JP5820463B2 - Self-lubricating coating and method - Google Patents

Self-lubricating coating and method Download PDF

Info

Publication number
JP5820463B2
JP5820463B2 JP2013503070A JP2013503070A JP5820463B2 JP 5820463 B2 JP5820463 B2 JP 5820463B2 JP 2013503070 A JP2013503070 A JP 2013503070A JP 2013503070 A JP2013503070 A JP 2013503070A JP 5820463 B2 JP5820463 B2 JP 5820463B2
Authority
JP
Japan
Prior art keywords
pores
substrate
porous layer
rotor
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013503070A
Other languages
Japanese (ja)
Other versions
JP2013530303A (en
Inventor
イオン サヴ,
イオン サヴ,
Original Assignee
ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ
ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ, ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ filed Critical ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ
Publication of JP2013530303A publication Critical patent/JP2013530303A/en
Application granted granted Critical
Publication of JP5820463B2 publication Critical patent/JP5820463B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Compressor (AREA)

Description

本明細書で開示する主題の実施形態は、全体的には方法及びシステムに関連し、詳細には自己潤滑コーティングを提供するメカニズム及び技術に関連する。   Embodiments of the presently disclosed subject matter generally relate to methods and systems, and particularly to mechanisms and techniques that provide a self-lubricating coating.

ここ数年間、化石燃料の高騰により、化石燃料の処理に関連する種々の態様に対する関心が高まっている。さらに、より効率的で信頼性の高いモータ、タービン、圧縮機等を製造してオイル及びガス系生成物の良好な生産及び分配を容易にすることへの関心が高まっている。   Over the last few years, soaring fossil fuels have increased interest in various aspects related to fossil fuel processing. Furthermore, there is a growing interest in making more efficient and reliable motors, turbines, compressors, etc. to facilitate good production and distribution of oil and gas-based products.

このような機械装置は、一般に、固定部のステータ、及び回転部のロータを含む。ロータはステータに対して回転して、媒体の圧縮、電気エネルギの生成又は電気エネルギの機械エネルギへの変換の1つを行うようになっている。ロータは、ステータに対して最小の機械的摩擦及び特定の温度範囲で回転する必要がある。ロータの連続回転及びその重量(20〜20000kgの範囲とすることができ、機械的摩擦が増加する)により、大量の熱が発生する。この熱は主としてロータを支持する軸受で発生する。   Such a mechanical device generally includes a stator as a fixed portion and a rotor as a rotating portion. The rotor rotates with respect to the stator to perform one of compression of the medium, generation of electrical energy, or conversion of electrical energy into mechanical energy. The rotor needs to rotate with minimal mechanical friction and a specific temperature range relative to the stator. A large amount of heat is generated by the continuous rotation of the rotor and its weight (can be in the range of 20-20000 kg, increasing mechanical friction). This heat is mainly generated in the bearing that supports the rotor.

従って、軸受を冷却する種々のメカニズムが必要となるであろう。このようなメカニズムの1つは、ロータと軸受の間で油等の媒体を連続的に循環させて、油を冷却することで過剰な熱を取り除くようになっている。強制的な油循環のためにポンプを使用できる。しかし、ポンプが故障すると、油が流れなくなり結果的にロータと軸受との間の境界面で生じる熱の除去が妨げられる。このような状况下で、油はロータと軸受との間の境界面に存在できず、温度がロータ及び/又は軸受又は機械装置の他の構成部品の破損に繋がるレベルまで上昇してしまう。   Therefore, various mechanisms for cooling the bearing will be required. One such mechanism is to remove excess heat by continuously circulating a medium such as oil between the rotor and the bearing to cool the oil. A pump can be used for forced oil circulation. However, if the pump fails, the oil stops flowing and consequently prevents the removal of heat generated at the interface between the rotor and the bearing. Under such conditions, oil cannot be present at the interface between the rotor and the bearing, and the temperature will rise to a level that leads to damage to the rotor and / or bearing or other components of the machine.

機械装置の操作者又は専用システムがこの異常状態を即座に発見して機械装置を停止できない場合、全ての機械装置がひどく破損して、結果的に、機械装置が含まれる全てのプロセスの障害になり、このことはコストがかかり油及びガス製造業では望ましくない。機械装置の故障状態を迅速に発見できたとしても、該当機械装置が、複数の機械装置が連係しており他の機械装置の安全性を妨げることなく1つの機械装置を即座に運転停止することが不可能であるプロセスの一部である場合は、影響を受けた機械装置を停止することができない場合がある。   If a machine operator or dedicated system cannot immediately detect this abnormal condition and shut down the machine, then all the machine will be severely damaged, resulting in failure of all processes involving the machine. This is costly and undesirable in the oil and gas manufacturing industry. Even if a failure state of a mechanical device can be found quickly, the corresponding mechanical device immediately shuts down one mechanical device without interfering with the safety of other mechanical devices because the multiple mechanical devices are linked. If this is part of a process that is not possible, the affected machinery may not be able to be stopped.

従って、機械装置の操作者に機械装置が適切に作動できない瞬間と、例えば油ポンプの故障で発生する高温により機械装置が損傷を受ける瞬間との間の時間バッファを与えるシステム及び方法を提供することが望ましい。   Accordingly, a system and method is provided that provides a time buffer between the moment when the machine is unable to operate properly and the moment when the machine is damaged due to high temperatures caused by, for example, an oil pump failure. Is desirable.

ある例示的な実施形態は、基材に自己潤滑コーティングを施工する方法である。本方法は、基材に少なくとも液体金属の層をガスで吹き付ける段階と、基材に吹き付けられる際の液体金属に化合物を加える段階と、上記金属と上記化合物を含む多孔質層であって複数の細孔を含む多孔質層を基材上に形成する段階と、多孔質層を加熱して細孔を開く段階と、開いた細孔をグリース材料に漬けてグリース材料の一部が1以上の細孔に留まるようにする段階と、多孔質層を冷却して細孔を閉じて、細孔の内部にグリース材料を捕捉する段階とを含む。   One exemplary embodiment is a method of applying a self-lubricating coating to a substrate. The method comprises: spraying at least a liquid metal layer onto a substrate with a gas; adding a compound to the liquid metal when sprayed onto the substrate; and a porous layer containing the metal and the compound, Forming a porous layer including pores on the substrate; heating the porous layer to open the pores; and dipping the open pores in the grease material so that a portion of the grease material is at least one And allowing the porous layer to cool and close the pores to trap the grease material within the pores.

別の例示的な実施形態は、軸受のための安全メカニズムを有するターボ機械を運転する方法である。ロータをターボ機械のステータに対して回転させる段階と、複数の細孔を形成する金属及び化合物と、細孔に蓄えられたグリース材料とを含む1以上の多孔質層を含む軸受でロータを支持する段階と、軸受の作動温度が実質的に一定になるようにロータの回転時に軸受に潤滑油を供給する段階とを含む。   Another exemplary embodiment is a method of operating a turbomachine having a safety mechanism for a bearing. Rotating the rotor relative to a turbomachine stator, supporting the rotor with a bearing including one or more porous layers comprising a metal and a compound forming a plurality of pores and a grease material stored in the pores And supplying lubricating oil to the bearing as the rotor rotates so that the operating temperature of the bearing is substantially constant.

さらに別の例示的な実施形態は、ターボ機械であって、固定されるように構成されるステータと、ステータに対して回転するように構成されるロータと、ロータを支持してロータの回転を容易にするように構成される軸受と、軸受上又はロータ上に設けられる自己潤滑コーティングとを備える。自己潤滑コーティングは、1以上の多孔質層を含み、1以上の多孔質層は、複数の細孔を形成する金属及び化合物と、細孔に蓄えられたグリース材料とを含んでいて、軸受の作動温度が所定の温度値以下の場合に細孔は閉じてグリース材料を捕捉するようになっている。   Yet another exemplary embodiment is a turbomachine, a stator configured to be fixed, a rotor configured to rotate relative to the stator, and a rotor that supports and rotates the rotor. A bearing configured to facilitate and a self-lubricating coating provided on the bearing or on the rotor. The self-lubricating coating includes one or more porous layers, the one or more porous layers including a metal and a compound forming a plurality of pores, and a grease material stored in the pores, When the operating temperature is equal to or lower than a predetermined temperature value, the pores are closed to trap the grease material.

本明細書に組み込まれ且つその一部を構成する添付図面は、1以上の実施形態を例証しており、本明細書と共にこれらの実施形態を説明する。   The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments, and together with the description, explain these embodiments.

ロータ及びステータを有する機械装置の概略図。Schematic of the mechanical apparatus which has a rotor and a stator. 例示的な実施形態による自己潤滑コーティングを有する基材の概略図。1 is a schematic diagram of a substrate having a self-lubricating coating according to an exemplary embodiment. FIG. 例示的な実施形態による多孔質層の実例。2 illustrates an example of a porous layer according to an exemplary embodiment. 例示的な実施形態による基材に自己潤滑コーティングを施工するための方法を示すフローチャート。6 is a flowchart illustrating a method for applying a self-lubricating coating to a substrate according to an exemplary embodiment. 例示的な実施形態による軸受のための安全メカニズムを有するターボ機械を運転するための方法を示すフローチャート。6 is a flowchart illustrating a method for operating a turbomachine having a safety mechanism for a bearing according to an exemplary embodiment.

例示的な実施形態は添付図面を参照する。異なる図面で同じ参照番号は同じ又は類似の構成部品を示す。以下の詳細な説明は本発明を限定するものではない。その代わりに、本発明の範囲は添付の請求項によって定義される。以下の実施形態は、簡単にするために、圧縮機の用語及び構造に関して説明する。しかし、以下に説明する実施形態は圧縮機に限定されず、軸受で支持されるロータを含む他のシステムに適用できる。   Exemplary embodiments refer to the accompanying drawings. The same reference numbers in different drawings indicate the same or similar components. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments will be described with respect to compressor terminology and structure for simplicity. However, the embodiment described below is not limited to a compressor, and can be applied to other systems including a rotor supported by a bearing.

本明細書を通して「一実施形態」又は「実施形態」として言及することは、実施形態に関連して説明される具体的な特徴、構造又は特性が開示される主題の少なくとも一実施形態に含まれることを意味する。従って、本明細書全体を通じて様々な箇所で表現「一実施形態では」又は「ある実施形態では」が出現するが、必ずしも同じ実施形態について言及している訳ではない。さらに、具体的な特徴、構造又は特性は、1以上の実施形態ではあらゆる好適な様態で組合せてもよい。   Reference throughout this specification to “one embodiment” or “an embodiment” includes at least one embodiment of the disclosed subject matter with the specific features, structures or characteristics described in connection with the embodiment. Means that. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

例示的な実施形態では、ロータの一部、軸受又はこれらの両者は、自己潤滑コーティングで被覆されており、機械装置が通常の温度で作動する間にグリース材料を蓄え、機械装置の温度が所定の温度閾値を超えて上昇した場合にグリース材料を放出するようになっている。   In an exemplary embodiment, a portion of the rotor, bearings, or both are coated with a self-lubricating coating to store grease material while the machine is operating at normal temperatures, and the machine temperature is predetermined. The grease material is discharged when the temperature exceeds the temperature threshold.

図1に示す例示的な実施形態では、圧縮機10は、特にロータ14に対して回転するようになったロータ12を含む。ロータ12は、例えば両端で1以上の軸受16で支持される。従来から種々の軸受が知られており、いずれの軸受もロータ12を支持するために使用できる。軸受の一例は、米国特許第6361215号に説明されているジャーナル軸受であり、この開示内容は引用によって本明細書に組み込まれている。   In the exemplary embodiment shown in FIG. 1, the compressor 10 includes a rotor 12 that is adapted to rotate specifically relative to the rotor 14. The rotor 12 is supported by one or more bearings 16 at both ends, for example. Various bearings are known in the art and any bearing can be used to support the rotor 12. An example of a bearing is the journal bearing described in US Pat. No. 6,361,215, the disclosure of which is incorporated herein by reference.

ジャーナル軸受16は、ロータ12を支持する1以上のパッド18を使用しており、油は、パッド18とロータ12の間で境界面20に噴射されて機械的摩耗を低減する及び/又は境界面を冷却するようになっている。ポンプ(図示せず)を使用して、油を各パッドの通路22を通ってパッド18とロータ12の間の境界面20の送り込むことができる。境界面20への油の供給ができない場合、この境界面の温度は軸受16、ロータ12又はこれら両方に損傷を与える場合がある許容値を超えて上昇することになる。   The journal bearing 16 uses one or more pads 18 that support the rotor 12, and oil is injected between the pad 18 and the rotor 12 to the interface 20 to reduce mechanical wear and / or the interface. Is supposed to cool. A pump (not shown) may be used to pump oil through each pad passage 22 at the interface 20 between the pad 18 and the rotor 12. If no oil can be supplied to the interface 20, the interface temperature will rise above an acceptable value that may damage the bearing 16, the rotor 12, or both.

図2に示す例示的な実施形態では、ロータ12又は軸受16の一部又はこれら両方は、自己潤滑層24で被覆できる。自己潤滑層24は、図2に示すように、ロータ12及び/又は軸受16の1つとすることができる基材26上に堆積させることができる。   In the exemplary embodiment shown in FIG. 2, the rotor 12 or a portion of the bearing 16 or both can be coated with a self-lubricating layer 24. The self-lubricating layer 24 can be deposited on a substrate 26, which can be one of the rotor 12 and / or bearing 16, as shown in FIG.

自己潤滑層24がロータ12上に堆積される場合、自己潤滑層が軸受16と直接向かい合うように堆積させることが望ましい。自己潤滑層24は、基材24上に堆積されるベース材料28を含むことができる。ベース材料としては、軸受用金属、例えば、ねずみ鋳鉄、ステンレス鋼、炭素鋼、非鉄合金等が挙げられる。1つの用途において、ベース材料は、例えば、Fe、Ni又はコバルトの低炭素成分及び高炭素成分を含む材料を含有する可塑性である。他の用途において、ベース材料はCrを含有しない。さらに別の用途において、ベース材料は、非鉄金属を含有することができるのでベース材料は可塑性である。ベース材料は、従来から公知の方法で堆積させることができる。例えば、ベース材料は、基材に吹き付けることができる。しかし、1つの用途において、ベース材料層28は自己潤滑層24の一部ではない。ベース材料層28は、自己潤滑層24と基材26との間の良好な密着を確保するために堆積される。   When the self-lubricating layer 24 is deposited on the rotor 12, it is desirable to deposit the self-lubricating layer so that it faces the bearing 16 directly. The self-lubricating layer 24 can include a base material 28 that is deposited on the substrate 24. Examples of the base material include bearing metals such as gray cast iron, stainless steel, carbon steel, and non-ferrous alloys. In one application, the base material is a plastic containing material including, for example, a low carbon component and a high carbon component of Fe, Ni, or cobalt. In other applications, the base material does not contain Cr. In yet another application, the base material is plastic because it can contain non-ferrous metals. The base material can be deposited by a conventionally known method. For example, the base material can be sprayed onto the substrate. However, in one application, the base material layer 28 is not part of the self-lubricating layer 24. Base material layer 28 is deposited to ensure good adhesion between self-lubricating layer 24 and substrate 26.

自己潤滑機能をもたらす多孔質層30は、ベース材料層28上に又は直接基材26上に形成される。多孔質層30は、多孔質層30に細孔の形成を促進する金属及び化合物を含有できる。金属は、用途、所望の層硬度、軸受荷重に基づいて、1種以上の軸受用金属、例えば、ねずみ鋳鉄、ステンレス鋼、炭素鋼とすることができる。化合物は、1種以上のグラファイト粉末、二硫化モリブデン(MoS2)、二硫化タングステン(WS2)とすることができる。金属は、液体としてベース材料層28上に吹き付けられる。例えば、電気アーク又はプラズマ溶射は、液体金属及び化合物を吹き付けるために使用できる。加圧下の不活性ガスは、ガン又は基材のコーティングに使用する他の装置から溶融金属を供給するだけでなく、溶融金属中に化合物を加えるために使用できる。例えば、不活性ガスは窒素(N)とすることができる。 A porous layer 30 providing a self-lubricating function is formed on the base material layer 28 or directly on the substrate 26. The porous layer 30 can contain a metal and a compound that promote pore formation in the porous layer 30. The metal can be one or more bearing metals, such as gray cast iron, stainless steel, carbon steel, based on the application, desired layer hardness, and bearing load. The compound can be one or more graphite powders, molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ). The metal is sprayed on the base material layer 28 as a liquid. For example, electric arc or plasma spraying can be used to spray liquid metals and compounds. The inert gas under pressure can be used to add the compound into the molten metal as well as to supply the molten metal from a gun or other equipment used to coat the substrate. For example, the inert gas can be nitrogen (N).

多孔質層30は図3に示されており、金属及び化合物の混合物34の全体に分布する複数の細孔32を有している。複数の細孔32の数は多くの変数に依存する。例えば、細孔の数は、液体金属を基材に吹き付ける温度、不活性ガスの圧力、液体金属を吹き付けるガンと基材との間の距離、使用される特定の金属、使用される特定の化合物等に依存することができる。1つの用途において、自己潤滑層30の厚さは、数マイクロメートル乃至数ミリメートルの範囲である。   The porous layer 30 is shown in FIG. 3 and has a plurality of pores 32 distributed throughout the metal and compound mixture 34. The number of the plurality of pores 32 depends on many variables. For example, the number of pores depends on the temperature at which the liquid metal is sprayed onto the substrate, the pressure of the inert gas, the distance between the gun that sprays the liquid metal and the substrate, the particular metal used, the particular compound used Etc. can depend on. In one application, the self-lubricating layer 30 has a thickness in the range of a few micrometers to a few millimeters.

基材26上に多孔質層30が形成された状態で、アセンブリの温度が室温(約25℃)程度と低い場合、細孔は閉じ、例えば、多孔質層30を液体浴に浸漬しても、わずかな量の液体しか多孔質層30の細孔に入らない。しかし、多孔質層30及び基材26を高温の油浴に暴露(例えば、浸漬)すると、多孔質層30の細孔32が開いて油が細孔に充満し始める。高温の温度範囲は例えば油の種類(合成か否か等)によって80〜500℃とすることができる。例示的に油が使用されるが、何らかのグリース材料を使用して多孔質層30の細孔の一部又は全てを部分的に満たすことができる。   When the porous layer 30 is formed on the substrate 26 and the assembly temperature is as low as room temperature (about 25 ° C.), the pores are closed. For example, even if the porous layer 30 is immersed in a liquid bath Only a small amount of liquid enters the pores of the porous layer 30. However, when the porous layer 30 and the substrate 26 are exposed to a hot oil bath (eg, immersed), the pores 32 of the porous layer 30 open and the oil begins to fill the pores. The high temperature range can be set to 80 to 500 ° C., for example, depending on the type of oil (whether or not it is synthesized). Although oil is illustratively used, some grease material can be used to partially fill some or all of the pores of the porous layer 30.

次に、基材26及び多孔質層30は室温まで冷却され、吸収されたグリース材料が細孔32の内部に蓄えられるように細孔がシールされる。次に、自己潤滑層30を有するこの基材は、1以上の前述の機械装置に使用される。従って、この機械装置がロータと軸受との間の境界面に油を供給できない場合、自己潤滑層30の細孔が開く温度を超えるまで境界面の温度が上昇し、これにより多孔質層30はロータと軸受との間の境界面にグリース材料を放出し始める。サイズ及び軸受及び/又はロータ上の分布に応じて、この自己潤滑層30は、機械装置の主油供給メカニズムが故障したとしても、機械装置の操作者に数時間とまではいかなくても数分の安全な操業を与える。このようにして、操作者には、プロセスラインを構成する他の機械装置の安全性を損なく、管理された方法で全プロセスラインを停止するのに必要な時間が提供される。   The substrate 26 and porous layer 30 are then cooled to room temperature and the pores are sealed so that the absorbed grease material is stored inside the pores 32. The substrate with the self-lubricating layer 30 is then used in one or more of the aforementioned mechanical devices. Therefore, when this mechanical device cannot supply oil to the interface between the rotor and the bearing, the temperature of the interface rises until the temperature at which the pores of the self-lubricating layer 30 open exceeds the temperature of the porous layer 30. Begins releasing grease material to the interface between the rotor and bearing. Depending on the size and distribution on the bearings and / or the rotor, this self-lubricating layer 30 can be several times, if not up to several hours, even if the main oil supply mechanism of the machine fails. Gives safe operation in minutes. In this way, the operator is provided with the time required to shut down the entire process line in a controlled manner without compromising the safety of the other mechanical devices that make up the process line.

グリース材料を長時間与えるために厚い自己潤滑層30を設けることが直感的に分かるが、厚い層は割れが発生し易いので寿命が短いことが分かっている。さらに、厚い層の割れによりグリース材料が期待よりも早期に漏れ、多孔質層の基材への密着が損なわれる場合もある。逆に、薄い層は、十分なグリース材料を蓄えることができないので望ましくない。従って、自己潤滑層30の適切な厚さは、機械装置の種類、ロータの重量、パッドの数、及び軸受の数等に依存する。   Although it is intuitively understood that the thick self-lubricating layer 30 is provided in order to give the grease material for a long time, it has been found that the thick layer is prone to cracking and thus has a short life. Furthermore, the grease material leaks earlier than expected due to cracks in the thick layer, and the adhesion of the porous layer to the substrate may be impaired. Conversely, a thin layer is undesirable because it cannot store enough grease material. Accordingly, the appropriate thickness of the self-lubricating layer 30 depends on the type of mechanical device, the weight of the rotor, the number of pads, the number of bearings, and the like.

図4に示す例示的な実施形態では、基材に自己潤滑コーティングを施工する方法が示される。本方法は、ガスを用いて少なくとも液体金属の層を基材に吹き付けるステップ400、基材に吹き付けられる間に液体金属に化合物を加えるステップ402、基材に、金属及び化合物を含有し複数の細孔を有する多孔質層を形成するステップ404、多孔質層を加熱して細孔を開くステップ406、グリース材料が1以上の細孔の中に蓄えられるように開いた細孔にグリース材料を充満させるステップ408、多孔質層を冷却して細孔を閉じて細孔の内部にグリース材料を捕捉するステップ410を含む。   In the exemplary embodiment shown in FIG. 4, a method for applying a self-lubricating coating to a substrate is shown. The method includes the step 400 of spraying at least a liquid metal layer onto a substrate using a gas, the step 402 of adding a compound to the liquid metal while being sprayed on the substrate, and the substrate containing a plurality of fine particles containing the metal and the compound. Step 404 for forming a porous layer having pores, Step 406 for heating the porous layer to open the pores, and filling the pores with the grease material so that the grease material is stored in one or more pores Step 408 including cooling 410 the porous layer to close the pores and trap the grease material within the pores.

液体金属を堆積するために使用するガスは不活性ガスとすることができる。しかし、鉄層を堆積するために、安価なN2ガスを使用できる。また、N2ガスは、多孔質層に可塑性を与えることができるので望ましい。N2ガスは、液体金属の合金化元素の酸化を防止すると共に堆積層の組成物を変質いないので、アルゴン又は圧縮空気より優れている。 The gas used to deposit the liquid metal can be an inert gas. However, inexpensive N 2 gas can be used to deposit the iron layer. N 2 gas is desirable because it can impart plasticity to the porous layer. N 2 gas is superior to argon or compressed air because it prevents oxidation of the liquid metal alloying elements and does not alter the composition of the deposited layer.

図5に示す例示的な実施形態では、ターボ機械の軸受のための安全メカニズムを提供する方法が開示される。本方法は、ロータをターボ機械のステータに対して回転させるステップ500、複数の細孔を形成する金属及び化合物、及び細孔に蓄えられたグリース材料を含む1以上の多孔質層を含む軸受でロータを支持するステップ502、軸受の作動温度が実質的に一定になるようにロータの回転時に軸受に潤滑油を供給するステップ504を含む。   In the exemplary embodiment shown in FIG. 5, a method for providing a safety mechanism for a turbomachine bearing is disclosed. The method comprises a bearing 500 comprising a step 500 of rotating a rotor relative to a stator of a turbomachine, metals and compounds forming a plurality of pores, and one or more porous layers comprising a grease material stored in the pores. Step 502 for supporting the rotor, and Step 504 for supplying lubricating oil to the bearing during rotation of the rotor so that the operating temperature of the bearing is substantially constant.

開示された例示的な実施形態は、グリース材料の専用供給が機能しなくなった場合にグリース材料を供給するためのシステム及び方法を提供する。本明細書は本発明を限定することを意図していない点は理解されたい。逆に、例示的な実施形態は、添付の請求項によって定義される本発明の技術的思想及び範囲に含まれる、代替形態、修正形態、及び均等形態を保護するものとする。さらに、例示的な実施形態の詳細な説明において、請求項に記載された本発明を包括的に理解するために多数の具体的な詳細事項が記載されている。しかし、種々の実施形態はこのような具体的な詳細事項がなくとも実施できる点は当業者であれば理解されるであろう。   The disclosed exemplary embodiments provide a system and method for supplying grease material when a dedicated supply of grease material fails. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to protect alternatives, modifications and equivalents that fall within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, those skilled in the art will appreciate that various embodiments may be practiced without such specific details.

本発明の例示的な実施形態の特徴及び要素は、特定の組合せで実施形態では説明したが、各特徴又は要素は、実施形態の他の特徴及び要素を伴わず単独で、或いは本明細書で開示される他の特徴及び要素の有無に関わりなく種々の組合せで用いることができる。   Although features and elements of exemplary embodiments of the invention have been described in particular embodiments in particular combinations, each feature or element is independent of the other features and elements of the embodiment or is used herein. It can be used in various combinations with or without other disclosed features and elements.

本明細書は、開示される主題の実施例を用いて、あらゆる当業者があらゆるデバイス又はシステムを実施及び利用すること及びあらゆる包含の方法を実施工するることを含む本発明を実施工するることを可能にする。本発明の特許保護される範囲は、請求項によって定義され、当業者であれば想起される他の実施例を含むことができる。このような他の実施例は請求項の範囲内であることが意図されている。   This written description uses the disclosed subject matter to practice the invention, including any person skilled in the art to implement and utilize any device or system and to implement any method of inclusion. Make it possible. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other embodiments are intended to be within the scope of the claims.

Claims (7)

基材に自己潤滑コーティングを施工する方法であって、
基材に少なくとも液体金属の層をガスで吹き付ける段階と、
基材に吹き付けられる際の液体金属に化合物を加える段階と、
上記金属と上記化合物を含む多孔質層であって複数の細孔を含む多孔質層を基材上に形成する段階と、
多孔質層を加熱して細孔を開く段階と、
開いた細孔をグリース材料に漬けてグリース材料の一部が1以上の細孔に留まるようにする段階と、
多孔質層を冷却して細孔を閉じて、細孔の内部にグリース材料を捕捉する段階と、
を含む、方法。
A method of applying a self-lubricating coating to a substrate,
Spraying at least a layer of liquid metal onto the substrate with a gas;
Adding a compound to the liquid metal as it is sprayed onto the substrate;
Forming a porous layer containing the metal and the compound on the substrate, the porous layer containing a plurality of pores;
Heating the porous layer to open the pores;
Soaking the open pores in the grease material so that a portion of the grease material remains in one or more pores;
Cooling the porous layer to close the pores and trapping the grease material inside the pores;
Including a method.
前記液体金属が、軸受用金属の1種、ねずみ鋳鉄、ステンレス鋼、炭素鋼又は非鉄合金である、請求項1に記載の方法。   The method according to claim 1, wherein the liquid metal is one of bearing metals, gray cast iron, stainless steel, carbon steel, or non-ferrous alloy. 前記化合物が、グラファイト粉末、二硫化モリブデン(MoS2)、二硫化タングステン(WS2)又はこれらの組合せの1種である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the compound is one of graphite powder, molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), or a combination thereof. 基材に良好に密着するように多孔質層をベース材料上に形成するために、前記吹き付ける段階の前に、炭素が含有量が低く、かつ、Fe、Ni若しくはコバルト、または可塑性非鉄金属の含有量が高いベース材料層を形成する段階をさらに含む、請求項1から3のいずれかに記載の方法。   In order to form a porous layer on the base material so as to adhere well to the substrate, before the step of spraying, the carbon content is low and Fe, Ni or cobalt, or plastic non-ferrous metal content The method according to claim 1, further comprising forming a high amount of base material layer. 前記加熱が多孔質材料を所定の温度のグリース材料に浸漬することによって実施される、請求項1から4のいずれかに記載の方法。   The method according to claim 1, wherein the heating is performed by immersing the porous material in a grease material at a predetermined temperature. 前記基材が圧縮機の軸受である、請求項1から5のいずれかに記載の方法。   The method according to claim 1, wherein the substrate is a compressor bearing. 前記ガスが窒素(N)を含有する、請求項1から6のいずれかに記載の方法。
The method according to claim 1, wherein the gas contains nitrogen (N).
JP2013503070A 2010-04-06 2011-04-01 Self-lubricating coating and method Expired - Fee Related JP5820463B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITCO2010A000014 2010-04-06
ITCO2010A000014A IT1399157B1 (en) 2010-04-06 2010-04-06 SELF-LUBRICATING COATING AND METHOD
PCT/EP2011/055123 WO2011124534A1 (en) 2010-04-06 2011-04-01 Self-lubricated coating and method

Publications (2)

Publication Number Publication Date
JP2013530303A JP2013530303A (en) 2013-07-25
JP5820463B2 true JP5820463B2 (en) 2015-11-24

Family

ID=42751969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013503070A Expired - Fee Related JP5820463B2 (en) 2010-04-06 2011-04-01 Self-lubricating coating and method

Country Status (12)

Country Link
US (1) US20130202405A1 (en)
EP (1) EP2556179A1 (en)
JP (1) JP5820463B2 (en)
KR (1) KR20130040790A (en)
CN (1) CN102812147B (en)
AU (1) AU2011237981A1 (en)
BR (1) BR112012025269A2 (en)
CA (1) CA2794792A1 (en)
IT (1) IT1399157B1 (en)
MX (1) MX2012011628A (en)
RU (1) RU2012142135A (en)
WO (1) WO2011124534A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008734A (en) * 2015-06-17 2017-01-12 株式会社デンソー Fuel pump
CN106086766B (en) * 2016-07-26 2019-01-04 中国科学院兰州化学物理研究所 A kind of preparation method of high wear-resistant low-friction coefficient thermal Sperayed Ceramic Coatings
CN106048505B (en) * 2016-07-26 2018-08-24 中国科学院兰州化学物理研究所 A kind of improvement thermal spraying Al2O3The method of ceramic coating friction and wear behavior
CN106399904A (en) * 2016-11-10 2017-02-15 无锡市明盛强力风机有限公司 Solid-lubricated ball bearing and preparation method thereof
CN106567031A (en) * 2016-11-10 2017-04-19 无锡市明盛强力风机有限公司 Ball bearing with solid lubricant and preparation method of ball bearing
JP6911996B2 (en) * 2018-03-12 2021-08-04 日産自動車株式会社 Bearing member
CN114621802B (en) * 2022-01-26 2023-03-24 中国科学院兰州化学物理研究所 Gallium-based liquid metal high-temperature lubricant and preparation method thereof
CN117612795B (en) * 2024-01-22 2024-04-16 华东交通大学 Liquid metal patterning method, patterned liquid metal material and circuit

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2195662B (en) * 1985-11-12 1990-01-04 Osprey Metals Ltd Production of metal spray deposits
ES2045458T3 (en) * 1988-09-20 1994-01-16 Plasma Technik Ag IMPROVED ABRASIBLE COATING AND PRODUCTION OF THE SAME.
US5266099A (en) * 1992-08-11 1993-11-30 The United States Of America As Represented By The Secretary Of The Navy Method for producing closed cell spherical porosity in spray formed metals
JPH0741784A (en) * 1993-07-30 1995-02-10 Ntn Corp Porous sliding bearing filled with grease
MX9505021A (en) * 1994-12-09 1997-05-31 Ford Motor Co Method of making engine blocks with coated cylinder bores.
US5980604A (en) * 1996-06-13 1999-11-09 The Regents Of The University Of California Spray formed multifunctional materials
US5969451A (en) * 1996-12-13 1999-10-19 General Electric Company Current-controlled magnetic thrust compensators for mechanical thrust bearings
US5866518A (en) * 1997-01-16 1999-02-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self-lubricating composite containing chromium oxide
GB2322915B (en) * 1997-03-06 2001-06-06 Ntn Toyo Bearing Co Ltd Hydrodynamic type porous oil-impregnated bearing
JPH10274241A (en) * 1997-03-31 1998-10-13 Ntn Corp Porous oilless bearing
US6361215B1 (en) 2000-03-03 2002-03-26 Kingsbury, Inc. Journal bearing
US7066469B2 (en) * 2002-08-06 2006-06-27 University of Kentucky Research Foundation Board of Supervisors of Louisiana State University Seal assembly for machinery housing
JP2005179707A (en) * 2003-12-17 2005-07-07 Taiho Kogyo Co Ltd Aluminum-based thermal spraying sliding material
CA2514493C (en) * 2004-09-17 2013-01-29 Sulzer Metco Ag A spray powder
US20070099014A1 (en) * 2005-11-03 2007-05-03 Sulzer Metco (Us), Inc. Method for applying a low coefficient of friction coating
FR2907468B1 (en) * 2006-10-20 2009-01-23 Airbus France Sas INTERFACE FOR ADAPTING LUBRICATION AND HARDNESS BETWEEN TWO PIECES OF TITANIUM OR TITANIUM ALLOY IN MOTION RELATING TO ONE ANOTHER.
US7948105B2 (en) * 2007-02-01 2011-05-24 R&D Dynamics Corporation Turboalternator with hydrodynamic bearings
JP2008248288A (en) * 2007-03-29 2008-10-16 Ntn Corp Sintered metal component
JP2010060046A (en) * 2008-09-03 2010-03-18 Advics Co Ltd Surface treatment method for sliding surface, method of assembling sliding member, and the sliding member

Also Published As

Publication number Publication date
BR112012025269A2 (en) 2016-06-21
IT1399157B1 (en) 2013-04-11
JP2013530303A (en) 2013-07-25
AU2011237981A1 (en) 2012-10-18
ITCO20100014A1 (en) 2011-10-07
CN102812147A (en) 2012-12-05
CN102812147B (en) 2015-06-17
KR20130040790A (en) 2013-04-24
US20130202405A1 (en) 2013-08-08
CA2794792A1 (en) 2011-10-13
MX2012011628A (en) 2012-11-30
WO2011124534A1 (en) 2011-10-13
EP2556179A1 (en) 2013-02-13
RU2012142135A (en) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5820463B2 (en) Self-lubricating coating and method
KR100655366B1 (en) Coating material having heat and abrasion resistance and low friction characteristics and coating method thereof
KR100849075B1 (en) Medium temperature coating material of oil-free bearings for high speed turbumachinery and method of coating thereof
US8485788B2 (en) Rotor for steam turbine and method of manufacturing the same
JP6377889B2 (en) Zinc-free spray powder, copper-containing sprayed layer, and method for producing copper-containing sprayed layer
CN104214205B (en) A kind of wear-resisting paillon foil formula dynamic pressure thrust gas bearing and preparation method
US7506440B2 (en) Titanium treatment to minimize fretting
JP2006022810A (en) Method of protecting contact surface between two metal parts and advantage obtained from that protection
JP2020128818A (en) Magnetic bearing with jacket and rotary machine including the same
CN108130501B (en) Preparation method of steel backing copper-based bearing copper coating
CN113510625B (en) Preparation method of copper alloy bearing bush material and copper alloy bearing bush material
US20090308848A1 (en) Soft alloy layer forming apparatus and soft alloy layer forming method
JP4757853B2 (en) Plain bearing
JP2008032114A (en) Anticorrosive insulated rolling bearing
JP2980607B1 (en) Bearing component, its manufacturing method and repair method
CN101614241A (en) The mild alloy layer forms device and mild alloy layer formation method
CN115679319A (en) Electric spark alloying soft antifriction coating process for tin bronze bearing bush surface
CN114540739A (en) Preparation method of coating for enhancing boundary lubrication performance of intermetallic compound
JP2010047820A (en) Surface treatment method and sliding member
JPH02190616A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5820463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees