JP5813853B2 - Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon - Google Patents

Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon Download PDF

Info

Publication number
JP5813853B2
JP5813853B2 JP2014239361A JP2014239361A JP5813853B2 JP 5813853 B2 JP5813853 B2 JP 5813853B2 JP 2014239361 A JP2014239361 A JP 2014239361A JP 2014239361 A JP2014239361 A JP 2014239361A JP 5813853 B2 JP5813853 B2 JP 5813853B2
Authority
JP
Japan
Prior art keywords
catalyst
monocyclic aromatic
aromatic hydrocarbons
mass
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014239361A
Other languages
Japanese (ja)
Other versions
JP2015044199A (en
Inventor
柳川 真一朗
真一朗 柳川
小林 正英
正英 小林
泰之 岩佐
泰之 岩佐
領二 伊田
領二 伊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2014239361A priority Critical patent/JP5813853B2/en
Publication of JP2015044199A publication Critical patent/JP2015044199A/en
Application granted granted Critical
Publication of JP5813853B2 publication Critical patent/JP5813853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、多環芳香族炭化水素を多く含む油から単環芳香族炭化水素を製造するための単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法に関する。   The present invention relates to a catalyst for producing monocyclic aromatic hydrocarbons and a method for producing monocyclic aromatic hydrocarbons for producing monocyclic aromatic hydrocarbons from oils rich in polycyclic aromatic hydrocarbons.

流動接触分解装置で生成する分解軽油であるライトサイクル油(以下、「LCO」という。)は、多環芳香族炭化水素を多く含み、軽油または重油として利用されていた。しかし、近年、LCOから、高オクタン価ガソリン基材や石油化学原料として利用でき、付加価値の高い炭素数6〜8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等)を得ることが検討されている。
例えば、特許文献1〜3では、ゼオライト触媒を用いて、LCO等に多く含まれる多環芳香族炭化水素から単環芳香族炭化水素を製造する方法が提案されている。
しかしながら、特許文献1〜3に記載の方法では、炭素数6〜8の単環芳香族炭化水素の収率が充分に高いとは言えなかった。
Light cycle oil (hereinafter referred to as “LCO”), which is a cracked light oil produced by a fluid catalytic cracker, contains a large amount of polycyclic aromatic hydrocarbons and has been utilized as a light oil or heavy oil. However, in recent years, LCO can be used as a high-octane gasoline base material or petrochemical raw material, and a high-added monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms (for example, benzene, toluene, xylene, ethylbenzene, etc.) is obtained. It is being considered.
For example, Patent Documents 1 to 3 propose a method for producing monocyclic aromatic hydrocarbons from polycyclic aromatic hydrocarbons contained in a large amount in LCO or the like using a zeolite catalyst.
However, in the methods described in Patent Documents 1 to 3, it cannot be said that the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms is sufficiently high.

多環芳香族炭化水素を含む重質の原料油から単環芳香族炭化水素を製造する際には、触媒上に炭素質が多く析出し、活性低下が速いため、炭素質を除去する触媒再生を高頻度で行う必要がある。また、効率的に反応−触媒再生を繰り返すプロセスである循環流動床を採用する場合には、触媒再生温度を反応温度より高温にする必要があり、触媒の温度環境はより厳しくなる。
このような厳しい条件下において、触媒としてゼオライト触媒を用いる場合には、触媒の水熱劣化が進行して経時的に反応活性が低下するため、触媒の水熱安定性の向上が求められる。しかし、特許文献1〜3に記載のゼオライト触媒では、水熱安定性を向上させる対策が採られておらず、実用的な利用価値は著しく低いものであった。
When producing monocyclic aromatic hydrocarbons from heavy feedstock containing polycyclic aromatic hydrocarbons, a large amount of carbonaceous matter is deposited on the catalyst, and the activity declines quickly, so the catalyst regeneration removes the carbonaceous matter. Must be performed at a high frequency. Further, in the case of employing a circulating fluidized bed which is a process of efficiently repeating reaction-catalyst regeneration, the catalyst regeneration temperature needs to be higher than the reaction temperature, and the temperature environment of the catalyst becomes more severe.
Under such severe conditions, when a zeolite catalyst is used as the catalyst, the hydrothermal deterioration of the catalyst progresses and the reaction activity decreases with time, so that improvement of the hydrothermal stability of the catalyst is required. However, in the zeolite catalysts described in Patent Documents 1 to 3, no measures for improving hydrothermal stability are taken, and the practical utility value is extremely low.

水熱安定性を向上させる方法としては、Si/Al比が高いゼオライトを用いる方法、USY型ゼオライトのように予め触媒を水熱処理して安定化させる方法、ゼオライトにリンを添加する方法、ゼオライトに希土類金属を添加する方法、ゼオライト合成時の構造規定剤を改良する方法などが知られている。
これらのうち、リンの添加は、水熱安定性向上だけでなく、流動接触分解における炭素質析出抑制による選択性向上、バインダーの耐摩耗性向上などの効果も知られ、接触分解反応用の触媒に対してはしばしば適用されている。
ゼオライトにリンを添加した接触分解用の触媒については、例えば、特許文献4〜6に開示されている。
すなわち、特許文献4には、リン、ガリウム、ゲルマニウム、スズが添加されたZSM−5を含む触媒を用いて、ナフサからオレフィンを製造する方法が開示されている。特許文献4では、リンを添加することにより、メタンや芳香族の生成を抑制してオレフィン生成の選択率を高め、しかも短い接触時間でも高い活性を確保して、オレフィンの収率を高めることを目的としている。
特許文献5には、ジルコニウムと希土類を含有するZSM−5にリンを担持した触媒とUSYゼオライト、REYゼオライト、カオリン、シリカおよびアルミナを含む触媒を用い、重質炭化水素からオレフィンを高い収率で製造する方法が開示されている。
特許文献6には、リンおよび遷移金属を担持したZSM−5を含有する触媒を用いて炭化水素を変換して、エチレン、プロピレンを高い収率で製造する方法が開示されている。
As a method for improving hydrothermal stability, a method using a zeolite having a high Si / Al ratio, a method of stabilizing a catalyst by hydrothermal treatment in advance, such as a USY type zeolite, a method of adding phosphorus to the zeolite, A method of adding a rare earth metal, a method of improving a structure directing agent at the time of zeolite synthesis, and the like are known.
Among these, the addition of phosphorus is known not only to improve hydrothermal stability but also to improve the selectivity by suppressing carbonaceous precipitation in fluid catalytic cracking, and to improve the abrasion resistance of the binder. Is often applied.
Catalysts for catalytic cracking in which phosphorus is added to zeolite are disclosed in, for example, Patent Documents 4 to 6.
That is, Patent Document 4 discloses a method for producing an olefin from naphtha using a catalyst containing ZSM-5 to which phosphorus, gallium, germanium, and tin are added. In Patent Document 4, by adding phosphorus, the generation of methane and aromatics is suppressed to increase the selectivity of olefin production, and high activity is ensured even with a short contact time, thereby increasing the yield of olefins. It is aimed.
Patent Document 5 uses a catalyst containing phosphorus on ZSM-5 containing zirconium and a rare earth and a catalyst containing USY zeolite, REY zeolite, kaolin, silica and alumina, and produces high yields of olefins from heavy hydrocarbons. A method of manufacturing is disclosed.
Patent Document 6 discloses a method for producing ethylene and propylene in high yields by converting hydrocarbons using a catalyst containing ZSM-5 carrying phosphorus and a transition metal.

上記のように、ゼオライトにリンを添加することについては特許文献4〜6に開示されているが、いずれもオレフィン収率の向上が主たる目的であり、炭素数6〜8の単環芳香族炭化水素を高い収率で製造することはできなかった。例えば、特許文献6の表2には、オレフィン(エチレン、プロピレン)およびBTX(ベンゼン、トルエン、キシレン)の収率が記載されているが、オレフィンの収率が40質量%であるのに対し、BTXの収率は6質量%程度と低いものであった。
したがって、多環芳香族炭化水素を含む原料油からの炭素数6〜8の単環芳香族炭化水素を高い収率で製造し、しかも経時的な単環芳香族炭化水素の収率の低下を防止できる単環芳香族炭化水素製造用触媒は知られていないのが実情であった。
As described above, the addition of phosphorus to zeolite is disclosed in Patent Documents 4 to 6, all of which are mainly aimed at improving the olefin yield, and are monocyclic aromatic carbonization having 6 to 8 carbon atoms. Hydrogen could not be produced in high yield. For example, Table 2 of Patent Document 6 describes the yields of olefins (ethylene, propylene) and BTX (benzene, toluene, xylene), whereas the yield of olefins is 40% by mass, The yield of BTX was as low as about 6% by mass.
Accordingly, it is possible to produce monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms from raw material oil containing polycyclic aromatic hydrocarbons at a high yield, and to reduce the yield of monocyclic aromatic hydrocarbons over time. The actual situation is that there is no known catalyst for producing monocyclic aromatic hydrocarbons that can be prevented.

特開平3−2128号公報JP-A-3-2128 特開平3−52993号公報Japanese Patent Laid-Open No. 3-52993 特開平3−26791号公報JP-A-3-26791 特表2002−525380号公報Special Table 2002-525380 特開2007−190520号公報JP 2007-190520 A 特表2007−530266号公報Special table 2007-530266 gazette

本発明は、多環芳香族炭化水素を含む原料油から高い収率で炭素数6〜8の単環芳香族炭化水素を製造でき、しかも経時的な炭素数6〜8の単環芳香族炭化水素の収率の低下を防止できる単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention can produce monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms with high yield from a raw material oil containing polycyclic aromatic hydrocarbons, and also monocyclic aromatic carbonization having 6 to 8 carbon atoms over time. It is an object of the present invention to provide a catalyst for producing monocyclic aromatic hydrocarbons and a method for producing monocyclic aromatic hydrocarbons which can prevent a decrease in the yield of hydrogen.

[1]10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6〜8の単環芳香族炭化水素を製造するための芳香族炭化水素製造用触媒であって、
結晶性アルミノシリケートとリンとを含有し、前記結晶性アルミノシリケートに含まれるリンと、前記結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が0.5以上、1.0以下であることを特徴とする単環芳香族炭化水素製造用触媒。
[2]リン含有量が触媒重量に対して0.1〜10質量%であることを特徴とする[1]に記載の単環芳香族炭化水素製造用触媒。
[3]前記結晶性アルミノシリケートが、ペンタシル型ゼオライトであることを特徴とする[1]または[2]に記載の単環芳香族炭化水素製造用触媒。
[4]前記結晶性アルミノシリケートが、MFI型ゼオライトであることを特徴とする[1]から[3]のいずれか一項に記載の単環芳香族炭化水素製造用触媒。
[5]10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、[1]から[4]のいずれか一項に記載の単環芳香族炭化水素製造用触媒に接触させることを特徴とする炭素数6〜8の単環芳香族炭化水素の製造方法。
[6]前記原料油が、流動接触分解装置で生成する分解軽油を含むことを特徴とする[5]に記載の炭素数6〜8の単環芳香族炭化水素の製造方法。
[7]流動床反応装置にて前記原料油を前記単環芳香族炭化水素製造用触媒に接触させることを特徴とする[5]または[6]に記載の炭素数6〜8の単環芳香族炭化水素の製造方法。
[1] Aromatic hydrocarbons for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms from a feedstock having a 10% by volume distillation temperature of 140 ° C or higher and a 90% by volume distillation temperature of 380 ° C or lower A production catalyst comprising:
A crystalline aluminosilicate and phosphorus are contained, and the molar ratio (P / Al ratio) between phosphorus contained in the crystalline aluminosilicate and aluminum of the crystalline aluminosilicate is 0.5 or more and 1.0 or less. A catalyst for producing monocyclic aromatic hydrocarbons.
[2] The catalyst for producing monocyclic aromatic hydrocarbons according to [1], wherein the phosphorus content is 0.1 to 10% by mass with respect to the catalyst weight.
[3] The monocyclic aromatic hydrocarbon production catalyst according to [1] or [2], wherein the crystalline aluminosilicate is a pentasil-type zeolite.
[4] The catalyst for producing monocyclic aromatic hydrocarbons according to any one of [1] to [3], wherein the crystalline aluminosilicate is MFI type zeolite.
[5] A monocyclic aromatic carbonization according to any one of [1] to [4], wherein a feed oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower is used. A method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms, comprising contacting with a catalyst for producing hydrogen.
[6] The method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to [5], wherein the raw material oil contains cracked light oil produced by a fluid catalytic cracking apparatus.
[7] The monocyclic aroma having 6 to 8 carbon atoms according to [5] or [6], wherein the feedstock is brought into contact with the catalyst for producing the monocyclic aromatic hydrocarbon in a fluidized bed reactor. For producing aromatic hydrocarbons.

本発明の単環芳香族炭化水素製造用触媒および炭素数6〜8の単環芳香族炭化水素の製造方法によれば、多環芳香族炭化水素を含む原料油から高い収率で炭素数6〜8の単環芳香族炭化水素を製造でき、しかも経時的な炭素数6〜8の単環芳香族炭化水素の収率の低下を防止できる。   According to the catalyst for producing a monocyclic aromatic hydrocarbon and the method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to the present invention, it is possible to obtain a carbon atom having a high yield of 6 from a feedstock containing polycyclic aromatic hydrocarbons. ˜8 monocyclic aromatic hydrocarbons can be produced, and a decrease in the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms over time can be prevented.

(単環芳香族炭化水素製造用触媒)
本発明の単環芳香族炭化水素製造用触媒(以下、「触媒」と略す。)は、多環芳香族炭化水素および飽和炭化水素を含む原料油から炭素数6〜8の単環芳香族炭化水素(以下、「単環芳香族炭化水素」と略す。)を製造するためのものであり、結晶性アルミノシリケートとリンとを含有する。
(Catalyst for monocyclic aromatic hydrocarbon production)
The catalyst for producing monocyclic aromatic hydrocarbons of the present invention (hereinafter abbreviated as “catalyst”) is a monocyclic aromatic carbonized carbon having 6 to 8 carbon atoms from a feedstock containing polycyclic aromatic hydrocarbons and saturated hydrocarbons. It is for producing hydrogen (hereinafter abbreviated as “monocyclic aromatic hydrocarbon”) and contains crystalline aluminosilicate and phosphorus.

[結晶性アルミノシリケート]
結晶性アルミノシリケートとしては、特に限定されないが、例えば、ペンタシル型ゼオライト、中細孔ゼオライトが好ましい。中細孔ゼオライトとしては、MFI、MEL、TON、MTT、MRE、FER、AEL、EUOタイプの結晶構造のゼオライトがより好ましく、単環芳香族炭化水素の収率がより高くなることから、MFI型および/またはMEL型の結晶構造のゼオライトが特に好ましい。
MFI型、MEL型等のゼオライトは、The Structure Commission of the International Zeolite Associationにより公表された種類の公知ゼオライト構造型に属する(Atlas of Zeolite Structure Types,W.M.Meiyer and D.H.Olson (1978).Distributed by Polycrystal Book Service,Pittsburgh,PA,USA)。
触媒における結晶性アルミノシリケートの含有量は、触媒全体を100質量%とした際の10〜95質量%が好ましく、20〜80質量%がより好ましく、25〜70質量%が特に好ましい。結晶性アルミノシリケートの含有量が10質量%以上かつ95質量%以下であれば、充分に高い触媒活性が得られる。
[Crystalline aluminosilicate]
Although it does not specifically limit as crystalline aluminosilicate, For example, a pentasil type zeolite and a medium pore zeolite are preferable. As the medium pore zeolite, MFI, MEL, TON, MTT, MRE, FER, AEL, EUO type zeolite is more preferable, and since the yield of monocyclic aromatic hydrocarbons is higher, MFI type Zeolite having a crystal structure of MEL type is particularly preferred.
Zeolite of MFI type, MEL type, etc. belong to a known zeolite structure type of the kind published by The Structure Commission of the International Zeolite Association (Atlas of Zeolite Structure. (Distributed by Polycrystalline Book Service, Pittsburgh, PA, USA).
The content of the crystalline aluminosilicate in the catalyst is preferably 10 to 95% by mass, more preferably 20 to 80% by mass, and particularly preferably 25 to 70% by mass when the entire catalyst is taken as 100% by mass. When the content of the crystalline aluminosilicate is 10% by mass or more and 95% by mass or less, sufficiently high catalytic activity can be obtained.

[リン]
結晶性アルミノシリケートに含有されるリンと結晶性アルミノリケートに含有されるアルミニウムとのモル比率(P/Al比)は0.1以上、1.0以下である。P/Al比が1.0を超えると、単環芳香族炭化水素の収率が低くなるので、P/Al比は1.0以下、好ましくは0.95以下、より好ましくは0.9以下である。
また、P/Al比が0.1未満の場合、定常状態での単環芳香族炭化水素の収率が低くなるため、P/Al比は0.1以上、好ましくは0.15以上、より好ましくは0.2以上である。
[Rin]
The molar ratio (P / Al ratio) between phosphorus contained in the crystalline aluminosilicate and aluminum contained in the crystalline aluminosilicate is 0.1 or more and 1.0 or less. When the P / Al ratio exceeds 1.0, the yield of monocyclic aromatic hydrocarbons becomes low, so the P / Al ratio is 1.0 or less, preferably 0.95 or less, more preferably 0.9 or less. It is.
Also, when the P / Al ratio is less than 0.1, the yield of monocyclic aromatic hydrocarbons in the steady state is low, so the P / Al ratio is 0.1 or more, preferably 0.15 or more, Preferably it is 0.2 or more.

本発明の触媒における結晶性アルミノシリケートに含まれるリンの含有量は、結晶性アルミノシリケートの総質量を100質量%とした場合、0.1〜3.5質量%であることが好ましい。さらには、下限は0.2質量%以上がより好ましく、上限は3.0質量%以下であることがより好ましく、2.8質量%以下が特に好ましい。結晶性アルミノシリケートに担持されたリンの含有量が0.1質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、3.5質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
なお、本発明の触媒におけるリンの含有量の上限値は、特許文献4〜6に記載の触媒におけるリン含有量の上限値よりもかなり小さい。これは、本発明の触媒が適用される反応の原料油は多環芳香族炭化水素を多く含み、反応性が低いことが一つの要因と考えられる。リン添加量を高くしすぎると、原料油がさらに反応しにくくなり、芳香族化活性が低下するため、単環芳香族炭化水素の収率の低下を招くことになる。一方、特許文献4〜6での原料油(例えば、流動接触分解装置の原料油として用いられる減圧軽油等)は重質で、分子量が大きく、触媒に吸着されやすいため、LCO等の留分よりも分解されやすい。しかも、軽質オレフィンに分解することは容易であるため、リンを多量に担持して芳香族化活性が低下しても、大きな問題にはならない。
The content of phosphorus contained in the crystalline aluminosilicate in the catalyst of the present invention is preferably 0.1 to 3.5% by mass when the total mass of the crystalline aluminosilicate is 100% by mass. Furthermore, the lower limit is more preferably 0.2% by mass or more, and the upper limit is more preferably 3.0% by mass or less, and particularly preferably 2.8% by mass or less. When the content of phosphorus supported on the crystalline aluminosilicate is 0.1% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented, and the content is 3.5% by mass or less. Thus, the yield of monocyclic aromatic hydrocarbons can be increased.
In addition, the upper limit value of the phosphorus content in the catalyst of the present invention is considerably smaller than the upper limit value of the phosphorus content in the catalysts described in Patent Documents 4 to 6. This is considered to be caused by the fact that the feedstock of the reaction to which the catalyst of the present invention is applied contains a large amount of polycyclic aromatic hydrocarbons and has low reactivity. If the amount of phosphorus added is too high, the feedstock oil becomes more difficult to react and the aromatization activity is reduced, leading to a reduction in the yield of monocyclic aromatic hydrocarbons. On the other hand, since the raw material oils in Patent Documents 4 to 6 (for example, vacuum gas oil used as a raw material oil in a fluid catalytic cracking apparatus) are heavy, have a large molecular weight, and are easily adsorbed by the catalyst, Is easy to be disassembled. Moreover, since it is easy to decompose into light olefins, even if a large amount of phosphorus is supported and the aromatization activity is lowered, it does not cause a big problem.

本発明の触媒にリンを含有させる方法としては特に限定されないが、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケートにリンを担持する方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンと置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液は特に限定されないが、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウムおよびその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを好ましく使用できる。   The method of incorporating phosphorus into the catalyst of the present invention is not particularly limited. For example, a method of supporting phosphorus on crystalline aluminosilicate by an ion exchange method, an impregnation method, etc. Examples thereof include a method of replacing a part of the aluminosilicate framework with phosphorus, a method of using a crystal accelerator containing phosphorus during zeolite synthesis, and the like. The phosphate ion-containing aqueous solution used at that time is not particularly limited, but was prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates in water at an arbitrary concentration. Can be preferably used.

本発明の触媒は、上記のようにリンを含む結晶性アルミノシリケートを焼成(焼成温度300〜900℃)することにより得られる。   The catalyst of the present invention can be obtained by calcining crystalline aluminosilicate containing phosphorus as described above (calcination temperature: 300 to 900 ° C.).

[形状]
本発明の触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。
例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。流動床で用いる触媒の平均粒子径は30〜180μmが好ましく、50〜100μmがより好ましい。また、流動床で用いる触媒のかさ密度は0.4〜1.8g/ccが好ましく、0.5〜1.0g/ccがより好ましい。
なお、平均粒子径はふるいによる分級によって得た粒径分布において50質量%となる粒径を表し、かさ密度はJIS規格R9301−2−3の方法により測定した値である。
粒状またはペレット状の触媒を得る場合には、必要に応じて、結晶性アルミノシリケートまたは触媒にバインダー等として不活性な酸化物を配合した後、各種成型機を用いて成型すればよい。
[shape]
The catalyst of the present invention is made into, for example, a powder form, a granular form, a pellet form or the like according to the reaction mode.
For example, in the case of a fluidized bed, it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets. The average particle size of the catalyst used in the fluidized bed is preferably 30 to 180 μm, more preferably 50 to 100 μm. The bulk density of the catalyst used in the fluidized bed is preferably 0.4 to 1.8 g / cc, and more preferably 0.5 to 1.0 g / cc.
In addition, an average particle diameter represents the particle size used as 50 mass% in the particle size distribution obtained by the classification by a sieve, and a bulk density is the value measured by the method of JIS specification R9301-2-3.
When obtaining a granular or pellet-shaped catalyst, if necessary, an inert oxide as a binder or the like may be blended with a crystalline aluminosilicate or catalyst, and then molded using various molding machines.

本発明の触媒がバインダー等の無機酸化物を含有する場合、バインダー等としてリンを含むものを用いても構わない。
また、触媒がバインダー等の無機酸化物を含有する場合、バインダー等と結晶性アルミノシリケートを混合した後に、リンを添加して触媒を製造してもよい。
触媒がバインダー等の無機酸化物を含有する場合、リン含有量は触媒全重量に対して0.1〜10質量%であることが好ましく、さらには、下限は0.5質量%以上がより好ましく、上限は9質量%以下であることがより好ましく、8質量%以下が特に好ましい。触媒全重量に対するリンの含有量が0.1質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、10質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
When the catalyst of this invention contains inorganic oxides, such as a binder, you may use what contains phosphorus as a binder.
Moreover, when a catalyst contains inorganic oxides, such as a binder, after mixing a binder etc. and crystalline aluminosilicate, phosphorus may be added and a catalyst may be manufactured.
When the catalyst contains an inorganic oxide such as a binder, the phosphorus content is preferably 0.1 to 10% by mass relative to the total weight of the catalyst, and more preferably the lower limit is 0.5% by mass or more. The upper limit is more preferably 9% by mass or less, and particularly preferably 8% by mass or less. When the content of phosphorus with respect to the total weight of the catalyst is 0.1% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented, and when the content is 10% by mass or less, the monocyclic aromatics The yield of hydrocarbons can be increased.

(単環芳香族炭化水素の製造方法)
本発明の単環芳香族炭化水素の製造方法は、原料油を上記触媒に接触させて、反応させる方法である。
本反応は、原料油と触媒の酸点とを接触させることにより、分解、脱水素、環化、水素移行等の様々な反応により、多環芳香族炭化水素を開環させて単環芳香族炭化水素に転換する方法である。
(Method for producing monocyclic aromatic hydrocarbons)
The method for producing monocyclic aromatic hydrocarbons of the present invention is a method in which a raw oil is brought into contact with the catalyst and reacted.
In this reaction, by bringing the feedstock into contact with the acid point of the catalyst, polycyclic aromatic hydrocarbons are opened by various reactions such as decomposition, dehydrogenation, cyclization, hydrogen transfer, etc. It is a method to convert to hydrocarbon.

[原料油]
本発明で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の油である。10容量%留出温度が140℃未満の油では、軽質のものからBTXを製造することになり、本発明の主旨にそぐわなくなるため、140℃以上が好ましく、150℃以上がより好ましい。また、原料油の90容量%留出温度が380℃を超える原料油を用いた場合も、触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にあるため、原料油の90容量%留出温度は380℃以下が好ましく、360℃以下がより好ましい。
なお、ここでいう10容量%留出温度、90容量%留出温度、終点は、JIS K2254「石油製品−蒸留試験方法」に準拠して測定される値である。
10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の原料油としては、例えば、流動接触分解装置で生成する分解軽油(LCO)、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられ、流動接触分解装置で生成する分解軽油(LCO)を含むことがより好ましい。
また、原料油中に多環芳香族炭化水素が多く含まれると炭素数6〜8の単環芳香族炭化水素収率が低下するため、原料油中の多環芳香族炭化水素の含有量(多環芳香族分)は50容量%以下が好ましく、30容量%以下であることがより好ましい。
なお、ここでいう多環芳香族分とは、JPI−5S−49「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠して測定される2環芳香族炭化水素含有量(2環芳香族分)および、3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。
[Raw oil]
The feedstock oil used in the present invention is an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower. An oil having a 10% by volume distillation temperature of less than 140 ° C. produces BTX from a light oil and does not meet the gist of the present invention, so 140 ° C. or higher is preferable, and 150 ° C. or higher is more preferable. Also, when a feed oil having a 90% by volume distillation temperature of the feed oil exceeding 380 ° C. is used, the amount of coke deposited on the catalyst tends to increase, causing a rapid decrease in catalyst activity. The 90% by volume distillation temperature of the oil is preferably 380 ° C or lower, and more preferably 360 ° C or lower.
In addition, the 10 volume% distillation temperature, 90 volume% distillation temperature, and an end point here are the values measured based on JISK2254 "petroleum product-distillation test method".
Examples of the feed oil having a 10% by volume distillation temperature of 140 ° C. or more and a 90% by volume distillation temperature of 380 ° C. or less include cracked light oil (LCO), coal liquefied oil, heavy oil hydrogen produced by a fluid catalytic cracker Examples include hydrocracked refined oil, straight-run kerosene, straight-run light oil, coker kerosene, coker light oil, and oil sand hydrocracked refined oil, and more preferably include cracked light oil (LCO) produced by a fluid catalytic cracker.
Moreover, since the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms decreases when the raw material oil contains a large amount of polycyclic aromatic hydrocarbons, the content of polycyclic aromatic hydrocarbons in the raw material oil ( The polycyclic aromatic content) is preferably 50% by volume or less, and more preferably 30% by volume or less.
In addition, polycyclic aromatic content here is bicyclic aromatic hydrocarbon content (based on JPI-5S-49 "Petroleum products-Hydrocarbon type test method-High performance liquid chromatograph method") ( 2 ring aromatic content) and the total value of the aromatic hydrocarbon content of 3 or more rings (aromatic content of 3 or more rings).

[反応形式]
原料油を触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。本発明においては、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ、安定的に反応を行うことができる流動床が好ましく、反応器と再生器との間を触媒が循環し、連続的に反応−再生を繰り返すことができる、連続再生式流動床が特に好ましい。触媒と接触する際の原料油は、気相状態であることが好ましい。
また、原料は、必要に応じてガスによって希釈してもよい。また、未反応原料が生じた場合は必要に応じてリサイクルしてもよい。
[Reaction format]
Examples of the reaction mode for contacting and reacting the raw material oil with the catalyst include a fixed bed, a moving bed, and a fluidized bed. In the present invention, since a heavy component is used as a raw material, a fluidized bed capable of continuously removing coke adhering to the catalyst and capable of performing a reaction stably is preferable. A continuous regenerative fluidized bed is particularly preferred in which the catalyst circulates between them and the reaction-regeneration can be repeated continuously. The raw material oil in contact with the catalyst is preferably in a gas phase.
Moreover, you may dilute a raw material with gas as needed. Moreover, when unreacted raw materials are generated, they may be recycled as necessary.

[反応温度]
原料油を触媒と接触、反応させる際の反応温度は、特に制限されないが、350〜700℃が好ましい。下限は、充分な反応活性が得られることから、450℃以上がより好ましい。一方、上限は、エネルギー的に有利である上に、容易に触媒を再生できるため、650℃以下がより好ましい。
[Reaction temperature]
Although the reaction temperature at the time of making a raw material oil contact and react with a catalyst is not restrict | limited, 350-700 degreeC is preferable. The lower limit is more preferably 450 ° C. or higher because sufficient reaction activity can be obtained. On the other hand, the upper limit is more preferably 650 ° C. or lower because it is advantageous in terms of energy and can easily regenerate the catalyst.

[反応圧力]
原料油を触媒と接触、反応させる際の反応圧力は、1.0MPaG以下とすることが好ましい。反応圧力が1.0MPaG以下であれば、軽質ガスの副生を防止できる上に、反応装置の耐圧性を低くできる。
[Reaction pressure]
The reaction pressure when contacting and reacting the raw material oil with the catalyst is preferably 1.0 MPaG or less. When the reaction pressure is 1.0 MPaG or less, light gas by-product can be prevented and the pressure resistance of the reaction apparatus can be lowered.

[接触時間]
原料油と触媒との接触時間は、実質的に所望する反応が進行すれば特に制限はされないが、例えば、触媒上のガス通過時間で1〜300秒が好ましく、さらに下限は5秒以上、上限は150秒以下がより好ましい。接触時間が1秒以上であれば、確実に反応させることができ、接触時間が300秒以下であれば、コーキング等による触媒への炭素質の蓄積を抑制できる。または分解による軽質ガスの発生量を抑制できる。
[Contact time]
The contact time between the feedstock and the catalyst is not particularly limited as long as the desired reaction proceeds substantially. For example, the gas passage time on the catalyst is preferably 1 to 300 seconds, and the lower limit is 5 seconds or more. Is more preferably 150 seconds or less. If the contact time is 1 second or longer, the reaction can be performed reliably, and if the contact time is 300 seconds or shorter, accumulation of carbonaceous matter in the catalyst due to coking or the like can be suppressed. Or the generation amount of the light gas by decomposition | disassembly can be suppressed.

本発明の単環芳香族炭化水素の製造方法では、原料油と触媒の酸点とを接触させることにより、分解、脱水素、環化、水素移行等の様々な反応により、多環芳香族炭化水素を開環させて単環芳香族炭化水素を得る。
本発明では、単環芳香族炭化水素の収率が15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。単環芳香族炭化水素の収率が15質量%未満であると生成物中の目的物濃度が低く、回収効率が低下するので好ましくない。
In the method for producing monocyclic aromatic hydrocarbons of the present invention, the polycyclic aromatic carbonization is carried out by bringing various reaction such as decomposition, dehydrogenation, cyclization, hydrogen transfer, etc. by bringing the feedstock oil into contact with the acid point of the catalyst. Hydrogen is opened to obtain a monocyclic aromatic hydrocarbon.
In the present invention, the yield of monocyclic aromatic hydrocarbons is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more. If the yield of monocyclic aromatic hydrocarbons is less than 15% by mass, the concentration of the target product in the product is low and the recovery efficiency is lowered, which is not preferable.

以上説明した本発明の製造方法では、上述した触媒を用いるため、高い収率で単環芳香族炭化水素を製造でき、しかも経時的な単環芳香族炭化水素の収率の低下を防止できる。   In the production method of the present invention described above, since the above-described catalyst is used, monocyclic aromatic hydrocarbons can be produced with a high yield, and a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to these Examples.

参考例1
硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28〜30質量%、Na:9〜10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14〜18HO(試薬特級、和光純薬工業(株)製)の64.2g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7gからなる溶液(B)をそれぞれ調製した。
( Reference Example 1 )
From 1706.1 g of sodium oxalate (J sodium silicate No. 3, SiO 2 : 28 to 30% by mass, Na: 9 to 10% by mass, balance water, manufactured by Nippon Chemical Industry Co., Ltd.) and 2227.5 g of water Solution (A), Al 2 (SO 4 ) 3 · 14 to 18H 2 O (special reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.), 64.2 g, tetrapropylammonium bromide, 369.2 g, H 2 SO 4 (97% by weight) of 152.1 g, NaCl (326.6 g), and 2975.7 g of water (B) were prepared.

次いで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B)を徐々に加えた。
得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
次いで、この混合物をステンレス製のオートクレーブに入れ、温度:165℃、時間:72時間、撹拌速度:100rpmの条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
Next, the solution (B) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
The resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
Subsequently, this mixture was put into a stainless steel autoclave, and crystallization operation was performed under a self-pressure under conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm. After completion of the crystallization operation, the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water. The solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.

得られた焼成物は、X線回析分析(機種名:Rigaku RINT−2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、64.8であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%であった。
得られた焼成物の1g当り5mLの割合で30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型結晶性アルミノシリケートを得た。その後、780℃で3時間焼成を行い、プロトン型結晶性アルミノシリケートを得た。
As a result of X-ray diffraction analysis (model name: Rigaku RINT-2500V), the obtained fired product was confirmed to have an MFI structure. The fluorescent X-ray analysis (model name: Rigaku ZSX101e) by, SiO 2 / Al 2 O 3 ratio (molar ratio) was 64.8. Moreover, the aluminum element contained in the lattice skeleton calculated from this result was 1.32% by mass.
A 30% by mass ammonium nitrate aqueous solution was added at a rate of 5 mL per 1 g of the obtained fired product, heated and stirred at 100 ° C. for 2 hours, filtered, and washed with water. This operation was repeated 4 times, followed by drying at 120 ° C. for 3 hours to obtain an ammonium type crystalline aluminosilicate. Thereafter, baking was performed at 780 ° C. for 3 hours to obtain a proton-type crystalline aluminosilicate.

次いで、得られたプロトン型結晶性アルミノシリケート30gに、0.2質量%のリン(触媒全重量を100質量%とした値)が含まれるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、結晶性アルミノシリケートとリンとを含有する触媒を得た。
また、得られた触媒は、結晶性アルミノシリケートに含まれるリンと、結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が0.14であり、触媒全重量に対するリン含有量は0.2質量%であった。
Next, 30 g of the obtained proton-type crystalline aluminosilicate was impregnated with 30 g of a diammonium hydrogen phosphate aqueous solution so that 0.2 mass% of phosphorus (a value where the total weight of the catalyst was 100 mass%) was contained. Dry at 0C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained the catalyst containing crystalline aluminosilicate and phosphorus.
The obtained catalyst had a molar ratio (P / Al ratio) of phosphorus contained in the crystalline aluminosilicate and aluminum of the crystalline aluminosilicate of 0.14, and the phosphorus content with respect to the total weight of the catalyst was 0. It was 2% by mass.

得られた触媒に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20〜28メッシュのサイズに揃えて、粒状体の触媒1(以下、「粒状化触媒1」という。)を得た。   The obtained catalyst was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and a granular catalyst 1 (hereinafter referred to as “granulated catalyst 1”). .)

(実施例2)
プロトン型結晶性アルミノシリケート30gに、0.7質量%のリン(触媒全重量を100質量%とした値)が含まれるようにリン酸水素二アンモニウム水溶液の濃度を調製し、該水溶液30gを含浸させたこと以外は参考例1と同様にして、粒状体の触媒2(以下、「粒状化触媒2」という。)を得た。
また、得られた触媒は、結晶性アルミノシリケートに含まれるリンと、結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が0.50であり、触媒全重量に対するリン含有量は0.7質量%であった。
(Example 2)
Adjust the concentration of diammonium hydrogen phosphate aqueous solution so that 30 g of proton-type crystalline aluminosilicate contains 0.7% by mass of phosphorus (the total catalyst weight is 100% by mass) and impregnate with 30 g of the aqueous solution. Except that, granular catalyst 2 (hereinafter referred to as “granulated catalyst 2”) was obtained in the same manner as in Reference Example 1 .
The obtained catalyst had a molar ratio (P / Al ratio) of phosphorus contained in the crystalline aluminosilicate to aluminum of the crystalline aluminosilicate of 0.50, and the phosphorus content with respect to the total weight of the catalyst was 0. 0.7% by mass.

(実施例3)
プロトン型結晶性アルミノシリケート30gに、1.2質量%のリン(触媒全重量を100質量%とした値)が含まれるようにリン酸水溶液の濃度を調製し、該水溶液30gを含浸させたこと以外は参考例1と同様にして、粒状体の触媒3(以下、「粒状化触媒3」という。)を得た。
また、得られた触媒は、結晶性アルミノシリケートに含まれるリンと、結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が0.86であり、触媒全重量に対するリン含有量は1.2質量%であった。
(Example 3)
The concentration of the phosphoric acid aqueous solution was adjusted so that 30 g of proton-type crystalline aluminosilicate contained 1.2% by mass of phosphorus (the value where the total weight of the catalyst was 100% by mass) was impregnated with 30 g of the aqueous solution. Except for the above, a granular catalyst 3 (hereinafter referred to as “granulated catalyst 3”) was obtained in the same manner as in Reference Example 1 .
Further, the obtained catalyst had a molar ratio (P / Al ratio) of phosphorus contained in the crystalline aluminosilicate to aluminum of the crystalline aluminosilicate of 0.86, and the phosphorus content with respect to the total weight of the catalyst was 1 It was 2% by mass.

(実施例4)
フュームドシリカ18gに、16.2質量%のリンが含有されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、リンを含有するフュームドシリカを得た。リンを含有するフュームドシリカ18gと実施例2で調製した触媒2:12gとを混合し、得られた触媒に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20〜28メッシュのサイズに揃えて、粒状体の触媒4(以下、「粒状化触媒4」という。)を得た。
また、得られた触媒は、結晶性アルミノシリケートに含まれるリンと、結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が0.50であり、触媒全重量に対するリン含有量は10質量%であった。
Example 4
18 g of fumed silica was impregnated with 30 g of a diammonium hydrogen phosphate aqueous solution so as to contain 16.2% by mass of phosphorus, and dried at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained the fumed silica containing phosphorus. 18 g of fumed silica containing phosphorus and 2:12 g of the catalyst prepared in Example 2 were mixed, and the resulting catalyst was subjected to tableting by applying a pressure of 39.2 MPa (400 kgf) and coarsely pulverized to 20 A granular catalyst 4 (hereinafter referred to as “granulated catalyst 4”) was obtained in a size of ˜28 mesh.
The obtained catalyst had a molar ratio (P / Al ratio) of phosphorus contained in the crystalline aluminosilicate to aluminum of the crystalline aluminosilicate of 0.50, and the phosphorus content relative to the total weight of the catalyst was 10 It was mass%.

(実施例5)
希硫酸に硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28〜30質量%、Na:9〜10質量%、残部水、日本化学工業(株)製)106gと純水の混合溶液を滴下し、シリカゾル水溶液(SiO濃度10.2%)を調製した。一方、実施例2で調製した結晶性アルミノシリケートとリンとを含有する触媒2:20.4gに蒸留水を加え、ゼオライトスラリーを調製した。上記のゼオライトスラリーとシリカゾル水溶液300gを混合し、調製したスラリーを250℃で噴霧乾燥し、球形触媒を得た。その後、600℃で3時間焼成し、平均粒子径が84μm、かさ密度が0.74g/ccある粉末状の触媒5(以下、「粉末状触媒5」という。)を得た。
また、得られた触媒は、結晶性アルミノシリケートに含まれるリンと、結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が0.50であり、触媒全重量に対するリン含有量は0.28質量%であった。
(Example 5)
Sodium silicate in dilute sulfuric acid (J sodium silicate No. 3, SiO 2: 28 to 30 mass%, Na: 9 to 10 wt%, balance water, Nippon Chemical Industrial Co., Ltd.) mixed solution of 106g of pure water The solution was added dropwise to prepare an aqueous silica sol solution (SiO 2 concentration 10.2%). Meanwhile, distilled water was added to 20.4 g of the catalyst 2: 20.4 g containing crystalline aluminosilicate and phosphorus prepared in Example 2 to prepare a zeolite slurry. The zeolite slurry and 300 g of silica sol aqueous solution were mixed, and the prepared slurry was spray-dried at 250 ° C. to obtain a spherical catalyst. Then, it baked at 600 degreeC for 3 hours, and obtained the powdery catalyst 5 (henceforth "the powdery catalyst 5") with an average particle diameter of 84 micrometers and a bulk density of 0.74 g / cc.
The obtained catalyst had a molar ratio (P / Al ratio) of phosphorus contained in the crystalline aluminosilicate to aluminum of the crystalline aluminosilicate of 0.50, and the phosphorus content with respect to the total weight of the catalyst was 0. It was 28% by mass.

(比較例1)
プロトン型結晶性アルミノシリケート30gに、2.0質量%のリン(触媒全重量を100質量%とした値)が含まれるようにリン酸水素二アンモニウム水溶液の濃度を調製し、該水溶液30gを含浸させたこと以外は参考例1と同様にして、粒状体の触媒6(以下、「粒状化触媒6」という。)を得た。
また、得られた触媒は、結晶性アルミノシリケートに含まれるリンと、結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が1.43であり、触媒全重量に対するリン含有量は2.0質量%であった。
(Comparative Example 1)
The concentration of the diammonium hydrogen phosphate aqueous solution was adjusted so that 30 g of proton-type crystalline aluminosilicate contained 2.0 mass% phosphorus (the total catalyst weight being 100 mass%) and impregnated with 30 g of the aqueous solution. Except that, granular catalyst 6 (hereinafter referred to as “granulated catalyst 6”) was obtained in the same manner as in Reference Example 1 .
The obtained catalyst had a molar ratio (P / Al ratio) of phosphorus contained in the crystalline aluminosilicate to aluminum of the crystalline aluminosilicate of 1.43, and the phosphorus content relative to the total weight of the catalyst was 2 It was 0.0 mass%.

(比較例2)
プロトン型結晶性アルミノシリケートをそのまま用いたこと以外は参考例1と同様にして、粒状体の触媒7(以下、「粒状化触媒7」という。)を得た。
(Comparative Example 2)
A granular catalyst 7 (hereinafter referred to as “granulated catalyst 7”) was obtained in the same manner as in Reference Example 1 except that the proton-type crystalline aluminosilicate was used as it was.

得られた粒状化触媒の反応初期の触媒活性および水熱劣化後の触媒活性を、以下のように評価した。   The catalytic activity of the obtained granulated catalyst at the beginning of the reaction and the catalytic activity after hydrothermal deterioration were evaluated as follows.

[反応初期の触媒活性の評価:評価1]
粒状化触媒(10ml)を反応器に充填した流通式反応装置を用い、反応温度:550℃、反応圧力:0MPaGの条件で、表1の性状を有する原料油を粒状化触媒と接触、反応させた。その際、原料油と粒状化触媒との接触時間が7秒となるように希釈剤として窒素を導入した。
この条件にて30分反応させて、炭素数6〜8の単環芳香族炭化水素を製造し、反応装置に直結されたFIDガスクロマトグラフにより生成物の組成分析を行って、反応初期の触媒活性を評価した。評価結果を表2に示す。
なお、表2中の生成物中の重質分とは炭素数6〜8の単環芳香族炭化水素以外で炭素数6以上の炭化水素を、軽質ナフサとは炭素数5〜6の炭化水素を、液化石油ガスとは炭素数3〜4の炭化水素を、分解ガスとは炭素数2以下の炭化水素を意味する。
[Evaluation of catalytic activity at the beginning of the reaction: Evaluation 1]
Using a flow-type reaction apparatus filled with a granulated catalyst (10 ml), a feedstock having the properties shown in Table 1 is brought into contact with and reacted with the granulated catalyst under the conditions of reaction temperature: 550 ° C. and reaction pressure: 0 MPaG. It was. At that time, nitrogen was introduced as a diluent so that the contact time between the raw material oil and the granulated catalyst was 7 seconds.
The reaction is carried out for 30 minutes under these conditions to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms, and the composition of the product is analyzed by an FID gas chromatograph directly connected to the reaction apparatus. Evaluated. The evaluation results are shown in Table 2.
The heavy components in the products in Table 2 are hydrocarbons having 6 or more carbon atoms other than monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, and light naphtha is a hydrocarbon having 5 to 6 carbon atoms. The liquefied petroleum gas means a hydrocarbon having 3 to 4 carbon atoms, and the cracked gas means a hydrocarbon having 2 or less carbon atoms.

[水熱劣化後の触媒活性の評価:評価2]
粒状化触媒1〜4、7を、各々、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒1〜4、7を作製した。
粒状化触媒1〜4、7の代わりに擬似劣化触媒1〜4、7を各々用いた以外は評価1と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。評価結果を表2に示す。
[Evaluation of catalytic activity after hydrothermal degradation: Evaluation 2]
Each of the granulated catalysts 1 to 4 and 7 is pseudo-degraded catalyst 1 to 4 which has been subjected to pseudo hydrothermal degradation by hydrothermal treatment in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and water vapor of 100% by mass. 7 were produced.
In the same manner as in Evaluation 1, except that the pseudo-degradation catalysts 1 to 4 and 7 were used in place of the granulated catalysts 1 to 4 and 7, respectively, the raw material oil was reacted and the resulting product was subjected to composition analysis and hydrothermal. The catalytic activity after deterioration was evaluated. The evaluation results are shown in Table 2.

[反応初期の単環芳香族炭化水素収率の測定:評価3]
粉末状触媒(400g)を反応器に充填した流通式反応装置を用い、反応温度:550℃、反応圧力:0.1MPaGの条件で、表1の性状を有する原料油を粉末状触媒と接触、反応させた。その際、直径60mmである反応管に粉末状触媒を充填した。原料油と粉末状触媒との接触時間が10秒となるように希釈剤として窒素を導入した。
この条件にて10分反応させて、炭素数6〜8の単環芳香族炭化水素を製造し、反応装置に直結されたFIDガスクロマトグラフにより生成物の組成分析を行って、反応初期の触媒活性を評価した。評価結果を表2に示す。
なお、表2中の生成物中の重質分とは炭素数6〜8の単環芳香族炭化水素以外で炭素数6以上の炭化水素を、軽質ナフサとは炭素数5〜6の炭化水素を、液化石油ガスとは炭素数3〜4の炭化水素を、分解ガスとは炭素数2以下の炭化水素を意味する。
[Measurement of monocyclic aromatic hydrocarbon yield at the initial stage of the reaction: Evaluation 3]
Using a flow-type reaction apparatus filled with a powdered catalyst (400 g) in a reactor, a raw material oil having the properties shown in Table 1 is brought into contact with the powdered catalyst under the conditions of reaction temperature: 550 ° C. and reaction pressure: 0.1 MPaG. Reacted. At that time, a powdered catalyst was filled in a reaction tube having a diameter of 60 mm. Nitrogen was introduced as a diluent so that the contact time between the raw material oil and the powdered catalyst was 10 seconds.
The reaction is carried out for 10 minutes under these conditions to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms. The composition of the product is analyzed by an FID gas chromatograph directly connected to the reaction apparatus, and the initial catalytic activity is obtained. Evaluated. The evaluation results are shown in Table 2.
The heavy components in the products in Table 2 are hydrocarbons having 6 or more carbon atoms other than monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, and light naphtha is a hydrocarbon having 5 to 6 carbon atoms. The liquefied petroleum gas means a hydrocarbon having 3 to 4 carbon atoms, and the cracked gas means a hydrocarbon having 2 or less carbon atoms.

[水熱劣化後の触媒活性の評価:評価4]
粉末状触媒5を、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒5を作製した。
粉末状触媒5の代わりに擬似劣化触媒5を用いた以外は評価3と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。評価結果を表2に示す。
[Evaluation of catalytic activity after hydrothermal degradation: Evaluation 4]
The powder catalyst 5 was hydrothermally treated in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and a water vapor of 100% by mass to produce a pseudo-degraded catalyst 5 that was pseudohydrothermally degraded.
Except for using the pseudo-degraded catalyst 5 instead of the powdered catalyst 5, the raw material oil was reacted in the same manner as in Evaluation 3, and the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal degradation. The evaluation results are shown in Table 2.

[触媒劣化]
反応初期の触媒活性評価(評価1または評価3)における炭素数6〜8の単環芳香族炭化水素量(質量%)に対する、水熱劣化後の触媒活性評価(評価2または評価4)における炭素数6〜8の単環芳香族炭化水素量(質量%)([評価2(または4)における炭素数6〜8の単環芳香族炭化水素量(質量%)]/[評価1(または3)における炭素数6〜8の単環芳香族炭化水素量(質量%)])の値を算出し、触媒劣化の度合いを求めた。結果を表2に併記する。なお、この値が大きいほど、触媒劣化が起こりにくいことを意味する。また、炭素数6〜8の単環芳香族炭化水素量は単環芳香族炭化水素量と略す場合もある。
[Catalyst degradation]
Carbon in the catalytic activity evaluation (evaluation 2 or evaluation 4) after hydrothermal degradation with respect to the amount of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms (mass%) in the catalytic activity evaluation (evaluation 1 or evaluation 3) at the initial stage of the reaction Amount of monocyclic aromatic hydrocarbons of 6 to 8 (mass%) ([Amount of monocyclic aromatic hydrocarbons of 6 to 8 carbon atoms (mass%) in Evaluation 2 (or 4)] / [Evaluation 1 (or 3 The value of the amount of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms (mass%)]) was calculated, and the degree of catalyst deterioration was determined. The results are also shown in Table 2. In addition, it means that catalyst deterioration is hard to occur, so that this value is large. Further, the amount of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms may be abbreviated as the amount of monocyclic aromatic hydrocarbons.

Figure 0005813853
Figure 0005813853

Figure 0005813853
Figure 0005813853

[結果]
粒状化触媒1〜4および粉末状触媒5を用いた参考例1及び実施例2〜5は、反応初期における炭素数6〜8の単環芳香族炭化水素生成量が、各々、39質量%、34質量%、22質量%、23質量%、31質量%であり、水熱劣化後の炭素数6〜8の単環芳香族炭化水素生成量が、各々、27質量%、30質量%、23質量%、22質量%、28質量%であり、触媒劣化の度合い([評価2(または4)における単環芳香族炭化水素量(質量%)]/[評価1(または3)における単環芳香族炭化水素量(質量%)])は、各々、0.69、0.90、1.06、0.96、0.9となった。
粒状化触媒1〜4および粉末状触媒5を用いた参考例1及び実施例2〜5は、反応初期の触媒活性および水熱劣化後の触媒活性のいずれも良好で、本願の目的とする炭素数6〜8の単環芳香族炭化水素を反応初期においても、水熱劣化後においても収率よく得られることが分かった。
一方、P/Al比が大きい粒状化触媒6を用いた比較例1は、反応初期における炭素数6〜8の単環芳香族炭化水素生成量が、5質量%となり、多量のリンを添加すると、反応初期においても生成物中の炭素数6〜8の単環芳香族炭化水素の収率が著しく低下することが分かった。
P/Al比が0である粒状化触媒7を用いた比較例2は、反応初期における炭素数6〜8の単環芳香族炭化水素生成量が38質量%、水熱劣化後の炭素数6〜8の単環芳香族炭化水素生成量が10質量%、触媒劣化の度合い([評価2における単環芳香族炭化水素量(質量%)]/[評価1における単環芳香族炭化水素量(質量%)])は0.26となり、リンを含有しない触媒を用いると、反応初期における炭素数6〜8の単環芳香族炭化水素の収率は良好であるが、水熱劣化後の収率が低下し、触媒劣化が著しく、実用的でないことが分かった。
[result]
In Reference Example 1 and Examples 2 to 5 using the granulated catalyst 1 to 4 and the powdered catalyst 5, the amount of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms in the initial reaction was 39% by mass, 34 mass%, 22 mass%, 23 mass%, and 31 mass%, and the amounts of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms after hydrothermal degradation were 27 mass%, 30 mass%, and 23, respectively. % By mass, 22% by mass, and 28% by mass, and the degree of catalyst deterioration ([monocyclic aromatic hydrocarbon amount (% by mass) in evaluation 2 (or 4)] / [monocyclic aromatic in evaluation 1 (or 3) Group hydrocarbon amount (mass%)] was 0.69, 0.90, 1.06, 0.96, and 0.9, respectively.
In Reference Example 1 and Examples 2 to 5 using the granulated catalysts 1 to 4 and the powdered catalyst 5, both the catalytic activity at the initial stage of the reaction and the catalytic activity after hydrothermal deterioration are good, and the target carbon of this application It has been found that monocyclic aromatic hydrocarbons of several 6 to 8 can be obtained in good yield both at the initial stage of the reaction and after hydrothermal deterioration.
On the other hand, in Comparative Example 1 using the granulated catalyst 6 having a large P / Al ratio, the amount of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms in the initial reaction is 5% by mass, and a large amount of phosphorus is added. It was also found that the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms in the product was significantly reduced even at the initial stage of the reaction.
In Comparative Example 2 using the granulated catalyst 7 having a P / Al ratio of 0, the production amount of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms in the initial reaction was 38% by mass, and the number of carbon atoms after hydrothermal deterioration was 6 The production amount of monocyclic aromatic hydrocarbons of ˜8 is 10% by mass, the degree of catalyst deterioration ([monocyclic aromatic hydrocarbon amount in evaluation 2 (% by mass)] / [monocyclic aromatic hydrocarbon amount in evaluation 1 ( Mass%)]) is 0.26, and when a catalyst containing no phosphorus is used, the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms at the beginning of the reaction is good, but the yield after hydrothermal deterioration is low. It was found that the rate was lowered, catalyst deterioration was remarkable, and it was not practical.

Claims (7)

10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6〜8の単環芳香族炭化水素を製造するための芳香族炭化水素製造用触媒であって、
結晶性アルミノシリケートとリンとを含有し、前記結晶性アルミノシリケートに含まれるリンと、前記結晶性アルミノシリケートのアルミニウムとのモル比率(P/Al比)が0.5以上、1.0以下であることを特徴とする単環芳香族炭化水素製造用触媒。
A catalyst for producing aromatic hydrocarbons for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms from a feedstock having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower Because
A crystalline aluminosilicate and phosphorus are contained, and the molar ratio (P / Al ratio) between phosphorus contained in the crystalline aluminosilicate and aluminum of the crystalline aluminosilicate is 0.5 or more and 1.0 or less. A catalyst for producing monocyclic aromatic hydrocarbons.
リン含有量が触媒重量に対して0.1〜10質量%であることを特徴とする請求項1に記載の単環芳香族炭化水素製造用触媒。   The catalyst for producing monocyclic aromatic hydrocarbons according to claim 1, wherein the phosphorus content is 0.1 to 10% by mass with respect to the catalyst weight. 前記結晶性アルミノシリケートが、ペンタシル型ゼオライトであることを特徴とする請求項1または2に記載の単環芳香族炭化水素製造用触媒。   The catalyst for producing monocyclic aromatic hydrocarbons according to claim 1 or 2, wherein the crystalline aluminosilicate is a pentasil-type zeolite. 前記結晶性アルミノシリケートが、MFI型ゼオライトであることを特徴とする請求項1から3のいずれか一項に記載の単環芳香族炭化水素製造用触媒。   The catalyst for producing monocyclic aromatic hydrocarbons according to any one of claims 1 to 3, wherein the crystalline aluminosilicate is MFI-type zeolite. 10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、請求項1から4のいずれか一項に記載の単環芳香族炭化水素製造用触媒に接触させることを特徴とする炭素数6〜8の単環芳香族炭化水素の製造方法。   A feedstock having a 10% by volume distillation temperature of 140 ° C or higher and a 90% by volume distillation temperature of 380 ° C or lower is used as the catalyst for producing monocyclic aromatic hydrocarbons according to any one of claims 1 to 4. A method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms, wherein the method comprises contacting them. 前記原料油が、流動接触分解装置で生成する分解軽油を含むことを特徴とする請求項5に記載の炭素数6〜8の単環芳香族炭化水素の製造方法。   The method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to claim 5, wherein the raw material oil contains cracked light oil produced by a fluid catalytic cracking apparatus. 流動床反応装置にて前記原料油を前記単環芳香族炭化水素製造用触媒に接触させることを特徴とする請求項5または6に記載の炭素数6〜8の単環芳香族炭化水素の製造方法。   The production of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms according to claim 5 or 6, wherein the feed oil is brought into contact with the catalyst for producing monocyclic aromatic hydrocarbons in a fluidized bed reactor. Method.
JP2014239361A 2014-11-26 2014-11-26 Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon Active JP5813853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014239361A JP5813853B2 (en) 2014-11-26 2014-11-26 Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014239361A JP5813853B2 (en) 2014-11-26 2014-11-26 Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010294185A Division JP2012139640A (en) 2010-12-28 2010-12-28 Catalyst for producing monocyclic aromatic hydrocarbon and method of producing the monocyclic aromatic hydrocarbon

Publications (2)

Publication Number Publication Date
JP2015044199A JP2015044199A (en) 2015-03-12
JP5813853B2 true JP5813853B2 (en) 2015-11-17

Family

ID=52670206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014239361A Active JP5813853B2 (en) 2014-11-26 2014-11-26 Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JP5813853B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032128A (en) * 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd Production of monocyclic aromatic-containing hydrocarbon
JPH0326791A (en) * 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd Production of hydrocarbon
JPH0352993A (en) * 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Production of hydrocarbon rich in btx
US5685972A (en) * 1995-07-14 1997-11-11 Timken; Hye Kyung C. Production of benzene, toluene, and xylene (BTX) from FCC naphtha
JP4823655B2 (en) * 2005-11-21 2011-11-24 出光興産株式会社 Method for producing xylenes
CN102361959B (en) * 2009-03-27 2014-07-30 吉坤日矿日石能源株式会社 Method for producing aromatic hydrocarbons

Also Published As

Publication number Publication date
JP2015044199A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP4820919B2 (en) Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
JP6147376B2 (en) Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
JP2012139640A (en) Catalyst for producing monocyclic aromatic hydrocarbon and method of producing the monocyclic aromatic hydrocarbon
JP4740396B2 (en) Process for producing aromatic hydrocarbons
JP4917672B2 (en) Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
JP5868012B2 (en) Monocyclic aromatic hydrocarbon production method
WO2012091100A1 (en) Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
JP5813853B2 (en) Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
JP5587761B2 (en) Monocyclic aromatic hydrocarbon production method
JP5750434B2 (en) Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R150 Certificate of patent or registration of utility model

Ref document number: 5813853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250