described above, when each of the first and second wind shielding plate portions 20a and 20b is directly opposed to one distribution port 22a, of the two distribution ports 22a adjacent to each other in the front and rear direction of rotation of the directly-facing distribution port 22a One of the two is fully open with respect to the air supply port 23a, and the other is fully open with respect to the exhaust port 24a.

換言すれば、本例の蓄熱式ガス処理装置では、パージ用口25aを形成する第1遮風板部分20a、及び、開口のない第2遮風板部分20bのいずれも、1つの分配口22aに正対した状態において、その1つの分配口22aに対してのみ遮風作用するだけの遮風幅θa,θb(中心角)しか備えないものにしてある。   In other words, in the regenerative gas processing apparatus of this example, each of the first wind shielding plate portion 20a forming the purge port 25a and the second wind shielding plate portion 20b having no opening is one distribution port 22a. In such a state as to face directly, only the wind shielding widths θa and θb (center angles) that only wind-shield the single distribution port 22a are provided.

即ち、この配置関係にすることで、図11に示す従来装置に比べ、給気口23a及び排気口24aの回転方向における開口幅θs,θr(中心角)を大きく確保して、給気口23aとそれに対して対向連通する分配口22aとで形成される給気側通気路の断面積、及び、排気口24aとそれに対して対向連通する分配口22aとで形成される排気側通気路の断面積の夫々を大きく確保し、これにより、それら給気側通気路及び排気側通気路を通じて被処理ガスGや処理済ガスG′を通気抵抗の小さい状態で円滑に通気することができるようにしてある。   In other words, this arrangement relationship ensures a larger opening width θs, θr (center angle) in the rotation direction of the air supply port 23a and the exhaust port 24a than the conventional device shown in FIG. And the cross-sectional area of the air supply side air passage formed by the distribution port 22a facing and communicating with the air supply side, and the disconnection of the exhaust side air passage formed by the exhaust port 24a and the distribution port 22a facing and communicating with the air outlet side. Each of the areas is secured to be large so that the gas to be processed G and the processed gas G ′ can be smoothly ventilated through the air supply side exhaust passage and the exhaust side air passage with a low airflow resistance. is there.

また、この配置関係を採るのに対し、この蓄熱式ガス処理装置の制御器29は、固定の分配器15に対する回転弁体18の回転位置(回転角度)を検出する回転位置検出手段の検出情報に基づいて、及び/又は、ガス処理運転用の所定のモータ運転プログラムに従って、弁体回転用モータ19を制御することで、ガス処理運転中は図8の(a)〜(b)に示す如く、第1及び第2の2つの遮風板部分20a,20bの各々が1つの分配口22aに正対する回転位置を間欠回転における各回の停止位置とした状態で、回転弁体18を分配口22aの並設ピッチpずつ間欠的に回転させる構成にしてある。   In addition, the controller 29 of the regenerative gas processing device adopts this arrangement relationship, whereas the detection information of the rotational position detecting means for detecting the rotational position (rotational angle) of the rotary valve body 18 with respect to the fixed distributor 15. 8 and / or in accordance with a predetermined motor operation program for gas processing operation, the valve body rotating motor 19 is controlled so that during the gas processing operation, as shown in FIGS. The rotary valve body 18 is disposed in the distribution port 22a in a state where the rotation position where each of the first and second wind shielding plate portions 20a, 20b faces the one distribution port 22a is set to the stop position in each rotation. Are arranged so that they are rotated intermittently at a pitch p.

即ち、パージ用口25aを形成した第1遮風板部分20a,及び、開口のない第2遮風板部分20bの夫々が回転弁体18の回転により各1つの分配口22aに対し順次に正対(閉塞)することにおいて、その正対が生じるごとに回転停止させる状態で回転弁体18を間欠的に回転させる。   That is, each of the first wind shielding plate portion 20a formed with the purge port 25a and the second wind shielding plate portion 20b without an opening is sequentially aligned with respect to each one distribution port 22a by the rotation of the rotary valve body 18. In the pairing (blocking), the rotary valve body 18 is intermittently rotated in a state where the rotation is stopped every time the pairing is generated.

このようにガス処理運転において回転弁体18を間欠的に回転させることで、上記の如く給気口23a及び排気口24aの開口幅θs,θrを大きく確保しながらも、1つの分配口22aに対して給気口23aとパージ用口25aとが同時に対向連通することで生じる給気口23aとパージ用口25aとの間でのガスリーク、及び、1つの分配口22aに対して排気口24aとパージ用口25aとが同時に対向連通することで生じる排気口24aとパージ用口25aとの間でのガスリークを防止する。   As described above, by intermittently rotating the rotary valve body 18 in the gas processing operation, as described above, the opening widths θs and θr of the air supply port 23a and the exhaust port 24a are kept large, and the single distribution port 22a is provided. On the other hand, a gas leak between the air supply port 23a and the purge port 25a caused by the air supply port 23a and the purge port 25a communicating with each other at the same time, and an exhaust port 24a with respect to one distribution port 22a. Gas leakage between the exhaust port 24a and the purge port 25a, which occurs when the purge port 25a simultaneously communicates with the purge port 25a, is prevented.

なお、分配器15の受板21には、分配口22aを1つずつ囲む形態で回転弁体16の弁板20と分配器15の受板21との間をシールするパッキン30を付設してあり、このパッキン30は回転弁体16の回転に伴い弁板20に対して摺接することでシール機能を保持する。   The receiving plate 21 of the distributor 15 is provided with a packing 30 that seals between the valve plate 20 of the rotary valve body 16 and the receiving plate 21 of the distributor 15 so as to surround the distribution ports 22a one by one. Yes, the packing 30 maintains a sealing function by slidingly contacting the valve plate 20 as the rotary valve body 16 rotates.

この種の蓄熱式ガス処理装置では、ガス処理運転において各蓄熱室8の室内で被処理ガスG中のヤニ成分が凝結して室内各部(特に予熱前の被処理ガスGが流入する蓄熱材層8aの下部)に付着し、その付着量が次第に増加するため、適時にガス処理運転に代えて、清浄な高温空気を各蓄熱室8に通過させることで、付着した凝結ヤニ成分を蒸散(又は乾燥剥離又は酸化)させて除去するいわゆる空焼き運転を行なう必要があるが、上記制御器29は、この空焼き運転を次の(イ)〜(ホ)の制御動作をもって自動的に実施する構成にしてある。   In this type of heat storage type gas processing apparatus, in the gas processing operation, the components of the gas G to be processed condense in the respective heat storage chambers 8 and each part of the room (particularly the heat storage material layer into which the gas G to be processed before preheating flows). 8a), and the amount of adhesion gradually increases. Instead of gas treatment operation in a timely manner, clean high-temperature air is passed through each heat storage chamber 8 to evaporate the adhering condensation component. It is necessary to perform a so-called baking operation that is removed by dry peeling or oxidation). The controller 29 automatically performs this baking operation with the following control operations (a) to (e). It is.

(イ)塗装ブースや塗装乾燥炉の操業が終了するなどして被処理ガスGの発生が無くなりガス処理運転の終了指令が付与されると、燃焼処理室5におけるバーナ5aの運転を停止してガス処理運転を終了するとともに、それに続いて、燃焼処理室5及び各蓄熱室8が未だ高温である状態下(即ち、燃焼処理室5や各蓄熱室8にガス処理運転時からの残留熱が十分に残る状態下)において空焼き運転を開始する。   (B) When the operation of the painting booth or painting drying furnace is terminated and the generation of the gas G to be treated is eliminated and a gas processing operation end command is given, the operation of the burner 5a in the combustion processing chamber 5 is stopped. While the gas processing operation is finished, subsequently, the combustion processing chamber 5 and each heat storage chamber 8 are still in a high temperature state (that is, the residual heat from the gas processing operation is generated in the combustion processing chamber 5 and each heat storage chamber 8). In the state that remains sufficiently)

(ロ)この空焼き運転では、先ず、回転位置検出手段の検出情報に基づいて、及び/又は、空焼き運転用の所定のモータ運転プログラムに従って、弁体回転用モータ19を制御することで、切換弁装置4において、図10の(a)に示す如く、弁板20における第1及び第2の2つの遮風板部分20a,20bの夫々が、隣り合う2つの分配口22aに跨る状態になってそれら2つの分配口22aの夫々が半開となる回転位置(換言すれば、半数の4つの分配口22aが給気口23aに連通し、残りの半数の分配口22aが排気口24aに連通する回転位置)に回転弁体18を回転させ、その回転位置において回転弁体18を所定時間Taにわたり回転停止状態に保つ。   (B) In this idling operation, first, based on the detection information of the rotational position detection means and / or according to a predetermined motor operation program for idling operation, the valve body rotating motor 19 is controlled, In the switching valve device 4, as shown in FIG. 10A, each of the first and second wind shielding plate portions 20a and 20b in the valve plate 20 is in a state of straddling two adjacent distribution ports 22a. Thus, the rotational position where each of the two distribution ports 22a is half-opened (in other words, half of the four distribution ports 22a communicate with the air supply port 23a, and the remaining half of the distribution ports 22a communicate with the exhaust port 24a. The rotary valve body 18 is rotated to the rotation position), and the rotary valve body 18 is kept in the rotation stopped state for a predetermined time Ta at the rotation position.

(ハ)また、ガス導入路10周りのダンパ10a,10bを切り換え操作して、被処理ガスGに代えて外気などの常温の空焼き用清浄空気OAをガス導入路10を通じて切換弁装置4に送る状態に送風系統を切り換える。   (C) Further, the dampers 10a and 10b around the gas introduction path 10 are switched to replace the gas G to be treated with normal temperature baked clean air OA such as outside air through the gas introduction path 10 to the switching valve device 4. Switch the blower system to the sending state.

つまり、回転弁体18を上記回転位置(図10の(a)に示す位置)で回転停止させた状態において、常温の清浄空気OAをガス導入路10を通じて切換弁装置4に送ることにより、図9の(a)に示す如く、8室の蓄熱室8のうち、隣接状態にある半数の4室の蓄熱室8を入口側蓄熱室8iにするとともに、同じく隣接状態にある残りの半数の蓄熱室8を出口側蓄熱室8oとして、それら4室の入口側蓄熱室8iに常温の清浄空気OAを流入させる。   That is, in a state where the rotation valve body 18 is stopped at the rotation position (position shown in FIG. 10A), the clean air OA at normal temperature is sent to the switching valve device 4 through the gas introduction path 10 to 9 (a), among the eight heat storage chambers 8, half of the four heat storage chambers 8 in the adjacent state are changed to the inlet side heat storage chamber 8i, and the other half of the heat storage chambers in the adjacent state are also in the same state. The room 8 is set as the outlet side heat storage chamber 8o, and normal temperature clean air OA is caused to flow into the four inlet side heat storage chambers 8i.

これにより、入口側蓄熱室8iに流入した常温の空焼き用清浄空気OAは、それら半数の入口側蓄熱室8iから燃焼処理室5を経て出口側蓄熱室8oを通過する過程で、先のガス処理運転から各室に残る残留熱により次第に温度上昇して高温化し、この高温化した清浄空気OAの通過により、空焼き前半工程として、先ず出口側蓄熱室8oとした半数の蓄熱室8の室内(特に、出口側蓄熱室8oの蓄熱材層8aにおける下部)に付着する凝結ヤニ成分を蒸散(又は乾燥剥離又は酸化)させて除去する。   Thereby, the clean air OA for normal baking that has flowed into the inlet side heat storage chamber 8i passes through the combustion treatment chamber 5 from the half of the inlet side heat storage chamber 8i, and passes through the outlet side heat storage chamber 8o. Due to the residual heat remaining in each chamber from the processing operation, the temperature gradually rises and becomes high temperature, and by passing this high temperature clean air OA, as the first half of the baking process, first, half of the heat storage chambers 8 are set as the outlet side heat storage chambers 8o. (In particular, the condensed resin component adhering to the heat storage material layer 8a of the outlet side heat storage chamber 8o is removed by transpiration (or dry peeling or oxidation).

(ニ)上記の所定時間Taが経過すると、回転位置検出手段の検出情報に基づいて、及び/又は、空焼き運転用の所定のモータ運転プログラムに従って、弁体回転用モータ19を制御することで、回転弁体18を図10の(b)に示す如く半回転(180度)だけ回転させて、その回転位置において回転弁体18を所定時間Tbにわたり再び回転停止状態に保つ。   (D) When the predetermined time Ta has elapsed, the valve body rotation motor 19 is controlled based on the detection information of the rotational position detection means and / or according to a predetermined motor operation program for the idling operation. The rotary valve body 18 is rotated by a half rotation (180 degrees) as shown in FIG. 10B, and the rotary valve body 18 is kept in the rotation stopped state for a predetermined time Tb at the rotational position.

つまり、この半回転により、先の空焼き前半工程で入口側蓄熱室8iであった半数の蓄熱室8を出口側蓄熱室8oに切り換えるとともに、先の空焼き前半工程で出口側蓄熱室8oとして空焼きを終了した残りの半数の蓄熱室8を入口側蓄熱室8に切り換え、これにより、図9の(b)に示す如く、空焼き後半工程として、空焼き前半工程と同様、高温化した清浄空気OAの通過により、出口側蓄熱室8oとした残りの半数の蓄熱室8の室内に付着する凝結ヤニ成分を蒸散(又は乾燥剥離又は酸化)させて除去する。   That is, by this half rotation, half of the heat storage chambers 8 that were the inlet-side heat storage chambers 8i in the previous half-baking first half step are switched to the outlet-side heat storage chambers 8o, and the first half-baking first half-step is used as the outlet side heat storage chamber 8o. The remaining half of the heat storage chambers 8 that have been baked are switched to the inlet-side heat storage chamber 8, and as a result, as shown in FIG. By passing the clean air OA, the condensed resin component adhering to the remaining half of the heat storage chamber 8 as the outlet side heat storage chamber 8o is removed by evaporation (or dry peeling or oxidation).

なお、空焼き前半工程及び空焼き後半工程のいづれにおいても、出口側蓄熱室8oを通過した高温清浄空気OA(即ち、除去したヤニ成分を含む状態になった高温空気)は処理済ガスG′と同様、切換弁装置4からガス送出路11を通じて装置外に導出する。   In both the first half of the baking process and the second half of the baking process, the high temperature clean air OA that has passed through the outlet side heat storage chamber 8o (that is, the high temperature air that has been in a state containing the removed spear component) is treated gas G ′. In the same manner as described above, the gas is led out from the switching valve device 4 through the gas delivery path 11.

(ホ)後半の所定時間Tbの経過により空焼き運転は実質的に終了するが、その後、各蓄熱室8及び燃焼処理室5が所定の低温状態になるまで、冷却運転として常温の清浄空気OAを各蓄熱室8及び燃焼処理室5に通過させる運転を継続し、各蓄熱室8及び燃焼処理室5が所定の低温状態になると常温清浄空気OAの通風を停止して装置の運転を停止し、次のガス処理運転の開始指令を待つ。 (E) Although the empty-burning operation is substantially finished after the elapse of the predetermined time Tb in the latter half, after that, clean air OA at normal temperature is used as a cooling operation until each of the heat storage chambers 8 and the combustion treatment chamber 5 is in a predetermined low temperature state. Is continued to pass through each heat storage chamber 8 and combustion treatment chamber 5, and when each heat storage chamber 8 and combustion treatment chamber 5 reaches a predetermined low temperature, the ventilation of room temperature clean air OA is stopped and the operation of the apparatus is stopped. Then, a start command for the next gas processing operation is awaited.

なお、上記した空焼き前半工程及び空焼き後半工程のいずれにおいても、パージ用口25aは、分配器15における受板21のうち第1遮風板部分20aが跨る2つの分配口22aどうしの間の受板部分に正対して、その受板部分により閉塞(半閉塞状態を含む)されるように配設してあり、これにより、空焼き運転下にある燃焼処理室5において残留熱により高温化した空焼き用清浄空気OAがパージ用ガスG″の通気経路を通じて装置外部に持ち出されることを防止して、その持ち出しによる熱ロスを回避する。   Note that, in both the first half baking step and the second half baking step described above, the purge port 25a is located between the two distribution ports 22a of the receiving plate 21 in the distributor 15 across the first wind shield plate portion 20a. Is disposed so as to be closed (including a semi-closed state) by the receiving plate portion, so that a high temperature is generated by residual heat in the combustion processing chamber 5 under the idling operation. The air-cleaned clean air OA is prevented from being taken out of the apparatus through the purge gas G ″ ventilation path, and heat loss due to the carry-out is avoided.

〔別実施形態〕
上述の実施形態では、8室の蓄熱室8を横一列に並べて配置する例を示したが、本発明の実施において蓄熱室8の室数は8室に限らず、4室以上であれば何室であってもよく、また、その配置も横一列に限らず平面視で複数行×複数列に配置してもよい。
[Another embodiment]
In the above-described embodiment, an example in which the eight heat storage chambers 8 are arranged in a horizontal row has been described. However, in the embodiment of the present invention, the number of the heat storage chambers 8 is not limited to eight, and what is required is four or more. It may be a room, and the arrangement is not limited to one horizontal row, and may be arranged in a plurality of rows and a plurality of columns in plan view.

また、上述の実施形態では、切換弁装置4を、回転弁体18が横向き軸芯周りで回転する姿勢にして配置する例を示したが、これに代え、切換弁装置4を回転弁体18が縦向き軸芯周りで回転する姿勢にして配置してもよい。   Further, in the above-described embodiment, the switching valve device 4 is arranged in the posture in which the rotary valve body 18 rotates around the lateral axis, but instead, the switching valve device 4 is replaced with the rotary valve body 18. May be arranged so as to rotate around the longitudinal axis.

さらに、上述の実施形態では、分配口22aを形成する受板21は固定にして、給気口23,排気口24,パージ用口25aを形成した弁板20を回転させる例を示したが、逆に弁板20を固定として受板21の方を回転させてもよく、また、両者を逆向きに回転させるなどしてもよい。   Furthermore, in the above-described embodiment, an example in which the receiving plate 21 that forms the distribution port 22a is fixed and the valve plate 20 that forms the air supply port 23, the exhaust port 24, and the purge port 25a is rotated is shown. Conversely, the valve plate 20 may be fixed and the receiving plate 21 may be rotated, or both may be rotated in the opposite direction.

上述の実施形態では、ガス処理運転時から残る残留熱により常温の空焼き用清浄ガスOAを必要空焼き温度に昇温させる残留熱利用方式の空焼き運転を示したが、これに代え、燃焼処理室5の燃焼用加熱器5aにより常温の空焼き用清浄ガスOAを必要空焼き温度に加熱する加熱器運転方式の空焼き運転を採用するようにしてもよい。   In the above-described embodiment, the residual heat utilization type air baking operation in which the temperature of the clean baking gas OA at room temperature is raised to the required air baking temperature by the residual heat remaining from the gas processing operation is shown. You may make it employ | adopt the baking operation of the heater operation system which heats normal temperature baking baking clean gas OA to the required baking temperature by the combustion heater 5a of the process chamber 5. FIG.

上述の実施形態では、空焼き前半工程の開始からTa時間が経過した時点で空焼き後半工程に切り換え、また、空焼き後半工程の開始からTb時間が経過した時点で空焼き後半工程を実質的に終了する例を示したが、これに代え、空焼き前半工程の開始後、出口側蓄熱室8oの温度(特に出口側蓄熱室8oにおける蓄熱材層8aのガス出口側温度)が所定温度に達したとき、又は、その温度が所定温度以上となる状態が所定時間にわたって継続したとき、空焼き後半工程に切り換え、また同様に、空焼き後半工程の開始後、出口側蓄熱室8oの温度が所定温度に達したとき、又は、その温度が所定温度以上となる状態が所定時間にわたって継続したとき、空焼き後半工程を実質的に終了するようにしてもよい。   In the above-described embodiment, when the Ta time elapses from the start of the first half-baking process, the process is switched to the second half-baking process. However, instead of this, the temperature of the outlet-side heat storage chamber 8o (particularly the gas outlet-side temperature of the heat storage material layer 8a in the outlet-side heat storage chamber 8o) becomes a predetermined temperature after the start of the first half of the baking process. When the temperature reaches or exceeds the predetermined temperature for a predetermined time, the operation is switched to the second half baking process. Similarly, after the second half baking process, the temperature of the outlet-side heat storage chamber 8o is increased. When the predetermined temperature is reached, or when the state where the temperature is equal to or higher than the predetermined temperature continues for a predetermined time, the empty baking second half step may be substantially ended.

被処理ガスGは塗装ブースや塗装乾燥炉からの排出空気に限らず、燃焼により処理し得るものであれば、どのようなガスであってもよい。   The gas G to be treated is not limited to the exhaust air from the painting booth or the painting drying furnace, but may be any gas as long as it can be treated by combustion.

本発明による蓄熱式ガス処理装置の運転方法、及び、その運転方法を実施する蓄熱式ガス処理装置は、各種分野において種々の被処理ガスの処理に利用することができる。   The operation method of the regenerative gas processing apparatus according to the present invention and the regenerative gas processing apparatus that implements the operation method can be used for processing various gases to be processed in various fields.

5a 燃焼用加熱器
5 燃焼処理室
8 蓄熱室
8a 蓄熱材層
9 給排路
4 切換弁装置
20 弁板
18 回転弁体
21 受板
15 分配器
22 分配室
22a 分配口
p 分配口の並設ピッチ
10 ガス導入路
23 給気室
28 パージ用ガス路
25 パージ用室
11 ガス送出路
24 排気室
20a 第1遮風板部分
20b 第2遮風板部分
25a パージ用口
23a 給気口
24a 排気口
G 被処理ガス
OA 空焼き用の清浄ガス
29 制御手段
5a Combustion heater 5 Combustion processing chamber 8 Thermal storage chamber 8a Thermal storage material layer 9 Supply / exhaust passage 4 Switching valve device 20 Valve plate 18 Rotary valve element 21 Receptacle 15 Distributor 22 Distribution chamber 22a Distributing port p Distributing pitch in parallel DESCRIPTION OF SYMBOLS 10 Gas introduction path 23 Air supply chamber 28 Purge gas path 25 Purge chamber 11 Gas delivery path 24 Exhaust chamber 20a 1st windshield part 20b 2nd windshield part 25a Purge port 23a Air supply port 24a Exhaust port G Processed gas OA Clean gas for empty baking 29 Control means

Claims (3)

燃焼用加熱器を備える燃焼処理室に一端を連通させた4室以上の蓄熱室の夫々に通気性の蓄熱材層を配備し、これら蓄熱室夫々の他端を切換弁装置に接続し、
この切換弁装置は、弁板を備える回転弁体と受板を備える分配器とを有して、前記弁板を前記受板に近接対向させた状態で前記回転弁体と前記分配器とを相対回転させる構成にし、
前記分配器には、前記蓄熱室夫々の他端に対して各別に常時連通する複数の分配室を前記相対回転の回転軸芯周りに並べて区画形成し、
前記分配器における前記受板には、前記分配室を前記受板において各別に開口させる分配口を前記相対回転の回転軸芯周りで等ピッチに並べて形成し、
前記回転弁体には、ガス導入路に常時連通する給気室と、パージ用ガス路に常時連通するパージ用室と、ガス送出路に常時連通する排気室とを前記相対回転の回転軸芯周りに並べて区画形成し、
前記回転弁体における前記弁板には、隣り合わない2つの前記分配口に対し前記相対回転において同時にかつ各別に正対する第1及び第2の2つの遮風板部分を形成し、
これら第1及び第2の2つの遮風板部分のうち第1遮風板部分には、前記パージ用室を前記弁板において開口させるパージ用口を形成し、
前記2つの遮風板部分どうしの間の弁板部分のうち、前記相対回転において前記第1遮風板部分よりも先行する先行側の弁板部分には、前記給気室を前記弁板において開口させる給気口を形成し、
前記相対回転において前記第1遮風板部分よりも後行する後行側の弁板部分には、前記排気室を前記弁板において開口させる排気口を形成した蓄熱式ガス処理装置の運転方法であって、
前記弁板における前記2つの遮風板部分と前記給気口と前記排気口との相対的な配置関係を、前記2つの遮風板部分の各々が1つの前記分配口に正対した状態において、その正対分配口に隣接する2つの前記分配口のうちの一方の分配口が前記給気口に対して全開になり、かつ、他方の分配口が前記排気口に対して全開になる配置関係にしておき、
前記ガス導入路を通じて被処理ガスを前記切換弁装置に送るガス処理運転では、前記2つの遮風板部分の各々が1つの前記分配口に正対する回転位置を間欠回転における各回の停止位置とした状態で、前記回転弁体と前記分配器とを前記分配口の並設ピッチずつ間欠的に相対回転させ、
被処理ガスに代え空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き運転では、
前記2つの遮風板部分の各々が隣り合う2つの前記分配口に跨る状態になって前記分配口の半数が前記給気口に連通し、かつ、前記分配口の他の半数が前記排気口に連通する回転位置において前記相対回転を停止させた状態で、空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き前半工程を実施し、
その後、前記回転弁体と前記分配器とを空焼き前半工程における回転停止位置から180度だけ相対回転させて停止させた状態で、空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き後半工程を実施する蓄熱式ガス処理装置の運転方法。
A breathable heat storage material layer is provided in each of the four or more heat storage chambers having one end communicating with a combustion processing chamber having a combustion heater, and the other end of each of the heat storage chambers is connected to a switching valve device;
The switching valve device includes a rotary valve body including a valve plate and a distributor including a receiving plate, and the rotary valve body and the distributor are disposed in a state where the valve plate is closely opposed to the receiving plate. With a relative rotation configuration,
In the distributor, a plurality of distribution chambers that always communicate with each other with respect to the other end of each of the heat storage chambers are arranged around the rotation axis of the relative rotation to form a partition,
In the receiving plate in the distributor, a distribution port for opening the distribution chamber separately in the receiving plate is formed side by side at an equal pitch around the rotation axis of the relative rotation,
The rotary valve body includes a supply chamber that is always in communication with the gas introduction path, a purge chamber that is always in communication with the purge gas path, and an exhaust chamber that is in continuous communication with the gas delivery path. Form the compartments side by side,
The valve plate in the rotary valve body is formed with two first and second wind shielding plate portions that face each other simultaneously and separately in the relative rotation with respect to the two distribution ports that are not adjacent to each other,
Of the first and second wind shielding plate portions, the first wind shielding plate portion is formed with a purge port for opening the purge chamber in the valve plate,
Among the valve plate portions between the two wind shield plate portions, the valve chamber on the leading side preceding the first wind shield plate portion in the relative rotation is provided with the air supply chamber in the valve plate. Form an air supply opening to open,
In the operation method of the regenerative gas processing apparatus, an exhaust port for opening the exhaust chamber in the valve plate is formed in the valve plate portion on the subsequent side following the first wind shield plate portion in the relative rotation. There,
The relative arrangement relationship between the two wind shielding plate portions, the air supply port, and the exhaust port in the valve plate is such that each of the two wind shielding plate portions faces one distribution port. An arrangement in which one of the two distribution ports adjacent to the directly-distributed distribution port is fully open with respect to the air supply port, and the other distribution port is fully open with respect to the exhaust port. Leave it in a relationship,
In the gas processing operation in which the gas to be processed is sent to the switching valve device through the gas introduction path, the rotation position at which each of the two wind shielding plate portions directly faces one of the distribution ports is set as the stop position at each rotation in the intermittent rotation. In the state, the rotating valve body and the distributor are intermittently rotated relative to each other by the pitch of the distribution ports,
In the air baking operation in which the clean gas for air baking is sent to the switching valve device through the gas introduction path instead of the gas to be treated,
Each of the two wind shielding plate portions straddles two adjacent distribution ports so that half of the distribution ports communicate with the air supply port, and the other half of the distribution ports are the exhaust ports. In the state where the relative rotation is stopped at the rotational position communicating with the air, the first half step of empty baking is performed in which the clean gas for baking is sent to the switching valve device through the gas introduction path.
After that, in the state where the rotary valve body and the distributor are relatively rotated by 180 degrees from the rotation stop position in the first half of the baking process and stopped, the switching valve device supplies the clean gas for baking through the gas introduction path. Method of operating a regenerative gas processing apparatus that performs the latter half of the empty baking process to be sent to the factory.
燃焼用加熱器を備える燃焼処理室に一端を連通させた4室以上の蓄熱室の夫々に通気性の蓄熱材層を配備し、これら蓄熱室夫々の他端を切換弁装置に接続し、
この切換弁装置は、弁板を備える回転弁体と受板を備える分配器とを有して、前記弁板を前記受板に近接対向させた状態で前記回転弁体と前記分配器とを相対回転させる構成にし、
前記分配器には、前記蓄熱室夫々の他端に対して各別に常時連通する複数の分配室を前記相対回転の回転軸芯周りに並べて区画形成し、
前記分配器における前記受板には、前記分配室を前記受板において各別に開口させる分配口を前記相対回転の回転軸芯周りで等ピッチに並べて形成し、
前記回転弁体には、ガス導入路に常時連通する給気室と、パージ用ガス路に常時連通するパージ用室と、ガス送出路に常時連通する排気室とを前記相対回転の回転軸芯周りに並べて区画形成し、
前記回転弁体における前記弁板には、隣り合わない2つの前記分配口に対し前記相対回転において同時にかつ各別に正対する第1及び第2の2つの遮風板部分を形成し、
これら第1及び第2の2つの遮風板部分のうち第1遮風板部分には、前記パージ用室を前記弁板において開口させるパージ用口を形成し、
前記2つの遮風板部分どうしの間の弁板部分のうち、前記相対回転において前記第1遮風板部分よりも先行する先行側の弁板部分には、前記給気室を前記弁板において開口させる給気口を形成し、
前記相対回転において前記第1遮風板部分よりも後行する後行側の弁板部分には、前記排気室を前記弁板において開口させる排気口を形成した蓄熱式ガス処理装置であって、
前記弁板における前記2つの遮風板部分と前記給気口と前記排気口との相対的な配置関係を、前記2つの遮風板部分の各々が1つの前記分配口に正対した状態において、その正対分配口に隣接する2つの前記分配口のうちの一方の分配口が前記給気口に対して全開になり、かつ、他方の分配口が前記排気口に対して全開になる配置関係にし、
前記切換弁装置を操作する制御手段を設け、
この制御手段は、前記ガス導入路を通じて被処理ガスを前記切換弁装置に送るガス処理運転では、前記2つの遮風板部分の各々が1つの前記分配口に正対する回転位置を間欠回転における各回の停止位置とした状態で、前記回転弁体と前記分配器とを前記分配口の並設ピッチずつ間欠的に相対回転させ、
被処理ガスに代え空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き運転では、
前記2つの遮風板部分の各々が隣り合う2つの前記分配口に跨る状態になって前記分配口の半数が前記給気口に連通し、かつ、前記分配口の他の半数が前記排気口に連通する回転位置において前記相対回転を停止させた状態で、空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き前半工程を実施し、
その後、前記回転弁体と前記分配器とを空焼き前半工程における回転停止位置から180度だけ相対回転させて停止させた状態で、空焼き用の清浄ガスを前記ガス導入路を通じて前記切換弁装置に送る空焼き後半工程を実施する構成にしてある蓄熱式ガス処理装置。
A breathable heat storage material layer is provided in each of the four or more heat storage chambers having one end communicating with a combustion processing chamber having a combustion heater, and the other end of each of the heat storage chambers is connected to a switching valve device;
The switching valve device includes a rotary valve body including a valve plate and a distributor including a receiving plate, and the rotary valve body and the distributor are disposed in a state where the valve plate is closely opposed to the receiving plate. With a relative rotation configuration,
In the distributor, a plurality of distribution chambers that always communicate with each other with respect to the other end of each of the heat storage chambers are arranged around the rotation axis of the relative rotation to form a partition,
In the receiving plate in the distributor, a distribution port for opening the distribution chamber separately in the receiving plate is formed side by side at an equal pitch around the rotation axis of the relative rotation,
The rotary valve body includes a supply chamber that is always in communication with the gas introduction path, a purge chamber that is always in communication with the purge gas path, and an exhaust chamber that is in continuous communication with the gas delivery path. Form the compartments side by side,
The valve plate in the rotary valve body is formed with two first and second wind shielding plate portions that face each other simultaneously and separately in the relative rotation with respect to the two distribution ports that are not adjacent to each other,
Of the first and second wind shielding plate portions, the first wind shielding plate portion is formed with a purge port for opening the purge chamber in the valve plate,
Among the valve plate portions between the two wind shield plate portions, the valve chamber on the leading side preceding the first wind shield plate portion in the relative rotation is provided with the air supply chamber in the valve plate. Form an air supply opening to open,
In the relative rotation, a regenerative gas processing device in which an exhaust port that opens the exhaust chamber in the valve plate is formed in a valve plate portion on the subsequent side that follows the first wind shielding plate portion,
The relative arrangement relationship between the two wind shielding plate portions, the air supply port, and the exhaust port in the valve plate is such that each of the two wind shielding plate portions faces one distribution port. An arrangement in which one of the two distribution ports adjacent to the directly-distributed distribution port is fully open with respect to the air supply port, and the other distribution port is fully open with respect to the exhaust port. Relationship,
A control means for operating the switching valve device;
In the gas processing operation in which the gas to be processed is sent to the switching valve device through the gas introduction path, the control means sets the rotational position at which each of the two wind shielding plate portions directly faces one of the distribution ports at each rotation in the intermittent rotation. In the state of the stop position, the rotating valve body and the distributor are intermittently relatively rotated by the pitch of the distribution ports arranged in parallel,
In the air baking operation in which the clean gas for air baking is sent to the switching valve device through the gas introduction path instead of the gas to be treated,
Each of the two wind shielding plate portions straddles two adjacent distribution ports so that half of the distribution ports communicate with the air supply port, and the other half of the distribution ports are the exhaust ports. In the state where the relative rotation is stopped at the rotational position communicating with the air, the first half step of empty baking is performed in which the clean gas for baking is sent to the switching valve device through the gas introduction path.
After that, in the state where the rotary valve body and the distributor are relatively rotated by 180 degrees from the rotation stop position in the first half of the baking process and stopped, the switching valve device supplies the clean gas for baking through the gas introduction path. A regenerative gas processing apparatus configured to carry out the latter half of the baking process.
前記パージ用口は、前記空焼き運転において前記受板のうち前記第1遮風板部分が跨る2つの前記分配口どうしの間の受板部分に正対する状態に配設してある請求項2に記載した蓄熱式ガス処理装置。   The purge port is disposed in a state of facing the receiving plate portion between the two distribution ports between the first wind shielding plate portions of the receiving plate in the empty baking operation. The regenerative gas treatment device described in 1.
JP2012069929A 2012-03-26 2012-03-26 Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus Active JP5821146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069929A JP5821146B2 (en) 2012-03-26 2012-03-26 Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069929A JP5821146B2 (en) 2012-03-26 2012-03-26 Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus

Publications (2)

Publication Number Publication Date
JP2013200101A JP2013200101A (en) 2013-10-03
JP5821146B2 true JP5821146B2 (en) 2015-11-24

Family

ID=49520468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069929A Active JP5821146B2 (en) 2012-03-26 2012-03-26 Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus

Country Status (1)

Country Link
JP (1) JP5821146B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530020B (en) * 2019-08-26 2020-11-06 新疆忠信利成环保科技有限公司 Phase-change heat-storage electric boiler

Also Published As

Publication number Publication date
JP2013200101A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5937399B2 (en) Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus
JP4899005B2 (en) Method and apparatus for purifying exhaust gas loaded with organic hazardous substances
US9726373B2 (en) Heat storage type waste gas purification apparatus
JP2003113473A5 (en)
JP2008002766A (en) Air supply and exhaust system for substrate calcination furnace
KR101839454B1 (en) Cooling tower
TWI606137B (en) Substrate processing apparatus
JP5862885B2 (en) Operation method of regenerative gas processing apparatus, regenerative gas processing apparatus, and switching device used in these operation method or regenerative gas processing apparatus
JP5351748B2 (en) Cleaning operation method for regenerative gas processing apparatus and regenerative gas processing apparatus
JP2008304182A (en) Intake/exhaust method of substrate baking furnace
TWI553276B (en) Regenerative exhaust gas purifying apparatus
JP5821146B2 (en) Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus
JP6057048B2 (en) Thermal storage gas processing equipment
CN107569972B (en) Rotary gas adsorption device and control method thereof
KR102229551B1 (en) Air purifier using thermal catalyst
JP4550098B2 (en) Substrate heat treatment furnace
JP5825488B2 (en) Operation method of heat storage type gas processing apparatus and heat storage type gas processing apparatus
JP6086316B2 (en) Regenerative gas treatment device and operation method of regenerative gas treatment device
JP2003090681A (en) Hot-air treating apparatus
EP3006878B1 (en) Fuel oven and operating method for said oven
CN206771386U (en) The rotary Regenerative Combustion System of the pre- heat recovery system containing blowback
KR101347227B1 (en) Substrate Processing Apparatus, Gas Introduction Tube's Temperature Control Unit thereof and Gas Introduction Tube's Temperature Control Method thereof
JP2000274644A (en) Regenerative exhaust gas treating device and method for operating it for burnout
JP2003130323A (en) Rotating distribution type thermal storage combustion device
JP3583024B2 (en) Thermal storage deodorizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R150 Certificate of patent or registration of utility model

Ref document number: 5821146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250