JP5820811B2 - Branched polybenzoxazole-based material, film for solar cell substrate, and method for producing branched polybenzoxazole-based material - Google Patents

Branched polybenzoxazole-based material, film for solar cell substrate, and method for producing branched polybenzoxazole-based material Download PDF

Info

Publication number
JP5820811B2
JP5820811B2 JP2012533986A JP2012533986A JP5820811B2 JP 5820811 B2 JP5820811 B2 JP 5820811B2 JP 2012533986 A JP2012533986 A JP 2012533986A JP 2012533986 A JP2012533986 A JP 2012533986A JP 5820811 B2 JP5820811 B2 JP 5820811B2
Authority
JP
Japan
Prior art keywords
hab
film
branched
btc
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012533986A
Other languages
Japanese (ja)
Other versions
JPWO2012036110A1 (en
Inventor
酒井 純
純 酒井
山田 保治
保治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Kyoto Institute of Technology NUC
Original Assignee
Ibiden Co Ltd
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd, Kyoto Institute of Technology NUC filed Critical Ibiden Co Ltd
Priority to JP2012533986A priority Critical patent/JP5820811B2/en
Publication of JPWO2012036110A1 publication Critical patent/JPWO2012036110A1/en
Application granted granted Critical
Publication of JP5820811B2 publication Critical patent/JP5820811B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、分岐ポリベンゾオキサゾール系材料、太陽電池基板用フィルム、及び分岐ポリベンゾオキサゾール系材料の製造方法に関するものである。   The present invention relates to a branched polybenzoxazole-based material, a film for solar cell substrate, and a method for producing a branched polybenzoxazole-based material.

ポリベンゾオキサゾールは、耐熱性、電気絶縁性、機械的特性等において優れていることから、従来より、各種電子デバイスにおいて、絶縁膜等として利用されている。特に、近年では、変換効率、省資源性、フレキシブル性及び経済性の点で優れているCu(In,Ga)Se2 [CIGS]太陽電池の基板として、ポリベンゾオキサゾールを使用することが提案されている(特許文献1及び2)。Since polybenzoxazole is excellent in heat resistance, electrical insulation, mechanical properties and the like, it has been conventionally used as an insulating film in various electronic devices. In particular, in recent years, it has been proposed to use polybenzoxazole as a substrate of a Cu (In, Ga) Se 2 [CIGS] solar cell that is excellent in terms of conversion efficiency, resource saving, flexibility and economy. (Patent Documents 1 and 2).

ポリベンゾオキサゾールの合成方法としては、従来より、ジヒドロキシジアミンとジカルボン酸ハライドとの反応により得られるポリアミド樹脂を脱水環化させる方法が知られている。しかしながら、かかる合成方法においては、最終的に得られるポリベンゾオキサゾールの重合度は前駆体であるポリアミド樹脂の重合度に支配され、ジヒドロキシジアミンとジカルボン酸ハライドとの反応性ではジアミン化合物の反応性が悪い(ジカルボン酸ハライドの失活が早い)ため、前駆体たるポリアミド樹脂の重合度、引いてはポリベンゾオキサゾールの重合度も低くなり、高分子量のポリベンゾオキサゾール前駆体を得ることが難しい。そのため、製膜性に乏しいという問題がある。このような問題を解決すべく、ジヒドロキシジアミンとジカルボン酸ハライドとの反応を極低温(−20℃〜0℃)状態で行なう方法(非特許文献1を参照)や、モノマーとしてシリル化された芳香族ジアミンと用いることにより、反応性を制御し(向上せしめ)、高分子量のポリベンゾオキサゾールを合成する方法(特許文献3を参照)等が、提案されている。   As a method for synthesizing polybenzoxazole, a method of dehydrating and cyclizing a polyamide resin obtained by a reaction between dihydroxydiamine and a dicarboxylic acid halide is conventionally known. However, in such a synthesis method, the degree of polymerization of the finally obtained polybenzoxazole is governed by the degree of polymerization of the polyamide resin as a precursor, and the reactivity of dihydroxydiamine and dicarboxylic acid halide is such that the reactivity of the diamine compound is low. Since it is poor (dicarboxylic acid halide is rapidly deactivated), the degree of polymerization of the polyamide resin as a precursor, and hence the degree of polymerization of polybenzoxazole, is low, and it is difficult to obtain a high molecular weight polybenzoxazole precursor. Therefore, there exists a problem that film forming property is scarce. In order to solve such a problem, a method in which the reaction between dihydroxydiamine and dicarboxylic acid halide is performed at an extremely low temperature (−20 ° C. to 0 ° C.) (see Non-Patent Document 1), or a silylated aroma as a monomer A method of synthesizing a high molecular weight polybenzoxazole by controlling (improving) the reactivity by using a group diamine has been proposed (see Patent Document 3).

また、耐熱性に優れ、且つ、線熱膨張係数が低いポリマーを合成するためには、一般に、モノマーとして、ベンゼン環等を有する剛直な分子構造からなるものを用いることが有用であることは知られている。その一方で、剛直な分子構造を有するモノマーを用いると、得られるポリマーが、分子間凝集力に乏しく、強固なものではあるが脆くなる。そのため、製膜性に乏しいという問題がある。そこで、屈曲性を有するモノマーや、嵩高い(ポリマーの秩序性を低減させる)置換基を有するモノマーを用いることにより、得られるポリマーの製膜性を改善(向上)する方法が知られている(特許文献4を参照)。   In addition, in order to synthesize polymers having excellent heat resistance and low linear thermal expansion coefficient, it is generally known that it is useful to use a monomer having a rigid molecular structure having a benzene ring or the like as a monomer. It has been. On the other hand, when a monomer having a rigid molecular structure is used, the resulting polymer has poor intermolecular cohesion and becomes brittle although it is strong. Therefore, there exists a problem that film forming property is scarce. Therefore, a method for improving (improving) the film forming property of the resulting polymer by using a monomer having flexibility or a monomer having a bulky (reducing the order of the polymer) substituent is known ( (See Patent Document 4).

さらに、誘電率が低いポリベンゾオキサゾールの合成方法として、分岐構造(枝分かれ構造)によりポリマー分子間の自由体積を増大させ、密度を低くすることにより、誘電率が低いポリベンゾオキサゾールの合成方法が提案されている(特許文献5、6を参照)。加えて、トリカルボン酸とジヒドロキシジアミンとを重合して得られる、ハイパーブランチ構造を呈する(多分岐)ポリベンゾオキサゾールについても報告がされている(特許文献7を参照)。   Furthermore, as a method for synthesizing polybenzoxazole with a low dielectric constant, a method for synthesizing polybenzoxazole with a low dielectric constant is proposed by increasing the free volume between polymer molecules by a branched structure (branched structure) and reducing the density. (See Patent Documents 5 and 6). In addition, a polybenzoxazole having a hyperbranched structure (multi-branched) obtained by polymerizing tricarboxylic acid and dihydroxydiamine has also been reported (see Patent Document 7).

しかしながら、これまでに提案等されているポリベンゾオキサゾールについては、各々、以下に述べるような問題があった。即ち、特許文献3に提案されているポリベンゾオキサゾールは、導入した官能基により、ポリマー分子鎖の屈曲性が向上し、分子鎖の秩序性が崩れることによりフィルム化が可能ではあるものの、線熱膨張係数(CTE)が大きくなり、また、導入した官能基の耐熱性が劣るため、最終的に得られるポリベンゾオキサゾールの耐熱性が十分なものではない。   However, each of the polybenzoxazoles proposed so far has the following problems. That is, the polybenzoxazole proposed in Patent Document 3 can be formed into a film by improving the flexibility of the polymer molecular chain due to the introduced functional group and breaking the order of the molecular chain. Since the coefficient of expansion (CTE) becomes large and the heat resistance of the introduced functional group is inferior, the heat resistance of the finally obtained polybenzoxazole is not sufficient.

また、特許文献5においては、ポリリン酸等を脱水溶媒として用いる枝分れポリベンザゾールポリマーを製造する方法が示されているが、ポリリン酸による脱水縮合では高分子量のポリマーが得られるものの、ポリマーの精製が困難であるため、キャスト法による純度の高いフィルムの作製が困難であるという問題がある。   Patent Document 5 discloses a method for producing a branched polybenzazole polymer using polyphosphoric acid or the like as a dehydrating solvent. Although dehydration condensation with polyphosphoric acid yields a high molecular weight polymer, However, it is difficult to produce a high-purity film by a casting method.

さらに、特許文献6においては、多分岐−直鎖ポリベンゾオキサゾールの誘電率が、直鎖ポリベンゾオキサゾールの誘電率よりも低くなることは検討されているものの、分岐点の導入量の変化が線熱膨張係数に与える影響については、何ら検討がなされていない。   Further, in Patent Document 6, although it has been studied that the dielectric constant of multi-branched-linear polybenzoxazole is lower than that of linear polybenzoxazole, the change in the amount of introduction of branch points is linear. No consideration has been given to the effect on the coefficient of thermal expansion.

加えて、特許文献7において提案されている、ハイパーブランチ構造を呈するポリベンゾオキサゾールは、線熱膨張係数は低いものの、十分な機械的特性(強度)を有しないものである。   In addition, polybenzoxazole having a hyperbranched structure proposed in Patent Document 7 has a low linear thermal expansion coefficient but does not have sufficient mechanical properties (strength).

特開2007−201069号公報JP 2007-201069 A 特開2007−317834号公報JP 2007-317834 A 特公平4−58808号公報Japanese Patent Publication No. 4-58808 特開2005−97365号公報JP-A-2005-97365 特許第2961836号公報Japanese Patent No. 2961836 特開2000−80272号公報JP 2000-80272 A 特開2006−299021号公報JP 2006-299021 A

Sheng-Huei Hsiao et al.、「A new class of aromatic polybenzoxazoles containing-phenylenedioxy groups」、European Polymer Journal 2、2004年、第40巻、p.1127-1135Sheng-Huei Hsiao et al., `` A new class of aromatic polybenzoxazoles containing-phenylenedioxy groups '', European Polymer Journal 2, 2004, 40, p.1127-1135

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決すべき課題とするところは、機械的特性、耐熱性及び製膜性(薄膜成形性)に優れると共に、線熱膨張係数が低く、寸法安定性に優れる多分岐−直鎖ポリベンゾオキサゾール系材料を提供することにある。   Here, the present invention has been made in the background of such circumstances, and the problem to be solved is excellent in mechanical properties, heat resistance and film forming property (thin film formability), An object of the present invention is to provide a multi-branched-linear polybenzoxazole-based material having a low linear thermal expansion coefficient and excellent dimensional stability.

そして、本発明は、そのような課題を解決するために、ベンゼン−1,3,5−トリカルボン酸クロライド、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、及びイソフタル酸クロライドからなる、下記式より算出される分岐モノマーモル分率が5〜30mol%であるモノマー群を重合することにより分岐ポリベンゾオキサゾール前駆体とし、該分岐ポリベンゾオキサゾール前駆体と、かかる分岐ポリベンゾオキサゾール前駆体の末端官能基と反応し得る官能基を二つ以上有する芳香族化合物との混合物を、オキサゾール化することによって得られる分岐ポリベンゾオキサゾール系材料を、その要旨とするものである。

Figure 0005820811
In order to solve such problems, the present invention comprises benzene-1,3,5-tricarboxylic acid chloride, 4,4′-diamino-3,3′-dihydroxybiphenyl, and isophthalic acid chloride. A branched polybenzoxazole precursor is polymerized by polymerizing a monomer group having a branched monomer molar fraction calculated from the following formula of 5 to 30 mol%, and the branched polybenzoxazole precursor and the terminal end of the branched polybenzoxazole precursor The gist of the present invention is a branched polybenzoxazole-based material obtained by oxazolating a mixture of an aromatic compound having two or more functional groups capable of reacting with a functional group .
Figure 0005820811

なお、本発明に従う分岐ポリベンゾオキサゾール系材料にあっては、前記モノマー群がテレフタル酸クロライドを含むものを、第一の好ましい態様とする。   In the branched polybenzoxazole-based material according to the present invention, a material in which the monomer group contains terephthalic acid chloride is a first preferred embodiment.

また、本発明の分岐ポリベンゾオキサゾール系材料は、好ましい第二の態様において、前記芳香族化合物が有する官能基、アミノ基、ヒドロキシル基又はカルボキシル基である。
The branch polybenzoxazole-based material of the present invention, in the second preferred embodiment, the functional groups of the pre-Symbol aromatic compound, an amino group, Ru hydroxyl group or a carboxyl group der.

さらに、本発明の分岐ポリベンゾオキサゾール系材料は、第三の好ましい態様において、前記混合物に無機フィラーを添加してなるものをオキサゾール化することによって得られるものである。
Furthermore, the branched polybenzoxazole-based material of the present invention is obtained by oxazolating a mixture obtained by adding an inorganic filler to the mixture in the third preferred embodiment.

加えて、本発明は、上記した各態様の分岐ポリベンゾオキサゾール系材料からなる太陽電池基板用フィルムも、その要旨とするものである。   In addition, the gist of the present invention is a film for a solar cell substrate made of the branched polybenzoxazole-based material according to each aspect described above.

また、本発明は、上記した各態様の分岐ポリベンゾオキサゾール系材料の製造方法にして、前記モノマー群の重合を、−20〜0℃の温度条件の下、オキシラン化合物を含む有機溶媒内にて実施する工程を含むことを特徴とする分岐ポリベンゾオキサゾール系材料の製造方法も、その要旨とするものである。   Further, the present invention is a method for producing a branched polybenzoxazole-based material according to each aspect described above, and polymerization of the monomer group is performed in an organic solvent containing an oxirane compound under a temperature condition of -20 to 0 ° C. The manufacturing method of the branched polybenzoxazole-type material characterized by including the process to implement is also made into the summary.

さらに、本発明は、上記した各態様の分岐ポリベンゾオキサゾール系材料の製造方法にして、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニルをシリル化剤によってシリル化し、それにより得られるシリル化物と、前記モノマー群を構成する4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル以外のモノマーとを重合することを特徴とする分岐ポリベンゾオキサゾール系材料の製造方法をも、その要旨とするものである。   Furthermore, the present invention provides a method for producing a branched polybenzoxazole-based material according to each aspect described above, wherein 4,4′-diamino-3,3′-dihydroxybiphenyl is silylated with a silylating agent, and the resulting silyl And a method for producing a branched polybenzoxazole-based material characterized by polymerizing a monomer and a monomer other than 4,4′-diamino-3,3′-dihydroxybiphenyl constituting the monomer group, To do.

このように、本発明に従う分岐ポリベンゾオキサゾール系材料にあっては、ベンゼン−1,3,5−トリカルボン酸クロライド、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、及びイソフタル酸クロライドからなるモノマー群であって、最終的に得られるポリベンゾオキサゾールにおける分岐構造の含有割合の指標となる分岐モノマーモル分率が所定の範囲内とされたものを、重合して分岐ポリベンゾオキサゾール前駆体とし、かかる分岐ポリベンゾオキサゾール前駆体をオキサゾール化することによって得られるものである。即ち、本発明の分岐ポリベンゾオキサゾール系材料は、分子内に、所定の割合にて分岐構造を有する分岐ポリベンゾオキサゾールからなるのであり、かかる分子内の分岐構造に起因して、短い分子鎖が三次元的に架橋した構造を呈しており、分子鎖の運動性が効果的に抑制されるところから、本発明の分岐ポリベンゾオキサゾール系材料は、ポリベンゾオキサゾールが本来的に有する優れた機械的特性及び耐熱性と共に、線熱膨張係数が低いものとなっているのである。また、分岐ポリベンゾオキサゾール前駆体は直鎖構造の中に無秩序に分岐構造を有していることから、直鎖構造と比べて分子鎖の秩序性が適度に失われ、分子鎖の間に適度な隙間が生まれることから、溶媒に対する溶解性が向上し、以て、製膜性(薄膜成形性)にも優れている。   Thus, in the branched polybenzoxazole-based material according to the present invention, from benzene-1,3,5-tricarboxylic acid chloride, 4,4′-diamino-3,3′-dihydroxybiphenyl, and isophthalic acid chloride. A branched polybenzoxazole precursor by polymerizing a monomer group having a branched monomer molar fraction that is an index of the content ratio of the branched structure in the finally obtained polybenzoxazole. The branched polybenzoxazole precursor is obtained by oxazolation. That is, the branched polybenzoxazole-based material of the present invention is composed of a branched polybenzoxazole having a branched structure at a predetermined ratio in the molecule. Due to the branched structure in the molecule, a short molecular chain is formed. The branched polybenzoxazole-based material of the present invention has excellent mechanical properties inherent in polybenzoxazole because it exhibits a three-dimensionally crosslinked structure and effectively suppresses the mobility of molecular chains. Along with the characteristics and heat resistance, the coefficient of linear thermal expansion is low. In addition, since the branched polybenzoxazole precursor has a disordered branch structure in the linear structure, the order of the molecular chain is moderately lost compared to the linear structure, and the molecular chain is moderately Since a gap is created, the solubility in a solvent is improved, and hence the film forming property (thin film formability) is also excellent.

上述した効果は、本発明に係る製造方法に従って製造された分岐ポリベンゾオキサゾール系材料及び太陽電池用基板フィルムにおいて、特に有利に享受することが出来る。   The effects described above can be enjoyed particularly advantageously in the branched polybenzoxazole-based material and the solar cell substrate film manufactured according to the manufacturing method of the present invention.

本発明に従う分岐ポリベンゾオキサゾール系材料を製造するに際しては、先ず、ベンゼン−1,3,5−トリカルボン酸クロライド(以下、BTC ともいう)、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(以下、HAB ともいう)、及びイソフタル酸クロライド(以下、IPC ともいう)からなる、下記式より算出される分岐モノマーモル分率が5〜30mol%であるモノマー群が調製される。

Figure 0005820811
In producing the branched polybenzoxazole-based material according to the present invention, first, benzene-1,3,5-tricarboxylic acid chloride (hereinafter also referred to as BTC), 4,4′-diamino-3,3′-dihydroxybiphenyl. A monomer group consisting of (hereinafter also referred to as HAB) and isophthalic acid chloride (hereinafter also referred to as IPC) having a branched monomer molar fraction calculated from the following formula of 5 to 30 mol% is prepared.
Figure 0005820811

ここで、上記式より算出される分岐モノマーモル分率が5mol%未満の場合、分岐構造による分子鎖の運動性の抑制が効果的に得られず、最終的に得られる分岐ポリベンゾオキサゾール系材料の線熱膨張係数(CTE)が大きくなり、その一方、上記式より算出される分岐モノマーモル分率が30mol%を超えると、熱分解開始点となる分子末端が増加し、更に直鎖構造の分子鎖セグメントが短くなるため、分岐ポリベンゾオキサゾール系材料の耐熱性及び機械的特性(特に強度)が悪化する恐れがある。このため、本発明においては、上記式より算出される分岐モノマーモル分率が5〜30mol%、好ましくは5〜20mol%、より好ましくは5〜15mol%であるモノマー群が、用いられる。   Here, when the branched monomer molar fraction calculated from the above formula is less than 5 mol%, the suppression of molecular chain mobility due to the branched structure cannot be effectively obtained, and the branched polybenzoxazole-based material finally obtained On the other hand, when the linear thermal expansion coefficient (CTE) is increased, and the branched monomer molar fraction calculated from the above formula exceeds 30 mol%, the molecular terminal as a thermal decomposition starting point increases, and the molecular chain having a linear structure Since the segment is shortened, the heat resistance and mechanical properties (particularly strength) of the branched polybenzoxazole-based material may be deteriorated. For this reason, in this invention, the monomer group whose branched monomer molar fraction computed from the said formula is 5-30 mol%, Preferably it is 5-20 mol%, More preferably, it is 5-15 mol% is used.

本発明に係る材料の線熱膨張係数(CTE)とは、100〜200℃における平均線熱膨張係数(一般には平均線膨張係数とも言われる)を意味するものである。具体的には、以下の手法に従って測定し、算出される。先ず、引張荷重が50mN、昇温速度が5℃/分、窒素雰囲気下、窒素流入量が100mL/分との条件に従い、室温(例えば25℃)〜500℃の温度範囲において熱機械分析を行なう。200℃の時の試験片の長さから100℃の時の試験片の長さを差し引いて、試験片の寸法変化を求め、この試験片の寸法変化の値を、室温における試験片の長さと、測定温度の温度差(100℃)で除することにより、算出されるものである(JIS−K−0129:2005、及びJIS−K−7197:1991を参照)。   The linear thermal expansion coefficient (CTE) of the material according to the present invention means an average linear thermal expansion coefficient (generally referred to as an average linear expansion coefficient) at 100 to 200 ° C. Specifically, it is measured and calculated according to the following method. First, thermomechanical analysis is performed in a temperature range of room temperature (for example, 25 ° C.) to 500 ° C. in accordance with the conditions that the tensile load is 50 mN, the heating rate is 5 ° C./min, and the nitrogen inflow rate is 100 mL / min. . By subtracting the length of the test piece at 100 ° C. from the length of the test piece at 200 ° C., the dimensional change of the test piece is obtained, and the value of the dimensional change of the test piece is determined as the length of the test piece at room temperature. It is calculated by dividing by the temperature difference (100 ° C.) of the measured temperature (see JIS-K-0129: 2005 and JIS-K-7197: 1991).

また、本発明において用いられるモノマーとしては、BTC 、HAB 及びIPC に加えて、テレフタル酸クロライド(以下、TPC ともいう)を用いることが好ましい。メタ置換体のIPC と共にパラ置換体のTPC を用いることによって、合成される高分子鎖の剛直性(直線性)が高くなるため、最終的に得られる分岐ポリベンゾオキサゾール系材料の線熱膨張係数をより低くすることが可能である。BTC 、HAB 、IPC 及びTPC は、市販品を用い得ることは勿論のこと、従来より公知の手法に従って実施者自らが合成したものであっても、使用可能である。   In addition to BTC, HAB and IPC, terephthalic acid chloride (hereinafter also referred to as TPC) is preferably used as the monomer used in the present invention. By using the para-substituted TPC together with the meta-substituted IPC, the rigidity (linearity) of the synthesized polymer chain is increased, so the linear thermal expansion coefficient of the finally obtained branched polybenzoxazole-based material Can be made lower. BTC, HAB, IPC, and TPC can be used even if they are synthesized by a practitioner according to a conventionally known method, as well as commercially available products.

なお、本発明において用いられるモノマー群としては、上記したBTC 等以外のものであっても、本発明の目的を阻害しない限り、本発明の範囲内において使用することが可能である。   The monomer group used in the present invention can be used within the scope of the present invention even if it is other than the above-described BTC and the like, as long as the object of the present invention is not impaired.

上述したモノマー群を重合することにより、分岐ポリベンゾオキサゾール前駆体が合成される。かかる合成の方法としては、従来より公知の各種方法を採用することが可能であるが、本発明においては、高分子量体の重合が容易な(A)低温溶液重合法、又は(B)In situ シリル化法と称される方法が、特に有利に用いられる。以下、各方法について詳述する。尚、低温溶液重合法及びIn situ シリル化法の何れにおいても、有機溶媒内にて反応を進行させることが好ましい。そのような有機溶媒としては、N−メチルピロリドン(NMP )、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)等を例示することが出来る。   By polymerizing the above monomer group, a branched polybenzoxazole precursor is synthesized. As such a synthesis method, various conventionally known methods can be employed. In the present invention, (A) a low-temperature solution polymerization method or (B) In situ in which a high molecular weight polymer is easily polymerized. A method referred to as a silylation method is particularly advantageously used. Hereinafter, each method will be described in detail. In both the low temperature solution polymerization method and the in situ silylation method, the reaction is preferably allowed to proceed in an organic solvent. Examples of such an organic solvent include N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO) and the like.

(A)低温溶液重合法
この方法は、モノマー群を、−20〜0℃の低温下において、オキシラン化合物を含む有機溶媒内にて重合する点を、特徴とする。即ち、BTC 、HAB 、IPC (及びTPC )の反応の際に生じる塩化水素を、オキシラン化合物と反応させて反応系内より除去することにより、BTC 、HAB 、IPC (及びTPC )の反応(重合)を効果的に進行させることが可能である。
(A) Low temperature solution polymerization method This method is characterized in that a monomer group is polymerized in an organic solvent containing an oxirane compound at a low temperature of -20 to 0 ° C. That is, the reaction (polymerization) of BTC, HAB, IPC (and TPC) is performed by removing the hydrogen chloride generated during the reaction of BTC, HAB, IPC (and TPC) from the reaction system by reacting with the oxirane compound. Can be effectively advanced.

ここで、上述の低温溶液重合法におけるオキシラン化合物としては、塩化水素と反応性を有するオキシラン化合物であれば、如何なるものをも用いることが可能である。具体的には、エチレンオキサイド、プロピレンオキサイド、エピクロルヒドリン、ブチレンオキサイド等を、例示することが出来る。   Here, any oxirane compound having reactivity with hydrogen chloride can be used as the oxirane compound in the above-mentioned low-temperature solution polymerization method. Specifically, ethylene oxide, propylene oxide, epichlorohydrin, butylene oxide and the like can be exemplified.

具体的には、以下のような手順に従って、モノマー群を重合させる。先ず、有機溶媒に所定量のHAB を添加し、HAB を溶解させて反応溶液とする。次いで、この反応溶液中に、プロピレンオキサイドを添加し、反応溶液を−20℃に冷却する。そして、BTC 及びIPC (更にTPC )を予め有機溶媒に溶解させてなる混合溶液を、反応溶液に滴下し、−20℃で所定時間、反応させた後、更に室温(25℃)で所定時間、反応させることにより、目的とする分岐ポリベンゾオキサゾール前駆体が合成され、分岐ポリベンゾオキサゾール前駆体溶液が得られる。尚、かかる合成の後に、必要に応じて、分岐ポリベンゾオキサゾール前駆体溶液の精製が行なわれる。   Specifically, the monomer group is polymerized according to the following procedure. First, a predetermined amount of HAB is added to an organic solvent, and HAB is dissolved to obtain a reaction solution. Next, propylene oxide is added to the reaction solution, and the reaction solution is cooled to −20 ° C. Then, a mixed solution prepared by previously dissolving BTC and IPC (further TPC) in an organic solvent is dropped into the reaction solution and reacted at −20 ° C. for a predetermined time, and further at room temperature (25 ° C.) for a predetermined time. By making it react, the target branched polybenzoxazole precursor is synthesize | combined and a branched polybenzoxazole precursor solution is obtained. After the synthesis, the branched polybenzoxazole precursor solution is purified as necessary.

モノマー群の第一段階の重合(低温下での重合)を、−20℃未満の温度で実施すると、使用する溶媒(例えばDMAc)の融点を下回る可能性があり、有機溶媒が凝固し、均質な前駆体溶液の合成に問題が生じる場合がある。その一方で、0℃を超える温度で実施すると、副反応が進行して余分な重合反応が起こるため、重合物がゲル化する。   When the first stage polymerization (polymerization at a low temperature) of the monomer group is carried out at a temperature lower than −20 ° C., the melting point of the solvent used (for example, DMAc) may be lowered, and the organic solvent is solidified. May pose problems in the synthesis of complex precursor solutions. On the other hand, when it is carried out at a temperature exceeding 0 ° C., the side reaction proceeds and an extra polymerization reaction occurs, so that the polymer is gelled.

(B)In situ シリル化法
この方法は、BTC をシリル化剤によってシリル化し、そのシリル化物と他のモノマーとを重合する点を、特徴とする。具体的には、以下のような手順に従って、モノマー群を重合させる。
(B) In situ silylation method This method is characterized in that BTC is silylated with a silylating agent and the silylated product and other monomers are polymerized. Specifically, the monomer group is polymerized according to the following procedure.

先ず、有機溶媒に所定量のHAB を添加し、HAB を溶解させて反応溶液とする。次いで、この反応溶液中に、シリル化剤を添加し、室温で撹拌することにより、HAB のシリル化を行なう。その後、反応溶液を−5℃に冷却する。そして、BTC 及びIPC (更にTPC )を予め有機溶媒に溶解させてなる混合溶液を、反応溶液に滴下し、−5℃で所定時間、反応させた後、更に室温(25℃)で所定時間、反応させることにより、目的とする分岐ポリベンゾオキサゾール前駆体が合成され、分岐ポリベンゾオキサゾール前駆体溶液が得られる。かかる合成の後に、シリル化剤及び塩の除去(前駆体の精製)が行なわれる。   First, a predetermined amount of HAB is added to an organic solvent, and HAB is dissolved to obtain a reaction solution. Next, silylation of HAB is carried out by adding a silylating agent to the reaction solution and stirring at room temperature. Thereafter, the reaction solution is cooled to −5 ° C. Then, a mixed solution prepared by previously dissolving BTC and IPC (further TPC) in an organic solvent is dropped into the reaction solution and reacted at −5 ° C. for a predetermined time, and further at room temperature (25 ° C.) for a predetermined time. By making it react, the target branched polybenzoxazole precursor is synthesize | combined and a branched polybenzoxazole precursor solution is obtained. After such synthesis, the silylating agent and salt are removed (precursor purification).

HAB のシリル化に際して用いられるシリル化剤としては、ヘキサメチルジシラザン、ジメチルジクロロシラン、トリメチルクロロシラン、N−トリメチルシリルアセトアミド、N,O−ビス(トリメチルシリル)アセトアミド、N−メチル−N−トリメチルシリルアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、N−トリメチルシリルジメチルアミン、N−トリメチルシリルジエチルアミン、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド、N−トリメチリシリルイミダゾール、テトラメチルジシラザン、tert−ブチルジメチルクロロシラン、N−メチル−N−(tert−ブチルジメチルシリル)トリフルオロアセトアミド、ジクロロメチルテトラメチルジシラザン、クロロメチルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、フロフェメシルアミン、フロフェメシルクロライド、フロフェメシルジエチルアミン等を、例示することが出来る。   Examples of silylating agents used for silylation of HAB include hexamethyldisilazane, dimethyldichlorosilane, trimethylchlorosilane, N-trimethylsilylacetamide, N, O-bis (trimethylsilyl) acetamide, N-methyl-N-trimethylsilylacetamide, N -Methyl-N-trimethylsilyltrifluoroacetamide, N-trimethylsilyldimethylamine, N-trimethylsilyldiethylamine, N, O-bis (trimethylsilyl) trifluoroacetamide, N-trimethylsilylsilylimidazole, tetramethyldisilazane, tert-butyldimethylchlorosilane N-methyl-N- (tert-butyldimethylsilyl) trifluoroacetamide, dichloromethyltetramethyldisilazane, chloromethyldimethylchlorosila , Bromomethyl dimethylchlorosilane, furo Fe mesyl amine, furo Fe mesyl chloride, furo Fe mesyl diethylamine, can be exemplified.

以上の如くして得られた多分岐−直鎖ポリベンゾオキサゾール前駆体をオキサゾール化する(一般には熱処理を施す)ことによって、本発明に従う多分岐−直鎖ポリベンゾオキサゾール系材料が得られるのである。本発明の分岐ポリベンゾオキサゾール系材料は、例えば、以下に述べる手法に従うことにより、フィルム状材料として製造することが出来る。   A multi-branched-linear polybenzoxazole-based material according to the present invention can be obtained by oxazolating (generally heat-treating) the multi-branched-linear polybenzoxazole precursor obtained as described above. . The branched polybenzoxazole-based material of the present invention can be produced as a film-like material, for example, by following the method described below.

具体的には、上述の如くして得られた分岐ポリベンゾオキサゾール前駆体溶液をそのまま、或いは、所定の精製操作を施して固体状の分岐ポリベンゾオキサゾール前駆体とし、この固体状の前駆体を有機溶媒に添加してなる溶液を、フィルム上にキャストし、還元雰囲気下、真空下、又はマイクロ波照射下等の公知の条件下において加熱処理を行ない、溶媒の乾燥及び前駆体のオキサゾール化を実施することにより、分岐ポリベンゾオキサゾール系材料からなるフィルムが得られる。このようにして得られた分岐ポリベンゾオキサゾール系材料からなるフィルムは、ポリベンゾオキサゾールが本来的に有する優れた機械的特性及び耐熱性を有しつつ、分岐構造により分子鎖の運動性が効果的に抑制されることで、線熱膨張係数が低いものとなる。   Specifically, the branched polybenzoxazole precursor solution obtained as described above is used as it is, or a predetermined purification operation is performed to obtain a solid branched polybenzoxazole precursor. The solution added to the organic solvent is cast on a film and subjected to heat treatment under a known condition such as a reducing atmosphere, vacuum, or microwave irradiation to dry the solvent and oxidize the precursor. By carrying out, a film made of a branched polybenzoxazole-based material is obtained. The film made of the branched polybenzoxazole-based material thus obtained has excellent mechanical properties and heat resistance inherent to polybenzoxazole, while the molecular chain mobility is effective due to the branched structure. By being suppressed to, the linear thermal expansion coefficient becomes low.

ここで、モノマー群を構成する各モノマーの使用量を調整して、末端官能基がアミノ基及びヒドロキシル基であり、それらアミノ基及びヒドロキシル基が、分子鎖を構成する末端のベンゼン環の隣接位(オルト位)に結合している分岐ポリベンゾオキサゾール前駆体を合成した場合には、かかる分岐ポリベンゾオキサゾール前駆体溶液に、2つ以上のカルボキシル基を有する芳香族カルボン酸を添加し、この混合溶液をキャストし、オキサゾール化(加熱)することが好ましい。具体的には、2つ以上のカルボキシル基を有する芳香族カルボン酸によって、上記の分岐ポリベンゾオキサゾール前駆体分子が相互に架橋されることで、分解開始点となり得る分子末端が減少するために耐熱性が向上し、また、分子末端の架橋により更に分子鎖の運動性が抑制されるため、線熱膨張係数がより低い多分岐−直鎖ポリベンゾオキサゾール系材料が得られるからである。本発明において用いられ得る2つ以上のカルボキシル基を有する芳香族カルボン酸としては、フタル酸、テレフタル酸、イソフタル酸、5−メチルイソフタル酸、4,4’−ビフェニルジカルボン酸、2,2’−ビフェニルジカルボン酸、4,4’−ジカルボキシジフェニルエーテル、ベンゾフェノン−4,4’−ジカルボン酸、2,6−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、2,2−ビス(4−カルボキシフェニル)ヘキサフルオロプロパン、ベンゼン−1,3,5−トリカルボン酸、ベンゼン−1,2,4−トリカルボン酸、4,4’,4”−ベンゼン−1,3,5−トリイル−トリス(安息香酸)、ピロメリット酸等を、例示することが出来る。   Here, by adjusting the amount of each monomer constituting the monomer group, the terminal functional groups are amino groups and hydroxyl groups, and these amino groups and hydroxyl groups are adjacent to the terminal benzene ring constituting the molecular chain. When a branched polybenzoxazole precursor bonded to (ortho position) is synthesized, an aromatic carboxylic acid having two or more carboxyl groups is added to the branched polybenzoxazole precursor solution, and this mixture is added. It is preferable to cast the solution and oxidize (heat). Specifically, the branched polybenzoxazole precursor molecules are cross-linked with each other by an aromatic carboxylic acid having two or more carboxyl groups, thereby reducing the number of molecular ends that can serve as decomposition initiation points. This is because the molecular chain mobility is further suppressed by crosslinking at the molecular ends, and a multi-branched-linear polybenzoxazole-based material having a lower linear thermal expansion coefficient can be obtained. Examples of the aromatic carboxylic acid having two or more carboxyl groups that can be used in the present invention include phthalic acid, terephthalic acid, isophthalic acid, 5-methylisophthalic acid, 4,4′-biphenyldicarboxylic acid, and 2,2′-. Biphenyl dicarboxylic acid, 4,4′-dicarboxydiphenyl ether, benzophenone-4,4′-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,2-bis (4-carboxyphenyl) Hexafluoropropane, benzene-1,3,5-tricarboxylic acid, benzene-1,2,4-tricarboxylic acid, 4,4 ′, 4 ″ -benzene-1,3,5-triyl-tris (benzoic acid), Examples include pyromellitic acid.

なお、末端官能基がアミノ基及びヒドロキシル基であり、それらアミノ基及びヒドロキシル基が、分子鎖を構成する末端のベンゼン環の隣接位(オルト位)に結合している分岐ポリベンゾオキサゾール前駆体を合成する際には、例えば、以下の式を満たすような量的割合において、BTC 、HAB 、IPC 及びTPC が用いられる。
[HAB のモル数]=([BTC のモル数]×2)+[IPC のモル数]+[TPC
のモル数]
A branched polybenzoxazole precursor in which the terminal functional groups are an amino group and a hydroxyl group, and these amino group and hydroxyl group are bonded to the adjacent position (ortho position) of the terminal benzene ring constituting the molecular chain. In the synthesis, for example, BTC, HAB, IPC and TPC are used in a quantitative ratio that satisfies the following formula.
[Number of moles of HAB] = ([number of moles of BTC] x 2) + [number of moles of IPC] + [TPC
Number of moles]

一方、モノマー群を構成する各モノマーの使用量を調整して、末端官能基がカルボキシル基である分岐ポリベンゾオキサゾール前駆体を合成した場合には、かかる分岐ポリベンゾオキサゾール前駆体溶液に、芳香族ジヒドロキシジアミンを添加し、この混合溶液をキャストし、オキサゾール化(加熱)することが好ましい。この場合においても、芳香族ジヒドロキシジアミンによって、上記の分岐ポリベンゾオキサゾール前駆体分子が相互に架橋されることで、分解開始点となり得る分子末端が減少するために耐熱性が向上し、また、分子末端の架橋により更に分子鎖の運動性が抑制されるため、線熱膨張係数がより低い多分岐−直鎖ポリベンゾオキサゾール系材料が得られるからである。本発明において用いられる芳香族ジヒドロキシジアミンとしては、2,4−ジアミノ−1,5−ベンゼンジオール、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ケトン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)スルフィド、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)エーテル等を、例示することが出来る。   On the other hand, when the branched polybenzoxazole precursor whose terminal functional group is a carboxyl group is synthesized by adjusting the amount of each monomer constituting the monomer group, the branched polybenzoxazole precursor solution is mixed with aromatics. It is preferable to add dihydroxydiamine, cast this mixed solution, and oxazolate (heat). Even in this case, the branched polybenzoxazole precursor molecules are cross-linked with each other by the aromatic dihydroxydiamine, so that the heat resistance is improved because the number of molecular ends that can be the decomposition start points is reduced. This is because molecular chain mobility is further suppressed by crosslinking at the end, and thus a multi-branched-linear polybenzoxazole-based material having a lower linear thermal expansion coefficient can be obtained. Examples of the aromatic dihydroxydiamine used in the present invention include 2,4-diamino-1,5-benzenediol, 4,4′-diamino-3,3′-dihydroxybiphenyl, and 3,3′-diamino-4,4. '-Dihydroxybiphenyl, 2,2'-bis (3-amino-4-hydroxyphenyl) ketone, 2,2-bis (3-amino-4-hydroxyphenyl) sulfide, 2,2-bis (3-amino- 4-hydroxyphenyl) ether and the like can be exemplified.

なお、末端官能基がカルボキシル基である分岐ポリベンゾオキサゾール前駆体を合成する際には、例えば、以下の式を満たすような量的割合において、BTC 、HAB 及びIPC が用いられる。
[HAB のモル数]=[BTC のモル数]+[IPC のモル数]+[TPC のモル
数]
When synthesizing a branched polybenzoxazole precursor whose terminal functional group is a carboxyl group, for example, BTC, HAB and IPC are used in a quantitative ratio satisfying the following formula.
[HAB moles] = [BTC moles] + [IPC moles] + [TPC moles]
number]

さらに、分岐ポリベンゾオキサゾール前駆体溶液に線熱膨張係数が低い無機フィラーを添加し、この混合溶液をキャストし、オキサゾール化(加熱)することも好ましい。無機フィラーを添加した混合溶液をオキサゾール化(加熱)することにより、線熱膨張係数がより低い多分岐−直鎖ポリベンゾオキサゾール系材料が得られるからである。本発明において用いられる無機フィラーとしては、酸化物、窒化物、炭化物等のセラミックス材料、金属、炭素材料等からなるものを例示することが出来る。具体的には、セラミックス材料としては、二酸化ケイ素(SiO2 )、酸化マグネシウム(MgO)、酸化アルミニウム(Al23)、酸化チタン(TiO2 )、酸化ジルコニウム(ZrO2 )、酸化スズ(Sn23)、酸化亜鉛(ZnO)、窒化ホウ素(BN)、窒化アルミニウム(AlN)、窒化ケイ素(Si34)、窒化チタン(TiN)、炭化ケイ素(SiC)等を、例示することが出来る。また、金属としては、ケイ素(Si)、銀(Ag)、パラジウム(Pd)、白金(Pt)等を、例示することが出来る。加えて、炭素材料としては、黒鉛、炭素ファイバー、フラーレン、カーボンナノチューブ等を、例示することが出来る。Furthermore, it is also preferable to add an inorganic filler having a low linear thermal expansion coefficient to the branched polybenzoxazole precursor solution, cast this mixed solution, and oxidize (heat) it. This is because a multibranched-linear polybenzoxazole-based material having a lower linear thermal expansion coefficient can be obtained by oxazolating (heating) the mixed solution to which the inorganic filler has been added. Examples of the inorganic filler used in the present invention include ceramic materials such as oxides, nitrides, and carbides, metals, and carbon materials. Specifically, as the ceramic material, silicon dioxide (SiO 2 ), magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (Sn) 2 O 3 ), zinc oxide (ZnO), boron nitride (BN), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), titanium nitride (TiN), silicon carbide (SiC), etc. I can do it. Examples of the metal include silicon (Si), silver (Ag), palladium (Pd), platinum (Pt), and the like. In addition, examples of the carbon material include graphite, carbon fiber, fullerene, and carbon nanotube.

そして、そのようにして得られた本発明の分岐ポリベンゾオキサゾール系材料からなるフィルムは、機械的特性及び耐熱性が優れていると共に、線熱膨張係数が低いものであることから、半導体用の層間絶縁膜、保護膜、プリント配線板用フレキシブル基板、太陽電池(中でもCIGS太陽電池)用フレキシブル基板等の用途に用いることが期待されるものである。   The film made of the branched polybenzoxazole-based material of the present invention thus obtained has excellent mechanical properties and heat resistance, and has a low linear thermal expansion coefficient. It is expected to be used for applications such as interlayer insulating films, protective films, flexible substrates for printed wiring boards, and flexible substrates for solar cells (in particular, CIGS solar cells).

以上、本発明について詳述してきたが、本発明のBTC に代えて、ベンゼン−1,2,4−トリカルボン酸(クロライド)、4,4’,4”−ベンゼン−1,3,5−トリイル−トリス(安息香酸)(クロライド)等の3価以上の芳香族カルボン酸の塩化物を用いる場合でも、本発明と同様の効果を享受することが出来ると思われる。   Although the present invention has been described in detail above, benzene-1,2,4-tricarboxylic acid (chloride), 4,4 ′, 4 ″ -benzene-1,3,5-triyl is used instead of the BTC of the present invention. -Even when a trivalent or higher valent aromatic carboxylic acid chloride such as tris (benzoic acid) (chloride) is used, the same effect as in the present invention can be obtained.

以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等が加え得るものであることが、理解されるべきである。   Some examples of the present invention will be shown below to clarify the present invention more specifically. However, the present invention is not limited by the description of such examples. Needless to say. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements and the like can be added.

以下の実施例及び比較例において得られたフィルムの物性等について、以下に示す手法によって測定及び評価した。   The physical properties of the films obtained in the following examples and comparative examples were measured and evaluated by the following methods.

−線熱膨張係数(CTE)−
SEIKO instruments. Inc. 製の熱機械分析装置(商品名:TMA/SS6100)を用いて、熱機械分析を行なった。具体的には、窒素雰囲気下、50mNの引張荷重、5℃/分の昇温速度、100mL/分の窒素流入量という条件にて、室温(例えば25℃)〜500℃の測定範囲で熱機械分析を行なった。先ず、5℃/分の昇温速度で室温(例えば25℃)から500℃まで一旦、昇温させ、室温(例えば25℃)まで冷却した後に再度、5℃/分で昇温させた。次いで、試験片の、200℃時の試験片の長さから100℃時の試験片の長さを差し引いて、寸法変化を求め、この寸法変化を、室温(例えば25℃)時における引張前の試験片の長さと、測定温度の温度差(100℃)で除して、線熱膨張係数(CTE)を求めた。試験片として、0.03mmの膜厚にて作製したフィルムを30mm×3mmの大きさに切り出したものを用いた。
-Linear thermal expansion coefficient (CTE)-
Thermomechanical analysis was performed using a thermomechanical analyzer (trade name: TMA / SS6100) manufactured by SEIKO instruments. Specifically, under a nitrogen atmosphere, a thermal machine in a measurement range of room temperature (for example, 25 ° C.) to 500 ° C. under the conditions of a tensile load of 50 mN, a heating rate of 5 ° C./min, and a nitrogen inflow rate of 100 mL / min. Analysis was performed. First, the temperature was once raised from room temperature (for example, 25 ° C.) to 500 ° C. at a rate of temperature increase of 5 ° C./minute, cooled to room temperature (for example, 25 ° C.), and then again heated at 5 ° C./minute. Next, the dimensional change is obtained by subtracting the length of the test piece at 100 ° C. from the length of the test piece at 200 ° C., and this dimensional change is determined before the tension at room temperature (for example, 25 ° C.). The coefficient of linear thermal expansion (CTE) was determined by dividing the length of the test piece by the temperature difference (100 ° C.) between the measured temperatures. As the test piece, a film produced with a film thickness of 0.03 mm was cut into a size of 30 mm × 3 mm.

−0.2%重量減少温度(Td 0.2)、5%重量減少温度(Td 5)−
SEIKO instruments. Inc. 製の熱重量分析装置(商品名:TG-DTA6300)を用いて、熱重量分析により、200mL/分の窒素気流下、10℃/分の昇温速度という条件下での測定結果から、0.2%重量減少温度(Td 0.2)と、5%重量減少温度(Td 5)を求め、耐熱性の指標とした。重量減少温度は物質の熱安定性の指標であり、この温度が高くなるほど高温に晒されても物質の変化が少ないと考えられる。0.2%重量減少温度(Td 0.2)及び5%重量減少温度(Td 5)は、200℃における試料の重量を基準とし、0.2wt%若しくは5wt%重量が減少した時の温度である。
−0.2% weight loss temperature (T d 0.2 ), 5% weight loss temperature (T d 5 ) −
Using a thermogravimetric analyzer (trade name: TG-DTA6300) manufactured by SEIKO instruments. Inc., measurement by thermogravimetric analysis under conditions of a heating rate of 10 ° C / min under a nitrogen stream of 200 mL / min. From the results, a 0.2% weight reduction temperature (T d 0.2 ) and a 5% weight reduction temperature (T d 5 ) were determined and used as heat resistance indicators. The weight loss temperature is an indicator of the thermal stability of the substance, and it is considered that the higher the temperature is, the less the substance changes even when exposed to high temperatures. The 0.2% weight loss temperature (T d 0.2 ) and the 5% weight loss temperature (T d 5 ) are the temperatures at which 0.2 wt% or 5 wt% weight is reduced based on the weight of the sample at 200 ° C. is there.

−ヤング率、破断強度、破断伸び−
JTトーシ社製の卓上型引張試験機(商品名:リトルセンスター LSC-05/30)を用いて、チャック間距離を5mm×20mm、引張速度を5mm/分として、室温(例えば25℃)にて試験片の引張試験を行なった。この際、応力の計算には試験片の断面積が必要となるところ、試験前(破断前)の試験片の厚みを任意の6箇所で測定して、平均をとり、断面積を計算した。得られた応力−歪曲線の初期勾配からヤング率[E(GPa)]を算出し、試験片が破断した時の強度及び伸び率から、破断強度[σ(MPa)]及び破断伸び[ε(%)]を求めた。
-Young's modulus, breaking strength, breaking elongation-
Using a tabletop tensile testing machine (trade name: Little Senster LSC-05 / 30) manufactured by JT Toshi, the distance between chucks is 5 mm × 20 mm, the tensile speed is 5 mm / min, and the room temperature (for example, 25 ° C.) Then, a tensile test of the test piece was performed. At this time, the cross-sectional area of the test piece is required for the calculation of stress. The thickness of the test piece before the test (before breakage) was measured at any six locations, and the average was taken to calculate the cross-sectional area. The Young's modulus [E (GPa)] is calculated from the initial gradient of the obtained stress-strain curve, and the breaking strength [σ (MPa)] and the breaking elongation [ε ( %)].

−製膜性−
得られたフィルムの製膜性の評価を、屈曲性を評価することによって行なった。具体的には、膜厚:30μmに製膜したフィルムを、縦:3cm×横:1cmの大きさに切り出し、製膜性評価サンプルとした。その製膜性評価サンプルを直径:2mmの棒に巻きつけ、フィルムに割れやひびが生じるか否かを目視で確認した。製膜性評価サンプルに割れやひびが生じない場合を○と、割れやひびが生じる場合を△と、それぞれ評価した。
-Film-forming property-
The film forming property of the obtained film was evaluated by evaluating the flexibility. Specifically, the film formed into a film thickness of 30 μm was cut into a size of length: 3 cm × width: 1 cm, and used as a film forming evaluation sample. The film forming property evaluation sample was wound around a rod having a diameter of 2 mm, and it was visually confirmed whether or not the film was cracked or cracked. The case where cracks and cracks did not occur in the film forming evaluation sample was evaluated as ◯, and the case where cracks and cracks occurred was evaluated as Δ.

以下に、各実施例及び比較例における合成条件、並びに得られたフィルムの特性等を詳述する。   Below, the synthesis conditions in each Example and Comparative Example, the characteristics of the obtained film, and the like are described in detail.

−実施例1−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の2.16g(10ミリモル)を量り取り、N−メチルピロリドン(NMP )の50mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の3mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びイソフタル酸クロライド(IPC )の1.62g(8ミリモル)を27mLのNMP に溶解させてなる混合溶液を、反応溶液中に、20分かけて徐々に加えた後、−20℃で2時間、反応させ、加えて25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行った。得られた沈殿物をろ過により回収し、イオン交換水で十分に洗浄した後、40℃で20時間、真空乾燥し、固体状のPBO(BTC/IPC-HAB)前駆体とした。この固体状のPBO(BTC/IPC-HAB)前駆体をNMP に再溶解させ、PET シート(ポリエチレンテレフタレートシート)上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が5.3mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表1に示す。得られたPBO(BTC/IPC-HAB)フィルムは、ヤング率(E)が4.4GPa、破断強度(σ)が137MPa、破断伸び(ε)が10.2%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が532℃、5%重量減少温度(Td 5)が600℃以上と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が18.4ppm/℃と高い寸法安定性を有することが確認できた。
Example 1
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 2.16 g (10 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weigh out and add 50 mL of N-methylpyrrolidone (NMP) and dissolve. Next, 3 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 1.62 g (8 mmol) of isophthalic acid chloride (IPC), separately prepared, were dissolved in 27 mL of NMP. A mixed polybenzoxazole precursor is gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours. A [PBO (BTC / IPC-HAB) precursor] solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained precipitate was collected by filtration, sufficiently washed with ion exchange water, and then vacuum dried at 40 ° C. for 20 hours to obtain a solid PBO (BTC / IPC-HAB) precursor. This solid PBO (BTC / IPC-HAB) precursor is redissolved in NMP, cast on a PET sheet (polyethylene terephthalate sheet), and dried at 85 ° C for 3 hours to give PBO (BTC / IPC-HAB) ) A precursor film was obtained. Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 5.3 mol% was obtained. The physical properties of this film are shown in Table 1 below. The obtained PBO (BTC / IPC-HAB) film has excellent mechanical strength with Young's modulus (E) of 4.4 GPa, breaking strength (σ) of 137 MPa, breaking elongation (ε) of 10.2%. It was. Further, it has extremely excellent heat resistance with a 0.2% weight reduction temperature (T d 0.2 ) of 532 ° C. and a 5% weight reduction temperature (T d 5 ) of 600 ° C. or more, and linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had a high dimensional stability of 18.4 ppm / ° C.

−実施例2−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.73g(8ミリモル)を量り取り、N−メチルピロリドン(NMP )の40mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の2.5mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びイソフタル酸クロライド(IPC )の1.22g(6ミリモル)を25mLのNMP に溶解させてなる混合溶液を、反応溶液中に、20分かけて徐々に加えた後、−20℃で2時間、反応させ、加えて25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液中に、重合により生成する塩酸(塩)を中和するため炭酸ナトリウム(Na2CO3)を塩酸と等モル量、添加し、減圧下で5時間、撹拌した。ろ過により生成した塩を取り除いた後、PET シート上にキャスティングし、85℃で3時間、乾燥することにより、PBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB)フィルムを得た。得られたフィルムの各物性値を下記表1に示す。このPBO(BTC/IPC-HAB)フィルムは、ヤング率(E)が4.4GPa、破断強度(σ)が125MPa、破断伸び(ε)が7.2%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が518℃、5%重量減少温度(Td 5)が595℃と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が14.3ppm/℃と高い寸法安定性を有することが確認できた。
-Example 2-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 1.73 g (8 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 40 mL of N-methylpyrrolidone (NMP) and allowed to dissolve. Next, 2.5 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 1.22 g (6 mmol) of isophthalic acid chloride (IPC), separately prepared, were dissolved in 25 mL of NMP. A mixed polybenzoxazole precursor is gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours. A [PBO (BTC / IPC-HAB) precursor] solution was obtained. In this PBO (BTC / IPC-HAB) precursor solution, sodium carbonate (Na 2 CO 3 ) was added in an equimolar amount with hydrochloric acid to neutralize hydrochloric acid (salt) produced by polymerization, and 5% under reduced pressure. Stir for hours. After removing the salt produced by filtration, the solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / IPC-HAB) precursor film. Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 6.7 mol% was obtained. The physical properties of the obtained film are shown in Table 1 below. This PBO (BTC / IPC-HAB) film exhibited excellent mechanical strength with Young's modulus (E) of 4.4 GPa, breaking strength (σ) of 125 MPa, and breaking elongation (ε) of 7.2%. In addition, the 0.2% weight loss temperature (T d 0.2 ) is 518 ° C., the 5% weight loss temperature (T d 5 ) is 595 ° C. and has excellent heat resistance, and the linear thermal expansion coefficient at 100 to 200 ° C. It was confirmed that (CTE) had a high dimensional stability of 14.3 ppm / ° C.

−実施例3−
実施例2と同様の手順により調製した、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB)前駆体溶液に、イソフタル酸(IPAc)の0.10g(0.5ミリモル)を添加し、均一な溶液となるまで撹拌することにより、IPAcとPBO(BTC/IPC-HAB)前駆体との混合溶液を調製した。次いで、この混合溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)#IPAc 前駆体フィルムを得た。更に、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、500℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB)#IPAc フィルムを得た。このフィルムの各物性値を下記表1に示す。得られたPBO(BTC/IPC-HAB)#IPAc フィルムは、ヤング率(E)が4.4GPa、破断強度(σ)が109MPa、破断伸び(ε)が6.2%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が532℃、5%重量減少温度(Td 5)が600℃と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が10.7ppm/℃と高い寸法安定性を有することが確認できた。この結果から、オキサゾール化時の加熱処理によりイソフタル酸を介してPBO(BTC/IPC-HAB)分子間を架橋することで、初期分解温度であるTd 0.2が向上し、耐熱性を維持したまま更なる低CTE化が可能であることが確認できた。
Example 3
0.10 g (0.5 mmol) of isophthalic acid (IPAc) was added to a PBO (BTC / IPC-HAB) precursor solution having a branched monomer mole fraction of 6.7 mol%, prepared by the same procedure as in Example 2. Was added and stirred until a uniform solution was obtained, whereby a mixed solution of IPAc and PBO (BTC / IPC-HAB) precursor was prepared. Next, this mixed solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / IPC-HAB) #IPAc precursor film. Further, the film is fixed to a metal frame, and heat treatment is performed at 200 ° C. for 1 hour and at 500 ° C. for 3 hours in a nitrogen atmosphere. A PBO (BTC / IPC-HAB) #IPAc film having a rate of 6.7 mol% was obtained. The physical properties of this film are shown in Table 1 below. The obtained PBO (BTC / IPC-HAB) #IPAc film has excellent mechanical strength with Young's modulus (E) of 4.4 GPa, breaking strength (σ) of 109 MPa, and breaking elongation (ε) of 6.2%. showed that. In addition, the 0.2% weight reduction temperature (T d 0.2 ) is 532 ° C., and the 5% weight reduction temperature (T d 5 ) is 600 ° C., which has extremely excellent heat resistance, and the linear thermal expansion coefficient at 100 to 200 ° C. It was confirmed that (CTE) had a high dimensional stability of 10.7 ppm / ° C. From this result, it is possible to crosslink PBO (BTC / IPC-HAB) molecules via isophthalic acid by heat treatment during oxazolation, thereby improving the initial decomposition temperature T d 0.2 and maintaining heat resistance. It was confirmed that further lower CTE is possible.

−実施例4−
実施例2と同様の手順により調製した、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB)前駆体溶液に、樹脂重量に対して20wt%となるように窒化ホウ素(BN)フィラーを添加し、均一な溶液となるまで撹拌することにより、BNフィラーとPBO(BTC/IPC-HAB)前駆体との混合溶液を調製した。次いで、この混合溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)-BN20% 前駆体フィルムを得た。更に、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、500℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB)-BN20% フィルムを得た。このフィルムの各物性値を下記表1に示す。得られたPBO(BTC/IPC-HAB)-BN20% フィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が73MPa、破断伸び(ε)が3.5%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が519℃、5%重量減少温度(Td 5)が605℃と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が10.2ppm/℃と高い寸法安定性を有することが確認できた。この結果から、セラミック(無機フィラー)である窒化ホウ素フィラーとの複合化により、PBO(BTC/IPC-HAB)の耐熱性向上および寸法安定性向上が確認できた。
Example 4
Boron nitride (BN) was prepared in a PBO (BTC / IPC-HAB) precursor solution having a branched monomer molar fraction of 6.7 mol% and 20 wt% based on the resin weight, prepared by the same procedure as in Example 2. ) A mixed solution of BN filler and PBO (BTC / IPC-HAB) precursor was prepared by adding the filler and stirring until a uniform solution was obtained. Next, this mixed solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / IPC-HAB) -BN 20% precursor film. Further, the film is fixed to a metal frame, and heat treatment is performed at 200 ° C. for 1 hour and at 500 ° C. for 3 hours in a nitrogen atmosphere. A PBO (BTC / IPC-HAB) -BN 20% film having a rate of 6.7 mol% was obtained. The physical properties of this film are shown in Table 1 below. The obtained PBO (BTC / IPC-HAB) -BN 20% film has excellent mechanical properties with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 73 MPa, and breaking elongation (ε) of 3.5%. Intensity was shown. In addition, it has excellent mechanical properties, 0.2% weight loss temperature (T d 0.2 ) of 519 ° C., 5% weight loss temperature (T d 5 ) of 605 ° C. and extremely high heat resistance, and 100-200 ° C. It was confirmed that the coefficient of linear thermal expansion (CTE) in the film had high dimensional stability of 10.2 ppm / ° C. From these results, it was confirmed that the heat resistance and dimensional stability of PBO (BTC / IPC-HAB) were improved by compounding with boron nitride filler, which is ceramic (inorganic filler).

−実施例5−
実施例2と同様の手順により調製した、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB )前駆体溶液に、イソフタル酸(IPAc)の0.10g(0.5ミリモル)、及び、含有割合が20wt%となるように窒化ホウ素(BN)フィラーを添加し、均一な溶液となるまで撹拌した。次いで、この混合溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)#IPAc-BN20%前駆体フィルムを得た。更に、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、500℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB)#IPAc-BN20%フィルムを得た。このフィルムの各物性値を下記表1に示す。このフィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が80MPa、破断伸び(ε)が3.7%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が530℃、5%重量減少温度(Td 5)が604℃と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が8.9ppm/℃と高い寸法安定性を有することが確認できた。この結果から、分子鎖末端間の架橋及びセラミックである窒化ホウ素フィラーとの複合化により、PBO(BTC/IPC-HAB)の耐熱性向上および寸法安定性向上が確認できた。
-Example 5
0.10 g (0.5 mmol) of isophthalic acid (IPAc) was added to a PBO (BTC / IPC-HAB) precursor solution having a branched monomer molar fraction of 6.7 mol%, prepared by the same procedure as in Example 2. And boron nitride (BN) filler was added so that the content rate might be 20 wt%, and it stirred until it became a uniform solution. Next, this mixed solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / IPC-HAB) # IPAc-BN 20% precursor film. Further, the film is fixed to a metal frame, and heat treatment is performed at 200 ° C. for 1 hour and at 500 ° C. for 3 hours in a nitrogen atmosphere. A PBO (BTC / IPC-HAB) # IPAc-BN 20% film having a rate of 6.7 mol% was obtained. The physical properties of this film are shown in Table 1 below. This film exhibited excellent mechanical strength with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 80 MPa, and breaking elongation (ε) of 3.7%. Moreover, it has excellent mechanical properties, 0.2% weight loss temperature (T d 0.2 ) of 530 ° C., 5% weight loss temperature (T d 5 ) of 604 ° C. and extremely excellent heat resistance, and 100-200 ° C. It was confirmed that the linear thermal expansion coefficient (CTE) at 8.9 has a high dimensional stability of 8.9 ppm / ° C. From these results, it was confirmed that the heat resistance and the dimensional stability of PBO (BTC / IPC-HAB) were improved by cross-linking between molecular chain ends and composite formation with a boron nitride filler as a ceramic.

−実施例6−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.73g(8ミリモル)を量り取り、N−メチルピロリドン(NMP )の40mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の3mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)、テレフタル酸クロライド(TPC )の0.24g(1.2ミリモル)及びイソフタル酸クロライド(IPC )の0.97g(4.8ミリモル)を25mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間、反応させ、加えて25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/TPC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/TPC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られたPBO(BTC/TPC/IPC-HAB)前駆体固体をろ過により回収し、イオン交換水で十分に洗浄した後、40℃で20時間、真空乾燥を行なった。このPBO(BTC/TPC/IPC-HAB)前駆体固体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することにより、PBO(BTC/TPC/IPC-HAB)前駆体フィルムを得た。得られたフィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、多分岐モル分率が7.1%であるPBO(BTC/TPC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表1に示す。PBO(BTC/TPC/IPC-HAB)フィルムは、ヤング率(E)が4.7GPa、破断強度(σ)が127MPa、破断伸び(ε)が6.4%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が513℃、5%重量減少温度(Td 5)が577℃と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が7.9ppm/℃と高い寸法安定性を有することが確認できた。
-Example 6
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 1.73 g (8 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 40 mL of N-methylpyrrolidone (NMP) and allowed to dissolve. Next, 3 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC), 0.24 g (1.2 mmol) of terephthalic acid chloride (TPC) and isophthalic acid chloride (prepared separately) A mixed solution prepared by dissolving 0.97 g (4.8 mmol) of IPC) in 25 mL of NMP was gradually added to the reaction solution over 20 minutes, followed by reaction at −20 ° C. for 2 hours. The solution was reacted at 25 ° C. for 20 hours to obtain a branched polybenzoxazole precursor [PBO (BTC / TPC / IPC-HAB) precursor] solution. This PBO (BTC / TPC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained PBO (BTC / TPC / IPC-HAB) precursor solid was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. This PBO (BTC / TPC / IPC-HAB) precursor solid is redissolved in NMP, cast on a PET sheet, and dried at 85 ° C for 3 hours to obtain a PBO (BTC / TPC / IPC-HAB) precursor. A body film was obtained. The obtained film is fixed to a metal frame, and is heat-treated at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere. A PBO (BTC / TPC / IPC-HAB) film having a molar fraction of 7.1% was obtained. The physical properties of this film are shown in Table 1 below. The PBO (BTC / TPC / IPC-HAB) film showed excellent mechanical strength with Young's modulus (E) of 4.7 GPa, breaking strength (σ) of 127 MPa, and breaking elongation (ε) of 6.4%. . In addition, it has excellent mechanical properties, 0.2% weight loss temperature (T d 0.2 ) of 513 ° C., 5% weight loss temperature (T d 5 ) of 577 ° C. and extremely excellent heat resistance, and 100-200 ° C. It was confirmed that the linear thermal expansion coefficient (CTE) at 7.9 has a high dimensional stability of 7.9 ppm / ° C.

−実施例7−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.87g(4ミリモル)を量り取り、N−メチルピロリドン(NMP )の20mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の3mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びイソフタル酸クロライド(IPC )の0.41g(2ミリモル)を15mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間、反応させ、加えて25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られたPBO(BTC/IPC-HAB)前駆体固体をろ過により回収し、イオン交換水で十分に洗浄した後、40℃で20時間、真空乾燥を行なった。このPBO(BTC/IPC-HAB)前駆体固体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が14.3mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表1に示す。このフィルムは、ヤング率(E)が4.5GPa、破断強度(σ)が61MPa、破断伸び(ε)が2.3%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が510℃、5%重量減少温度(Td 5)が591℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が10.0ppm/℃と高い寸法安定性を有することが確認できた。
-Example 7-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.87 g (4 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 20 mL of N-methylpyrrolidone (NMP) and dissolved. Next, 3 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 0.41 g (2 mmol) of isophthalic acid chloride (IPC), which were separately prepared, were dissolved in 15 mL of NMP. The mixed solution thus obtained was gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours, whereby a branched polybenzoxazole precursor [ PBO (BTC / IPC-HAB) precursor] solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained PBO (BTC / IPC-HAB) precursor solid was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. This PBO (BTC / IPC-HAB) precursor solid was redissolved in NMP, cast on a PET sheet, and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / IPC-HAB) precursor film. . Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 14.3 mol% was obtained. The physical properties of this film are shown in Table 1 below. This film exhibited excellent mechanical strength with Young's modulus (E) of 4.5 GPa, breaking strength (σ) of 61 MPa, and breaking elongation (ε) of 2.3%. Moreover, it has excellent mechanical properties, 0.2% weight loss temperature (T d 0.2 ) is 510 ° C., 5% weight loss temperature (T d 5 ) is 591 ° C. and has extremely excellent heat resistance, and further 100-200 It has been confirmed that the linear thermal expansion coefficient (CTE) at 0 ° C. has a high dimensional stability of 10.0 ppm / ° C.

−実施例8−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.65g(3ミリモル)を量り取り、N−メチルピロリドン(NMP )の18mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の3mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びイソフタル酸クロライド(IPC )の0.20g(1ミリモル)を7mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間、反応させ、加えて25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)]前駆体溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行った。得られた沈殿物をろ過により回収し、イオン交換水で十分に洗浄した後、40℃で20時間、真空乾燥を行なった。この固体状のPBO(BTC/IPC-HAB)前駆体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が20mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表1に示す。PBO(BTC/IPC-HAB)フィルムは、ヤング率(E)が4.4GPa、破断強度(σ)が45MPa、破断伸び(ε)が1.2%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が509℃、5%重量減少温度(Td 5)が590℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が13.0ppm/℃と高い寸法安定性を有することが確認できた。
-Example 8-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.65 g (3 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 18 mL of N-methylpyrrolidone (NMP) and dissolved. Next, 3 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 0.20 g (1 mmol) of isophthalic acid chloride (IPC), which were separately prepared, were dissolved in 7 mL of NMP. The mixed solution thus obtained was gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours, whereby a branched polybenzoxazole precursor [ PBO (BTC / IPC-HAB)] precursor solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The resulting precipitate was collected by filtration and thoroughly washed with ion exchange water, and then vacuum dried at 40 ° C. for 20 hours. This solid PBO (BTC / IPC-HAB) precursor is redissolved in NMP, cast on a PET sheet, and dried at 85 ° C for 3 hours to form a PBO (BTC / IPC-HAB) precursor film. Obtained. Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 20 mol% was obtained. The physical properties of this film are shown in Table 1 below. The PBO (BTC / IPC-HAB) film exhibited excellent mechanical strength with Young's modulus (E) of 4.4 GPa, breaking strength (σ) of 45 MPa, and breaking elongation (ε) of 1.2%. Further, it has excellent mechanical properties, has an excellent heat resistance of 0.2% weight loss temperature (T d 0.2 ) of 509 ° C. and 5% weight loss temperature (T d 5 ) of 590 ° C., and further 100-200 It has been confirmed that the linear thermal expansion coefficient (CTE) at 1 ° C. has a high dimensional stability of 13.0 ppm / ° C.

−実施例9−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.08g(5ミリモル)を量り取り、N−メチルピロリドン(NMP )の30mLを加え、溶解させた。その後、反応溶液中にプロピレンオキサイド(PO)の3mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.53g(2ミリモル)及びイソフタル酸クロライド(IPC )の0.20g(1ミリモル)を20mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間、反応させ、加えて25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られた固体状のPBO(BTC/IPC-HAB)前駆体をろ過により回収し、イオン交換水で十分に洗浄した後、40℃で20時間、真空乾燥を行なった。このPBO(BTC/IPC-HAB)前駆体固体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が25mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表1に示す。このフィルムは、ヤング率(E)が4.4GPa、破断強度(σ)が43MPa、破断伸び(ε)が1.3%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が506℃、5%重量減少温度(Td 5)が589℃と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が14.5ppm/℃と高い寸法安定性を有することが確認できた。
-Example 9-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 1.08 g (5 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 30 mL of N-methylpyrrolidone (NMP) and dissolved. Thereafter, 3 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, separately prepared 0.53 g (2 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 0.20 g (1 mmol) of isophthalic acid chloride (IPC) were dissolved in 20 mL of NMP. The mixed solution thus obtained was gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours, whereby a branched polybenzoxazole precursor [ PBO (BTC / IPC-HAB) precursor] solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained solid PBO (BTC / IPC-HAB) precursor was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. This PBO (BTC / IPC-HAB) precursor solid was redissolved in NMP, cast on a PET sheet, and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / IPC-HAB) precursor film. . Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 25 mol% was obtained. The physical properties of this film are shown in Table 1 below. This film exhibited excellent mechanical strength with Young's modulus (E) of 4.4 GPa, breaking strength (σ) of 43 MPa, and breaking elongation (ε) of 1.3%. Moreover, it has excellent mechanical properties, 0.2% weight loss temperature (T d 0.2 ) is 506 ° C., 5% weight loss temperature (T d 5 ) is 589 ° C. and has excellent heat resistance, and 100-200 ° C. It was confirmed that the coefficient of linear thermal expansion (CTE) at 14.5 has a high dimensional stability of 14.5 ppm / ° C.

−実施例10−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.51g(7ミリモル)を量り取り、N−メチルピロリドン(NMP )の70mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の3mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.80g(3ミリモル)及びイソフタル酸クロライド(IPC )の0.20g(1ミリモル)を30mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間、反応させ、さらに25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行った。得られたPBO(BTC/IPC-HAB)前駆体固体をろ過により回収し、イオン交換水で十分に洗浄した後、40℃で20時間、真空乾燥を行なった。このPBO(BTC/IPC-HAB)前駆体固体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が30mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表1に示す。得られたフィルムは、ヤング率(E)が4.7GPa、破断強度(σ)が24MPa、破断伸び(ε)が0.6%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が505℃、5%重量減少温度(Td 5)が588℃と極めて優れた耐熱性を有すると共に、100−200℃における線熱膨張係数(CTE)が12.5ppm/℃と高い寸法安定性を有することが確認できた。
-Example 10-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introduction tube and a calcium chloride tube with nitrogen, 1.51 g (7 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weigh out and add 70 mL of N-methylpyrrolidone (NMP) and dissolve. Next, 3 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, 0.80 g (3 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 0.20 g (1 mmol) of isophthalic acid chloride (IPC), which were separately prepared, were dissolved in 30 mL of NMP. The mixed solution is gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours, whereby a branched polybenzoxazole precursor [PBO (BTC / IPC-HAB) precursor solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained PBO (BTC / IPC-HAB) precursor solid was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. This PBO (BTC / IPC-HAB) precursor solid was redissolved in NMP, cast on a PET sheet, and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / IPC-HAB) precursor film. . Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 30 mol% was obtained. The physical properties of this film are shown in Table 1 below. The obtained film exhibited excellent mechanical strength with Young's modulus (E) of 4.7 GPa, breaking strength (σ) of 24 MPa, and breaking elongation (ε) of 0.6%. In addition, it has excellent mechanical properties, 0.2% weight loss temperature (T d 0.2 ) of 505 ° C., 5% weight loss temperature (T d 5 ) of 588 ° C. and extremely excellent heat resistance, and 100-200 ° C. It was confirmed that the linear thermal expansion coefficient (CTE) at 12.5 ppm / ° C. had high dimensional stability.

−実施例11−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.73g(8ミリモル)を量り取り、N−メチルピロリドンの40mLを加え、溶解させた。次いで、反応溶液中にN,O−ビス(トリメチルシリル)アセトアミド(BSA )の6.52g(32ミリモル)を添加し、室温で1時間、撹拌することにより、HAB のシリル化を行なった後、反応溶液を−5℃に冷却した。別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びイソフタル酸クロライド(IPC )の1.22g(6ミリモル)を25mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた後、−5℃で1時間、反応させ、加えて25℃で24時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液を水/メタノール=4/1の混合溶液中に滴下し、再沈殿精製を行なった。得られた固体状のPBO(BTC/IPC-HAB)前駆体をろ過により回収し、水/メタノール=4/1の混合溶液で十分に洗浄した後、80℃で12時間、真空乾燥を行なった。固体状のPBO(BTC/IPC-HAB)前駆体をNMP に再溶解させ、PET シート状にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が6.7mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表1に示す。このフィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が105MPa、破断伸び(ε)が8.7%と優れた力学的強度を示した。また、力学特性に優れ、0.2%重量減少温度(Td 0.2)が515℃、5%重量減少温度(Td 5)が573℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が16.1ppm/℃と高い寸法安定性を有することが確認できた。
-Example 11-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 1.73 g (8 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 40 mL of N-methylpyrrolidone and dissolved. Next, 6.52 g (32 mmol) of N, O-bis (trimethylsilyl) acetamide (BSA) was added to the reaction solution and stirred at room temperature for 1 hour to effect silylation of HAB. The solution was cooled to -5 ° C. Separately prepared 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 1.22 g (6 mmol) of isophthalic acid chloride (IPC) were dissolved in 25 mL of NMP. The mixed solution is gradually added to the reaction solution over 20 minutes, and then reacted at −5 ° C. for 1 hour, and further reacted at 25 ° C. for 24 hours, whereby a branched polybenzoxazole precursor [PBO ( BTC / IPC-HAB) precursor] solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into a mixed solution of water / methanol = 4/1 to perform reprecipitation purification. The obtained solid PBO (BTC / IPC-HAB) precursor was recovered by filtration, thoroughly washed with a mixed solution of water / methanol = 4/1, and then vacuum-dried at 80 ° C. for 12 hours. . Solid PBO (BTC / IPC-HAB) precursor is redissolved in NMP, cast into a PET sheet, and dried at 85 ° C for 3 hours to obtain a PBO (BTC / IPC-HAB) precursor film It was. Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 6.7 mol% was obtained. The physical properties of this film are shown in Table 1 below. This film exhibited excellent mechanical strength with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 105 MPa, and breaking elongation (ε) of 8.7%. Further, it has excellent mechanical properties, has a 0.2% weight loss temperature (T d 0.2 ) of 515 ° C. and a 5% weight loss temperature (T d 5 ) of 573 ° C., and has excellent heat resistance. It was confirmed that the coefficient of linear thermal expansion (CTE) at 0 ° C. was as high as 16.1 ppm / ° C.

−実施例12−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、ベンゼントリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びイソフタル酸クロライド(IPC )の1.62g(8ミリモル)を量り取り、N−メチルピロリドン(NMP )の50mLを加え、完全に溶解させ、反応溶液を−20℃に冷却した。次いで、予め25mLのNMP に4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.94g(9ミリモル)を完全に溶解させ、さらにプロピレンオキサイド(PO)の3mLを加えた混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間、反応させ、更に25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られた固体状のPBO(BTC/IPC-HAB)前駆体をろ過により回収し、イオン交換水で徹底的に洗浄した後、40℃で20時間、真空乾燥を行なった。固体状のPBO(BTC/IPC-HAB)前駆体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することにより、PBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することでオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が6.3mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/IPC-HAB)フィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が118MPa、破断伸び(ε)が8.7%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が503℃、5%重量減少温度(Td 5)が585℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が36.4ppm/℃と高い寸法安定性を有することが確認できた。
-Example 12-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.27 g (1 mmol) of benzenetricarboxylic acid chloride (BTC) and 1.62 g of isophthalic acid chloride (IPC). (8 mmol) was weighed out, 50 mL of N-methylpyrrolidone (NMP) was added and completely dissolved, and the reaction solution was cooled to -20 ° C. Next, 1.94 g (9 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was completely dissolved in 25 mL of NMP in advance, and further 3 mL of propylene oxide (PO) was added. The solution was gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours, whereby a branched polybenzoxazole precursor [PBO (BTC / BTC / IPC-HAB) precursor] solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained solid PBO (BTC / IPC-HAB) precursor was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. Solid PBO (BTC / IPC-HAB) precursor is redissolved in NMP, cast on a PET sheet, and dried at 85 ° C for 3 hours to obtain a PBO (BTC / IPC-HAB) precursor film. Obtained. Thereafter, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, and has a flexible and tough, branched monomer mole fraction. A PBO (BTC / IPC-HAB) film having a rate of 6.3 mol% was obtained. The physical properties of this film are shown in Table 2 below. The PBO (BTC / IPC-HAB) film exhibited excellent mechanical strength with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 118 MPa, and breaking elongation (ε) of 8.7%. Moreover, it has a very excellent heat resistance with a 0.2% weight loss temperature (T d 0.2 ) of 503 ° C. and a 5% weight loss temperature (T d 5 ) of 585 ° C., and linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had a high dimensional stability of 36.4 ppm / ° C.

−実施例13−
実施例12と同様の手順により調製したモノマーモル分率が6.3mol%であるPBO(BTC/IPC-HAB)前駆体溶液中に、分子鎖末端数に相当する4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.11g(0.5ミリモル)を添加し、均一な溶液となるまで撹拌した。その後、この溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)#HAB前駆体]フィルムを得た。次いで、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が6.3mol%であるPBO(BTC/IPC-HAB)#HABフィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/IPC-HAB)#HABフィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が108MPa、破断伸び(ε)が7.3%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が552℃、5%重量減少温度(Td 5)が597℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が33.1ppm/℃と高い寸法安定性を有することが確認できた。この結果から、分子鎖末端間の架橋により、PBO(BTC/IPC-HAB)の耐熱性向上が可能であることが確認できた。
-Example 13-
In a PBO (BTC / IPC-HAB) precursor solution having a monomer mole fraction of 6.3 mol% prepared by the same procedure as in Example 12, 4,4′-diamino-3, which corresponds to the number of molecular chain ends, 0.11 g (0.5 mmol) of 3′-dihydroxybiphenyl (HAB) was added and stirred until a homogeneous solution was obtained. Thereafter, this solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a branched polybenzoxazole precursor [PBO (BTC / IPC-HAB) #HAB precursor] film. Next, the film is fixed to a metal frame, and subjected to heat treatment at 200 ° C. for 1 hour and at 480 ° C. for 3 hours in a nitrogen atmosphere to perform oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) #HAB film having a rate of 6.3 mol% was obtained. The physical properties of this film are shown in Table 2 below. The PBO (BTC / IPC-HAB) #HAB film showed excellent mechanical strength with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 108 MPa, and breaking elongation (ε) of 7.3%. . Moreover, it has extremely excellent heat resistance with a 0.2% weight reduction temperature (T d 0.2 ) of 552 ° C. and a 5% weight reduction temperature (T d 5 ) of 597 ° C., and further linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had a high dimensional stability of 33.1 ppm / ° C. From this result, it was confirmed that the heat resistance of PBO (BTC / IPC-HAB) can be improved by crosslinking between molecular chain ends.

−実施例14−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、ベンゼントリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びイソフタル酸クロライド(IPC )の1.22g(6ミリモル)を量り取り、N−メチルピロリドン(NMP )の40mLを加えて完全に溶解させ、反応溶液を−20℃に冷却した。次いで、予め20mLのNMP に4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.51g(7ミリモル)を完全に溶解させ、さらにプロピレンオキサイド(PO)の3mLを加えた混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間反応させ、さらに25℃で20時間、反応させて、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られた固体状のPBO(BTC/IPC-HAB)前駆体をろ過により回収し、イオン交換水で徹底的に洗浄した後、40℃で20時間、真空乾燥を行なった。固体状のPBO(BTC/IPC-HAB)前駆体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することにより、PBO(BTC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が7.1mol%であるPBO(BTC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/IPC-HAB)フィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が112MPa、破断伸び(ε)が8.2%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が515℃、5%重量減少温度(Td 5)が581℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が30.5ppm/℃と高い寸法安定性を有することが確認できた。
-Example 14-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.27 g (1 mmol) of benzenetricarboxylic acid chloride (BTC) and 1.22 g of isophthalic acid chloride (IPC). (6 mmol) was weighed out, 40 mL of N-methylpyrrolidone (NMP) was added and completely dissolved, and the reaction solution was cooled to -20 ° C. Next, 1.51 g (7 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was completely dissolved in 20 mL of NMP in advance, and 3 mL of propylene oxide (PO) was further added. The solution was gradually added to the reaction solution over 20 minutes, then reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours to give a branched polybenzoxazole precursor [PBO (BTC / IPC- HAB) Precursor] solution was obtained. This PBO (BTC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained solid PBO (BTC / IPC-HAB) precursor was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. Solid PBO (BTC / IPC-HAB) precursor is redissolved in NMP, cast on a PET sheet, and dried at 85 ° C for 3 hours to obtain a PBO (BTC / IPC-HAB) precursor film. Obtained. Thereafter, the film is fixed to a metal frame, and is subjected to heat treatment at 200 ° C. for 1 hour and 480 ° C. for 3 hours in a nitrogen atmosphere, thereby performing oxazolation, which is flexible and tough and has a branched monomer molar content. A PBO (BTC / IPC-HAB) film having a rate of 7.1 mol% was obtained. The physical properties of this film are shown in Table 2 below. The PBO (BTC / IPC-HAB) film exhibited excellent mechanical strength with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 112 MPa, and breaking elongation (ε) of 8.2%. In addition, it has extremely excellent heat resistance with a 0.2% weight loss temperature (T d 0.2 ) of 515 ° C. and a 5% weight loss temperature (T d 5 ) of 581 ° C., and linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had high dimensional stability as 30.5 ppm / ° C.

−実施例15−
実施例14と同様の手順により調製した分岐モノマーモル分率が7.1mol%のPBO(BTC/IPC-HAB)前駆体溶液中に、分子鎖末端数に相当する4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.11g(0.5ミリモル)を添加し、均一な溶液となるまで撹拌した。その後、この溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することで、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)#HAB前駆体]フィルムを得た。次いで、フィルムを金枠に固定し、真空下にて200℃で2時間、加熱した後、窒素雰囲気下にて480℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が7.1mol%のPBO(BTC/IPC-HAB)#HABフィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/IPC-HAB)#HABフィルムは、ヤング率(E)が4.5GPa、破断強度(σ)が174MPa、破断伸び(ε)12.5%と優れた力学強度を示した。また、0.2%重量減少温度(Td 0.2)が541℃、5%重量減少温度(Td 5)が595℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が16.8ppm/℃と高い寸法安定性を有することが確認できた。この結果から、分子鎖末端間の架橋により、PBO(BTC/IPC-HAB)の耐熱性向上が可能であることが確認できた。
-Example 15-
In a PBO (BTC / IPC-HAB) precursor solution having a branched monomer molar fraction of 7.1 mol% prepared by the same procedure as in Example 14, 4,4′-diamino-3, which corresponds to the number of molecular chain ends, 0.11 g (0.5 mmol) of 3′-dihydroxybiphenyl (HAB) was added and stirred until a homogeneous solution was obtained. Thereafter, this solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a branched polybenzoxazole precursor [PBO (BTC / IPC-HAB) #HAB precursor] film. Next, the film is fixed to a metal frame, heated at 200 ° C. for 2 hours under vacuum, and then subjected to heat treatment at 480 ° C. for 3 hours under a nitrogen atmosphere to perform oxazolation and have flexibility. A tough PBO (BTC / IPC-HAB) #HAB film having a branched monomer molar fraction of 7.1 mol% was obtained. The physical properties of this film are shown in Table 2 below. The PBO (BTC / IPC-HAB) #HAB film exhibited excellent mechanical strength with Young's modulus (E) of 4.5 GPa, breaking strength (σ) of 174 MPa, and breaking elongation (ε) of 12.5%. Moreover, it has extremely excellent heat resistance with a 0.2% weight reduction temperature (T d 0.2 ) of 541 ° C. and a 5% weight reduction temperature (T d 5 ) of 595 ° C., and further linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had a high dimensional stability of 16.8 ppm / ° C. From this result, it was confirmed that the heat resistance of PBO (BTC / IPC-HAB) can be improved by crosslinking between molecular chain ends.

−実施例16−
実施例14と同様の手順により調製した分岐モノマーモル分率が7.1mol%のPBO(BTC/IPC-HAB)前駆体溶液中に、樹脂重量に対して20wt%となるように窒化ホウ素(BN)フィラーを添加し、均一な溶液となるまで撹拌した。その後、この溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することでポリベンゾオキサゾール前駆体[PBO(BTC/IPC-HAB)-BN20%前駆体]フィルムを得た。次いで、フィルムを金枠に固定し、窒素雰囲気下にて200℃で1時間、480℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が7.1mol%であるPBO(BTC/IPC-HAB)-BN20%フィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/IPC-HAB)-BN20%フィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が88MPa、破断伸び(ε)が4.1%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が517℃、5%重量減少温度(Td 5)が603℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が12.1ppm/℃と高い寸法安定性を有することが確認できた。この結果から、セラミック(無機微粒子)である窒化ホウ素フィラーとの複合化により、PBO(BTC/IPC-HAB)の耐熱性向上および寸法安定性向上が可能であることが確認できた。
-Example 16-
Boron nitride (BN) in a PBO (BTC / IPC-HAB) precursor solution having a branched monomer molar fraction of 7.1 mol% prepared by the same procedure as in Example 14 to 20 wt% with respect to the resin weight. Filler was added and stirred until a homogeneous solution was obtained. Thereafter, this solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a polybenzoxazole precursor [PBO (BTC / IPC-HAB) -BN20% precursor] film. Next, the film is fixed to a metal frame, and is subjected to heat treatment in a nitrogen atmosphere at 200 ° C. for 1 hour and at 480 ° C. for 3 hours to perform oxazolation, which is a flexible and tough, branched monomer molar fraction. A PBO (BTC / IPC-HAB) -BN 20% film having a content of 7.1 mol% was obtained. The physical properties of this film are shown in Table 2 below. PBO (BTC / IPC-HAB) -BN20% film has excellent mechanical strength with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 88 MPa and breaking elongation (ε) of 4.1%. It was. Moreover, it has extremely excellent heat resistance with a 0.2% weight loss temperature (T d 0.2 ) of 517 ° C. and a 5% weight loss temperature (T d 5 ) of 603 ° C., and linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had high dimensional stability as 12.1 ppm / ° C. From this result, it was confirmed that the heat resistance and dimensional stability of PBO (BTC / IPC-HAB) can be improved by combining with a boron nitride filler that is ceramic (inorganic fine particles).

−実施例17−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mlのフラスコ内を窒素で置換した後、ベンゼントリカルボン酸クロライド(BTC )の0.27g(1ミリモル)、テレフタル酸クロライド(TPC )0.24g(1.2ミリモル)、及びイソフタル酸クロライド(IPC )の0.97g(4.8ミリモル)を量り取り、N−メチルピロリドン(NMP )の40mLを加えて完全に溶解させ、反応溶液を−20℃に冷却した。次いで、予め20mLのNMP に4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.51g(7ミリモル)を完全に溶解させ、さらにプロピレンオキサイド(PO)の3mLを加えた混合溶液を、反応溶液中に20分かけて徐々に加えた後、−20℃で2時間、反応させ、さらに25℃で20時間、反応させることにより、ポリベンゾオキサゾール前駆体[PBO(BTC/TPC/IPC-HAB)前駆体]溶液を得た。このPBO(BTC/TPC/IPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られた固体状のPBO(BTC/TPC/IPC-HAB)前駆体をろ過により回収し、イオン交換水で徹底的に洗浄した後、40℃で20時間、真空乾燥を行なった。固体状のPBO(BTC/TPC/IPC-HAB)前駆体をNMP に再溶解させ、PET シート上にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/TPC/IPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、真空下にて200℃で2時間、加熱処理した後、窒素雰囲気下にて480℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が7.1mol%のPBO(BTC/TPC/IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/TPC/IPC-HAB)フィルムは、ヤング率(E)が4.6GPa、破断強度(σ)が118MPa、破断伸び(ε)が6.6%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が509℃、5%重量減少温度(Td 5)が588℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が20.4ppm/℃と高い寸法安定性を有することが確認できた。
-Example 17-
After replacing the inside of a 100 ml flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.27 g (1 mmol) of benzenetricarboxylic acid chloride (BTC), 0.24 g of terephthalic acid chloride (TPC) ( 1.2 millimoles) and 0.97 g (4.8 millimoles) of isophthalic acid chloride (IPC) are weighed and 40 mL of N-methylpyrrolidone (NMP) is added to completely dissolve the reaction solution at −20 ° C. Cooled to. Next, 1.51 g (7 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was completely dissolved in 20 mL of NMP in advance, and 3 mL of propylene oxide (PO) was further added. The solution was gradually added to the reaction solution over 20 minutes, reacted at −20 ° C. for 2 hours, and further reacted at 25 ° C. for 20 hours, whereby the polybenzoxazole precursor [PBO (BTC / TPC / IPC-HAB) Precursor] solution was obtained. This PBO (BTC / TPC / IPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained solid PBO (BTC / TPC / IPC-HAB) precursor was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. Solid PBO (BTC / TPC / IPC-HAB) precursor is redissolved in NMP, cast on a PET sheet, and dried at 85 ° C for 3 hours to give PBO (BTC / TPC / IPC-HAB) precursor. A body film was obtained. Thereafter, the film is fixed to a metal frame, heat-treated at 200 ° C. for 2 hours under vacuum, and then heat-treated at 480 ° C. for 3 hours under a nitrogen atmosphere to oxazolate and have flexibility. And a tough PBO (BTC / TPC / IPC-HAB) film having a branched monomer molar fraction of 7.1 mol% was obtained. The physical properties of this film are shown in Table 2 below. The PBO (BTC / TPC / IPC-HAB) film showed excellent mechanical strength with Young's modulus (E) of 4.6 GPa, breaking strength (σ) of 118 MPa, and breaking elongation (ε) of 6.6%. . Moreover, it has extremely excellent heat resistance with a 0.2% weight reduction temperature (T d 0.2 ) of 509 ° C. and a 5% weight reduction temperature (T d 5 ) of 588 ° C., and linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had high dimensional stability as 20.4 ppm / ° C.

−実施例18−
実施例17と同様の手順により調製した分岐モノマーモル分率が7.1mol%のPBO(BTC/TPC/IPC-HAB)前駆体溶液中に、樹脂重量に対して20wt%となるように窒化ホウ素(BN)フィラーを添加し、均一な溶液となるまで撹拌した。その後、この溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することで、PBO(BTC/TPC/IPC-HAB)-BN20%前駆体フィルムを得た。次いで、フィルムを金枠に固定し、真空下にて200℃で2時間、加熱処理した後、窒素雰囲気下にて480℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が7.1mol%であるPBO(BTC/TPC/IPC-HAB)-BN20%フィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/TPC/IPC-HAB)-BN20%フィルムは、ヤング率(E)が4.7GPa、破断強度(σ)が104MPa、破断伸び(ε)が5.8%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が511℃、5%重量減少温度(Td 5)が601℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が14.9ppm/℃と高い寸法安定性を有することが確認できた。
-Example 18-
Boron nitride (in a PBO (BTC / TPC / IPC-HAB) precursor solution having a branched monomer molar fraction of 7.1 mol% prepared by the same procedure as in Example 17 to 20 wt% with respect to the resin weight) BN) filler was added and stirred until a homogeneous solution was obtained. Thereafter, this solution was cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a PBO (BTC / TPC / IPC-HAB) -BN 20% precursor film. Next, the film is fixed to a metal frame, heat-treated at 200 ° C. for 2 hours under vacuum, and then heat-treated at 480 ° C. for 3 hours under a nitrogen atmosphere to oxazolate and have flexibility. And a tough PBO (BTC / TPC / IPC-HAB) -BN 20% film having a branched monomer molar fraction of 7.1 mol% was obtained. The physical properties of this film are shown in Table 2 below. PBO (BTC / TPC / IPC-HAB) -BN20% film has excellent mechanical strength with Young's modulus (E) of 4.7 GPa, breaking strength (σ) of 104 MPa, and breaking elongation (ε) of 5.8%. showed that. Moreover, it has extremely excellent heat resistance with a 0.2% weight loss temperature (T d 0.2 ) of 511 ° C. and a 5% weight loss temperature (T d 5 ) of 601 ° C., and linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had a high dimensional stability of 14.9 ppm / ° C.

−実施例19−
実施例17と同様の手順により調製した分岐モノマーモル分率が7.1mol%のPBO(BTC/TPC/IPC-HAB)前駆体溶液中に、分子鎖末端数に相当する4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.11g(0.5ミリモル)、及び、含有割合が20wt%となるように窒化ホウ素(BN)フィラーを添加し、均一な溶液となるまで撹拌した。その後、この溶液をPET シート上にキャスティングし、85℃で3時間、乾燥することで分岐ポリベンゾオキサゾール前駆体[PBO(BTC/TPC/IPC-HAB)#HAB-BN20%前駆体]フィルムを得た。次いで、フィルムを金枠に固定し、真空下にて200℃で2時間、加熱処理した後、窒素雰囲気下にて480℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭な、分岐モノマーモル分率が7.1mol%であるPBO(BTC/TPC/IPC-HAB)#HAB-BN20%フィルムを得た。このフィルムの各物性値を下記表2に示す。PBO(BTC/TPC/IPC-HAB)#HAB-BN20%フィルムは、ヤング率(E)が4.7GPa、破断強度(σ)が109MPa、破断伸び(ε)が9.2%と優れた力学的強度を示した。また、0.2%重量減少温度(Td 0.2)が538℃、5%重量減少温度(Td 5)が605℃と極めて優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が10.3ppm/℃と高い寸法安定性を有することが確認できた。この結果から、分子鎖末端間の架橋およびセラミックである窒化ホウ素フィラーとの複合化により、PBO(BTC/TPC/IPC-HAB)の耐熱性向上および寸法安定性向上が可能であることが確認できた。
-Example 19-
In a PBO (BTC / TPC / IPC-HAB) precursor solution having a branched monomer molar fraction of 7.1 mol% prepared by the same procedure as in Example 17, 4,4′-diamino-corresponding to the number of molecular chain terminals Boron nitride (BN) filler was added so that 0.13 g (0.5 mmol) of 3,3′-dihydroxybiphenyl (HAB) and the content ratio would be 20 wt%, and stirred until a uniform solution was obtained. . Then, this solution is cast on a PET sheet and dried at 85 ° C. for 3 hours to obtain a branched polybenzoxazole precursor [PBO (BTC / TPC / IPC-HAB) # HAB-BN20% precursor] film. It was. Next, the film is fixed to a metal frame, heat-treated at 200 ° C. for 2 hours under vacuum, and then heat-treated at 480 ° C. for 3 hours under a nitrogen atmosphere to oxazolate and have flexibility. And a tough PBO (BTC / TPC / IPC-HAB) # HAB-BN 20% film having a branched monomer molar fraction of 7.1 mol% was obtained. The physical properties of this film are shown in Table 2 below. PBO (BTC / TPC / IPC-HAB) # HAB-BN20% film has excellent mechanics with Young's modulus (E) of 4.7 GPa, breaking strength (σ) of 109 MPa and breaking elongation (ε) of 9.2%. Strength. Moreover, it has extremely excellent heat resistance with a 0.2% weight reduction temperature (T d 0.2 ) of 538 ° C. and a 5% weight reduction temperature (T d 5 ) of 605 ° C., and further linear thermal expansion at 100-200 ° C. It was confirmed that the coefficient (CTE) had high dimensional stability as 10.3 ppm / ° C. From this result, it was confirmed that the heat resistance and dimensional stability of PBO (BTC / TPC / IPC-HAB) can be improved by cross-linking between molecular chain ends and complexing with ceramic boron nitride filler. It was.

−比較例1−
攪拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の2.59g(12ミリモル)を量り取り、N−メチルピロリドンの20mLを加え、溶解させた。次いで、反応溶液中にN,O−ビス(トリメチルシリル)アセトアミド(BSA )の9.78g(48ミリモル)を添加し、室温で1時間、撹拌することにより、HAB のシリル化を行なった。この溶液を液体窒素にて冷却し、イソフタル酸クロライド(IPC )の2.44g(11.4ミリモル)を加えた後、−5℃で1時間、反応させ、加えて25℃で24時間、反応させることにより、直鎖ポリベンゾオキサゾール前駆体[PBO(IPC-HAB)前駆体]溶液を得た。このPBO(IPC-HAB)前駆体溶液を水/メタノール=4/1の混合溶液中に滴下し、再沈殿精製を行なった。得られた固体状のPBO(IPC-HAB)前駆体をろ過により回収し、水/メタノール=4/1の混合溶液で十分に洗浄した後、85℃で12時間、真空乾燥を行なった。固体状のPBO(IPC-HAB)前駆体をNMP に再溶解させ、ポリエステルフィルム上にキャストし、85℃で4時間、乾燥させ、PBO(IPC-HAB)前駆体フィルムを得た。得られたPBO(IPC-HAB)前駆体フィルムを金枠に固定した後、窒素雰囲気下にて、150℃で1時間、500℃で3時間、加熱処理することによりオキサゾール化を行ない、屈曲性を有し且つ強靭なPBO(IPC-HAB)フィルムを得た。このフィルムの各物性値を下記表3に示す。このフィルムは、0.2%重量減少温度(Td 0.2)が531℃、5%重量減少温度(Td 5)が626℃と優れた耐熱性を有することが確認できた。一方、100−200℃における線熱膨張係数(CTE)は21.5ppm/℃であることが確認できた。直鎖構造のPBO フィルムでは延伸操作などにより分子鎖を強く配向させる必要があり、延伸操作がなければ用途が限定される。従って、延伸操作無しで20ppm/℃以下の優れた寸法安定性を有するフィルム化は困難であると考えられるため、近年の技術躍進に伴い、ポリマーフィルムに求められている更なる寸法安定性への対応は困難であると考えられる。
-Comparative Example 1-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 2.59 g (12 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was weighed. And 20 mL of N-methylpyrrolidone was added and dissolved. Next, 9.78 g (48 mmol) of N, O-bis (trimethylsilyl) acetamide (BSA) was added to the reaction solution and stirred at room temperature for 1 hour to effect silylation of HAB. The solution was cooled with liquid nitrogen and 2.44 g (11.4 mmol) of isophthalic acid chloride (IPC) was added, followed by reaction at −5 ° C. for 1 hour, and addition at 25 ° C. for 24 hours. Thus, a linear polybenzoxazole precursor [PBO (IPC-HAB) precursor] solution was obtained. This PBO (IPC-HAB) precursor solution was dropped into a mixed solution of water / methanol = 4/1 to carry out reprecipitation purification. The obtained solid PBO (IPC-HAB) precursor was recovered by filtration, sufficiently washed with a mixed solution of water / methanol = 4/1, and then vacuum-dried at 85 ° C. for 12 hours. The solid PBO (IPC-HAB) precursor was redissolved in NMP, cast on a polyester film, and dried at 85 ° C. for 4 hours to obtain a PBO (IPC-HAB) precursor film. After fixing the obtained PBO (IPC-HAB) precursor film to a metal frame, it is oxazolated by heat treatment at 150 ° C for 1 hour and at 500 ° C for 3 hours in a nitrogen atmosphere, and is flexible. And a tough PBO (IPC-HAB) film was obtained. The physical properties of this film are shown in Table 3 below. This film was confirmed to have excellent heat resistance with a 0.2% weight loss temperature (T d 0.2 ) of 531 ° C. and a 5% weight loss temperature (T d 5 ) of 626 ° C. On the other hand, it was confirmed that the linear thermal expansion coefficient (CTE) at 100 to 200 ° C. was 21.5 ppm / ° C. In the case of a PBO film having a linear structure, it is necessary to strongly orient the molecular chain by a stretching operation or the like. Therefore, since it is considered difficult to form a film having excellent dimensional stability of 20 ppm / ° C. or less without a stretching operation, with the recent technological breakthrough, further dimensional stability required for polymer films is improved. Correspondence is considered difficult.

−比較例2−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.43g(2ミリモル)を量り取り、N−メチルピロリドンの40mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の1.5mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)を15mLのNMP に溶解させてなる溶液を、反応溶液中に20分かけて徐々に加えた。その後、−20℃で2時間、反応させ、さらに25℃で20時間、反応させることにより、多分岐ポリベンゾオキサゾール前駆体[PBO(BTC-HAB)前駆体]溶液を得た。この多分岐PBO(BTC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られた固体状の多分岐PBO(BTC-HAB)前駆体をろ過により回収し、イオン交換水で十分に洗浄した後、80℃で12時間、真空乾燥を行なった。固体状のの多分岐PBO(BTC-HAB)前駆体をNMP に再溶解させ、ポリエステルフィルム上にキャストし、85℃で4時間、乾燥させることで多分岐PBO(BTC-HAB)前駆体フィルムの作成を試みたが、十分な高分子量体に成長していないため、また非常に剛直な分子組成となることから、フィルムの屈曲性が足りず、脆弱で小さなフィルム片しか作成できなかった。得られた多分岐PBO(BTC-HAB)前駆体フィルム片を窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することでオキサゾール化を行なった。得られた多分岐PBO(BTC-HAB)は、0.2%重量減少温度(Td 0.2)が509℃、5%重量減少温度(Td 5)が591℃と優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が10.9ppm/℃と高い寸法安定性を有することが確認できた。しかしながら、脆弱で屈曲性に欠けハンドリング性に劣るため、大型あるいは連続フィルムの作成は困難であると考えられる。
-Comparative Example 2-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.43 g (2 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 40 mL of N-methylpyrrolidone and dissolved. Next, 1.5 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, a solution prepared by dissolving 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC), prepared separately, in 15 mL of NMP was gradually added to the reaction solution over 20 minutes. added. Then, it was made to react at -20 degreeC for 2 hours, and also by making it react at 25 degreeC for 20 hours, the multibranched polybenzoxazole precursor [PBO (BTC-HAB) precursor] solution was obtained. This multi-branched PBO (BTC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained solid multi-branched PBO (BTC-HAB) precursor was recovered by filtration, thoroughly washed with ion-exchanged water, and then vacuum-dried at 80 ° C. for 12 hours. A solid multi-branched PBO (BTC-HAB) precursor is redissolved in NMP, cast on a polyester film, and dried at 85 ° C. for 4 hours to form a multi-branched PBO (BTC-HAB) precursor film. An attempt was made to make it, but because it did not grow into a sufficiently high molecular weight body and because it had a very rigid molecular composition, the film was not flexible enough to produce only fragile and small film pieces. The obtained multi-branched PBO (BTC-HAB) precursor film piece was heat-treated at 200 ° C. for 1 hour and 480 ° C. for 3 hours in a nitrogen atmosphere to effect oxazolation. The resulting multi-branched PBO (BTC-HAB) has excellent heat resistance with a 0.2% weight loss temperature (T d 0.2 ) of 509 ° C and a 5% weight loss temperature (T d 5 ) of 591 ° C. Furthermore, it has been confirmed that the linear thermal expansion coefficient (CTE) at 100-200 ° C. has a high dimensional stability of 10.9 ppm / ° C. However, since it is fragile and lacks flexibility and is inferior in handling properties, it is considered difficult to produce a large or continuous film.

−比較例3−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の1.73g(8ミリモル)を量り取り、N−メチルピロリドンの40mLを加え、溶解させた。その後、反応溶液中にプロピレンオキサイド(PO)の2.5mLを添加し、反応溶液を−20℃に冷却した。次いで、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.27g(1ミリモル)及びテレフタル酸クロライド(TPC )の1.22g(6ミリモル)を25mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた。その結果、重合の進行と共に生成する、分岐モノマーモル分率が6.7mol%であるPBO(BTC/TPC-HAB)前駆体のNMP に対する溶解性が低下し、重合途中に前駆体が固体として析出した。また、析出した固体状のPBO(BTC/TPC-HAB)前駆体は、NMP への再溶解が不可能であり、キャスティング法によるフィルム化は出来なかった。尚、本比較例3及び比較例4においては、フィルム化が出来なかったため、線熱膨張係数(CTE)、0.2%重量減少温度(Td 0.2)、5%重量減少温度(Td 5)、ヤング率(E)、破断強度(σ)、及び破断伸び(ε)の測定は行なっていない。
-Comparative Example 3-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 1.73 g (8 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 40 mL of N-methylpyrrolidone and dissolved. Thereafter, 2.5 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Subsequently, 0.27 g (1 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 1.22 g (6 mmol) of terephthalic acid chloride (TPC) prepared separately were dissolved in 25 mL of NMP. The mixed solution was gradually added to the reaction solution over 20 minutes. As a result, the solubility of the PBO (BTC / TPC-HAB) precursor with a branched monomer molar fraction of 6.7 mol%, which is generated as the polymerization proceeds, decreases in NMP, and the precursor is precipitated as a solid during the polymerization. . The precipitated solid PBO (BTC / TPC-HAB) precursor could not be redissolved in NMP and could not be formed into a film by the casting method. In Comparative Example 3 and Comparative Example 4, since film formation was not possible, the coefficient of linear thermal expansion (CTE), 0.2% weight reduction temperature (T d 0.2 ), 5% weight reduction temperature (T d 5 ), Young's modulus (E), breaking strength (σ), and breaking elongation (ε) are not measured.

−比較例4−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.54g(2.5ミリモル)を量り取り、N−メチルピロリドンの40mLを加え、溶解させた。次いで、反応溶液中にプロピレンオキサイド(PO)の1.5mLを添加し、反応溶液を−20℃に冷却した。更に、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.13g(0.5ミリモル)及びテレフタル酸クロライド(TPC )の0.30g(1.5ミリモル)を20mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた。その結果、重合の進行と共に生成する、分岐モノマーモル分率が11.1mol%であるPBO(BTC/TPC-HAB)前駆体のNMP に対する溶解性が低下し、部分的に不溶性のゲルを生じた。これより、分岐モノマーモル分率が11.1mol%であるPBO(BTC/TPC-HAB)において、均一なフィルムを作成することは困難であった。
-Comparative Example 4-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.54 g (2.5 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was obtained. ) Was weighed and 40 mL of N-methylpyrrolidone was added and dissolved. Next, 1.5 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Further, 0.13 g (0.5 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 0.30 g (1.5 mmol) of terephthalic acid chloride (TPC) prepared separately were added to 20 mL. A mixed solution dissolved in NMP was gradually added to the reaction solution over 20 minutes. As a result, the solubility of the PBO (BTC / TPC-HAB) precursor having a branched monomer molar fraction of 11.1 mol%, which was generated as the polymerization progressed, decreased in NMP, resulting in a partially insoluble gel. Accordingly, it was difficult to produce a uniform film in PBO (BTC / TPC-HAB) having a branched monomer molar fraction of 11.1 mol%.

−比較例5−
撹拌機、窒素導入管及び塩化カルシウム管を備えた100mLのフラスコ内を窒素で置換した後、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル(HAB )の0.43g(2ミリモル)を量り取り、N−メチルピロリドンの50mLを加え、溶解させた。その後、反応溶液中にプロピレンオキサイド(PO)の1mLを添加し、反応溶液を−20℃に冷却した。次いで、別途準備した、ベンゼン−1,3,5−トリカルボン酸クロライド(BTC )の0.13g(0.5ミリモル)及びテレフタル酸クロライド(TPC )の0.20g(1ミリモル)を20mLのNMP に溶解させてなる混合溶液を、反応溶液中に20分かけて徐々に加えた。その後、−20℃で2時間、反応させ、加えて25℃で20時間、反応させることにより、分岐ポリベンゾオキサゾール前駆体[PBO(BTC/TPC-HAB)前駆体]溶液を得た。このPBO(BTC/TPC-HAB)前駆体溶液をイオン交換水中に滴下し、再沈殿精製を行なった。得られた固体状のPBO(BTC/TPC-HAB)前駆体をろ過により回収し、イオン交換水で十分に洗浄した後、40℃で20時間、真空乾燥を行なった。固体状のPBO(BTC/TPC-HAB)前駆体をNMP に再溶解させ、PET シート状にキャスティングし、85℃で3時間、乾燥することでPBO(BTC/TPC-HAB)前駆体フィルムを得た。その後、フィルムを金枠に固定し、窒素雰囲気下にて、200℃で1時間、480℃で3時間、加熱処理することによってオキサゾール化を行ない、分岐モノマーモル分率が14.3mol%であるPBO(BTC/TPC-HAB)フィルムを得た。このフィルムの各物性値を下記表3に示す。このフィルムは、0.2%重量減少温度(Td 0.2)が523℃、5%重量減少温度(Td 5)が593℃と優れた耐熱性を有し、さらに100−200℃における線熱膨張係数(CTE)が9.9ppm/℃と高い寸法安定を有することが確認できた。しかしながら、類似構造を有するPBO(BTC/IPC-HAB)系(実施例7)に比べ、PBO(BTC/TPC-HAB)前駆体は溶解性が低いことから、ゲル化を抑制するために前駆体合成時の固体分濃度を低くする必要があり、また、再沈殿精製後にNMP へ再溶解させる際も、固体分濃度を高めることができないという問題がある。更に、PBO(BTC/TPC-HAB)前駆体フィルムは、PBO(BTC/IPC-HAB)前駆体フィルムよりも剛直で脆く、ハンドリング性に劣るため、大型あるいは連続フィルムの作成は困難であると考えられる。
-Comparative Example 5-
After replacing the inside of a 100 mL flask equipped with a stirrer, a nitrogen introducing tube and a calcium chloride tube with nitrogen, 0.43 g (2 mmol) of 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB) was added. Weighed and added 50 mL of N-methylpyrrolidone and dissolved. Thereafter, 1 mL of propylene oxide (PO) was added to the reaction solution, and the reaction solution was cooled to −20 ° C. Next, 0.13 g (0.5 mmol) of benzene-1,3,5-tricarboxylic acid chloride (BTC) and 0.20 g (1 mmol) of terephthalic acid chloride (TPC) prepared separately were added to 20 mL of NMP. The dissolved mixed solution was gradually added to the reaction solution over 20 minutes. Then, it was made to react at -20 degreeC for 2 hours, and also by making it react at 25 degreeC for 20 hours, the branched polybenzoxazole precursor [PBO (BTC / TPC-HAB) precursor] solution was obtained. This PBO (BTC / TPC-HAB) precursor solution was dropped into ion-exchanged water, and reprecipitation purification was performed. The obtained solid PBO (BTC / TPC-HAB) precursor was recovered by filtration, sufficiently washed with ion-exchanged water, and then vacuum-dried at 40 ° C. for 20 hours. Solid PBO (BTC / TPC-HAB) precursor is redissolved in NMP, cast into a PET sheet, and dried at 85 ° C for 3 hours to obtain a PBO (BTC / TPC-HAB) precursor film It was. Thereafter, the film was fixed to a metal frame, and oxazolation was performed by heat treatment at 200 ° C. for 1 hour and 480 ° C. for 3 hours under a nitrogen atmosphere, and PBO having a branched monomer molar fraction of 14.3 mol%. A (BTC / TPC-HAB) film was obtained. The physical properties of this film are shown in Table 3 below. This film has excellent heat resistance such as 0.2% weight loss temperature (T d 0.2 ) of 523 ° C., 5% weight loss temperature (T d 5 ) of 593 ° C., and linear heat at 100-200 ° C. It was confirmed that the coefficient of expansion (CTE) had high dimensional stability as 9.9 ppm / ° C. However, compared to the PBO (BTC / IPC-HAB) system having a similar structure (Example 7), the PBO (BTC / TPC-HAB) precursor has low solubility, so that the precursor is used to suppress gelation. It is necessary to reduce the solid content concentration during synthesis, and there is a problem that the solid content concentration cannot be increased even when re-dissolving in NMP after reprecipitation purification. Furthermore, the PBO (BTC / TPC-HAB) precursor film is more rigid and brittle than the PBO (BTC / IPC-HAB) precursor film, and has poor handling properties. It is done.

Figure 0005820811
Figure 0005820811

Figure 0005820811
Figure 0005820811

Figure 0005820811
Figure 0005820811

上述した実施例及び比較例より明らかなように、本発明のポリベンゾオキサゾール系材料からなるフィルムにあっては、現存する有機高分子フィルムの中で最高レベルの極めて優れた耐熱性を有し、且つ、高い寸法安定性、機械的特性、屈曲性を示すものである。従って、本発明の材料からなるフィルムは、半導体用の層間絶縁膜、保護膜、プリント配線板用フレキシブル基板、太陽電池用フレキシブル基板等の用途に、好適に使用され得るものである。
As is clear from the examples and comparative examples described above, the film made of the polybenzoxazole-based material of the present invention has the highest level of excellent heat resistance among existing organic polymer films, In addition, it exhibits high dimensional stability, mechanical properties, and flexibility. Therefore, the film made of the material of the present invention can be suitably used for applications such as an interlayer insulating film for semiconductors, a protective film, a flexible substrate for printed wiring boards, and a flexible substrate for solar cells.

Claims (8)

ベンゼン−1,3,5−トリカルボン酸クロライド、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、及びイソフタル酸クロライドからなる、下記式より算出される分岐モノマーモル分率が5〜30mol%であるモノマー群を重合することにより分岐ポリベンゾオキサゾール前駆体とし、
該分岐ポリベンゾオキサゾール前駆体と、かかる分岐ポリベンゾオキサゾール前駆体の末端官能基と反応し得る官能基を二つ以上有する芳香族化合物との混合物を、オキサゾール化することによって得られる分岐ポリベンゾオキサゾール系材料。
Figure 0005820811
The branched monomer molar fraction calculated from the following formula consisting of benzene-1,3,5-tricarboxylic acid chloride, 4,4′-diamino-3,3′-dihydroxybiphenyl, and isophthalic acid chloride is 5 to 30 mol%. A branched polybenzoxazole precursor is obtained by polymerizing a certain monomer group,
Branched polybenzoxazole obtained by oxazolating a mixture of the branched polybenzoxazole precursor and an aromatic compound having two or more functional groups capable of reacting with the terminal functional group of the branched polybenzoxazole precursor System material.
Figure 0005820811
前記モノマー群がテレフタル酸クロライドを含む請求項1に記載の分岐ポリベンゾオキサゾール系材料。   The branched polybenzoxazole-based material according to claim 1, wherein the monomer group includes terephthalic acid chloride. 前記芳香族化合物が有する官能基がアミノ基、ヒドロキシル基又はカルボキシル基である請求項1又は請求項2に記載の分岐ポリベンゾオキサゾール系材料。 The branched polybenzoxazole-based material according to claim 1 or 2 , wherein the functional group of the aromatic compound is an amino group, a hydroxyl group, or a carboxyl group. 前記混合物に無機フィラーを添加してなるものをオキサゾール化することによって得られる請求項1〜請求項3の何れか1項に記載の分岐ポリベンゾオキサゾール系材料。 The branched polybenzoxazole-based material according to any one of claims 1 to 3 , obtained by oxazolating a mixture obtained by adding an inorganic filler to the mixture . 請求項1〜請求項4の何れか1項に記載の分岐ポリベンゾオキサゾール系材料からなる太陽電池基板用フィルム。 The film for solar cell substrates which consists of the branched polybenzoxazole type material of any one of Claims 1-4 . 請求項1〜請求項4の何れか1項に記載の分岐ポリベンゾオキサゾール系材料の製造方法にして、
前記モノマー群の重合を、−20〜0℃の温度条件の下、オキシラン化合物を含む有機溶媒内にて実施する工程を含むことを特徴とする分岐ポリベンゾオキサゾール系材料の製造方法。
In the method for producing a branched polybenzoxazole-based material according to any one of claims 1 to 4 ,
The manufacturing method of the branched polybenzoxazole type material characterized by including the process of implementing superposition | polymerization of the said monomer group in the organic solvent containing an oxirane compound under the temperature conditions of -20-0 degreeC.
請求項1〜請求項4の何れか1項に記載の分岐ポリベンゾオキサゾール系材料の製造方法にして、
4,4’−ジアミノ−3,3’−ジヒドロキシビフェニルをシリル化剤によってシリル化し、それにより得られるシリル化物と、前記モノマー群を構成する4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル以外のモノマーとを重合することを特徴とする分岐ポリベンゾオキサゾール系材料の製造方法。
In the method for producing a branched polybenzoxazole-based material according to any one of claims 1 to 4 ,
Silylated 4,4′-diamino-3,3′-dihydroxybiphenyl with a silylating agent, and the resulting silylated product, 4,4′-diamino-3,3′-dihydroxybiphenyl constituting the monomer group A method for producing a branched polybenzoxazole-based material, wherein the monomer is polymerized with other monomers.
ベンゼン−1,3,5−トリカルボン酸クロライド、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、及びイソフタル酸クロライドからなる、下記式より算出される分岐モノマーモル分率が5〜30mol%であるモノマー群を重合することにより分岐ポリベンゾオキサゾール前駆体とし、かかる分岐ポリベンゾオキサゾール前駆体をオキサゾール化することによって得られる分岐ポリベンゾオキサゾール系材料からなる太陽電池基板用フィルム。The branched monomer molar fraction calculated from the following formula consisting of benzene-1,3,5-tricarboxylic acid chloride, 4,4′-diamino-3,3′-dihydroxybiphenyl, and isophthalic acid chloride is 5 to 30 mol%. A film for a solar cell substrate comprising a branched polybenzoxazole precursor obtained by polymerizing a certain monomer group to obtain a branched polybenzoxazole precursor and oxazolating the branched polybenzoxazole precursor.
Figure 0005820811
Figure 0005820811
JP2012533986A 2010-09-15 2011-09-12 Branched polybenzoxazole-based material, film for solar cell substrate, and method for producing branched polybenzoxazole-based material Expired - Fee Related JP5820811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533986A JP5820811B2 (en) 2010-09-15 2011-09-12 Branched polybenzoxazole-based material, film for solar cell substrate, and method for producing branched polybenzoxazole-based material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010207064 2010-09-15
JP2010207064 2010-09-15
PCT/JP2011/070696 WO2012036110A1 (en) 2010-09-15 2011-09-12 Branched polybenzoxazole material, film for solar cell substrate, and method for producing branched polybenzoxazole material
JP2012533986A JP5820811B2 (en) 2010-09-15 2011-09-12 Branched polybenzoxazole-based material, film for solar cell substrate, and method for producing branched polybenzoxazole-based material

Publications (2)

Publication Number Publication Date
JPWO2012036110A1 JPWO2012036110A1 (en) 2014-02-03
JP5820811B2 true JP5820811B2 (en) 2015-11-24

Family

ID=45831570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012533986A Expired - Fee Related JP5820811B2 (en) 2010-09-15 2011-09-12 Branched polybenzoxazole-based material, film for solar cell substrate, and method for producing branched polybenzoxazole-based material

Country Status (2)

Country Link
JP (1) JP5820811B2 (en)
WO (1) WO2012036110A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074657B2 (en) * 2012-12-05 2017-02-08 国立大学法人 岡山大学 Method for producing rigid polymer three-dimensional crosslinked film
JP6842151B2 (en) * 2015-10-22 2021-03-17 国立大学法人 岡山大学 A method for producing a precursor that becomes a three-dimensional crosslinked product of poly (p-phenylene benzobisoxazole).

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151500A (en) * 2000-08-31 2002-05-24 Sumitomo Bakelite Co Ltd Organic insulation film and material therefor
JP2002161204A (en) * 2000-08-31 2002-06-04 Sumitomo Bakelite Co Ltd Resin composition for insulating film and insulating film using the same
JP2005239969A (en) * 2004-02-27 2005-09-08 Sumitomo Bakelite Co Ltd Polybenzoxazole precursor and method for producing polybenzoxazole resin
WO2006126454A1 (en) * 2005-05-25 2006-11-30 Nippon Kayaku Kabushiki Kaisha Polybenzoxazole substrate material and film thereof
JP2010168562A (en) * 2008-12-25 2010-08-05 Toyobo Co Ltd Carbon fiber-reinforced polyimide benzoxazole composite
WO2011142363A1 (en) * 2010-05-10 2011-11-17 イビデン株式会社 Hybrid material and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151500A (en) * 2000-08-31 2002-05-24 Sumitomo Bakelite Co Ltd Organic insulation film and material therefor
JP2002161204A (en) * 2000-08-31 2002-06-04 Sumitomo Bakelite Co Ltd Resin composition for insulating film and insulating film using the same
JP2005239969A (en) * 2004-02-27 2005-09-08 Sumitomo Bakelite Co Ltd Polybenzoxazole precursor and method for producing polybenzoxazole resin
WO2006126454A1 (en) * 2005-05-25 2006-11-30 Nippon Kayaku Kabushiki Kaisha Polybenzoxazole substrate material and film thereof
JP2010168562A (en) * 2008-12-25 2010-08-05 Toyobo Co Ltd Carbon fiber-reinforced polyimide benzoxazole composite
WO2011142363A1 (en) * 2010-05-10 2011-11-17 イビデン株式会社 Hybrid material and method for producing same

Also Published As

Publication number Publication date
JPWO2012036110A1 (en) 2014-02-03
WO2012036110A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
Li et al. Preparation of low-κ polyimide resin with outstanding stability of dielectric properties versus temperature by adding a reactive Cardo-containing diluent
EP2501742B1 (en) Thermally and dimensionally stable polyimide films and methods relating thereto
KR101535343B1 (en) Polyimide and Polyimide Film Comprising the Same
Gu et al. Syntheses and properties of PI/clay hybrids
TW201512345A (en) Polyimide precursor and polyimide
JP5959019B2 (en) Gas separation membrane
CN1927908A (en) Preparation method of phenolic hydroxyl group containing polyimide powder
EP3408310A1 (en) Thermoplastic polyimides, method for the manufacture thereof, and articles prepared therefrom
Sharma et al. Preparation and properties of polyimide nanocomposites with negative thermal expansion nanoparticle filler
JP2014133783A (en) Resin composition, insulating film, laminated body and method for manufacturing laminated body
TWI418577B (en) A method for producing a polyimide film, and a polyamic acid solution composition
CN110845730A (en) Polyimide powder, polyimide varnish, polyimide film, and polyimide porous film
Wang et al. Hyperbranched polybenzoxazoles incorporated polybenzoxazoles for high‐performance and low‐K materials
JP5820811B2 (en) Branched polybenzoxazole-based material, film for solar cell substrate, and method for producing branched polybenzoxazole-based material
KR930006927B1 (en) Copolymers containing polybenzoxazole polybenzothiazole and polybenzimidazole moieties
WO2005113647A1 (en) Polyesterimide having low coefficient of linear thermal expansion and precursor therefor
JP3653499B2 (en) Poly (imide-benzoxazole) copolymer
EP0492948B1 (en) Imide- and amide-imide containing copolymer
JP5749714B2 (en) Hybrid material and manufacturing method thereof
Wang et al. Facile, efficient synthesis of a phosphinated hydroxyl diamine and properties of its high-performance poly (hydroxyl imides) and polyimide–SiO 2 hybrids
CN111072964A (en) Polyimide precursor composition and preparation method and application thereof
Akhter et al. Preparation and characterization of novel polyimide‐silica hybrids
Li et al. Mechanical reinforcement of PBO fibers by dicarboxylic acid functionalized carbon nanotubes through in situ copolymerization
KR102439488B1 (en) Method for producing polyimide film with excellent transparency and flexibility
JP5233344B2 (en) Method for producing polyamic acid solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151005

R150 Certificate of patent or registration of utility model

Ref document number: 5820811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees