JP5817665B2 - Continuous casting method for slabs - Google Patents

Continuous casting method for slabs Download PDF

Info

Publication number
JP5817665B2
JP5817665B2 JP2012158462A JP2012158462A JP5817665B2 JP 5817665 B2 JP5817665 B2 JP 5817665B2 JP 2012158462 A JP2012158462 A JP 2012158462A JP 2012158462 A JP2012158462 A JP 2012158462A JP 5817665 B2 JP5817665 B2 JP 5817665B2
Authority
JP
Japan
Prior art keywords
slab
reduction
unsolidified
cross
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012158462A
Other languages
Japanese (ja)
Other versions
JP2014018819A (en
Inventor
真二 永井
真二 永井
山中 章裕
章裕 山中
村上 敏彦
敏彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012158462A priority Critical patent/JP5817665B2/en
Publication of JP2014018819A publication Critical patent/JP2014018819A/en
Application granted granted Critical
Publication of JP5817665B2 publication Critical patent/JP5817665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋳片の連続鋳造方法に関し、特に、鋳片を内部に未凝固部を有する状態で圧下して、内部品質が良好な、横断面が円形の鋳片を得る方法に関する。   The present invention relates to a continuous casting method of a slab, and more particularly, to a method of obtaining a slab having a good internal quality and a circular cross section by rolling the slab in a state having an unsolidified portion inside.

現在、鋼の連続鋳造では、鋳造したままの状態での鋳片の内部品質(以下「内質」ともいう。)を向上させるため、連続鋳造機内での溶鋼の電磁攪拌や、鋳片の圧下が行われている。   Currently, in continuous casting of steel, in order to improve the internal quality of the slab as it is cast (hereinafter also referred to as “inner quality”), electromagnetic stirring of the molten steel in the continuous casting machine or reduction of the slab is performed. Has been done.

連続鋳造機内において、中心部が未凝固の状態の鋳片(以下「未凝固鋳片」という。)を圧下して(以下、未凝固鋳片の圧下を「未凝固圧下」ともいう。)、強制的に中心部の溶質が濃化した溶鋼を排出させ、鋳片の固相率を上昇させることによって、鋳片の凝固末期に発生する中心偏析およびV型偏析を大幅に低減することができる。   In the continuous casting machine, the slab whose center portion is unsolidified (hereinafter referred to as “unsolidified slab”) is reduced (hereinafter, the reduction of the unsolidified slab is also referred to as “unsolidified reduction”). By forcibly discharging the molten steel enriched in the solute at the center and increasing the solid phase rate of the slab, the center segregation and V-type segregation occurring at the end of solidification of the slab can be greatly reduced. .

また、鋼の凝固収縮に伴うポロシティの発生時期に、鋳片のシェルを物理的に圧着させることで、効率的にポロシティの発生を抑制することができる。   Moreover, the generation of porosity can be efficiently suppressed by physically pressing the shell of the slab at the time of the generation of porosity accompanying solidification shrinkage of steel.

このように、未凝固鋳片を圧下する未凝固圧下法は、鋳造したままの状態での鋳片の内質改善に大変有効な技術である。未凝固圧下法の一例が特許文献1に記載されている。   As described above, the unsolidified rolling method of rolling down the unsolidified slab is a very effective technique for improving the quality of the slab as it is cast. An example of the uncoagulated reduction method is described in Patent Document 1.

ところで、近年、鋼の製品において最終製品の横断面のサイズの拡大が要求されていることから、鋳片の断面サイズの拡大も要求されている。   By the way, in recent years, since it is required to increase the size of the cross section of the final product in the steel product, it is also required to increase the cross sectional size of the slab.

通常、鋳片の横断面のサイズが拡大すると、鋳片内部での固液共存域の大きさもそれに伴って拡大するため、偏析、ポロシティ等が発生しやすくなる。また、同一の機長の連続鋳造機を用いて連続鋳造する場合、鋳片の横断面が大きいほど鋳造速度を小さくしなければならない。また、鋳造速度が小さいほど、鋳片の表面温度が低くなる。そのため、鋳片の横断面が大きい場合と小さい場合とでは鋳片の変形抵抗の厚さ方向のプロフィールが異なり、圧下時の変形挙動が異なると考えられる。   Usually, when the size of the cross section of the slab is increased, the size of the solid-liquid coexistence area in the slab is also increased accordingly, and segregation, porosity, etc. are likely to occur. Further, when continuous casting is performed using a continuous casting machine having the same length, the casting speed must be reduced as the cross section of the slab increases. Also, the lower the casting speed, the lower the surface temperature of the slab. Therefore, it is considered that the profile in the thickness direction of the deformation resistance of the slab is different between the case where the cross section of the slab is large and the case where it is small, and the deformation behavior at the time of rolling is different.

これらのことから、横断面のサイズが大きい鋳片では、横断面のサイズが小さい鋳片についての未凝固圧下法の条件を適用しても、同等の内質を得ることが困難であった。   For these reasons, it has been difficult to obtain an equivalent quality in a slab having a large cross-sectional size even when the unsolidified reduction method conditions for a slab having a small cross-sectional size are applied.

例えば、前記特許文献1には、幅430mm、厚さ300mmの横断面の形状が矩形の鋳片の内質改善がなされたことは記載されているものの、これを超える断面サイズの鋳片についての内質改善の効果は不明である。   For example, although Patent Document 1 describes that the quality of a cross-sectional shape having a width of 430 mm and a thickness of 300 mm has been improved, the slab having a cross-sectional size exceeding this is described. The effect of improving internal quality is unknown.

特許文献2には、未凝固圧下法として、連続鋳造に際して鍛圧装置により未凝固鋳片の厚さ方向にプレス加工を行い、中心偏析を改善する方法が記載されており、実施例として幅2000mm、厚さ215mmの鋳片の連続鋳造が示されている。しかし、同文献に記載の方法は、鋳片の圧下を、ロールではなく鋳片を挾む往復動式の鍛造型で行うため、連続的な圧下ができないという問題がある。   Patent Document 2 describes a method for improving center segregation by performing press working in the thickness direction of an unsolidified slab by a forging device during continuous casting as an unsolidified reduction method. A continuous casting of a 215 mm thick slab is shown. However, the method described in the document has a problem that continuous reduction cannot be performed because the slab is reduced by a reciprocating forging die that holds the slab instead of a roll.

一方、特許文献3には、厚さが300mmを超える断面サイズの大きい鋳片の内質を改善する方法が記載されている。同文献には、幅が1500mm以上であり、厚さが300mmを超える鋳片を垂直型連続鋳造機で連続鋳造する方法において、浸漬ノズルの吐出流に磁場を印加し流動を制御し、鋳片の等軸晶面積率を制御することにより、中心偏析およびポロシティの少ない鋳片を製造する方法が記載されている。しかし、同文献に記載の方法では、最大ポロシティ厚が1.8mm以下を合格範囲としているため、厚さ1mmを超える大きなポロシティが残存している可能性がある。   On the other hand, Patent Document 3 describes a method for improving the quality of a slab having a large cross-sectional size exceeding 300 mm in thickness. In this method, in a method of continuously casting a slab having a width of 1500 mm or more and a thickness exceeding 300 mm using a vertical continuous casting machine, a magnetic field is applied to the discharge flow of the immersion nozzle to control the flow, and the slab Describes a method for producing a slab with less central segregation and porosity by controlling the equiaxed crystal area ratio. However, in the method described in the same document, since the maximum porosity thickness is 1.8 mm or less, a large porosity exceeding 1 mm in thickness may remain.

特開平3−1245352号公報Japanese Patent Laid-Open No. 3-124352 特開昭60−82257号公報JP 60-82257 A 特開平11−285788号公報JP-A-11-285788

本発明は、上記の問題に鑑みてなされたものであり、偏析およびポロシティが少なく内質が良好な、断面サイズの大きい鋳片の連続鋳造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a continuous casting method for a slab having a large cross-sectional size with little segregation and porosity and good internal quality.

本発明者らは、断面サイズの大きい鋳片の内質を改善する方法について検討した。   The present inventors examined a method for improving the quality of a slab having a large cross-sectional size.

その結果、第1に、横断面が円形の鋳片は、横断面が矩形の鋳片と比較して、鋳片中心部の品質改善が容易であることを知見した。これは、直径が同一の圧下ロールを用いて、横断面積が同一の鋳片を、同一の圧下率で圧下する場合、横断面が円形の鋳片は、横断面が矩形の鋳片よりも圧下ロールとの接触面積が少なく、圧下力が少なくて済むからである。   As a result, firstly, it has been found that a slab having a circular cross section can be easily improved in quality at the center of the slab as compared with a slab having a rectangular cross section. This is because when a slab having the same cross-sectional area is squeezed at the same reduction rate using a squeezing roll having the same diameter, a slab having a circular cross section is reduced more than a slab having a rectangular cross section. This is because the contact area with the roll is small and the rolling force is small.

第2に、横断面が円形の鋳片を未凝固圧下する際に、横断面積の減少率と横断面における未凝固部分の面積率が所定の関係を満たせば偏析およびポロシティを低減できることを知見した。この検討内容については後述する。   Secondly, it has been found that when a slab having a circular cross section is unsolidified, segregation and porosity can be reduced if the reduction ratio of the cross-sectional area and the area ratio of the unsolidified portion in the cross section satisfy a predetermined relationship. . Details of this examination will be described later.

本発明は、これらの知見に基づいてなされたものであり、その要旨は、下記の鋳片の連続鋳造方法にある。   This invention is made | formed based on these knowledge, The summary exists in the continuous casting method of the following slab.

横断面が円形の鋳片の連続鋳造方法であって、鋳片の横断面の直径が300mm以上であり、鋳片の内部が未凝固の状態で圧下を加え、強制的に未凝固の溶鋼を鋳造方向上流側に排出させるステップにおいて、下記(1)〜(3)式を満足することを特徴とする鋳片の連続鋳造方法。
S≦20 …(1)
ΔS/S≧5 …(2)
ΔS×SLiq/100≧100 …(3)
ただし、S:圧下直前における鋳片の横断面積に対する未凝固部分の横断面積の比率(%)、ΔS:圧下による鋳片の未凝固部分の横断面積の減少率(%)、SLiq:圧下直前における鋳片の未凝固部分の横断面積(mm2)であり、ΔSは下記(4)式で表される。
ΔS=(DR/DIA×kB×RC×{exp(S)}D×E …(4)
ここで、DR:圧下ロールの直径(mm)、DI:圧下直前における鋳片の鋳片の直径(mm)、k:鋳片の中心近傍の変形抵抗に対する表面近傍の変形抵抗の比、R:鋳片の圧下率(%)であり、A=0.047、B=0.37、C=1.8、D=−0.037、E=exp(−2.0)である。
This is a continuous casting method of a slab having a circular cross section, the slab has a cross section diameter of 300 mm or more, and the inside of the slab is unsolidified and subjected to reduction to force unsolidified molten steel. In the step of discharging to the upstream side in the casting direction, the following formulas (1) to (3) are satisfied:
S ≦ 20 (1)
ΔS / S ≧ 5 (2)
ΔS × S Liq / 100 ≧ 100 (3)
Where, S: ratio of the cross-sectional area of the unsolidified part to the cross-sectional area of the slab immediately before reduction (%), ΔS: rate of reduction of the cross-sectional area of the unsolidified part of the slab due to reduction (%), S Liq : immediately before reduction Is the cross-sectional area (mm 2 ) of the unsolidified part of the slab, and ΔS is expressed by the following equation (4).
ΔS = (D R / D I ) A × k B × R C × {exp (S)} D × E (4)
Here, D R : diameter of the rolling roll (mm), D I : diameter of the slab of the slab just before the reduction (mm), k: ratio of deformation resistance near the surface to deformation resistance near the center of the slab, R: Reduction ratio of cast slab (%), A = 0.047, B = 0.37, C = 1.8, D = −0.037, E = exp (−2.0).

本発明の鋳片の連続鋳造方法によれば、偏析およびポロシティが少なく内質が良好な、断面サイズの大きい横断面が円形の鋳片を得ることができる。   According to the continuous casting method of a slab of the present invention, it is possible to obtain a slab having a large cross-sectional size and a circular cross-section with a good segregation and porosity, a good internal quality, and a large cross-sectional size.

未凝固圧下予備試験のΔSを用いたパラメータの計算値を示す図であり、同図(a)はΔS/Sを示し、同図(b)はΔS×SLiq/100を示す。It is a figure which shows the calculated value of the parameter using (DELTA) S of the non-coagulation pressure preliminary test, (a) shows (DELTA) S / S, (b) shows ( DELTA ) S * SLiq / 100. 本発明の連続鋳造方法を適用できる連続鋳造機の概略を示す図である。It is a figure which shows the outline of the continuous casting machine which can apply the continuous casting method of this invention.

以下、本発明を完成させるための検討の内容および本発明を実施するための形態について説明する。   Hereinafter, the contents of the study for completing the present invention and the mode for carrying out the present invention will be described.

1.検討の内容
1−1.検討内容の概要
未凝固圧下により鋳片内部の偏析およびポロシティを低減し、鋳片の内質を改善するのに重要なのは、未凝固圧下時における鋳片内部の未凝固部分の変形挙動である。圧下時の未凝固部分の横断面積の減少率が不足している場合には、圧下を施したとしても偏析およびポロシティは残存すると考えられる。
1. Contents of examination 1-1. Outline of examination content It is the deformation behavior of the unsolidified part inside the slab during unsolidified reduction that is important for reducing the segregation and porosity inside the slab and improving the quality of the slab by unsolidified reduction. If the rate of reduction of the cross-sectional area of the unsolidified portion during rolling is insufficient, it is considered that segregation and porosity remain even after rolling.

一方、圧下時の未凝固部分の横断面積の減少率が充分であれば、未凝固溶鋼の鋳造方向上流側への排出が充分に行われるため、鋳片内部の偏析は低減する。この際、ポロシティはその発生段階で物理的に圧着されるので、大幅に低減する。そのため、鋳片の内質は改善される。   On the other hand, if the rate of reduction in the cross-sectional area of the unsolidified portion during rolling is sufficient, the unsolidified molten steel is sufficiently discharged upstream in the casting direction, and segregation inside the slab is reduced. At this time, the porosity is physically reduced at the generation stage, so that the porosity is greatly reduced. Therefore, the quality of the slab is improved.

圧下による鋳片の未凝固部分の横断面積の減少率を推測できれば、鋳片の内質改善に必要な、鋳片の未凝固部分の横断面積の減少率を決定できると考えられる。   If the rate of reduction of the cross-sectional area of the unsolidified portion of the slab due to reduction can be estimated, it is considered that the rate of reduction of the cross-sectional area of the unsolidified portion of the slab required for improving the quality of the slab can be determined.

そこで、本発明者らは、以下に説明するように、まず弾塑性FEMによる鋳片の変形解析を行い、未凝固圧下時における鋳片の変形挙動を調査した。次に、幾つかの未凝固圧下試験を行い、鋳片の内質を調査した。そして、これらの変形解析の結果と鋳片の内質とを比較して、内質が良好な鋳片を得ることが可能な未凝固圧下条件を決定した。   Accordingly, as described below, the present inventors first performed deformation analysis of the slab by elasto-plastic FEM, and investigated the deformation behavior of the slab during unsolidified reduction. Next, several unsolidified reduction tests were conducted to investigate the quality of the slab. And the result of these deformation | transformation analysis and the internal quality of slab were compared, and the unsolidified reduction conditions which can obtain the slab with a favorable internal quality were determined.

1−2.未凝固圧下解析モデル
本発明者らは、3次元弾塑性の有限要素法(FEM)を用い、鋳片のサイズ要因を考慮して、未凝固圧下時における横断面が円形の鋳片の未凝固部分の横断面の減少率の推定を行った。
1-2. Unsolidified reduction analysis model The present inventors used a three-dimensional elasto-plastic finite element method (FEM) and considered the size factor of the slab, and the unsolidified of the slab having a circular cross section during unsolidified reduction. The reduction rate of the cross section of the part was estimated.

ここで、「鋳片のサイズ要因」とは、
(1)圧下ロールのサイズ(直径)に対する鋳片サイズ(直径)の比、
(2)鋳片の中心近傍の変形抵抗に対する表面近傍の変形抵抗の比(以下「鋳片内外変形抵抗比」または単に「変形抵抗比」ともいう。)の鋳片表面温度依存性、
(3)圧下時における未凝固部分の横断面積、
である。
Here, “size factor of slab”
(1) Ratio of slab size (diameter) to size (diameter) of the rolling roll,
(2) slab surface temperature dependence of the ratio of the deformation resistance near the surface to the deformation resistance near the center of the slab (hereinafter also referred to as “slab-internal / external deformation resistance ratio” or simply “deformation resistance ratio”);
(3) the cross-sectional area of the unsolidified portion during rolling,
It is.

また、鋳片の「未凝固部分」とは、固相率が0.8未満の部分をいう。凝固界面は、固相率0.8の等温線で定義される固液界面とする。圧下による鋳片の未凝固部分の横断面積の減少率は、下記(5)式で表される。
ΔS=(SLiq−S2)/SLiq×100 …(5)
ここで、ΔS:圧下による鋳片の未凝固部分の横断面積の減少率(%)、SLiq:圧下直前における鋳片の未凝固部分の横断面積(mm2)、S2:圧下後における鋳片の未凝固部分の横断面積(mm2)である。
The “unsolidified portion” of the slab refers to a portion having a solid phase ratio of less than 0.8. The solidification interface is a solid-liquid interface defined by an isotherm having a solid phase ratio of 0.8. The reduction rate of the cross-sectional area of the unsolidified portion of the slab due to the reduction is expressed by the following equation (5).
ΔS = (S Liq −S 2 ) / S Liq × 100 (5)
Here, ΔS: Reduction rate of cross-sectional area of unsolidified portion of cast slab by reduction (%), S Liq : Cross-sectional area of unsolidified portion of cast slab immediately before reduction (mm 2 ), S 2 : Casting after reduction The cross-sectional area (mm 2 ) of the unsolidified portion of the piece.

FEMモデルに与える節点の温度やシェルの定義は、別途軸対称の非定常凝固解析で算出して与えた。鋳片長手方向の未凝固圧下に及ぼす温度の影響は小さいとして、計算範囲において鋳片長手方向の温度は一定とした。固相率0.8未満の部分は空隙として扱い、固相率0.8以上の凝固シェルのみをメッシュとして定義した。力学的物性および熱的物性は中炭素鋼の物性を与えた。圧下ロールは剛体として定義し、形状はフラットとした。圧下ロールへの鋳片圧下方向の変位と回転変位とを与え、鋳片の圧下解析を行った。このとき、圧下反力による圧下ロールの曲がりは考慮していない。また、圧下ロールと鋳片との接触時の熱交換は、鋳片の内部変形に与える影響が小さいとして計算に含めなかった。   The temperature of the node given to the FEM model and the definition of the shell were separately calculated by axisymmetric unsteady solidification analysis. The temperature in the longitudinal direction of the slab is assumed to be small, and the temperature in the longitudinal direction of the slab is constant in the calculation range. A portion having a solid phase ratio of less than 0.8 was treated as a void, and only a solidified shell having a solid phase ratio of 0.8 or more was defined as a mesh. Mechanical and thermal properties gave the properties of medium carbon steel. The rolling roll was defined as a rigid body and the shape was flat. The slab was subjected to a slab reduction analysis by applying displacement and rotational displacement to the slab. At this time, the bending of the rolling roll due to the rolling reaction force is not considered. Further, heat exchange at the time of contact between the rolling roll and the slab was not included in the calculation because it had a small effect on the internal deformation of the slab.

この解析モデルにおける鋳片の変形挙動と、後述する未凝固圧下試験での鋳片の変形挙動とは、ほぼ一致することを確認した。   It was confirmed that the deformation behavior of the slab in this analytical model and the deformation behavior of the slab in the unsolidified reduction test described later substantially coincide.

さらに、表1に示すパラメータ範囲で圧下計算を行った。   Furthermore, the reduction calculation was performed within the parameter range shown in Table 1.

Figure 0005817665
Figure 0005817665

表1に示すパラメータのうち、鋳片内外変形抵抗比は、鋳片表面温度における降伏応力と1400℃における降伏応力の比とした。   Of the parameters shown in Table 1, the slab inner / outer deformation resistance ratio was the ratio of the yield stress at the slab surface temperature to the yield stress at 1400 ° C.

この圧下計算では、中炭素鋼の降伏応力と温度との関係についてのデータから変形抵抗比を算出し、変形抵抗比と表面温度との関係を下記(6)式の回帰式として得た。
k=5.6×1013×T-4.37 …(6)
ここで、k:鋳片内外変形抵抗比(−)、T:鋳片の表面温度(℃)である。
In this reduction calculation, the deformation resistance ratio was calculated from data on the relationship between the yield stress and temperature of the medium carbon steel, and the relationship between the deformation resistance ratio and the surface temperature was obtained as a regression equation of the following equation (6).
k = 5.6 × 10 13 × T −4.37 (6)
Here, k is the slab inner / outer deformation resistance ratio (−), and T is the surface temperature (° C.) of the slab.

そして、非定常凝固解析で求めた未凝固圧下時の鋳片の表面温度を(6)式に代入して表1に示す変形抵抗比の値を得た。   And the surface temperature of the slab at the time of unsolidification reduction calculated | required by unsteady solidification analysis was substituted for (6) Formula, and the value of the deformation resistance ratio shown in Table 1 was obtained.

降伏応力は鋼種により異なるが、変形抵抗比の概略計算においては鋼種が異なっても(6)式を使用することができる。より精密な変形抵抗比を算出する際には、引張試験等により求めた鋼種毎に降伏応力を使用すればよい。   Although the yield stress differs depending on the steel type, the formula (6) can be used in the rough calculation of the deformation resistance ratio even if the steel type is different. When calculating a more precise deformation resistance ratio, the yield stress may be used for each steel type obtained by a tensile test or the like.

また、本圧下計算では、降伏応力の比を変形抵抗比として用いているが、引張強さ(Ultimate tensile strength)の当該温度での比を用いてもよい。   In the main reduction calculation, the yield stress ratio is used as the deformation resistance ratio, but the ratio of the tensile strength at the temperature may be used.

圧下率は、下記(7)式で定義した。
R=r1/DI×100 …(7)
ここで、R:圧下率(%)、r1:圧下量、DI:圧下直前における鋳片の直径である。
The rolling reduction was defined by the following formula (7).
R = r1 / D I × 100 (7)
Here, R: reduction ratio (%), r1: reduction amount, D I : diameter of the slab immediately before reduction.

圧下直前における鋳片の横断面積に対する未凝固部分の横断面積の比率は、非定常凝固解析で求められる凝固シェルの厚さから求めた。   The ratio of the cross-sectional area of the unsolidified portion to the cross-sectional area of the slab immediately before rolling was obtained from the thickness of the solidified shell obtained by unsteady solidification analysis.

圧下直前位置は、圧下ロールと鋳片の接触開始位置(咬み込み開始位置)として定義した。   The position immediately before the reduction was defined as the contact start position (biting start position) between the reduction roll and the slab.

圧下計算の結果、未凝固圧下条件と圧下による鋳片の未凝固部分の横断面積の減少率との関係を下記(4)式として得た。
ΔS=(DR/DIA×kB×RC×{exp(S)}D×E …(4)
ここで、ΔS:圧下による鋳片の未凝固部分の横断面積の減少率(%)、DR:圧下ロールの直径(mm)、DI:圧下直前における鋳片の鋳片の直径(mm)、k:鋳片内外変形抵抗比(−)、R:鋳片の圧下率(%)、S:圧下直前における鋳片の横断面積に対する未凝固部分の横断面積の比率(%)であり、A、B、C、DおよびEはそれぞれ係数である。
As a result of the reduction calculation, the relationship between the unsolidified reduction condition and the reduction rate of the cross-sectional area of the unsolidified portion of the slab due to reduction was obtained as the following equation (4).
ΔS = (D R / D I ) A × k B × R C × {exp (S)} D × E (4)
Here, ΔS: Reduction rate (%) of cross-sectional area of unsolidified portion of slab by reduction, D R : Diameter of reduction roll (mm), D I : Diameter of slab of slab immediately before reduction (mm) , K: slab internal / external deformation resistance ratio (−), R: slab reduction ratio (%), S: ratio of the cross-sectional area of the unsolidified portion to the cross-sectional area of the slab immediately before reduction, A , B, C, D and E are coefficients.

そして、次に説明する未凝固圧下予備試験で鋳造した鋳片の横断面について、未凝固部分の面積を画像解析にて求め、圧下による鋳片の未凝固部分の横断面積の減少率ΔSを前記(5)式で算出した。算出されたΔSおよび鋳造条件を上記(4)式に当てはめて重回帰分析を行い、係数A、B、C、DおよびEの値を求めた。その結果、A=0.047、B=0.37、C=1.8、D=−0.037、E=exp(−2.0)を得た。以下、これらのA、B、C、DおよびEの値を代入した(4)式を、「回帰式(4)」という。   And about the cross section of the slab cast in the unsolidified reduction preliminary test described below, the area of the unsolidified portion is obtained by image analysis, and the reduction rate ΔS of the cross-sectional area of the unsolidified portion of the slab due to reduction is calculated as described above. Calculated by equation (5). Multiple regression analysis was performed by applying the calculated ΔS and casting conditions to the above equation (4), and values of coefficients A, B, C, D, and E were obtained. As a result, A = 0.047, B = 0.37, C = 1.8, D = −0.037, and E = exp (−2.0) were obtained. Hereinafter, the equation (4) in which the values of A, B, C, D, and E are substituted is referred to as “regression equation (4)”.

1−3.未凝固圧下予備試験
未凝固圧下予備試験は、直径が300mmおよび420mmの鋳片を鋳造して行った。未凝固圧下に用いた圧下ロールは直径450mmのフラットロールとした。対象鋼種は表2に示す化学組成の中炭素低合金鋼および高クロム鋼とした。また、試験条件は表3に示す試験No1〜13とし、同表には圧下直前における鋳片の直径DI、圧下量、圧下時の未凝固部の直径、鋳片の中心近傍の変形抵抗に対する表面近傍の変形抵抗の比k、圧下直前における鋳片の横断面積に対する未凝固部分の横断面積の比率Sおよび圧下率Rを示した。
1-3. Pre-solidification reduction preliminary test The non-solidification reduction preliminary test was performed by casting slabs having diameters of 300 mm and 420 mm. The rolling roll used for the unsolidified rolling was a flat roll having a diameter of 450 mm. The target steel types were medium carbon low alloy steel and high chromium steel with chemical compositions shown in Table 2. The test conditions are Test Nos. 1 to 13 shown in Table 3. The table shows the diameter D I of the slab immediately before the reduction, the amount of reduction, the diameter of the unsolidified part at the time of reduction, and the deformation resistance near the center of the slab. The ratio k of the deformation resistance near the surface, the ratio S of the cross-sectional area of the unsolidified portion to the cross-sectional area of the slab immediately before the reduction, and the reduction ratio R are shown.

Figure 0005817665
Figure 0005817665

Figure 0005817665
Figure 0005817665

圧下の時期は、非定常伝熱解析にて凝固シェルの厚さ(固相率0.8の等温線)、温度等を算出して決定した。非定常伝熱解析の精度は、鋳片の表面温度、鋳片内部に配置した熱電対の測定結果、トレーサー添加により測定した未凝固部分の直径に基づいて、あらかじめ確認した。   The time of reduction was determined by calculating the thickness of the solidified shell (isothermal line with a solid phase ratio of 0.8), temperature, and the like by unsteady heat transfer analysis. The accuracy of the unsteady heat transfer analysis was confirmed in advance based on the surface temperature of the slab, the measurement result of the thermocouple disposed inside the slab, and the diameter of the unsolidified portion measured by adding the tracer.

鋳造した鋳片から採取した横断面および縦断面のサンプルについて、偏析、内部割れおよびポロシティの発生状況を観察した。偏析および内部割れは、サルファプリントにより観察した。また、これらの内部欠陥の発生の有無は目視にて判定し、前記表3には、試験条件と併せてサンプルの評定を示した。評定は○(欠陥なしまたは微小、実用上問題なし)、△(欠陥小、実用上問題あり)および×(欠陥大、実用上問題あり)の3段階とした。   The occurrence of segregation, internal cracks and porosity was observed for the samples of the transverse and longitudinal sections taken from the cast slab. Segregation and internal cracks were observed by sulfur printing. The presence or absence of these internal defects was determined visually, and Table 3 shows the evaluation of the samples together with the test conditions. The evaluation was made in three stages: ○ (no defect or minute, no practical problem), Δ (small defect, practical problem) and x (large defect, practical problem).

試験No1〜3では、評定は○であり、鋳片の偏析、ポロシティおよび内部割れともに皆無または極小で内質の良好な鋳片が得られた。試験番号4〜11では、評定は△または×であり、目標とする内質の鋳片は得られなかった。このうち、試験No4〜6では内部割れが発生した。試験No7〜9および11では偏析およびポロシティが残存し、試験No10では偏析が残存した。   In the test Nos. 1 to 3, the rating was “◯”, and no slab segregation, porosity, and internal cracks were obtained, and a slab having a good internal quality was obtained. In the test numbers 4 to 11, the evaluation was Δ or ×, and the target slab of the internal quality was not obtained. Among these, internal cracks occurred in Test Nos. 4-6. In Test Nos. 7 to 9 and 11, segregation and porosity remained, and in Test No. 10, segregation remained.

1−4.未凝固圧下解析モデルで得られた回帰式と未凝固圧下予備試験結果との比較
上記表3に示した未凝固圧下予備試験の条件を、上記未凝固圧下解析モデルで得られた回帰式(4)に代入して試験No1〜13それぞれのΔSの値を算出した。このΔSの値と未凝固圧下予備試験の結果について様々な角度から検討した結果、表4に示すように、ΔS/S≧5およびΔS×SLiq/100≧100(mm2)の両方を満たす場合に内質の良好な鋳片を得られることがわかった。これらの指標のうち、「ΔS×SLiq/100」は、上記(5)式より、「SLiq−S2」すなわち圧下直前および圧下後における鋳片の未凝固部分の横断面積の差に相当する。
1-4. Comparison of regression formula obtained with uncoagulated reduction analysis model and uncoagulated reduction preliminary test results The conditions of the uncoagulated reduction preliminary test shown in Table 3 above are the regression equations (4 ) And ΔS values of Test Nos. 1 to 13 were calculated. As a result of examining the value of ΔS and the result of the pre-coagulation preliminary test from various angles, as shown in Table 4, both ΔS / S ≧ 5 and ΔS × S Liq / 100 ≧ 100 (mm 2 ) are satisfied. In some cases, it was found that a slab having a good internal quality could be obtained. Among these indexes, “ΔS × S Liq / 100” is equivalent to “S Liq −S 2 ”, that is, the difference in the cross-sectional area of the unsolidified portion of the slab immediately before and after the reduction from the above equation (5). To do.

Figure 0005817665
Figure 0005817665

図1は、未凝固圧下予備試験のΔSを用いたパラメータの計算値を示す図であり、同図(a)はΔS/Sを示し、同図(b)はΔS×SLiq/100を示す。表4ならびに、同図(a)および(b)に示すように、試験No1〜3では、ΔS/S≧5およびΔS×SLiq/100≧100(mm2)の両方を満たしていた。上述のように、これらの試験では、偏析およびポロシティのいずれも皆無または極小であった。これは、充分な未凝固圧下が行われたためと考えられる。また、内部割れも見られなかったことから、未凝固圧下が過度ではなかったと考えられる。 FIG. 1 is a diagram showing calculated values of parameters using ΔS in a pre-coagulation preliminary test. FIG. 1A shows ΔS / S, and FIG. 1B shows ΔS × S Liq / 100. . As shown in Table 4 and FIGS. 3A and 3B, in Test Nos. 1 to 3, both ΔS / S ≧ 5 and ΔS × S Liq / 100 ≧ 100 (mm 2 ) were satisfied. As described above, in these tests, neither segregation nor porosity was present or minimal. This is presumably because sufficient uncoagulated reduction was performed. Moreover, since no internal crack was observed, it is considered that the unsolidified reduction was not excessive.

一方、試験No4〜9および11では、ΔS/S≧5を満たさなかった。このうち、試験No4〜6で上述のように内部割れが発生したのは、圧下時における未凝固部分の直径が大きすぎたためと考えられる。試験No7〜9および11で偏析およびポロシティが残存したのは、圧下量が不足したためと考えられる。   On the other hand, in test Nos. 4 to 9 and 11, ΔS / S ≧ 5 was not satisfied. Among these, the reason why the internal cracks occurred as described above in Test Nos. 4 to 6 is considered that the diameter of the unsolidified portion at the time of the reduction was too large. The reason why segregation and porosity remained in Test Nos. 7 to 9 and 11 is considered to be due to insufficient rolling reduction.

また、試験No10および11では、ΔS×SLiq/100≧100(mm2)を満たさなかった。試験No10で偏析が残存したのは、圧下時における未凝固部分の直径が小さすぎて未凝固溶鋼のしぼり出しが充分ではなかったためと考えられる。 In Test Nos. 10 and 11, ΔS × S Liq / 100 ≧ 100 (mm 2 ) was not satisfied. The reason why segregation remained in Test No. 10 is considered to be because the diameter of the unsolidified portion at the time of reduction was too small to squeeze out the unsolidified molten steel.

このように、連続鋳造時の未凝固圧下条件を回帰式(4)に代入して得られたΔS/SおよびΔS×SLiq/100の値から、鋳片の内質の予測が可能である。 Thus, it is possible to predict the quality of the slab from the values of ΔS / S and ΔS × S Liq / 100 obtained by substituting the unsolidified reduction conditions during continuous casting into the regression equation (4). .

ただし、試験No4のように、圧下直前における鋳片の横断面積に対する未凝固部分の横断面積の比率Sが20%を超えるような、圧下時の未凝固部分が大きすぎる条件では、ΔS/S≧5を満たすには、ΔSが100%を超えなければならない。しかし、実際の未凝固圧下時には、ΔSが100%の時点で未凝固界面(固相率0.8の界面)が完全に圧着されるので、圧下による鋳片の未凝固部分の横断面積の減少率ΔSは100%を超えることはあり得ない。そのため、Sが20%を超える場合には、圧下による内質の改善は不可能と判断することができる。   However, as in test No. 4, when the ratio S of the cross-sectional area of the unsolidified portion to the cross-sectional area of the slab immediately before reduction exceeds 20%, ΔS / S ≧ To satisfy 5, ΔS must exceed 100%. However, when the actual unsolidified pressure is reduced, when the ΔS is 100%, the unsolidified interface (interface with a solid phase ratio of 0.8) is completely pressure-bonded, so the cross-sectional area of the unsolidified portion of the slab is reduced by the reduction. The rate ΔS cannot exceed 100%. Therefore, when S exceeds 20%, it can be determined that improvement of the internal quality by reduction is impossible.

2.連続鋳造装置の基本構成
図2は、本発明の連続鋳造方法を適用できる連続鋳造機の概略を示す図である。タンディッシュ1には、図示しない取鍋から供給された溶鋼6が収容される。溶鋼6は、タンディッシュ1から浸漬ノズル2を経て、鋳型3内にメニスカス6aを形成するように注入され、鋳型3およびその下方の図示しない二次冷却スプレーノズル群から噴射される冷却水により冷却され、凝固シェル7を形成して鋳片となる。
2. Basic Configuration of Continuous Casting Device FIG. 2 is a diagram showing an outline of a continuous casting machine to which the continuous casting method of the present invention can be applied. The tundish 1 accommodates molten steel 6 supplied from a ladle (not shown). The molten steel 6 is injected from the tundish 1 through the immersion nozzle 2 so as to form a meniscus 6a in the mold 3, and is cooled by cooling water sprayed from the mold 3 and a group of secondary cooling spray nozzles (not shown) below the mold 3. Then, a solidified shell 7 is formed to become a slab.

鋳片は、内部に未凝固の溶鋼6を保持したまま、鋳型3の直下に配置されたフットロール4と、フットロール4の鋳造方向下流側に複数配置されたローラーエプロン5によって支持されながら、ローラーエプロン5の下流側に配置されたピンチロール8によって引き抜かれ、圧下ロール9によって未凝固圧下される。上述の未凝固圧下試験は、同図に示す連続鋳造機によって行われた。   While the slab is supported by a foot roll 4 disposed immediately below the mold 3 and a plurality of roller aprons 5 disposed downstream in the casting direction of the foot roll 4 while holding the unsolidified molten steel 6 therein, It is pulled out by a pinch roll 8 arranged on the downstream side of the roller apron 5 and unsolidified and reduced by a reduction roll 9. The above-mentioned unsolidified reduction test was performed by the continuous casting machine shown in the figure.

3.連続鋳造機および連続鋳造方法の一例
前記図2に示す連続鋳造機を用いた本発明の連続鋳造方法の一例について説明する。鋳型3として、長さが800mm、銅製水冷式であり、断面が円形のものを用いる。鋳造速度は鋳片の直径や圧下時期に応じて0.10m/min〜0.60m/minに制御する。圧下ロール9は、直径650mmとし、メニスカス6aから鋳造方向下流側に20.0m〜30.0mの位置に配置する。この圧下ロール9を用いて鋳片の未凝固圧下を行う。すなわち内部に未凝固の溶鋼6を保持した状態の鋳片を圧下する。
3. Example of Continuous Casting Machine and Continuous Casting Method An example of the continuous casting method of the present invention using the continuous casting machine shown in FIG. 2 will be described. As the mold 3, a length of 800 mm, a copper water-cooled type, and a circular cross section is used. The casting speed is controlled to 0.10 m / min to 0.60 m / min according to the diameter of the slab and the rolling time. The reduction roll 9 has a diameter of 650 mm and is disposed at a position of 20.0 m to 30.0 m downstream from the meniscus 6a in the casting direction. The slab is unsolidified and reduced using this reduction roll 9. That is, the slab holding the unsolidified molten steel 6 inside is squeezed.

圧下ロール9の形状は問わないが、フラット形状またはカリバー形状が好ましい。また、圧下ロール9は直径が大きいほど、内質の良好な鋳片を得やすくなる。ただし、その分圧下力は増大する。   The shape of the rolling roll 9 is not limited, but a flat shape or a caliber shape is preferable. Moreover, it becomes easier to obtain a slab having a good inner quality as the diameter of the rolling roll 9 is larger. However, the partial pressure reduction force increases.

想定される圧下力は鋳片の直径および鋼種によって異なり、鋳片の直径が大きいほど大きな圧下力が必要となる。ただし、1000t程度の圧下力があれば充分である。   The assumed rolling force varies depending on the diameter of the slab and the steel type, and the larger the slab diameter, the larger the rolling force is required. However, a rolling force of about 1000 t is sufficient.

鋳片の引き抜きに必要なピンチ力は、圧下力の増大に伴い上昇する。そのため、ピンチロール8には、圧下力に応じたピンチ力を設定するため、相応の容量のモータを設ける必要がある。例えば、圧下ロール9と鋳片との間の摩擦係数が0.4であり、最大圧下力が1000tである場合には、400t(1000t×0.4)に相当する摩擦力増大によるピンチ力の増加が予測できる。   The pinch force necessary for drawing the slab increases with an increase in the rolling force. Therefore, the pinch roll 8 needs to be provided with a motor having an appropriate capacity in order to set a pinch force corresponding to the reduction force. For example, when the friction coefficient between the reduction roll 9 and the slab is 0.4 and the maximum reduction force is 1000 t, the pinch force increases due to an increase in friction force corresponding to 400 t (1000 t × 0.4). An increase can be predicted.

本発明の方法では、非定常の軸対称伝熱解析等を用いて、あらかじめ凝固シェル7の厚さのプロフィールを求め、鋳造速度を調整することにより、圧下ロール9の位置での未凝固部の直径を制御する。   In the method of the present invention, the thickness profile of the solidified shell 7 is obtained in advance using an unsteady axisymmetric heat transfer analysis or the like, and the casting speed is adjusted, so that the unsolidified portion at the position of the rolling roll 9 is determined. Control the diameter.

直径がさらに大きい鋳片に適用範囲を拡大する場合には、鋳造速度を鋳片の直径に応じて低下させるか、圧下ロール9のメニスカス6aからの位置を鋳造方向下流側に移動させることで対応する。   In the case of expanding the application range to a slab having a larger diameter, the casting speed is reduced according to the diameter of the slab, or the position of the rolling roll 9 from the meniscus 6a is moved downstream in the casting direction. To do.

以下に、本発明の効果を確認するために行った試験について説明する。   Below, the test done in order to confirm the effect of this invention is demonstrated.

1.試験方法
前記図2に示す連続鋳造機を用いて、連続鋳造時に未凝固圧下する試験を行った。連続鋳造機の各部の寸法および構成は、上述の「3.連続鋳造機および連続鋳造方法の一例」に記載の構成とし、圧下ロールの形状はフラット形状とした。
1. Test Method Using the continuous casting machine shown in FIG. 2, a test of unsolidified reduction during continuous casting was performed. The dimensions and configuration of each part of the continuous casting machine were as described in “3. Examples of continuous casting machine and continuous casting method”, and the shape of the rolling roll was flat.

試験条件は表5に示すNo1〜14とし、同表には圧下直前における鋳片の直径DI、圧下ロールの直径DR、鋳造速度、圧下ロールのメニスカスからの距離d、圧下量、圧下時の未凝固部の直径、鋳片の中心近傍の変形抵抗に対する表面近傍の変形抵抗の比k、鋳片の表面温度、圧下直前における鋳片の横断面積に対する未凝固部分の横断面積の比率Sおよび圧下率Rを示した。 The test conditions are Nos. 1 to 14 shown in Table 5. The table shows the diameter D I of the slab immediately before the reduction, the diameter D R of the reduction roll, the casting speed, the distance d from the meniscus of the reduction roll, the reduction amount, and the reduction time. The ratio of the deformation resistance near the surface to the deformation resistance near the center of the slab, the surface temperature of the slab, the ratio S of the cross-sectional area of the unsolidified portion to the cross-sectional area of the slab immediately before reduction, and The rolling reduction R was shown.

Figure 0005817665
Figure 0005817665

2.試験結果
鋳造した鋳片から採取した横断面および縦断面のサンプルについて、偏析、内部割れおよびポロシティの発生状況を観察した。偏析および内部割れは、サルファプリントにより観察した。また、これらの内部欠陥の発生の有無は目視にて判定し、表6には、ΔS/SおよびΔS×SLiq/100の計算値、ならびにサンプルの評定を示した。評定は○(可、内質良好)および×(不可、欠陥あり)の2段階とした。
2. Test results The occurrence of segregation, internal cracks, and porosity was observed for samples of the transverse and longitudinal sections taken from the cast slab. Segregation and internal cracks were observed by sulfur printing. The presence or absence of these internal defects was determined visually, and Table 6 shows the calculated values of ΔS / S and ΔS × S Liq / 100 and the evaluation of the samples. The evaluation was made into two stages: ○ (good, good internal quality) and x (impossible, defective).

Figure 0005817665
Figure 0005817665

表6に示すように、ΔS/S≧5およびΔS×SLiq/100≧100(mm2)の両方を満たしたNo1〜10では鋳片の内質が良好であった。一方、ΔS/S≧5およびΔS×SLiq/100≧100(mm2)の一方を満たさなかったNo11〜14では鋳片に欠陥があり、内質が良好ではなかった。 As shown in Table 6, the inner quality of the slab was good in Nos. 1 to 10 satisfying both ΔS / S ≧ 5 and ΔS × S Liq / 100 ≧ 100 (mm 2 ). On the other hand, in No11-14 which did not satisfy | fill one of (DELTA) S / S> = 5 and (DELTA) S * SLiq / 100> = 100 (mm < 2 >), the slab had a defect and the internal quality was not favorable.

本発明の鋳片の連続鋳造方法によれば、偏析およびポロシティが少なく内質が良好な、断面サイズの大きい横断面が円形の鋳片を得ることができる。   According to the continuous casting method of a slab of the present invention, it is possible to obtain a slab having a large cross-sectional size and a circular cross-section with a good segregation and porosity, a good internal quality, and a large cross-sectional size.

1:タンディッシュ、 2:浸漬ノズル、 3:鋳型、 4:フットロール、
5:ローラーエプロン、 6:溶鋼、 6a:メニスカス、 7:凝固シェル、
8:ピンチロール、 9:圧下ロール
1: tundish, 2: immersion nozzle, 3: mold, 4: foot roll,
5: Roller apron 6: Molten steel 6a: Meniscus 7: Solidified shell
8: Pinch roll, 9: Rolling roll

Claims (1)

圧下前の未凝固部を含む鋳片の横断面が円形である鋳片の連続鋳造方法であって、
圧下直前における鋳片の横断面の直径が300mm以上であり、
鋳片の内部が未凝固の状態で圧下を加え、強制的に未凝固の溶鋼を鋳造方向上流側に排
出させるステップにおいて、下記(1)〜(3)式を満足することを特徴とする鋳片の連
続鋳造方法。
S≦20 …(1)
ΔS/S≧5 …(2)
ΔS×SLiq/100≧100 …(3)
ただし、S:圧下直前における鋳片の横断面積に対する未凝固部分の横断面積の比率(%)、ΔS:圧下による鋳片の未凝固部分の横断面積の減少率(%)、SLiq:圧下直前における鋳片の未凝固部分の横断面積(mm2)であり、ΔSは下記(4)式で表される。
ΔS=(DR/DIA×kB×RC×{exp(S)}D×E …(4)
ここで、DR:圧下ロールの直径(mm)、DI:圧下直前における鋳片の直径(mm)、k:鋳片の1400℃における降伏応力に対する鋳片表面温度における降伏応力の比である鋳片内外変形抵抗比、R:鋳片の圧下率(%)であり、A=0.047、B=0.37、C=1.8、D=−0.037、E=exp(−2.0)である。
A slab continuous casting method in which a cross section of a slab including an unsolidified portion before rolling is circular,
The diameter of the cross section of the slab immediately before reduction is 300 mm or more,
Casting characterized in that the following formulas (1) to (3) are satisfied in the step of applying a reduction in an unsolidified state of the slab and forcibly discharging the unsolidified molten steel to the upstream side in the casting direction. Method for continuous casting of pieces.
S ≦ 20 (1)
ΔS / S ≧ 5 (2)
ΔS × S Liq / 100 ≧ 100 (3)
Where, S: ratio of the cross-sectional area of the unsolidified part to the cross-sectional area of the slab immediately before reduction (%), ΔS: rate of reduction of the cross-sectional area of the unsolidified part of the slab due to reduction (%), S Liq : immediately before reduction Is the cross-sectional area (mm 2 ) of the unsolidified part of the slab, and ΔS is expressed by the following equation (4).
ΔS = (D R / D I ) A × k B × R C × {exp (S)} D × E (4)
Here, D R: the reduction roll diameter (mm), D I: diameter of the slab in the pressure immediately before (mm), k: relative yield stress at 1400 ° C. of the slab at a ratio of yield stress at the billet surface temperature A certain slab inner / outer deformation resistance ratio , R: slab reduction ratio (%), A = 0.047, B = 0.37, C = 1.8, D = −0.037, E = exp ( -2.0).
JP2012158462A 2012-07-17 2012-07-17 Continuous casting method for slabs Active JP5817665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158462A JP5817665B2 (en) 2012-07-17 2012-07-17 Continuous casting method for slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158462A JP5817665B2 (en) 2012-07-17 2012-07-17 Continuous casting method for slabs

Publications (2)

Publication Number Publication Date
JP2014018819A JP2014018819A (en) 2014-02-03
JP5817665B2 true JP5817665B2 (en) 2015-11-18

Family

ID=50194310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158462A Active JP5817665B2 (en) 2012-07-17 2012-07-17 Continuous casting method for slabs

Country Status (1)

Country Link
JP (1) JP5817665B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162551A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for continuously casting round shape billet
JP3104635B2 (en) * 1997-03-11 2000-10-30 住友金属工業株式会社 Manufacturing method of round billet slab by continuous casting
JP3149818B2 (en) * 1997-06-02 2001-03-26 住友金属工業株式会社 Manufacturing method of round billet slab by continuous casting
JP3319379B2 (en) * 1998-03-18 2002-08-26 住友金属工業株式会社 Continuous casting method of steel billet

Also Published As

Publication number Publication date
JP2014018819A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
CN105108096B (en) A kind of Properties of Heavy Rail Steel bloom continuous casting dynamic soft-reduction method for determination of amount
JP5686062B2 (en) Steel continuous casting method
JP5835531B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP6365060B2 (en) Continuous casting method of slab slab
JP5477269B2 (en) Continuous casting method for slabs
JP5817665B2 (en) Continuous casting method for slabs
JP6303617B2 (en) Slab continuous casting method
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP2017087218A (en) Continuous casting method of cast slab
JP4932304B2 (en) Steel manufacturing method
JP7284394B2 (en) Steel continuous casting method
JP5929836B2 (en) Steel continuous casting method
JP3319379B2 (en) Continuous casting method of steel billet
JP3362703B2 (en) Continuous casting method
JP4687629B2 (en) Metal continuous casting method
JP5691949B2 (en) Continuous casting method for large-section slabs
JP3275828B2 (en) Continuous casting method
JP4285288B2 (en) Steel continuous casting method
JP3395674B2 (en) Continuous casting method
JP5790385B2 (en) Continuous casting method of round slab for 13Cr seamless steel pipe
JP7073927B2 (en) Continuous non-solidification forging method for slabs
JP2003117643A (en) Method for continuously casting bloom and billet of steel
WO2013175536A1 (en) Continuous casting method for slab
JP5760746B2 (en) Continuous casting method of round slab for 13Cr seamless steel pipe making
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350