JP5817804B2 - High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same - Google Patents

High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same Download PDF

Info

Publication number
JP5817804B2
JP5817804B2 JP2013218832A JP2013218832A JP5817804B2 JP 5817804 B2 JP5817804 B2 JP 5817804B2 JP 2013218832 A JP2013218832 A JP 2013218832A JP 2013218832 A JP2013218832 A JP 2013218832A JP 5817804 B2 JP5817804 B2 JP 5817804B2
Authority
JP
Japan
Prior art keywords
rolling
elongation
steel sheet
less
plane anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013218832A
Other languages
Japanese (ja)
Other versions
JP2015081359A (en
Inventor
藤田 耕一郎
耕一郎 藤田
雄介 木俣
雄介 木俣
英之 木村
英之 木村
金子 真次郎
真次郎 金子
耕造 原田
耕造 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013218832A priority Critical patent/JP5817804B2/en
Priority to PCT/JP2014/005225 priority patent/WO2015059902A1/en
Priority to MX2016005136A priority patent/MX2016005136A/en
Priority to KR1020167013338A priority patent/KR101813912B1/en
Priority to CN201480058319.8A priority patent/CN105658832B/en
Publication of JP2015081359A publication Critical patent/JP2015081359A/en
Application granted granted Critical
Publication of JP5817804B2 publication Critical patent/JP5817804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/004Heat treatment in fluid bed
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Description

本発明は、自動車用、電機用等の使途に有用な、伸びの面内異方性が小さい高強度鋼板およびその製造方法に関する。   The present invention relates to a high-strength steel sheet having a small in-plane anisotropy of elongation, which is useful for uses such as automobiles and electric machines, and a method for producing the same.

近年、地球環境保全の観点から、COの排出量を抑制するため、自動車の燃費改善が要求されている。加えて、衝突時における乗員の安全を確保するため、自動車車体の衝突特性を中心とした安全性向上も要求されている。このため、自動車車体の軽量化および強化が積極的に進められている。自動車車体の軽量化と強化とを同時に満たすためには、部品素材を高強度化して、剛性に対して問題とならない範囲で板厚を薄肉化することが効果的であり、最近では高強度鋼板が自動車用部品に積極的に使用されている。また、電機の分野では、製品運搬時や不慮の落下時の変形を抑制する目的で、部品強度を高めるニーズが高く、例えば、降伏強度(YP)が300MPa以上の鋼板を使用する動向にある。 In recent years, in order to suppress CO 2 emissions from the viewpoint of global environmental conservation, there has been a demand for improved fuel efficiency of automobiles. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centering on the collision characteristics of the automobile body. For this reason, the weight reduction and reinforcement of the automobile body are being actively promoted. In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is effective to increase the strength of the component materials and reduce the thickness in a range that does not cause a problem with rigidity. Is actively used in automotive parts. In the field of electrical machinery, there is a great need for increasing the strength of parts for the purpose of suppressing deformation during product transportation or accidental dropping. For example, there is a trend to use steel sheets having a yield strength (YP) of 300 MPa or more.

一方で、鋼板を素材とする自動車部品や電機用部品の多くは、プレス加工によって成形されるため、鋼板は優れたプレス成形性を有していることが必要である。しかしながら、高強度鋼板は、通常の軟鋼板に比べてプレス成形性、延性が大きく劣化するため、その改善が求められている。   On the other hand, since many automobile parts and electrical parts made of steel plates are formed by pressing, the steel plates need to have excellent press formability. However, high strength steel sheets are required to be improved because press formability and ductility are greatly deteriorated as compared with ordinary mild steel sheets.

高強度鋼板としては、例えば降伏強度(YP)が440MPa級では、成形性に優れる極低炭素鋼板にTi、Nbを、固溶C、固溶Nを固着する量添加し、IF化(Interstitial free)した鋼をベースとして、これにSi、Mn、Pなどの固溶強化元素を添加した鋼板がある。   As the high strength steel plate, for example, when the yield strength (YP) is 440 MPa class, Ti and Nb are added to an extremely low carbon steel plate excellent in formability to add solid solution C and solid solution N in an amount of IF (Interstitial free). ), And a steel plate to which a solid solution strengthening element such as Si, Mn, or P is added.

また、降伏強度(YP)が500MPa以上では、複合組織鋼板が実用化されており、フェライトとマルテンサイトの2相組織を有するDP鋼板や、残留オーステナイトを活用したTRIP鋼板がある。前者は、マルテンサイトの周囲における残留歪により、低降伏強度かつ加工硬化能が高いという特徴がある。後者は、塑性誘起マルテンサイト変態により、均一伸びが高くなるという特徴がある。   Further, when the yield strength (YP) is 500 MPa or more, a composite structure steel sheet is put into practical use, and there are a DP steel sheet having a two-phase structure of ferrite and martensite, and a TRIP steel sheet utilizing residual austenite. The former is characterized by low yield strength and high work hardening ability due to residual strain around the martensite. The latter is characterized by high uniform elongation due to plasticity-induced martensitic transformation.

一般に、高強度鋼板の機械的特性は、圧延直角方向等の特定方向における引張特性により評価される。しかしながら、実際のプレス成形を解析したところ、部品成形性、例えば張り出し成形やエリクセン試験での成形可能高さは、伸びの面内異方性に大きく影響されることも判明してきた。したがって、伸びの面内異方性を低減することにより、プレス成形性の改善が期待できる。   In general, the mechanical properties of a high-strength steel sheet are evaluated by tensile properties in a specific direction such as a direction perpendicular to rolling. However, analysis of actual press forming has revealed that part formability, for example, the height that can be formed by stretch forming or the Erichsen test, is greatly influenced by the in-plane anisotropy of elongation. Therefore, improvement in press formability can be expected by reducing the in-plane anisotropy of elongation.

面内異方性が小さい鋼板については、例えば特許文献1には、焼付硬化性に優れ、かつ面内異方性が小さい冷延鋼板およびその製造方法が開示されている。この技術は、C量および冷間圧延時における圧下率によりΔrを規定し、面内異方性と耐デント性とを両立することができるとしている。また、熱間圧延後2秒以内に冷却を開始し、100℃以上の温度域にわたり70℃/s以上の冷却速度で冷却する必要がある。しかしながら、ここでいう面内異方性はΔrであり、伸びの面内異方性とは必ずしも一致しない。   Regarding a steel sheet having a small in-plane anisotropy, for example, Patent Document 1 discloses a cold-rolled steel sheet having excellent bake hardenability and a small in-plane anisotropy and a method for manufacturing the same. In this technique, Δr is defined by the amount of C and the rolling reduction during cold rolling, and both in-plane anisotropy and dent resistance can be achieved. Moreover, it is necessary to start cooling within 2 seconds after hot rolling and to cool at a cooling rate of 70 ° C./s or more over a temperature range of 100 ° C. or more. However, the in-plane anisotropy here is Δr and does not necessarily match the in-plane anisotropy of elongation.

伸びの面内異方性に関する鋼板については、例えば特許文献2には、伸びの面内異方性が小さい高強度鋼板およびその製造方法が開示されている。かかる鋼板は、フェライト相を面積率で85%以上99%以下とし、面積率で1%以上13%以下のマルテンサイトを含む複合組織鋼であり、鋼板の1/4板厚位置における板面のODF(結晶方位分布関数)で表されるαファイバー(φ1=0°、φ2=45°、Φ=0〜55°)のうちΦ=25〜35°の範囲での平均結晶方位密度Iが2.0以上4.0以下であることを特徴としている。しかしながら、マルテンサイトを含む複合組織鋼は、降伏強度(YP)が低くなるため、製品運搬時や不慮の落下時の変形抑制効果が小さくなるという問題がある。マルテンサイトを含んでいても、高合金化して引張強度(TS)を高めれば、降伏強度(YP)も高くなる。しかしながら、この場合、製造コストの上昇を招くという問題がある。   As for the steel sheet relating to the in-plane anisotropy of elongation, for example, Patent Document 2 discloses a high-strength steel sheet having a small in-plane anisotropy of elongation and a method for manufacturing the same. Such a steel sheet is a composite structure steel including martensite having a ferrite phase in an area ratio of 85% or more and 99% or less, and an area ratio of 1% or more and 13% or less. Of α fibers (φ1 = 0 °, φ2 = 45 °, Φ = 0-55 °) represented by ODF (crystal orientation distribution function), the average crystal orientation density I in the range of Φ = 25-35 ° is 2 0.0 or more and 4.0 or less. However, the composite steel containing martensite has a problem in that the yield strength (YP) is low, so that the effect of suppressing deformation at the time of product transportation or accidental dropping becomes small. Even if martensite is included, if the tensile strength (TS) is increased by high alloying, the yield strength (YP) also increases. However, in this case, there is a problem that the manufacturing cost increases.

また、高強度鋼板の異方性を低減する技術として、例えば、特許文献3には、熱間圧延完了後に、好ましくは400℃/秒以上の冷却速度で、720℃まで0.4sec以内に冷却することにより、r値の面内異方性を低減できるとしている。しかしながら、ここでいう面内異方性はΔrであり、伸びの面内異方性とは必ずしも一致しない。そして、400℃/秒以上の冷却速度で板厚2mm以上の熱延鋼板を冷却した場合、鋼板表層と内部との温度差が大きく、組織の不均一を招き材質のバラツキを生じるという問題もある。また、400℃/秒以上の冷却速度で板厚2mm以上の熱延鋼板を冷却するためには、大がかりな設備が必要であり、コスト上昇を招く。   Further, as a technique for reducing the anisotropy of a high-strength steel plate, for example, in Patent Document 3, after completion of hot rolling, cooling to 720 ° C. within 0.4 sec, preferably at a cooling rate of 400 ° C./second or more. By doing so, the in-plane anisotropy of the r value can be reduced. However, the in-plane anisotropy here is Δr and does not necessarily match the in-plane anisotropy of elongation. And when a hot-rolled steel sheet having a thickness of 2 mm or more is cooled at a cooling rate of 400 ° C./second or more, there is a problem that the temperature difference between the steel sheet surface layer and the inside is large, resulting in uneven structure and material variations. . Further, in order to cool a hot-rolled steel sheet having a thickness of 2 mm or more at a cooling rate of 400 ° C./second or more, a large facility is required, which causes an increase in cost.

特開2004−197155号公報JP 2004-197155 A 特開2009−132981号公報JP 2009-132981 A 特開2011−144414号公報JP 2011-144414 A

本発明は、上記の問題を有利に解決するもので、自動車部品や電機用部品に好適な降伏強度(YP)が300MPa以上と高強度であり、伸びの面内異方性を低減しプレス成形性に優れた高強度鋼板およびその製造方法を提供することを目的とする。   The present invention advantageously solves the above problems, and has a high yield strength (YP) of 300 MPa or more, which is suitable for automobile parts and electrical parts, and reduces the in-plane anisotropy of elongation and press molding. An object of the present invention is to provide a high-strength steel sheet having excellent properties and a method for producing the same.

一般に、冷延鋼板の圧延集合組織は、<100>方向がRolling Directionに平行になるαファイバーと、<111>方向がNormal Directionに平行になるγファイバーが発達する。しかし、焼鈍工程で再結晶が進むと、αファイバーが弱くなり、γファイバーが強くなる。αファイバーは、圧延方向に対して45°方向の伸びを低下させるため、通常の工程で製造した冷延鋼板は、圧延方向に対して45°方向の伸びが低く、伸びの異方性が強くなる。   In general, the rolled texture of a cold rolled steel sheet develops an α fiber whose <100> direction is parallel to the rolling direction and a γ fiber whose <111> direction is parallel to the normal direction. However, when recrystallization proceeds in the annealing process, the α fiber becomes weaker and the γ fiber becomes stronger. Since α-fiber reduces the elongation in the 45 ° direction with respect to the rolling direction, the cold-rolled steel sheet produced by a normal process has a low elongation in the 45 ° direction with respect to the rolling direction and a strong elongation anisotropy. Become.

本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、圧延方向に対して45°方向の伸びを高めて異方性を低減するためには、鋼板の1/4板厚位置における板面の集合組織において、ODF(結晶方位分布関数)で表されるαファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちΦ=25°〜35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、γファイバー(φ1=0°〜60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下とすることが重要であることを見出した。また、上記集合組織を得るためには、成分組成の制御、特にNbの含有量制御と、製造条件の制御が重要であることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that in order to increase the elongation in the 45 ° direction with respect to the rolling direction and reduce the anisotropy, the ¼ thickness position of the steel plate In the texture of the plate surface at Φ = 25 ° -35 ° among α fibers (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° -55 °) represented by ODF (crystal orientation distribution function) the average crystal orientation density I alpha in the range is not less 2.0 to 4.0, gamma fiber (φ1 = 0 ° ~60 °, φ2 = 45 °, Φ = 55 °) average crystal orientation density I gamma of It was found that it is important to set the ratio to 2.0 or more and 10 or less. Moreover, in order to obtain the said texture, it discovered that control of a component composition, especially content control of Nb, and control of manufacturing conditions were important.

本発明は、上記の知見に基づきなされたもので、その要旨は以下の通りである。
[1]質量%で、C:0.040〜0.090%、Si:0.20%以下、Mn:0.50〜0.99%、P:0.050%以下、S:0.03%以下、sol.Al:0.01〜0.09%、N:0.005%以下、Nb:0.015〜0.040%を含有し、残部がFe及び不可避的不純物からなり、マルテンサイト相および残留オーステナイト相を含まず、鋼板の1/4板厚位置における板面の集合組織において、ODF(結晶方位分布関数)で表されるαファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちΦ=25°〜35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、γファイバー(φ1=0°〜60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下であることを特徴とする伸びの面内異方性が小さい高強度鋼板。
[2]下記(1)式で示されるΔElが−2.0%〜2.0%であることを特徴とする[1]に記載の伸びの面内異方性が小さい高強度鋼板。
ΔEl=(El−2El45+El90)/2・・・(1)
ただし、El、El45およびEl90は、鋼板の圧延方向に対して0°、45°および90°の方向で測定した破断伸びの値とする。
[3]降伏強度YPと引張強度TSの比である降伏比YR(YR=YP/TS)が0.79以上であることを特徴とする[1]または[2]に記載の伸びの面内異方性が小さい高強度鋼板。
[4]表面に亜鉛系めっき皮膜を有することを特徴とする[1]〜[3]のいずれかに記載の伸びの面内異方性が小さい高強度鋼板。
[5][1]に記載の成分組成を有する鋼スラブを加熱し、スラブ加熱温度1150℃以上の温度域で60分以上保持した後、熱間圧延の粗圧延を行い、その後仕上圧延温度を820〜920℃で仕上圧延の最終パス圧延率を15〜25%で仕上圧延を行い、仕上圧延後2秒以内に水冷を開始して冷却した後、酸洗および冷間圧延を施し、その後焼鈍を行うことを特徴とする伸びの面内異方性が小さい高強度鋼板の製造方法。
[6]前記熱間圧延の粗圧延の後水冷により仕上圧延入側温度を1050℃以下とした後、前記仕上圧延を行うことを特徴とする[5]に記載の伸びの面内異方性が小さい高強度鋼板の製造方法。
[7][5]または[6]に記載の高強度鋼板の製造方法において、焼鈍後の鋼板に亜鉛めっき処理を施すことを特徴とする伸びの面内異方性が小さい高強度鋼板の製造方法。
なお、本発明における高強度とは、降伏強度YPが300MPa以上をいう。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.040 to 0.090%, Si: 0.20% or less, Mn: 0.50 to 0.99%, P: 0.050% or less, S: 0.03 % Or less, sol. Al: 0.01 to 0.09%, N: 0.005% or less, Nb: 0.015 to 0.040%, with the balance being Fe and unavoidable impurities, martensite phase and residual austenite phase In the texture of the plate surface at the ¼ plate thickness position of the steel plate, α fiber (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° to 55) represented by ODF (crystal orientation distribution function) ), The average crystal orientation density I α in the range of Φ = 25 ° to 35 ° is 2.0 to 4.0, and γ fiber (φ1 = 0 ° to 60 °, φ2 = 45 °, Φ = 55 °) high-strength steel sheet having a small in-plane anisotropy of elongation, wherein the average crystal orientation density I γ is 2.0 or more and 10 or less.
[2] The high-strength steel sheet having a small in-plane anisotropy of elongation according to [1], wherein ΔEl expressed by the following formula (1) is −2.0% to 2.0%.
ΔEl = (El 0 −2El 45 + El 90 ) / 2 (1)
However, El 0 , El 45 and El 90 are values of elongation at break measured in directions of 0 °, 45 ° and 90 ° with respect to the rolling direction of the steel sheet.
[3] The in-plane elongation according to [1] or [2], wherein the yield ratio YR (YR = YP / TS), which is the ratio between the yield strength YP and the tensile strength TS, is 0.79 or more. High strength steel sheet with low anisotropy.
[4] The high-strength steel sheet having a small in-plane anisotropy of elongation according to any one of [1] to [3], wherein the surface has a zinc-based plating film.
[5] A steel slab having the composition described in [1] is heated and held for 60 minutes or more in a temperature range of 1150 ° C. or higher, followed by hot rolling, followed by finish rolling temperature. Finish rolling is performed at a final pass rolling ratio of 15 to 25% at 820 to 920 ° C., water cooling is started within 2 seconds after finishing rolling, cooling is performed, and pickling and cold rolling are performed, followed by annealing. A method for producing a high-strength steel sheet having a small in-plane anisotropy of elongation, characterized in that:
[6] The in-plane anisotropy of elongation according to [5], wherein the finish rolling is performed after the hot rolling roughing rolling is followed by water cooling to a finish rolling entry temperature of 1050 ° C. or lower. Method for producing high-strength steel sheet with small size
[7] The method for producing a high-strength steel sheet according to [5] or [6], wherein the steel sheet after annealing is subjected to galvanizing treatment, and the high-strength steel sheet having a small in-plane anisotropy of elongation is characterized. Method.
In addition, the high intensity | strength in this invention means that yield strength YP is 300 Mpa or more.

本発明によれば、伸びの面内異方性が小さく、プレス成形性に優れた高強度鋼板を得ることができる。また、降伏強度(YP)が高いため、製品運搬時や不慮の落下時の変形が抑制される。本発明の高強度鋼板は、自動車用部品や電機用部品に適用することができ、極めて有用である。   According to the present invention, a high-strength steel sheet having a small in-plane anisotropy of elongation and excellent press formability can be obtained. Moreover, since the yield strength (YP) is high, deformation at the time of product transportation or accidental dropping is suppressed. The high-strength steel sheet of the present invention can be applied to automotive parts and electrical parts, and is extremely useful.

αファイバーのうちのΦ=25°〜35°における平均結晶方位密度Iαと、γファイバーのうちのΦ=55°における平均結晶方位密度Iγと、ΔElとの関係を示すグラフである。It is a graph which shows the relationship between the average crystal orientation density Iα in Φ = 25 ° to 35 ° of the α fiber, the average crystal orientation density I γ in Φ = 55 ° of the γ fiber, and ΔEl.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

まず、成分組成の理由について説明する。なお、各元素の含有量の単位は、特に断りがない限り質量%とする。   First, the reason for the component composition will be described. The unit of the content of each element is mass% unless otherwise specified.

C:0.040〜0.090%
Cは、結晶を細粒化し、高強度化するために必要な元素である。また、後述のNbとの析出物を形成し、特に降伏強度(YP)を高める効果を有する。C量が0.040%未満では、細粒化による強度上昇効果が低いため、0.040%以上含有することを必要とする。一方、C量が0.090%を超えると、第2相を形成しやすくなり、伸びが低下する。したがって、C量は0.040〜0.090%の範囲とする。好ましくは0.040〜0.060%の範囲である。
C: 0.040 to 0.090%
C is an element necessary for refining the crystal and increasing the strength. Moreover, it has the effect of forming a precipitate with Nb, which will be described later, and increasing the yield strength (YP). If the amount of C is less than 0.040%, the effect of increasing the strength due to fine graining is low. On the other hand, when the amount of C exceeds 0.090%, it becomes easy to form the second phase, and the elongation decreases. Therefore, the C content is in the range of 0.040 to 0.090%. Preferably it is 0.040 to 0.060% of range.

Si:0.20%以下
Siは、微量で熱間圧延でのスケール生成を遅延させて表面品質を改善する効果がある。この他に、フェライト相の加工硬化能を上げる効果等がある。このような観点から、0.01%程度以上含有させることが好ましい。しかしながら、Si量が0.20%を超えると、外観品質が劣化する。したがって、Si量は0.20%以下とする。好ましくは0.10%以下とする。
Si: 0.20% or less Si has the effect of improving the surface quality by delaying the scale formation in hot rolling in a small amount. In addition, there is an effect of increasing the work hardening ability of the ferrite phase. From such a viewpoint, it is preferable to contain about 0.01% or more. However, when the Si content exceeds 0.20%, the appearance quality deteriorates. Therefore, the Si content is 0.20% or less. Preferably it is 0.10% or less.

Mn:0.50〜0.99%
Mnは、固溶強化、結晶の細粒化効果を通じて、鋼板強度を高めるのに有用な元素である。Mn量が0.50%未満では、固溶強化、細粒化効果が低いため、0.50%以上含有することを必要とする。一方、Mn量が0.99%を超えると、マルテンサイト相を形成しやすくなり、降伏強度(YP)が低下する。したがって、Mn量は0.50〜0.99%の範囲とする。好ましくは0.61〜0.79%の範囲である。
Mn: 0.50 to 0.99%
Mn is an element useful for increasing the strength of a steel sheet through solid solution strengthening and crystal grain refining effects. If the amount of Mn is less than 0.50%, the effect of solid solution strengthening and refining is low, so 0.50% or more is required. On the other hand, when the amount of Mn exceeds 0.99%, it becomes easy to form a martensite phase and the yield strength (YP) decreases. Therefore, the Mn content is in the range of 0.50 to 0.99%. Preferably it is 0.61 to 0.79% of range.

P:0.050%以下
P量が0.050%を超えると、溶接性の劣化や偏析による表面欠陥が発生する。したがって、P量は0.050%以下とする。好ましくは、0.040%以下である。
P: 0.050% or less When the amount of P exceeds 0.050%, surface defects due to deterioration of weldability or segregation occur. Therefore, the P content is 0.050% or less. Preferably, it is 0.040% or less.

S:0.03%以下
Sは、鋼板の1次スケールの剥離性を向上させ、外観品質を向上させる作用がある。しかしながら、S量が多くなると、鋼中に析出するMnSが多くなる。このため、鋼板の伸びや伸びフランジ性といった延性を低下させ、プレス成形性を低下させる。また、スラブを熱間圧延する際の熱間延性を低下させ、表面欠陥が発生しやすくなる。このような観点から、S量は0.03%以下とする。好ましくは0.01%以下、より好ましくは0.005%以下、さらに好ましくは0.002%以下である。
S: 0.03% or less S has an effect of improving the peelability of the primary scale of the steel sheet and improving the appearance quality. However, when the amount of S increases, the amount of MnS precipitated in the steel increases. For this reason, ductility, such as elongation of a steel plate and stretch flangeability, is reduced, and press formability is reduced. Moreover, the hot ductility at the time of hot-rolling a slab is reduced, and surface defects are likely to occur. From such a viewpoint, the S amount is set to 0.03% or less. Preferably it is 0.01% or less, More preferably, it is 0.005% or less, More preferably, it is 0.002% or less.

sol.Al:0.01〜0.09%
sol.Alは、鋼の脱酸元素として有用であるほか、不純物として存在する固溶Nを固定して成形性を向上させる作用がある。このため、sol.Al量は0.01%以上とする。一方、sol.Al量が0.09%を超えると、コストアップにつながり、さらには表面欠陥を誘発する。したがって、sol.Al量は0.01〜0.09%の範囲とする。好ましくは0.02〜0.07%である。
sol. Al: 0.01 to 0.09%
sol. In addition to being useful as a deoxidizing element for steel, Al has the effect of fixing solid solution N present as an impurity and improving formability. For this reason, sol. The amount of Al is 0.01% or more. On the other hand, sol. If the amount of Al exceeds 0.09%, the cost increases, and further surface defects are induced. Therefore, sol. The Al content is in the range of 0.01 to 0.09%. Preferably it is 0.02 to 0.07%.

N:0.005%以下
Nは、量が多すぎると、成形性を劣化させるとともに、固溶Nを固定するために多量のAl添加が必要となる。このため、できるだけ低減することが好ましい。このような観点から、N量は0.005%以下とする。
N: 0.005% or less If the amount of N is too large, the moldability is deteriorated and a large amount of Al is required to fix the solid solution N. For this reason, it is preferable to reduce as much as possible. From such a viewpoint, the N amount is set to 0.005% or less.

Nb:0.015〜0.040%
Nbは、結晶を細粒化し、高強度化するために必要な元素である。また、前述のCと析出物を形成し、特に降伏強度(YP)を高める効果を有する。さらに、熱間圧延プロセスの仕上圧延工程においてNb析出物を微細析出させて鋼の再結晶を部分的に抑制し、冷間圧延および焼鈍後のαファイバーを高める効果を有することから、Nbは本発明の最重要元素である。このような効果を得るためには、Nb量を0.015%以上含有することが必要である。一方、0.040%を超えると、熱間圧延プロセスの仕上げ圧延工程での再結晶を完全に抑制し、冷間圧延および焼鈍後のαファイバーを高めすぎて伸びの異方性が低減するとともに、熱間圧延荷重が高くなる。したがって、Nb量は0.015〜0.040%以下の範囲とする。好ましくは、0.030%以下である。
Nb: 0.015-0.040%
Nb is an element necessary for refining the crystal and increasing the strength. Moreover, the above-mentioned C and precipitates are formed, and in particular, it has the effect of increasing the yield strength (YP). Furthermore, since Nb precipitates are finely precipitated in the finish rolling step of the hot rolling process to partially suppress recrystallization of the steel, and Nb has the effect of increasing the α fiber after cold rolling and annealing. It is the most important element of the invention. In order to acquire such an effect, it is necessary to contain Nb amount 0.015% or more. On the other hand, if it exceeds 0.040%, recrystallization in the finish rolling step of the hot rolling process is completely suppressed, and the α fiber after cold rolling and annealing is excessively increased to reduce elongation anisotropy. The hot rolling load becomes high. Therefore, the Nb content is in the range of 0.015 to 0.040% or less. Preferably, it is 0.030% or less.

本発明では、上記成分のほかに、次の元素を含有してもよい。しかし、次の元素は特に焼き入れ性が高く、マルテンサイト相を形成しやすくする元素である。そのため、下記の範囲であることが好ましい。   In the present invention, in addition to the above components, the following elements may be contained. However, the following elements are elements that have particularly high hardenability and facilitate the formation of a martensite phase. Therefore, the following range is preferable.

Cr:0.05%以下
Crは、Mnと同様、マルテンサイト相を形成しやすくする元素であり、マルテンサイト相が生成すると降伏強度(YP)が低下する。このため、Cr量は0.05%以下とする。好ましくは0.02%以下、より好ましくは0.01%以下である。過度な低減はコスト上昇を招くため、その下限は0.001%とすることが好ましい。
Cr: 0.05% or less Cr, like Mn, is an element that easily forms a martensite phase, and yield strength (YP) decreases when the martensite phase is generated. For this reason, the Cr content is 0.05% or less. Preferably it is 0.02% or less, More preferably, it is 0.01% or less. Since excessive reduction causes an increase in cost, the lower limit is preferably set to 0.001%.

Mo:0.05%以下
Moは、Mnと同様、マルテンサイト相を形成しやすくする元素であり、マルテンサイト相が生成すると降伏強度(YP)が低下する。このため、Mo量は0.05%以下とする。好ましくは0.02%以下、より好ましくは0.01%以下である。過度な低減はコスト上昇を招くため、その下限は0.001%とすることが好ましい。
Mo: 0.05% or less Mo, like Mn, is an element that easily forms a martensite phase. When a martensite phase is generated, yield strength (YP) decreases. For this reason, the Mo amount is 0.05% or less. Preferably it is 0.02% or less, More preferably, it is 0.01% or less. Since excessive reduction causes an increase in cost, the lower limit is preferably set to 0.001%.

本発明の鋼板において、上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲であれば、上記以外の成分の含有を拒むものではない。   In the steel sheet of the present invention, components other than those described above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

次に、本発明の鋼板における、鋼組織、集合組織の限定理由を説明する。   Next, the reasons for limiting the steel structure and texture in the steel sheet of the present invention will be described.

鋼組織:マルテンサイト相および残留オーステナイト相を含まない
マルテンサイト相および残留オーステナイト相が生成した場合、降伏強度(YP)が低下し、製品運搬時や不慮の落下時の変形抑制効果が小さくなる。したがって、マルテンサイト相および残留オーステナイト相を含まないことを必要とする。なお、本発明の鋼板のミクロ組織は、フェライト+パーライト組織あるいはさらに、セメンタイト等からなる組織であり、マルテンサイト相および残留オーステナイト相を含まないとは、マルテンサイト相および残留オーステナイト相は組織全体に対する体積分率で1%以下をいう。また、マルテンサイト相および残留オーステナイト相を含まないためには、後述する製造条件により、制御することができる。
Steel structure: Does not include martensite phase and retained austenite phase When martensite phase and retained austenite phase are generated, the yield strength (YP) decreases, and the effect of suppressing deformation during product transportation or accidental dropping is reduced. Therefore, it is necessary to contain no martensite phase and residual austenite phase. The microstructure of the steel sheet of the present invention is a ferrite + pearlite structure or a structure made of cementite or the like, and does not include a martensite phase and a retained austenite phase. The martensite phase and the retained austenite phase are based on the entire structure. The volume fraction is 1% or less. Moreover, in order not to contain a martensite phase and a retained austenite phase, it can control by the manufacturing conditions mentioned later.

集合組織:鋼板の1/4板厚位置における板面の集合組織において、ODF(結晶方位分布関数)で表されるαファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちΦ=25°〜35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、γファイバー(φ1=0°〜60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下
従来、集合組織の解析にはX線回折(XRD)による極点図が用いられてきた。極点図は、多数の結晶粒に関する統計的な結晶方位分布を表していることから、優先方位の決定に適した方法である。しかしながら、多結晶材料の集合組織は単一の優先方位のみならず、多数の優先方位を示すことが多い。例えば、ある結晶軸の周りに回転した方位群であるαファイバーやγファイバーといった繊維集合組織では、極点図から個々の方位の存在割合を正確に評価することは困難である。そのため、極点図の情報に基づいて3次元結晶方位分布関数を作成し、個々の方位の存在割合を評価する。上記3次元結晶方位分布関数の評価に際し、反射法により得られた(200)、(211)、(110)の不完全極点図より、級数展開法にて求める。その結果、上記のようにマルテンサイト相や残留オーステナイト相を含まない鋼組織において、αファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちΦ=25°〜35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、且つ、γファイバー(φ1=0°〜60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下とした場合に、伸びの面内異方性が小さくなることが究明された。集合組織を上記の範囲とした場合に伸びの面内異方性が小さくなる理由は、必ずしも明らかではないが、圧延方向や、圧延方向に対して90°の方向の伸びを向上させるγファイバーの存在割合と、圧延方向に対して45°の方向の伸びを向上させるαファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちのΦ=25°〜35°の存在割合のバランスが良いと考えられる。
Texture: α fiber (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° -55 °) represented by ODF (crystal orientation distribution function) in the texture of the plate surface at the 1/4 plate thickness position of the steel plate ), The average crystal orientation density I α in the range of Φ = 25 ° to 35 ° is 2.0 or more and 4.0 or less, and γ fiber (φ1 = 0 ° to 60 °, φ2 = 45 °, Φ = 55 °) average crystal orientation density I gamma conventional 2.0 but no more than 10, the analysis of the texture pole figure by an X-ray diffraction (XRD) have been used. The pole figure represents a statistical crystal orientation distribution regarding a large number of crystal grains, and is therefore a method suitable for determining the preferred orientation. However, the texture of polycrystalline materials often exhibits a number of preferred orientations as well as a single preferred orientation. For example, in a fiber texture such as an α fiber or γ fiber that is an orientation group rotated around a crystal axis, it is difficult to accurately evaluate the existence ratio of individual orientations from the pole figure. Therefore, a three-dimensional crystal orientation distribution function is created based on the pole figure information, and the existence ratio of each orientation is evaluated. In the evaluation of the three-dimensional crystal orientation distribution function, it is obtained by the series expansion method from the incomplete pole figures (200), (211), and (110) obtained by the reflection method. As a result, in the steel structure that does not contain the martensite phase or the residual austenite phase as described above, Φ = 25 ° to 35 ° of α fiber (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° to 55 °). The average crystal orientation density I α in the range of ° is 2.0 or more and 4.0 or less, and the average crystal orientation of the γ fiber (φ1 = 0 ° -60 °, φ2 = 45 °, Φ = 55 °) It was investigated that the in-plane anisotropy of elongation becomes small when the density is 2.0 or more and 10 or less. The reason why the in-plane anisotropy of elongation becomes small when the texture is in the above range is not necessarily clear, but the γ fiber that improves the elongation in the rolling direction and the direction of 90 ° with respect to the rolling direction. Of the α fiber (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° -55 °) that improves the abundance ratio and the elongation in the direction of 45 ° with respect to the rolling direction, Φ = 25 ° -35 ° The balance of the existence ratio is considered good.

次に、本発明者らは、本発明の成分組成を有する鋼スラブを、熱間圧延して熱延鋼板とし、酸洗後、冷間圧延して冷延鋼板とした後、焼鈍を施して冷延焼鈍鋼板とし、さらに調質圧延を施した。かくして得られた各冷延焼鈍鋼板の1/4板厚位置における板面のX線回折結果から求められる結晶方位分布関数(以下、ODF:Orientation Distribution Functionという)を作成し、このODFから、特に伸びなどの加工性に影響すると考えられるαファイバーと呼ばれる集合組織に注目し、このαファイバーと成形性との関係について調査した。その結果、αファイバーの方位群であるΦ=0°〜55°のうち、特にΦ=25°〜35°の範囲における平均結晶方位密度Iα、および、γファイバーの平均結晶方位密度Iγが、ΔElと相関が強いことが判明した。本発明では、ΔElの値が−2.0%〜2.0%である場合、伸びの面内異方性は小さいとされプレス成形性が良好であると判断した。なお、ΔElは次式(1)で求められる。
ΔEl=(El−2El45+El90)/2・・・(1)
ただし、El、El45およびEl90は、冷延焼鈍鋼板から圧延方向に対して0°方向(L方向)、45°方向(D方向)、90°方向(C方向)にJIS5号試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/分で引張試験を行って測定した破断伸びの値である。
Next, the inventors hot-rolled a steel slab having the composition of the present invention into a hot-rolled steel sheet, pickled, cold-rolled into a cold-rolled steel sheet, and then annealed. Cold-rolled annealed steel sheet was used, and temper rolling was performed. A crystal orientation distribution function (hereinafter referred to as ODF: Orientation Distribution Function) obtained from the X-ray diffraction result of the plate surface at the ¼ plate thickness position of each cold-rolled annealed steel plate thus obtained is created, and from this ODF, Focusing on the texture called α-fiber, which is thought to affect the workability such as elongation, we investigated the relationship between this α-fiber and moldability. As a result, the average crystal orientation density I α and the average crystal orientation density I γ of the γ fiber in the range of Φ = 25 ° to 35 ° among Φ = 0 ° to 55 °, which is the orientation group of the α fiber. It was found that there was a strong correlation with ΔEl. In the present invention, when the value of ΔEl is −2.0% to 2.0%, it is determined that the in-plane anisotropy of elongation is small and the press formability is good. ΔEl is obtained by the following equation (1).
ΔEl = (El 0 −2El 45 + El 90 ) / 2 (1)
However, El 0 , El 45 and El 90 are JIS No. 5 test pieces in the 0 ° direction (L direction), 45 ° direction (D direction) and 90 ° direction (C direction) from the cold-rolled annealed steel sheet to the rolling direction. Is a value of elongation at break measured by performing a tensile test at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241.

このようにして得られた平均結晶方位密度IαおよびIγと、ΔElの絶対値(以下、単に|ΔEl|と称することもある。)との関係を図1に示す。図1より、平均結晶方位密度Iαが2.0以上4.0以下であり、平均結晶方位密度Iγが2.0以上10以下である場合に、|ΔEl|の値が2.0%以下という良好な結果が得られた。つまり、αファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちΦ=25°〜35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、γファイバー(φ1=0°〜60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下である集合組織をもつ高強度鋼板が、伸びの面内異方性が小さいことが判明した。したがって、本発明の鋼板は、下記(1)式で示されるΔElが−2.0%以上2.0%以下であることが好ましい。
ΔEl=(El−2El45+El90)/2・・・(1)
ただし、El、El45およびEl90は、鋼板の圧延方向に対して0°、45°および90°の方向で測定した破断伸びの値とする。
FIG. 1 shows the relationship between the average crystal orientation densities I α and I γ thus obtained and the absolute value of ΔE1 (hereinafter sometimes simply referred to as | ΔE1 |). From FIG. 1, when the average crystal orientation density I α is 2.0 or more and 4.0 or less and the average crystal orientation density I γ is 2.0 or more and 10 or less, the value of | ΔEl | is 2.0%. The following good results were obtained. That is, the average crystal orientation density I α in the range of Φ = 25 ° to 35 ° in the α fiber (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° to 55 °) is 2.0 or more and 4.0. A high-strength steel sheet having a texture where the average crystal orientation density I γ of the γ fiber (φ1 = 0 ° to 60 °, φ2 = 45 °, Φ = 55 °) is 2.0 or more and 10 or less, It was found that the in-plane anisotropy of elongation was small. Therefore, in the steel sheet of the present invention, ΔE1 represented by the following formula (1) is preferably −2.0% or more and 2.0% or less.
ΔEl = (El 0 −2El 45 + El 90 ) / 2 (1)
However, El 0 , El 45 and El 90 are values of elongation at break measured in directions of 0 °, 45 ° and 90 ° with respect to the rolling direction of the steel sheet.

本発明ではさらに、降伏強度、降伏比について次のような限定を加えることができる。   In the present invention, the following limitations can be applied to the yield strength and yield ratio.

降伏強度YPが300MPa以上であり、降伏強度YPと引張強度TSの比である降伏比YR(YR=YP/TS)が0.79以上
降伏強度を高めることによって、製品運搬時や不慮の落下時の変形が抑制される。この効果を得るためには、降伏強度YPが300MPa以上であることが好ましい。一方、あまり高すぎるとスプリングバックが大きくなり、部品形状を維持することが困難になるため、480MPa以下であることが好ましい。また、降伏比YRは0.79以上であることが好ましい。なお、降伏強度に対して引張強度が高くなると、プレス荷重が必要以上に高くなり、大型プレス機を導入しなければならなくなる。このため、引張強度TSは560MPa以下であることが好ましい。
Yield strength YP is 300 MPa or more, and yield ratio YR (YR = YP / TS), which is the ratio of yield strength YP and tensile strength TS, is 0.79 or more. Is prevented from being deformed. In order to obtain this effect, the yield strength YP is preferably 300 MPa or more. On the other hand, if it is too high, the spring back becomes large and it is difficult to maintain the component shape. The yield ratio YR is preferably 0.79 or more. If the tensile strength is higher than the yield strength, the press load becomes higher than necessary, and a large press must be introduced. For this reason, it is preferable that the tensile strength TS is 560 MPa or less.

次に、本発明の製造方法を説明する。   Next, the manufacturing method of this invention is demonstrated.

まず、使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが好ましい。なお、造塊法や薄スラブ鋳造法で製造してもよい。また、スラブを製造したあと、一旦室温まで冷却し、その後、再度加熱する従来法に加え、冷却せず温片のまま加熱炉に装入し、熱間圧延する直送圧延や、わずかの保熱を行った後、直ちに熱間圧延する直接圧延などの省エネルギープロセスも問題なく適用できる。   First, the steel slab to be used is preferably manufactured by a continuous casting method in order to prevent macro segregation of components. In addition, you may manufacture by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the slab is manufactured and then cooled to room temperature and then reheated, it is charged directly into the heating furnace without being cooled and placed in a heating furnace and hot rolled, or a little heat retention After carrying out, an energy saving process such as direct rolling which is immediately hot rolled can be applied without any problem.

次に、熱間圧延工程の条件について説明する。   Next, conditions for the hot rolling process will be described.

スラブ加熱温度:1150℃以上の温度域で60分以上保持
スラブ加熱では、Nb析出物を完全に溶解して、熱間圧延プロセスの仕上圧延工程においてNb析出物を微細析出させて鋼の再結晶を部分的に抑制し、冷間圧延および焼鈍後のαファイバーを高めるために、加熱温度は高く、また、保持時間は長い方が好ましい。このような観点から、本発明ではスラブ加熱温度1150℃以上の温度域で60分以上保持する。一方、スラブ加熱温度が高すぎたり、保持時間が長すぎる場合、酸化重量の増加に伴うスケールロスが増大するため、加熱温度は1300℃以下とすることが好ましく、保持時間は500分以下であることが好ましい。
Slab heating temperature: Hold for 60 minutes or more in a temperature range of 1150 ° C or higher In slab heating, Nb precipitates are completely dissolved and finely precipitated in the finish rolling step of the hot rolling process to recrystallize the steel. In order to partially suppress the above and increase the α fiber after cold rolling and annealing, it is preferable that the heating temperature is high and the holding time is long. From such a viewpoint, in this invention, it hold | maintains for 60 minutes or more in the temperature range of slab heating temperature 1150 degreeC or more. On the other hand, when the slab heating temperature is too high or the holding time is too long, the scale loss accompanying the increase in the oxidized weight increases, so the heating temperature is preferably 1300 ° C. or less, and the holding time is 500 minutes or less. It is preferable.

上記の条件で加熱された鋼スラブに、粗圧延および仕上圧延からなる熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行えばよい。また、熱間圧延時のトラブルを防止したり、幅方向の温度ムラを改善する目的で、シートバーを加熱するいわゆるシートバーヒータやエッジヒーターを活用することが有効である。   The steel slab heated under the above conditions is subjected to hot rolling consisting of rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. In addition, it is effective to use a so-called sheet bar heater or edge heater that heats the sheet bar for the purpose of preventing troubles during hot rolling or improving temperature unevenness in the width direction.

仕上圧延工程においてNb析出物を微細に析出させるためには、低温で仕上圧延を行うことが好適であり、仕上圧延入側温度が1050℃以下であることが好ましい。本発明では、スラブを1150℃以上と高温で加熱しているため、仕上圧延入側で1050℃まで冷却するために、仕上圧延前にシートバーを水冷することが好ましい。一方で過度の低温化は、熱間圧延時の負荷が高くなるため、930℃以上であることが好ましい。   In order to finely precipitate Nb precipitates in the finish rolling step, it is preferable to perform finish rolling at a low temperature, and the finish rolling entry temperature is preferably 1050 ° C. or lower. In the present invention, since the slab is heated at a high temperature of 1150 ° C. or higher, the sheet bar is preferably water-cooled before finish rolling in order to cool to 1050 ° C. on the finish rolling entry side. On the other hand, excessively low temperature increases the load during hot rolling, and is preferably 930 ° C. or higher.

仕上圧延温度:820〜920℃
次いで、シートバーを仕上圧延して熱延鋼板とする。このとき、仕上温度、すなわち仕上圧延出側温度(FT)は820〜920℃とする。これは、冷間圧延および再結晶焼鈍後における伸びの面内異方性に好ましい集合組織を得るためである。FTが820℃未満では、熱間圧延時の負荷が高くなるだけでなく、一部の成分系ではフェライト域での圧延となり、集合組織が大きく変化する。一方、FTが920℃を超えると、組織が粗大化するだけでなく、オーステナイトが部分再結晶状態で圧延できず、冷延焼鈍後、伸びの面内異方性が大きくなる。このため、仕上げ温度は820〜920℃、より好ましくは820〜890℃とする。
Finish rolling temperature: 820-920 ° C
Next, the sheet bar is finish-rolled to obtain a hot-rolled steel sheet. At this time, the finishing temperature, that is, the finish rolling outlet temperature (FT) is 820 to 920 ° C. This is for obtaining a texture preferable for in-plane anisotropy of elongation after cold rolling and recrystallization annealing. When the FT is less than 820 ° C., not only the load during hot rolling becomes high, but in some component systems, rolling occurs in the ferrite region, and the texture changes greatly. On the other hand, when FT exceeds 920 ° C., not only the structure becomes coarse, but austenite cannot be rolled in a partially recrystallized state, and the in-plane anisotropy of elongation increases after cold rolling annealing. For this reason, finishing temperature shall be 820-920 degreeC, More preferably, it shall be 820-890 degreeC.

仕上圧延最終パス圧延率:15〜25%
仕上圧延中のオーステナイト域での圧延による集合組織形成が、冷間圧延および焼鈍後のαファイバーを高める。この効果は、仕上げ圧延最終パスが最も強く影響する。仕上げ圧延最終パス圧延率が15%未満の場合は、オーステナイト域での圧延による集合組織形成が不十分であり、冷間圧延および焼鈍後のαファイバーが強くならないため、15%以上とする。一方、25%超えでは、圧延時の負荷が高くなるため25%以下とする。
Finish rolling final pass rolling ratio: 15-25%
Texture formation by rolling in the austenite region during finish rolling enhances the α fiber after cold rolling and annealing. This effect is most strongly affected by the final rolling final pass. When the final pass rolling ratio of the finish rolling is less than 15%, the texture formation by rolling in the austenite region is insufficient, and the α fiber after cold rolling and annealing does not become strong. On the other hand, if it exceeds 25%, the load during rolling becomes high, so it is 25% or less.

仕上圧延後水冷開始までの時間:2秒以内
仕上圧延後、オーステナイトを部分再結晶状態のまま変態させる必要があるため、オーステナイト域での保持は好ましくない。したがって、仕上圧延後には2秒以内に水冷を開始する。より好ましくは、0.5秒以内である。
Time until start of water cooling after finish rolling: within 2 seconds Since it is necessary to transform austenite in a partially recrystallized state after finish rolling, holding in the austenite region is not preferable. Therefore, water cooling is started within 2 seconds after finish rolling. More preferably, it is within 0.5 seconds.

仕上圧延後コイル巻取までの冷却速度は、特に規定するものではないが、冷却中のオーステナイト域での再結晶抑制のために20℃/秒以上であることが好ましい。また、過度の冷却は板厚方向、面内方向の温度ムラが生じやすくなるため、200℃/秒以下であることが好ましい。より好ましくは99℃/秒以下、さらに好ましくは、40℃/秒以下である。   The cooling rate from finish rolling to coil winding is not particularly specified, but is preferably 20 ° C./second or more in order to suppress recrystallization in the austenite region during cooling. Moreover, since excessive cooling tends to cause temperature unevenness in the plate thickness direction and in-plane direction, it is preferably 200 ° C./second or less. More preferably, it is 99 degrees C / second or less, More preferably, it is 40 degrees C / second or less.

コイル巻取温度(CT)は、特に規定するものではないが、400℃以上720℃以下とすることが好ましい。特に、CTが上限を超えると、結晶粒が粗大化し、強度低下を招くこととなる。   The coil winding temperature (CT) is not particularly specified, but is preferably 400 ° C. or higher and 720 ° C. or lower. In particular, when CT exceeds the upper limit, the crystal grains become coarse and the strength is reduced.

その後、酸洗、冷間圧延、焼鈍を行うことにより、本発明の高強度鋼板を得ることができる。   Then, the high strength steel plate of this invention can be obtained by performing pickling, cold rolling, and annealing.

酸洗は、特に規定するものではなく、常法により行う。スケール性欠陥抑制のため、酸洗前にショットブラストやレベリングを施しても良い。   Pickling is not particularly specified and is performed by a conventional method. In order to suppress scale defects, shot blasting or leveling may be performed before pickling.

冷間圧延は、特に規定するものではないが、圧延率は30〜80%とすることが好ましい。圧延率が30%未満では、焼鈍時の再結晶が不安定になり伸びの低下を招く。また、80%を超えると、圧延時の負荷が高くなる。   Cold rolling is not particularly specified, but the rolling rate is preferably 30 to 80%. If the rolling rate is less than 30%, recrystallization at the time of annealing becomes unstable and the elongation is lowered. Moreover, when it exceeds 80%, the load at the time of rolling will become high.

焼鈍は、特に規定するものではないが、連続焼鈍では、焼鈍温度を700〜900℃とすることが好ましい。焼鈍温度が700℃未満では十分に再結晶せず、伸びの低下を招く。また、900℃を超えると、焼鈍時のオーステナイト分率が高くなってαファイバーとγファイバーとのバランスが崩れ、伸びの面内異方性が増大する。バッチ焼鈍の場合は、600〜800℃とすることが好ましい。600℃未満では十分に再結晶せず、伸びの低下を招く。また、800℃を超えると、スティッキングが生じて鋼板形状が劣化する。
焼鈍後の冷却が速い場合には、マルテンサイト相が生成しやすくなるため、50℃/sec以下の平均冷却速度で冷却することが望ましい。
Although annealing is not particularly specified, it is preferable that the annealing temperature is 700 to 900 ° C. in continuous annealing. When the annealing temperature is less than 700 ° C., the crystal is not sufficiently recrystallized and the elongation is lowered. Moreover, when it exceeds 900 degreeC, the austenite fraction at the time of annealing will become high, the balance of (alpha) fiber and (gamma) fiber will collapse, and the in-plane anisotropy of elongation will increase. In the case of batch annealing, it is preferable to set it as 600-800 degreeC. If it is less than 600 ° C., it will not be sufficiently recrystallized, leading to a decrease in elongation. Moreover, when it exceeds 800 degreeC, sticking will arise and a steel plate shape will deteriorate.
When the cooling after annealing is fast, a martensite phase is likely to be generated, and therefore it is desirable to cool at an average cooling rate of 50 ° C./sec or less.

以上、本発明の製造方法の基本工程について説明したが、次の工程を加えても良い。   As mentioned above, although the basic process of the manufacturing method of this invention was demonstrated, you may add the following process.

上記の冷延鋼板焼鈍工程の後に電気めっき処理、あるいは溶融めっき処理などの表面処理を施す工程を加えて、鋼板表面にめっき層を形成してもよい。なお、めっき層は純亜鉛めっきや亜鉛系合金めっきに限らず、AlめっきやAl系合金めっきなど、従来鋼板表面に施されている各種めっき層とすることも可能である。また、めっき後に耐食性や耐指紋性を向上させる目的で、化成処理皮膜を塗布してもよい。   A plating layer may be formed on the surface of the steel sheet by adding a surface treatment such as electroplating or hot dipping after the cold-rolled steel sheet annealing step. The plating layer is not limited to pure zinc plating or zinc-based alloy plating, but may be various plating layers conventionally applied to the surface of a steel sheet, such as Al plating or Al-based alloy plating. Moreover, you may apply | coat a chemical conversion treatment film for the purpose of improving corrosion resistance or fingerprint resistance after plating.

さらに、上記のように製造した冷延焼鈍板あるいはめっき鋼板に、形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延あるいはレベラー加工の伸び率は合計で0.2〜15%の範囲内であることが好ましい。0.2%未満では、形状矯正、粗度調整の所期の目的が達成できない。より好ましくは、1.3%以上である。一方、15%を超えると、顕著な延性低下をもたらす傾向があるため好ましくない。   Further, temper rolling or leveler processing may be applied to the cold-rolled annealed plate or plated steel plate produced as described above for the purpose of adjusting the shape correction, surface roughness, and the like. The total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. If it is less than 0.2%, the intended purpose of shape correction and roughness adjustment cannot be achieved. More preferably, it is 1.3% or more. On the other hand, if it exceeds 15%, it tends to cause a significant decrease in ductility, which is not preferable.

以下、実施例により、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

表1に示す種々の組成になる溶鋼を、転炉で溶製し、連続鋳造法で鋼スラブとした。これらの鋼スラブを表2に示す条件で熱間圧延を施して3.2mm厚の熱延鋼板とした。これらの熱延鋼板を、酸洗した後、50%の圧下率の冷間圧延により1.6mm厚のas roll材とした。次いで、これらのas roll材に連続焼鈍ラインにて、820℃で連続焼鈍を施し、15℃/secの平均冷却速度で冷却した。さらに、得られた冷延焼鈍鋼板に伸び率1.3%の調質圧延を施した。また、一部のas roll材は、連続溶融亜鉛めっきラインにて810℃での焼鈍後溶融亜鉛めっきを施し、伸び率1.3%の調質圧延を実施した。また、この時の平均冷却速度は10℃/secであった。   Molten steel having various compositions shown in Table 1 was melted in a converter and made into a steel slab by a continuous casting method. These steel slabs were hot rolled under the conditions shown in Table 2 to obtain 3.2 mm thick hot rolled steel sheets. These hot-rolled steel sheets were pickled and then made into 1.6 mm thick as roll material by cold rolling at a reduction rate of 50%. Next, these as roll materials were subjected to continuous annealing at 820 ° C. in a continuous annealing line and cooled at an average cooling rate of 15 ° C./sec. Furthermore, the obtained cold-rolled annealed steel sheet was subjected to temper rolling with an elongation of 1.3%. Some as roll materials were subjected to hot dip galvanization after annealing at 810 ° C. in a continuous hot dip galvanizing line and subjected to temper rolling with an elongation of 1.3%. The average cooling rate at this time was 10 ° C./sec.

Figure 0005817804
Figure 0005817804

Figure 0005817804
Figure 0005817804

かくして得られた冷延焼鈍板、溶融亜鉛めっき鋼板について、引張特性、鋼組織および集合組織を調査した。   The thus obtained cold-rolled annealed sheet and hot-dip galvanized steel sheet were examined for tensile properties, steel structure and texture.

(1)引張特性
得られた各冷延焼鈍板の圧延方向に対して0°(L方向)、45°(D方向)および90°(C方向)方向からJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/分で引張試験を行い、降伏強度(YP)、引張強度(TS)、伸び(El)を求めた。ここで、降伏強度(YP)、引張強度(TS)、伸び(El)、降伏比(YP/TS)の代表値は、0°方向から採取した試験片の値とした。降伏強度300MPa以上を合格とする。
また、伸びの面内異方性の指標として、ΔElを用いた。このΔElは、伸びの面内異方性を示すものであり、次式(1)より算出した。
ΔEl=(El−2El45+El90)/2・・・(1)
ただし、El、El45、El90は、0°(L方向)、45°(D方向)および90°(C方向)方向から採取した試験片の伸びを示す。
ΔElが−2.0%〜2.0%であれば、伸びの面内異方性に優れていると言える。
(1) Tensile properties JIS No. 5 tensile test specimens were sampled from 0 ° (L direction), 45 ° (D direction) and 90 ° (C direction) directions with respect to the rolling direction of each cold-rolled annealed sheet obtained, A tensile test was performed at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241 to determine yield strength (YP), tensile strength (TS), and elongation (El). Here, the representative values of yield strength (YP), tensile strength (TS), elongation (El), and yield ratio (YP / TS) were values of test pieces taken from the 0 ° direction. A yield strength of 300 MPa or more is accepted.
Further, ΔEl was used as an index of in-plane anisotropy of elongation. This ΔEl indicates the in-plane anisotropy of elongation, and was calculated from the following equation (1).
ΔEl = (El 0 −2El 45 + El 90 ) / 2 (1)
Here, El 0 , El 45 , and El 90 indicate the elongation of the test specimens taken from 0 ° (L direction), 45 ° (D direction), and 90 ° (C direction) directions.
If ΔEl is −2.0% to 2.0%, it can be said that the in-plane anisotropy of elongation is excellent.

(2)鋼組織、集合組織
(a)相の体積分率
各相の体積分率は、ポイントカウント法(ASTM E562−83(1988)に準拠)により各相の面積率を測定し、その面積率を、体積分率とした。各相の面積率は、得られた各冷延焼鈍板から試験片を採取し、圧延方向に平行な垂直断面(L断面)について、研磨後ナイタールで腐食し、走査型電子顕微鏡(SEM)を用い、4000倍で観察して相の種類を同定するとともに、マルテンサイト相の面積率(マルテンサイト分率)を求めた。なお、組織写真で、白いコントラストの付いている粒子をマルテンサイトとした。また、残留オーステナイト相の存在率(残留γ分率)は、板厚1/4面における板面のX線回折を行い、α相(211)、γ相(220)の積分強度を測定し、規格化して求めた。
(b)3次元結晶方位分布関数
得られた各冷延焼鈍板の板厚1/4面における板面のX線回折を行い、反射法により得られた(200)、(211)、(110)の不完全極点図より、級数展開法にて3次元結晶方位分布関数を求め、αファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちΦ=25°〜35°の範囲での平均結晶方位密度Iα、および、γファイバー(φ1=0°〜60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγを求め、評価した。Iαが2.0以上4.0以下、Iγが2.0以上10以下である鋼板が、伸びの面内異方性が小さい。
(2) Steel structure, texture (a) Volume fraction of phase The volume fraction of each phase is determined by measuring the area ratio of each phase by the point count method (according to ASTM E562-83 (1988)). The rate was defined as the volume fraction. The area ratio of each phase was obtained by collecting a test piece from each of the obtained cold-rolled annealed plates, and corroding the vertical section (L section) parallel to the rolling direction with nital after polishing, and using a scanning electron microscope (SEM). In addition, the type of phase was identified by observation at 4000 times, and the area ratio (martensite fraction) of the martensite phase was determined. In the structure photograph, particles with white contrast were martensite. Further, the abundance ratio of residual austenite phase (residual γ fraction) is obtained by performing X-ray diffraction of the plate surface at the 1/4 thickness, and measuring the integrated intensity of α phase (211) and γ phase (220), Obtained by standardization.
(B) Three-dimensional crystal orientation distribution function (200), (211), (110) obtained by the reflection method by performing X-ray diffraction of the plate surface at the 1/4 thickness of each cold-rolled annealed plate. ) To obtain a three-dimensional crystal orientation distribution function by the series expansion method, and from α fiber (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° -55 °), Φ = 25 °- 35 average crystal orientation density I in the range of ° alpha, and, gamma fiber (φ1 = 0 ° ~60 °, φ2 = 45 °, Φ = 55 °) average seek crystal orientation density I gamma, and was evaluated. A steel sheet having I α of 2.0 or more and 4.0 or less and I γ of 2.0 or more and 10 or less has small in-plane anisotropy of elongation.

結果を表3に示す。   The results are shown in Table 3.

Figure 0005817804
Figure 0005817804

表3から明らかなように、本発明の鋼板である鋼種D、E、F、N、O、Rは、YP≧300MPa、YR≧0.79と高強度かつ高降伏比鋼板である。そして、マルテンサイト相、残留オーステナイト相を含まず、フェライト+パーライト+セメンタイトからなる組織を有している。Iαが2.0以上4.0以下、Iγが2.0以上10以下を満たすため、△Elが−2.0%〜2.0%と伸びの面内異方性が小さいことが分かる。また、本発明の鋼板のなかでも、鋼種DとEを比べると、シートバーを水冷して仕上圧延入側温度が1050℃以下であり、仕上温度が890℃以下である鋼種Eのほうが、より伸びの面内異方性が小さいことが分かる。また、本発明の鋼板のなかでも、鋼種OとRを比べると、同成分であるにもかかわらず、鋼種Rのほうが低強度で低延性になっている。これは、熱間圧延の冷却速度が高く、組織が不均一になっているためと考えられる。 As is apparent from Table 3, steel types D, E, F 1 , N 2 , O, and R , which are steel plates of the present invention, are high strength and high yield ratio steel plates with YP ≧ 300 MPa and YR ≧ 0.79. And it has the structure | tissue which does not contain a martensite phase and a retained austenite phase but consists of ferrite + pearlite + cementite. Since I α satisfies 2.0 or more and 4.0 or less and I γ satisfies 2.0 or more and 10 or less, ΔEl is −2.0% to 2.0%, and the in-plane anisotropy of elongation is small. I understand. Further, among the steel plates D and E of the present invention, when the steel bars D and E are compared, the steel bar E with the sheet bar cooled with water and having a finish rolling entry temperature of 1050 ° C. or lower and a finishing temperature of 890 ° C. or lower is more It can be seen that the in-plane anisotropy of elongation is small. In addition, among the steel sheets of the present invention, when comparing the steel types O and R, the steel type R has lower strength and lower ductility, although they are the same component. This is presumably because the hot rolling cooling rate is high and the structure is non-uniform.

一方、本発明の成分範囲から外れる鋼板である鋼種A、Jは、YPが300MPa未満と低強度になってしまう。また、本発明の成分範囲から外れる鋼板である鋼種G、K、L、Mは、集合組織バランスが崩れてしまい、異方性が大きくなってしまう。特に、マルテンサイト相や残留オーステナイト相を含む鋼板である鋼種Gは、異方性が大きいだけでなく、YRが低くなってしまう。   On the other hand, steel types A and J, which are steel plates that deviate from the component range of the present invention, have a low strength with YP of less than 300 MPa. Moreover, the steel types G, K, L, and M, which are steel plates that deviate from the component range of the present invention, lose the texture balance and increase anisotropy. In particular, the steel type G, which is a steel sheet including a martensite phase and a retained austenite phase, not only has a large anisotropy but also has a low YR.

また、本発明の成分範囲内であっても鋼種B、C、P、Qは、スラブ加熱温度や冷却開始時間などの製造条件が本発明の範囲を満たしていないため、集合組織バランスが崩れてしまい、異方性が大きくなってしまう。   Moreover, even within the component range of the present invention, the steel grades B, C, P, and Q are out of the texture balance because the manufacturing conditions such as the slab heating temperature and the cooling start time do not satisfy the scope of the present invention. As a result, anisotropy increases.

Claims (7)

質量%で、C:0.040〜0.060%、Si:0.20%以下、Mn:0.50〜0.99%、P:0.050%以下、S:0.03%以下、sol.Al:0.01〜0.09%、N:0.005%以下、Nb:0.015〜0.040%を含有し、残部がFe及び不可避的不純物からなり、マルテンサイト相および残留オーステナイト相を含まず、鋼板の1/4板厚位置における板面の集合組織において、ODF(結晶方位分布関数)で表されるαファイバー(φ1=0°、φ2=45°、Φ=0°〜55°)のうちΦ=25°〜35°の範囲での平均結晶方位密度Iαが2.0以上4.0以下であり、γファイバー(φ1=0°〜60°、φ2=45°、Φ=55°)の平均結晶方位密度Iγが2.0以上10以下であることを特徴とする伸びの面内異方性が小さい高強度鋼板。 In mass%, C: 0.040 to 0.060 %, Si: 0.20% or less, Mn: 0.50 to 0.99%, P: 0.050% or less, S: 0.03% or less, sol. Al: 0.01 to 0.09%, N: 0.005% or less, Nb: 0.015 to 0.040%, with the balance being Fe and unavoidable impurities, martensite phase and residual austenite phase In the texture of the plate surface at the ¼ plate thickness position of the steel plate, α fiber (φ1 = 0 °, φ2 = 45 °, Φ = 0 ° to 55) represented by ODF (crystal orientation distribution function) ), The average crystal orientation density I α in the range of Φ = 25 ° to 35 ° is 2.0 to 4.0, and γ fiber (φ1 = 0 ° to 60 °, φ2 = 45 °, Φ = 55 °) high-strength steel sheet having a small in-plane anisotropy of elongation, wherein the average crystal orientation density I γ is 2.0 or more and 10 or less. 下記(1)式で示されるΔElが−2.0%〜2.0%であることを特徴とする請求項1に記載の伸びの面内異方性が小さい高強度鋼板。
ΔEl=(El−2El45+El90)/2・・・(1)
ただし、El、El45およびEl90は、鋼板の圧延方向に対して0°、45°および90°の方向で測定した破断伸びの値とする。
The high-strength steel sheet having a small in-plane anisotropy of elongation according to claim 1, wherein ΔEl expressed by the following formula (1) is −2.0% to 2.0%.
ΔEl = (El 0 −2El 45 + El 90 ) / 2 (1)
However, El 0 , El 45 and El 90 are values of elongation at break measured in directions of 0 °, 45 ° and 90 ° with respect to the rolling direction of the steel sheet.
降伏強度YPと引張強度TSの比である降伏比YR(YR=YP/TS)が0.79以上であることを特徴とする請求項1または2に記載の伸びの面内異方性が小さい高強度鋼板。   The in-plane anisotropy of elongation according to claim 1 or 2, wherein a yield ratio YR (YR = YP / TS), which is a ratio between the yield strength YP and the tensile strength TS, is 0.79 or more. High strength steel plate. 表面に亜鉛系めっき皮膜を有することを特徴とする請求項1〜3のいずれか1項に記載の伸びの面内異方性が小さい高強度鋼板。   The high-strength steel sheet having a small in-plane anisotropy of elongation according to any one of claims 1 to 3, wherein the surface has a zinc-based plating film. 請求項1〜4のいずれか1項に記載の伸びの面内異方性が小さい高強度鋼板の製造方法であって、
鋼スラブを加熱し、スラブ加熱温度1150℃以上の温度域で60分以上保持した後、熱間圧延の粗圧延を行い、その後仕上圧延温度を820〜920℃で仕上圧延の最終パス圧延率を15〜25%で仕上圧延を行い、仕上圧延後2秒以内に水冷を開始して冷却した後、酸洗および冷間圧延を施し、その後焼鈍を行うことを特徴とする伸びの面内異方性が小さい高強度鋼板の製造方法。
A method for producing a high-strength steel sheet having a small in-plane anisotropy of elongation according to any one of claims 1 to 4,
After heating the steel slab and holding it for 60 minutes or more in the temperature range of slab heating temperature of 1150 ° C or higher, rough rolling of hot rolling is performed, and then the final pass rolling ratio of the final rolling at the final rolling temperature of 820 to 920 ° C is set. In-plane anisotropic of elongation characterized by performing finish rolling at 15 to 25%, starting with water cooling within 2 seconds after finish rolling, cooling, and then pickling and cold rolling, followed by annealing Of producing high-strength steel sheets with low properties.
前記熱間圧延の粗圧延の後、水冷により仕上圧延入側温度を1050℃以下とした後、前記仕上圧延を行うことを特徴とする請求項5に記載の伸びの面内異方性が小さい高強度鋼板の製造方法。   6. The in-plane anisotropy of elongation according to claim 5, wherein after the rough rolling of the hot rolling, the finish rolling is performed after the finish rolling entrance temperature is set to 1050 ° C. or less by water cooling. Manufacturing method of high strength steel sheet. 請求項5または6に記載の高強度鋼板の製造方法において、焼鈍後の鋼板に亜鉛めっき処理を施すことを特徴とする伸びの面内異方性が小さい高強度鋼板の製造方法。   The method for producing a high-strength steel sheet according to claim 5 or 6, wherein the steel sheet after annealing is subjected to galvanizing treatment, wherein the in-plane anisotropy of elongation is small.
JP2013218832A 2013-10-22 2013-10-22 High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same Active JP5817804B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013218832A JP5817804B2 (en) 2013-10-22 2013-10-22 High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
PCT/JP2014/005225 WO2015059902A1 (en) 2013-10-22 2014-10-15 High-strength steel sheet with small in-plane anisotropy of elongation and manufacturing method therefor
MX2016005136A MX2016005136A (en) 2013-10-22 2014-10-15 High-strength steel sheet with small in-plane anisotropy of elongation and manufacturing method therefor.
KR1020167013338A KR101813912B1 (en) 2013-10-22 2014-10-15 High-strength steel sheet having small planar anisotropy of elongation and method for producing the same
CN201480058319.8A CN105658832B (en) 2013-10-22 2014-10-15 The small high-strength steel sheet of the intra-face anisotropy of elongation and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013218832A JP5817804B2 (en) 2013-10-22 2013-10-22 High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015081359A JP2015081359A (en) 2015-04-27
JP5817804B2 true JP5817804B2 (en) 2015-11-18

Family

ID=52992521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218832A Active JP5817804B2 (en) 2013-10-22 2013-10-22 High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same

Country Status (5)

Country Link
JP (1) JP5817804B2 (en)
KR (1) KR101813912B1 (en)
CN (1) CN105658832B (en)
MX (1) MX2016005136A (en)
WO (1) WO2015059902A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190396A1 (en) * 2015-05-26 2016-12-01 新日鐵住金株式会社 Steel sheet and method for producing same
WO2017169560A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel plate, galvanized steel plate, hot rolled steel plate production method, cold rolled full hard steel plate production method, thin steel plate production method, and galvanized steel plate production method
US11453923B2 (en) 2016-09-20 2022-09-27 Thyssenkrupp Steel Europe Ag Method for manufacturing flat steel products and flat steel product
JP6414246B2 (en) * 2017-02-15 2018-10-31 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
KR102648242B1 (en) * 2018-12-19 2024-03-18 주식회사 포스코 Advanced high strength zinc plated steel sheet having excellent electrical resistance spot weldability and manufacturing method thereof
CN113718167B (en) * 2020-05-25 2022-07-15 上海梅山钢铁股份有限公司 Hot-dip aluminum-zinc steel plate with yield strength of 330MPa for liquid crystal backboard

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042560B2 (en) 2002-12-18 2008-02-06 Jfeスチール株式会社 Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same
JP2007162089A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Method for manufacturing surface-treated steel sheet for fuel tank
JP5217395B2 (en) * 2007-11-30 2013-06-19 Jfeスチール株式会社 High strength cold-rolled steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5477002B2 (en) * 2010-01-13 2014-04-23 新日鐵住金株式会社 Cold rolled steel sheet
JP5807368B2 (en) * 2010-06-16 2015-11-10 新日鐵住金株式会社 High-strength cold-rolled steel sheet having a very high uniform elongation in the direction of 45 ° with respect to the rolling direction and a method for producing the same
JP5678695B2 (en) 2011-01-31 2015-03-04 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5533765B2 (en) * 2011-04-04 2014-06-25 新日鐵住金株式会社 High-strength cold-rolled steel sheet with excellent local deformability and its manufacturing method
CA2843186C (en) * 2011-07-27 2017-04-18 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet having excellent stretch flangeability and precision punchability and manufacturing method thereof
MX360510B (en) * 2011-09-30 2018-11-05 Nippon Steel & Sumitomo Metal Corp High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same.

Also Published As

Publication number Publication date
CN105658832B (en) 2017-10-10
KR20160075620A (en) 2016-06-29
KR101813912B1 (en) 2018-01-02
MX2016005136A (en) 2016-07-18
CN105658832A (en) 2016-06-08
JP2015081359A (en) 2015-04-27
WO2015059902A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR100760593B1 (en) High-strength steel sheet having excellent deep drawability and process for producing the same
KR101949627B1 (en) High-strength steel sheet and method for manufacturing same
JP5217395B2 (en) High strength cold-rolled steel sheet with small in-plane anisotropy of elongation and method for producing the same
KR101600731B1 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5817804B2 (en) High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP4816595B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for producing the steel sheet
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP5817805B2 (en) High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP2014028998A (en) Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and galvannealed cold rolled steel sheet having excellent deep drawability, and method of manufacturing the same
JP6007571B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized steel sheet
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
JP5660291B2 (en) High strength cold-rolled thin steel sheet with excellent formability and method for producing the same
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5245948B2 (en) Cold rolled steel strip manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150408

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250