JPH0326791A - Production of hydrocarbon - Google Patents

Production of hydrocarbon

Info

Publication number
JPH0326791A
JPH0326791A JP15943689A JP15943689A JPH0326791A JP H0326791 A JPH0326791 A JP H0326791A JP 15943689 A JP15943689 A JP 15943689A JP 15943689 A JP15943689 A JP 15943689A JP H0326791 A JPH0326791 A JP H0326791A
Authority
JP
Japan
Prior art keywords
hydrocarbon
hydrocarbons
reaction
catalyst
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15943689A
Other languages
Japanese (ja)
Inventor
Hiroji Masunaga
増永 博治
Junichi Kanai
金井 順一
Hiroshi Sugiyama
洋 杉山
Takanori Ono
大野 高範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP15943689A priority Critical patent/JPH0326791A/en
Publication of JPH0326791A publication Critical patent/JPH0326791A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain a hydrocarbon rich in benzene, toluene and xylene by blending a light hydrocarbon with a hydrocarbon containing a polycyclic and a monocyclic hydrocarbons and reacting in the presence of a zeolite- containing catalyst. CONSTITUTION:(A) 2-8C light hydrocarbon is blended with (B) 1-50wt.% (1-30wt.%) based on the total amounts of hydrocarbons of >=9C hydrocarbon containing 140wt.% aromatic hydrocarbon and >=3wt.% polycyclic aromatic hydrocarbon. Then the hydrocarbons are reacted in the presence of a catalyst containing a zeolite having >=1 CI value to give the aimed hydrocarbon. A catalyst containing a metal such as Cu, Ag, Zn, Cd, Ga, Cr, W, Se, Te, Re, Co, Ni, Pd, Ir and Pt may be cited as the catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はBTXに冨む炭化水素の製造方法に関し、より
詳しく言うと、炭素数2〜8の軽質炭化水素から高オク
タンガソリンの基材や石油化学原料などとして有用なB
TXすなわちベンゼン、トルエン、キシレンに冨む炭化
水素を効率よく製造する方法に関する. 〔従来の技術〕 軽質炭化水素を含有するナフサ、特にライトナフサは用
途が少なく余剰であるため、より高付加価値のBTX含
有炭化水素への効率のよい変換技術が求められている.
一方、LC○(ライトサイクルオイル)、HCO (ヘ
ビーサイクルオイル)、CLO (タラリファイドオイ
ル)などのFCC(フルイドキャタリティッククラフキ
ング)循環油、石炭液化油、重質油熱分解プロセス生或
油、重質油水素化分解生或油等の炭素数9以上の炭化水
素留分ち同様に高付加価値化が求められている。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing hydrocarbons enriched in BTX, and more specifically, the present invention relates to a method for producing hydrocarbons enriched in BTX, and more specifically, from light hydrocarbons having 2 to 8 carbon atoms to base materials for high octane gasoline and B is useful as a petrochemical raw material, etc.
TX, that is, a method for efficiently producing hydrocarbons rich in benzene, toluene, and xylene. [Prior Art] Naphtha containing light hydrocarbons, especially light naphtha, has few uses and is in surplus, so there is a need for efficient conversion technology to higher value-added BTX-containing hydrocarbons.
On the other hand, FCC (Fluid Catalytic Crafting) circulating oils such as LC○ (Light Cycle Oil), HCO (Heavy Cycle Oil), and CLO (Thalarified Oil), coal liquefied oil, heavy oil pyrolysis process raw oil, heavy oil Similarly, high added value is required for hydrocarbon fractions having 9 or more carbon atoms, such as oil hydrocracked products or oils.

炭素数2〜8の軽質炭化水素と重質炭化水素とを反応原
料として用いBTX含有炭化水素を製造する従来技術と
して、■反応原料として芳香族炭化水素を15重量%以
下含有する炭素数5以上の炭化水素を用いる方法(特公
昭56−42639号公報)、■反応原料としてナフサ
と軽油の混合物を用い、ナフサの高オクタン価化及び軽
油の低流動点化を狙いとする方法(米国特許第3893
906号明細書)及び■反応原料として炭素数2以上の
オレフィンと軽油との混合物を用いる方法(特開昭57
−144791号公報)が知られている. しかしながら、前記■の方法においては、芳香族炭化水
素含量が少ない反応原料を用いていることから反応熱(
吸熱)が大きく反応温度を維持するのが比較的困難であ
るなどの問題点がある。なお、■の公報にはLCO等の
多環芳香族炭化水素含量の多い留分を反応原料成分とし
て用いるという記載はなく、また、芳香族炭化水素は該
公報に記載の条件下では反応に実質的に関与しないため
原料威分として少ない方がよいとしている.前記■の方
法においては、重質炭化水素源として軽油を用いている
ので、生底物中の芳香族炭化水素含量が15〜30容量
%程度と少なく、反応熱(吸熱)の低減も十分とは言い
難いなどの問題点がある.また、■の明細書にはLCO
等の炭素数9以上の芳香族含量の多い留分を反応原料の
戒分として用いるという記載はない。
As a conventional technique for producing BTX-containing hydrocarbons using light hydrocarbons having 2 to 8 carbon atoms and heavy hydrocarbons as reaction raw materials, (Japanese Patent Publication No. 56-42639), ■ A method using a mixture of naphtha and light oil as a reaction raw material and aiming at increasing the octane number of naphtha and lowering the pour point of light oil (US Patent No. 3893).
906 specification) and (2) a method using a mixture of an olefin having 2 or more carbon atoms and light oil as a reaction raw material (Japanese Unexamined Patent Publication No. 57
-144791) is known. However, in method (1) above, reaction heat (
There are problems such as a large amount of heat (endotherm) and it is relatively difficult to maintain the reaction temperature. Note that the publication (■) does not mention that a fraction with a high content of polycyclic aromatic hydrocarbons such as LCO is used as a reaction raw material component, and aromatic hydrocarbons do not substantially participate in the reaction under the conditions described in the publication. It is said that it is better to use less raw material because it does not have a negative impact on the raw material content. In the method (2) above, since light oil is used as the heavy hydrocarbon source, the aromatic hydrocarbon content in the raw bottom material is as low as about 15 to 30% by volume, and the heat of reaction (endotherm) is sufficiently reduced. There are problems such as it is difficult to say. Also, in the statement of ■, LCO
There is no mention of using a fraction with a high aromatic content having 9 or more carbon atoms as a raw material for the reaction.

前記■の方法では、オレフィンを用いることによりBT
Xの収率等が改善されているが、重質炭化水素源として
は一般的軽油を用いているので反応熱(吸熱)低減の面
からはなお十分とは言い難いなどの問題点がある。
In the method (2) above, by using an olefin, BT
Although the yield of X has been improved, since general light oil is used as the heavy hydrocarbon source, there are still problems such as the reduction of reaction heat (endotherm) is still not sufficient.

すなわち、従来の技術は上記の如き様々の問題点を有し
ており、炭素数2〜8の軽質炭化水素からBTXに冨む
炭化水素を効率よく得る方法の開発が望まれていた。
That is, the conventional techniques have various problems as described above, and it has been desired to develop a method for efficiently obtaining BTX-rich hydrocarbons from light hydrocarbons having 2 to 8 carbon atoms.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記事情を鑑みてなされたものである. 本発明の目的は、前記問題点を解決し、炭素数2〜8の
軽質炭化水素からBTXに冨む炭化水素を効率よく製造
する方法を提供することにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to solve the above problems and provide a method for efficiently producing BTX-rich hydrocarbons from light hydrocarbons having 2 to 8 carbon atoms.

〔諜題を解決するための手段〕[Means for solving intelligence problems]

本発明者らは、前記問題点を解決すべく鋭意研究を重ね
た結果、炭素数2〜8の軽質炭化水素からCI値が1以
上という特定のゼオライトを含有する触媒を用いてBT
X含有炭化水素を製造するにあたり、反応原料成分とし
て芳香族炭化水素及び多環芳香族炭化水素をそれぞれ特
定分量含有する炭素数9以上の炭化水素を特定割合で添
加して反応を行うという方法により前記目的を満足する
ことができることを見出し、この知見に基づいて本発明
を完戒するに至った。
As a result of extensive research to solve the above-mentioned problems, the present inventors have succeeded in producing BT from light hydrocarbons having 2 to 8 carbon atoms using a catalyst containing a specific zeolite with a CI value of 1 or more.
In producing X-containing hydrocarbons, a reaction is carried out by adding a specific proportion of hydrocarbons having 9 or more carbon atoms each containing specific amounts of aromatic hydrocarbons and polycyclic aromatic hydrocarbons as reaction raw material components. It has been discovered that the above object can be satisfied, and based on this knowledge, the present invention has been completed.

すなわち、本発明は、炭素数2〜8の軽質炭化水素に、
芳香族炭化水素を40重量%以上、且つ多環芳香族炭化
水素を3重量%以上含有する炭素数9以上の炭化水素を
添加割合が炭化水素全体の1〜50重量%となるように
添加し、CI値が1以上であるゼオライトを含有する触
媒の存在下で反応させることを特徴とするBTXに冨む
炭化水素の製造方法を提供するものである. 本発明において、反応原料戒分として用いる前記炭素数
2〜8の社質炭化水素としては、炭素数2〜8の炭化水
素(直鎖状、分岐状又は環状のパラフィン、オレフィン
、ジエン等のボリエン類、アセチレン類など)の1種単
独又は2種以上の混合物からなるものあるいはそれらを
主或分として含有する軽質炭化水素留分を挙げることが
できる。
That is, the present invention provides light hydrocarbons having 2 to 8 carbon atoms,
Hydrocarbons having 9 or more carbon atoms containing 40% by weight or more of aromatic hydrocarbons and 3% by weight or more of polycyclic aromatic hydrocarbons are added so that the addition ratio is 1 to 50% by weight of the total hydrocarbons. The present invention provides a method for producing BTX-rich hydrocarbons, characterized in that the reaction is carried out in the presence of a catalyst containing zeolite having a CI value of 1 or more. In the present invention, the hydrocarbons having 2 to 8 carbon atoms used as reaction raw materials include hydrocarbons having 2 to 8 carbon atoms (linear, branched or cyclic paraffins, olefins, dienes, etc.). and acetylenes, etc.), or a light hydrocarbon fraction containing them as a main component.

なお、この炭素数2〜8の軽質炭化水素は、本発明の目
的に支障のない範囲内で単環芳香族やメタン等の不純物
を少量含有しているものであってもよい。
Note that this light hydrocarbon having 2 to 8 carbon atoms may contain a small amount of impurities such as monocyclic aromatics and methane within a range that does not interfere with the purpose of the present invention.

本発明においては、前記特定の炭素数9以上の炭化水素
を前記炭素数2〜8の軽質炭化水素とともに反応系に供
給して反応原料分として使用する。
In the present invention, the specific hydrocarbon having 9 or more carbon atoms is supplied to the reaction system together with the light hydrocarbon having 2 to 8 carbon atoms and used as a reaction raw material.

この炭素数9以上の炭化水素は、炭素数9以上の芳香族
炭化水素(単環芳香族炭化水素及び2環以上の多環芳香
族炭化水素)を40重量%以上含有し、且つ2環以上の
多環芳香族炭化水素を3重量%以上含有するものである
This hydrocarbon having 9 or more carbon atoms contains 40% by weight or more of an aromatic hydrocarbon having 9 or more carbon atoms (monocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons having 2 or more rings), and contains 2 or more rings. It contains 3% by weight or more of polycyclic aromatic hydrocarbons.

前記炭素数9以上の単環芳香族炭化水素の具体例として
は、例えば、トリメチルベンゼン、テトラメチルベンゼ
ン、ペンタメチルベンゼン、ヘキサメチルベンゼン、エ
チルメチルベンゼン、ジエチルベンゼン、プロビルベン
ゼン、ブチルベンゼン等のアルキルベンゼン、メチルビ
ニルベンゼン、ブロペニルベンゼン、ブテニルベンゼン
等のアルケニルベンゼンなどの種々の炭化水素置換基を
有するベンゼン化合物を挙げることができる。これらは
1種単独で含有していてもよく、あるいは2種以上の混
合物として含有していてもよい。
Specific examples of the monocyclic aromatic hydrocarbon having 9 or more carbon atoms include alkylbenzenes such as trimethylbenzene, tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, ethylmethylbenzene, diethylbenzene, probylbenzene, and butylbenzene. , alkenylbenzenes such as methylvinylbenzene, propenylbenzene, butenylbenzene, and other benzene compounds having various hydrocarbon substituents. These may be contained singly or as a mixture of two or more.

本発明において、前記2環以上の多環芳香族炭化水素環
は、少なくとも1個の芳香族核を有する2環以上の芳香
族炭化水素であり、これらは置換基を有しないものであ
ってもよく、有するものであってもよくいずれでもよい
。この多環芳香族炭化水素としては、例えば、ナフタレ
ン、アルキル又はアルケニルナフタレンなどの置換基と
して1個以上の非環式炭化水素基を有する置換ナフタレ
ン類、ビフェニル類、ジフエニルアルカン又はアルケン
類などフエニル基もしくは置換フエニル基を2個有する
芳香族系2環炭化水素、シクロアルキル基、シクロアル
ケニル基などの非芳香族系環式炭化水素基を1個含む炭
化水素基を置換基′として有するベンゼン類、あるいは
インデン類、ジヒドロナフタレン類、テトラヒドロナフ
タレン類などの1個のベンゼン核もしくは置換ベンゼン
核と1個の非芳香族系炭化水素環を含む2環式の芳香族
炭化水素などの各種の2環芳香族炭化水素、アントラセ
ン、置換基として1個以上の非環式炭化水素基を有する
置換アントラセン類、フエナントレン、置換基として1
個以上の非環式炭化水素基を有する置換フエナントレン
類、l個又は2個のベンゼン環もしくは置換ヘンゼン環
を有する3環式の芳香族炭化水素(フルオレンや置換フ
ルオレン等を含む)、あるいは1個のナフタレン環もし
くは置換ナフタレン環を有する3環式の芳香族炭化水素
などの各種の3環芳香族炭化水素などを挙げることがで
きる。これらの中でも、本発明の方法において通常好適
に使用される2環以上の多環芳香族炭化水素として、ナ
フタレンやメチルナフタレン、ジメチルナフタレン、ト
リメチルナフタレン、エチルナフタレン類などのアルキ
ルナフタレン類、アントラセンやメチルアントラセン、
ジメチルアントラセンなどのアルキルアントラセン類、
フエナントレンやメチルフエナントレン等のアルキルフ
ェナントレン頻などを挙げることができる。
In the present invention, the polycyclic aromatic hydrocarbon ring having two or more rings is an aromatic hydrocarbon ring having at least one ring and having at least one aromatic nucleus, even if these have no substituents. However, it is possible to have any of the following. Examples of the polycyclic aromatic hydrocarbon include substituted naphthalenes having one or more acyclic hydrocarbon groups as a substituent such as naphthalene, alkyl or alkenylnaphthalene, phenyls such as biphenyls, diphenylalkanes, and alkenes. benzenes having as a substituent a hydrocarbon group containing one non-aromatic cyclic hydrocarbon group such as an aromatic bicyclic hydrocarbon group having two groups or substituted phenyl groups, a cycloalkyl group, a cycloalkenyl group, etc. , or various 2-rings such as bicyclic aromatic hydrocarbons containing one benzene nucleus or substituted benzene nucleus and one non-aromatic hydrocarbon ring such as indenes, dihydronaphthalenes, and tetrahydronaphthalenes. Aromatic hydrocarbons, anthracene, substituted anthracenes having one or more acyclic hydrocarbon groups as a substituent, phenanthrene, 1 as a substituent
Substituted phenanthrenes having 1 or more acyclic hydrocarbon groups, tricyclic aromatic hydrocarbons having 1 or 2 benzene rings or substituted hanzene rings (including fluorene, substituted fluorene, etc.), or 1 or more acyclic hydrocarbon groups; Examples include various 3-ring aromatic hydrocarbons such as 3-ring aromatic hydrocarbons having a naphthalene ring or a substituted naphthalene ring. Among these, polycyclic aromatic hydrocarbons having two or more rings which are usually suitably used in the method of the present invention include naphthalene, alkylnaphthalenes such as methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene, and ethylnaphthalenes, anthracene and methyl anthracene,
Alkylanthracenes such as dimethylanthracene,
Examples include alkylphenanthrenes such as phenanthrene and methylphenanthrene.

なお、前記2環以上の多環芳香族炭化水素は、1種単独
で含有していてもよく、2種以上を混合物として含有し
ていてもよい。
The polycyclic aromatic hydrocarbon having two or more rings may be contained alone or in a mixture of two or more.

本発明の方法において、反応原料戒分として使用する炭
素数9以上の炭化水素留分中の前記炭素数9以上の芳香
族炭化水素の含有割合が40重量%未満であったりある
いは前記2環以上の多環芳香族炭化水素の含有割合が3
重量%未満であると前記反応における発熱効果が不十分
となり、使用する炭素数2〜8の軽質炭化水素の吸熱反
応の吸熱量を十分に補うことができなくなり、反応系全
体の吸熱量を効果的に低減することができない.本発明
においては、少なくとも前記炭素数2〜8の軽質炭化水
素と前記特定の炭素数9以上の炭化水素の混合物を反応
原料として用い、これを前記触媒の存在下で行う反応系
に供給し、反応せしめBTXに冨む炭化水素を製造する
.この際使用する前記炭素数9以上の炭化水素留分の割
合は、前記反応系に供給する全炭化水素(これをHCと
略記することがある.)を100重量%としたときに、
1〜50重量%の範囲内、好ましくは1〜30重量%の
範囲内に設定する.この割合が、1重量%未満では、前
記したように吸熱反応の吸熱量の低減効果が得られず、
一方、50重量%を超えると炭素数2〜8の軽質炭化水
素の吸熱量自体は少なくなるが、所望の炭素数2〜8の
軽質炭化水素からのBTX等への転換反応に対するプロ
セス効率が低くなり、同時にBTXの生戒量が大きく減
少し、本発明の目的を達戒することができない. 本発明の方法において、前記炭素数9以上の炭化水素と
して好ましくは使用することができるものとして、例え
ば、LCO,HCO,CLOなどのFCCWI環油、石
炭液化油、重質油熱分解プロセス生成油、重質油水素化
分解生成油などを挙げることができる.これらは、所望
に応じて2種類のものを混合したり、適宜戒分や組或を
調整して使用することもできる. なお、前記炭素数9以上の炭化水素は、本発明の目的に
支障のない範囲内で、イオウ戒分、酸素威分、窒素威分
などを含有するヘテロ原子含有炭化水素類を含有するも
のであってもよい.本発明の方法において、前記反応は
水素(H.)の存在下で行うことができるし、その非存
在下で行うこともできる。前記反応系に供給する水素(
H!)の割合は、供給する全炭化水素(HC)に対する
モル比で表すと、O≦(H./HC)≦1の範囲内とす
るのが好ましい.この割合(モル比)が1を超えると過
度の水素化分解が起こり易くなり、低級パラフィンが生
威し、BTXの収率が低下することがある. また、前記反応は、本発明の目的に支障のない範囲内で
、例えば、窒素ガス、アルゴン、ヘリウムなどの不活性
ガスやスチーム等の他のガス成分の共存下で行うことも
できる。
In the method of the present invention, the content of the aromatic hydrocarbon having 9 or more carbon atoms in the hydrocarbon fraction having 9 or more carbon atoms used as a reaction raw material is less than 40% by weight, or The content of polycyclic aromatic hydrocarbons is 3
If it is less than % by weight, the exothermic effect in the reaction will be insufficient, and the endothermic amount of the endothermic reaction of the light hydrocarbon having 2 to 8 carbon atoms to be used will not be sufficiently compensated for, and the endothermic amount of the entire reaction system will be reduced. cannot be reduced. In the present invention, a mixture of at least the light hydrocarbon having 2 to 8 carbon atoms and the specific hydrocarbon having 9 or more carbon atoms is used as a reaction raw material, and this is supplied to the reaction system in the presence of the catalyst, The reaction produces hydrocarbons enriched in BTX. The proportion of the hydrocarbon fraction having 9 or more carbon atoms used at this time is 100% by weight of the total hydrocarbons (sometimes abbreviated as HC) supplied to the reaction system.
It is set within the range of 1 to 50% by weight, preferably within the range of 1 to 30% by weight. If this proportion is less than 1% by weight, the effect of reducing the amount of heat absorbed by the endothermic reaction cannot be obtained as described above,
On the other hand, if it exceeds 50% by weight, the endothermic amount of light hydrocarbons having 2 to 8 carbon atoms will decrease, but the process efficiency for the desired conversion reaction from light hydrocarbons having 2 to 8 carbon atoms to BTX etc. will be low. At the same time, the amount of BTX consumed decreases significantly, making it impossible to achieve the purpose of the present invention. In the method of the present invention, hydrocarbons having 9 or more carbon atoms that can be preferably used include, for example, FCCWI ring oils such as LCO, HCO, and CLO, coal liquefied oils, and heavy oil pyrolysis process oils. , heavy oil hydrocracked oil, etc. These can be used by mixing two types or adjusting the precepts and groups as desired. In addition, the hydrocarbons having 9 or more carbon atoms are those containing heteroatom-containing hydrocarbons containing sulfur, oxygen, nitrogen, etc., within a range that does not interfere with the purpose of the present invention. It's okay. In the method of the present invention, the reaction can be carried out in the presence of hydrogen (H.) or in its absence. Hydrogen (
H! ) is preferably within the range of O≦(H./HC)≦1 when expressed as a molar ratio to the total hydrocarbons (HC) to be supplied. If this ratio (molar ratio) exceeds 1, excessive hydrogenolysis is likely to occur, lower paraffins may grow, and the yield of BTX may decrease. Further, the reaction can be carried out in the presence of other gas components such as inert gas such as nitrogen gas, argon, and helium, or steam, within a range that does not interfere with the purpose of the present invention.

本発明の方法においては、前記炭素数2〜8の軽質炭化
水素と前記特定の組戒の炭素数9以上の炭化水素を前記
特定の割合で混合して得られる反応原料又はこれに水素
を含有させた混合原料を、前記触媒(すなわちCI値が
1以上であるゼオライトを含有する触媒)と接触させて
反応させBTχに富む炭化水素を製造する。
In the method of the present invention, the reaction raw material obtained by mixing the light hydrocarbon having 2 to 8 carbon atoms and the hydrocarbon having 9 or more carbon atoms of the specific combination in the specific ratio, or containing hydrogen therein. The resulting mixed raw material is brought into contact with the catalyst (that is, a catalyst containing zeolite having a CI value of 1 or more) and reacted to produce a hydrocarbon rich in BTχ.

ところで、CI値とは、ゼオライトの細孔が、n−パラ
フィンより大きな断面の分子の進入を制御する必要な特
性を有するかどうかを示す指数すなわち制御指数であり
、このCI値の定義を与えるCl値の測定方法は、米国
特許第4.016.218号明細書に完全に記載されて
いる。本発明に関わる前記CI値の定義及び測定方法は
、その米国特許第4,016,218号明細書に記載の
ものに従うものである。
By the way, the CI value is an index that indicates whether the zeolite pores have the necessary characteristics to control the entry of molecules with a cross section larger than that of n-paraffin, and is a control index that gives the definition of this CI value. The method of determining the value is fully described in US Pat. No. 4,016,218. The definition and measurement method of the CI value according to the present invention is in accordance with that described in US Pat. No. 4,016,218.

具体的には、n−へキサンと3−メチルペンタンとの等
しい重量の混合物を、90〜510”C,大気圧下でゼ
オライト上に通したときの、2種の炭化水素水素の各々
について変化しないで残っている分を測定する。
Specifically, the change in each of the two hydrocarbon hydrogens when a mixture of equal weights of n-hexane and 3-methylpentane is passed over a zeolite at 90-510"C and atmospheric pressure. Measure the amount remaining without

本発明の方法において、前記触媒又はその戒分として使
用するCI値が1以上であるゼオライトとしては、公知
のものなど各種のものを使用することができ、その具体
例としては、例えば、ZSM−5、ZSM−8、ZSM
−11等のZSM−5型ゼオライト、ZSM−23、Z
SM−35、クリノプチロライト、TMAオフレタイト
などを挙げることができる。これらの中でも、ZSM−
5、ZSM−8、ZSM−11などのZ SM− 5型
ゼオライトが好ましい。
In the method of the present invention, various known zeolites can be used as the zeolite having a CI value of 1 or more to be used as the catalyst or its component, and specific examples thereof include, for example, ZSM- 5, ZSM-8, ZSM
ZSM-5 type zeolite such as -11, ZSM-23, Z
Examples include SM-35, clinoptilolite, and TMA offretite. Among these, ZSM-
ZSM-5 type zeolites such as 5, ZSM-8 and ZSM-11 are preferred.

本発明の方法において、触媒又はその戒分としてゼオラ
イトを使用したとしても、CI値が1以上のものを使用
しない場合には、BTXO生或量が少なくなり本発明の
目的を達成することができない。
In the method of the present invention, even if zeolite is used as a catalyst or its component, if a zeolite with a CI value of 1 or more is not used, the amount of BTXO produced will decrease and the object of the present invention cannot be achieved. .

本発明のBTXに冨む炭化水素の製造方法において使用
する前記触媒は、前記CI値が1以上のゼオライトを少
なくとも1種含有するものであるが、この触媒は同時に
水素化一脱水素化能を有する金属或分を.含有するもの
が好適に使用することができる.この金属成分となる金
属元素として、例えば、Cu,Ag,Zn,Cd,Ga
,Cr,W,Se,Te,Re,Co,Ni,Pd,I
r及びPtを挙げることができる。なお、これらの金属
元素は、1種単独で用いることもできるし、2種以上を
併用することもできる。
The catalyst used in the method for producing BTX-rich hydrocarbons of the present invention contains at least one zeolite having the CI value of 1 or more, and this catalyst also has hydrogenation and dehydrogenation abilities. A certain amount of metal. Those containing these substances can be suitably used. Examples of metal elements serving as this metal component include Cu, Ag, Zn, Cd, and Ga.
, Cr, W, Se, Te, Re, Co, Ni, Pd, I
Mention may be made of r and Pt. Note that these metal elements can be used alone or in combination of two or more.

これらの金属威分は、例えば、金属、炭酸塩、硫酸塩、
硝酸塩、酸化物、硫化物、塩化物などの各種の形態で添
加される。好ましくは焼成などの処理をすることで酸化
物や硫化物として使用される。
These metal components include, for example, metals, carbonates, sulfates,
It is added in various forms such as nitrates, oxides, sulfides, and chlorides. It is preferably used as an oxide or sulfide by processing such as calcination.

本発明の方法において使用する前記触媒もしくはその戒
分を構或するにあたって、前記各種の金属成分は、前記
ゼオライトと種々の形で組み合わせて用いることができ
る。それら各種の金属或分は、例えば、該ゼオライトの
構或戒分(例えば、イオン交換性の陽イオン、フレーム
ワーク中の置換原子、あるいはこれらが触媒の調製時、
前処理時、反応時、再生時などの処理により変性を受け
て生じる種々の形態など)として含有していてもよく、
あるいは前記金属或分の1種又は2種以上を含有する前
記ゼオライト、これらを含有しない前記ゼオライト又は
それらの混合物からなる担体に例えば、イオン交換法、
含浸法等により担持した形で含有していてもよく、ある
いはそれらのゼオライトと物理混合した形で含有してい
てもよく、どのような形で含有していてもよい。
In constructing the catalyst or its components used in the method of the present invention, the various metal components can be used in various combinations with the zeolite. These various metals may be present, for example, in the structure of the zeolite (e.g., ion-exchangeable cations, substituted atoms in the framework, or if these metals are present during the preparation of the catalyst).
It may be contained in various forms resulting from denaturation during pretreatment, reaction, regeneration, etc.),
Alternatively, for example, an ion exchange method,
It may be contained in the form of being supported by an impregnation method or the like, or it may be contained in the form of a physical mixture with those zeolites, and it may be contained in any form.

本発明の方法においては、前記触媒又はその或分として
用いる前記ゼオライトとして、前記各種のものの中でも
特にガロアルミノシリケート及びその変性ゼオライトが
好ましく使用される。なお、前記ガロアルミノシリケー
ト及びその変性ゼオライトにおいて、Gaの状態は、イ
オン状態でも、格子置換原子の状態でもよいし、酸化物
状態でもよいし、これらの混合状態でもよい。ガロアル
ミノシリケートは合成後に、必ずしも全てのGaがその
格子に組み込まれた4配位の状態ではなく、6配位のガ
リウム酸化物が存在していることが考えられる。また、
ガロアルミノシリケートを例えば高温処理あるいはスチ
ーム処理等の変性処理をすることにより、Gaを格子か
ら脱落させて6配位のGaとすることができ、より好ま
しい活性等の触媒特性を与えるゼオライトとすることが
できる。また、高温処理は、空気中、不活性ガス中、水
素中など任意の雰囲気で行うことができる。
In the method of the present invention, as the zeolite used as the catalyst or a part thereof, galloaluminosilicate and its modified zeolite are particularly preferably used among the various zeolites. In the galoaluminosilicate and its modified zeolite, the state of Ga may be an ionic state, a lattice substituted atom state, an oxide state, or a mixed state thereof. After synthesis, galloaluminosilicate is not necessarily in a four-coordinated state in which all Ga is incorporated into its lattice, but it is thought that six-coordinated gallium oxide exists. Also,
By subjecting galoaluminosilicate to a modification treatment such as high-temperature treatment or steam treatment, Ga can be removed from the lattice to form 6-coordinated Ga, resulting in a zeolite that provides more favorable catalytic properties such as activity. Can be done. Further, the high temperature treatment can be performed in any atmosphere such as air, inert gas, or hydrogen.

本発明の方法において使用する前記触媒の形状としては
、特に制限はなく、所望に応じて各種の形状のものに成
形して使用することができる。この威形に際して、適宜
バインダーを使用することができる。このバインダーと
しては、本発明の目的に支障のないものであればどのよ
うなものも使用することができ、具体例としては、例え
ば、アルミナ、シリカ、シリカ・アルξナ、各種の粘土
鉱物などを挙げることができる. また、前記触媒には本発明の目的に支障のない範囲内で
他の添加威分を含有させることもできる。
The shape of the catalyst used in the method of the present invention is not particularly limited, and it can be molded into various shapes as desired. For this purpose, a binder can be used as appropriate. Any binder can be used as long as it does not interfere with the purpose of the present invention, and specific examples include alumina, silica, silica/alumina, various clay minerals, etc. can be mentioned. Further, the catalyst may contain other additives within a range that does not interfere with the purpose of the present invention.

本発明の方法において使用する前記触媒は、その調製方
法としては特に制限はなく、公知の方法など各種の方法
を適用して調製することができる。
The method for preparing the catalyst used in the method of the present invention is not particularly limited, and can be prepared by applying various methods such as known methods.

例えば、前記各種のゼオライトに前記各種の金属成分を
含む化合物を用いて、イオン交換法、含漫法、物理混合
法などにより調製してもよく、あるいはゼオライトを合
成する時に、ゲル中に前記各種の金属或分の化合物を含
有させる方法によってもよい。また、前記各種の金属或
分の添加は、バインダーと結合する前でもよく、後でも
よい。バインダーに金属或分の化合物を含浸又は混練後
、これをゼオライトと混合してもよい。
For example, compounds containing the various metal components may be used in the various zeolites and prepared by an ion exchange method, an incorporation method, a physical mixing method, etc., or when synthesizing zeolite, the various types of zeolites may be added to the gel. A method may also be used in which a compound containing a certain amount of metal is included. Further, a certain amount of the various metals may be added before or after bonding with the binder. After the binder is impregnated or kneaded with a certain metal compound, this may be mixed with the zeolite.

このようにして調製した各種の形状の触媒は、そのまま
本発明の方法の触媒として使用することができるが、通
常、適宜空気焼或を施し、さらには所望に応じて、各種
の活性化処理や変性処理などの前処理を施して使用する
のが好ましい。この変性処理としては、例えば、前記の
スチーム処理、酸処理、その他の脱アルミニウム処理な
どがあり、また、活性化処理としては、例えば、不活性
ガス中や真空排気下での加熱処理等による脱水処理、あ
るいは水素ガス等の還元性ガスによる還元処理などがあ
る。これらの活性化処理や変性処理によって、触媒活性
をさらに向上させることができるし、使用する前記反応
原料の組或や性状等に応じて、触媒特性を適宜調整する
こともできる.本発明の方法において、前記反応は、各
種の反応方法及びそれに適した各種の反応装置を用いて
行うことができ、例えば、固定床、移動床、流動床など
いずれによっても行うことができるが、通常は流動床に
よって行うのが好ましい。特に流動床反応装置と流動床
再生装置からなる装置を用い、反応と触媒の再生を共に
流動床方式で行いかつ触媒を反応器と触媒再生器間を循
環させる方式すなわち反応一再生触媒循環流動床方式を
用いるのが好ましい。流動床によると、触媒粒子の混合
・攪拌が十分に達成され、反応熱(吸熱)が大きい場合
にも比較的均一な温度分布が得られる。また、触媒の供
給・排出が容易でかつ反応中にも連続的に行うことがで
き、反応一触媒再生を短期間のサイクルで行うことがで
きる。したがって、触媒の劣化が大きい場合でも初期の
高活性な再生触媒を常時反応に利用することができ、高
活性状態を維持することができる。なお、反応一再生触
媒循環流動床方式を用いる場合において、前記炭素数2
〜8の軽質炭化水素だけを反応原料として用いると触媒
上へのコークの生威量が少なく、したがってこのコーク
の燃焼熱により再生器の温度を十分に維持することは難
しく、再生器の温度を維持するために多量の燃料を必要
とする.しかし、本発明の方法においては、反応原料威
分として前記芳香族炭化水素を含有する炭素数9以上の
.炭化水素を添加して反応を行うので、主としてその芳
香族炭化水素によりコークの収率が増加するので、再生
器の温度をこのコークの焼成熱によって効果的に維持す
ることができ、別途に使用する再生器の燃料を大幅に低
減することができる。また、熱補給のために再生器内で
焚く水素含有量の多い気体又は液体燃料を大幅に低減で
きることから、再生器内の水分量が大幅に下がりゼオラ
イト触媒の破壊を防止する効果も確保することができる
。さらに、再生器におけるコーク燃焼によって効果的に
高められた再生触媒の顕熱を流動床反応器に戻すことに
よって主反応(例えば、炭素数2〜8の炭化水素からB
TXへの反応)の反応熱(吸熱)を補給することができ
る。
The catalysts in various shapes thus prepared can be used as they are as catalysts in the method of the present invention, but they are usually subjected to air calcination as appropriate, and further subjected to various activation treatments and treatments as desired. It is preferable to perform pretreatment such as denaturation treatment before use. Examples of this modification treatment include the above-mentioned steam treatment, acid treatment, and other dealumination treatments, and activation treatments include, for example, dehydration by heat treatment in an inert gas or under vacuum exhaust. treatment, or reduction treatment using a reducing gas such as hydrogen gas. The catalytic activity can be further improved by these activation treatments and modification treatments, and the catalytic properties can also be adjusted as appropriate depending on the composition and properties of the reaction raw materials used. In the method of the present invention, the reaction can be carried out using various reaction methods and various reaction apparatuses suitable therefor, for example, it can be carried out using any of fixed bed, moving bed, fluidized bed, etc. Usually, it is preferable to use a fluidized bed. In particular, a system consisting of a fluidized bed reactor and a fluidized bed regenerator is used to carry out both the reaction and catalyst regeneration in a fluidized bed system, and the catalyst is circulated between the reactor and the catalyst regenerator, that is, the reaction-regeneration catalyst circulation fluidized bed. It is preferable to use a method. According to the fluidized bed, sufficient mixing and stirring of the catalyst particles can be achieved, and a relatively uniform temperature distribution can be obtained even when the reaction heat (endotherm) is large. Further, the supply and discharge of the catalyst are easy and can be carried out continuously during the reaction, and the reaction-catalyst regeneration can be carried out in a short cycle. Therefore, even if the catalyst is significantly deteriorated, the initially highly active regenerated catalyst can be used for the reaction at all times, and a highly active state can be maintained. In addition, when using the reaction-regenerated catalyst circulation fluidized bed system, the carbon number 2
If only the light hydrocarbons of ~8 are used as reaction raw materials, the amount of coke produced on the catalyst will be small, and therefore it will be difficult to maintain the regenerator temperature sufficiently using the combustion heat of this coke. It requires a large amount of fuel to maintain. However, in the method of the present invention, a reaction material having 9 or more carbon atoms containing the aromatic hydrocarbon is used as the reaction raw material. Since the reaction is carried out by adding hydrocarbons, the yield of coke is increased mainly due to its aromatic hydrocarbons, so the temperature of the regenerator can be effectively maintained by the calcination heat of this coke, which can be used separately. The amount of fuel used in the regenerator can be significantly reduced. In addition, since the amount of gas or liquid fuel with a high hydrogen content that is burned in the regenerator for heat replenishment can be significantly reduced, the amount of water in the regenerator is significantly reduced, ensuring the effect of preventing destruction of the zeolite catalyst. Can be done. Furthermore, by returning the sensible heat of the regenerated catalyst, which has been effectively increased by coke combustion in the regenerator, to the fluidized bed reactor, the main reaction (for example, from C2 to C8 hydrocarbons to B
It is possible to replenish the reaction heat (endotherm) of the reaction (reaction to TX).

本発明の方法において、前記反応は、通常、反応温度を
350〜700゜Cの範囲内、反応圧力を0 〜1 0
 kg/ciGの範囲内、空間速度(WHS■)を0.
 1〜15hr−’の範囲内として行うのが適当である
。例えば、固定床方式等で行う場合には上記の反応条件
を採用することができる。
In the method of the present invention, the reaction is usually carried out at a reaction temperature of 350 to 700°C and a reaction pressure of 0 to 10°C.
Within the range of kg/ciG, space velocity (WHS■) is 0.
It is appropriate to carry out within the range of 1 to 15 hr-'. For example, when carrying out the reaction using a fixed bed method, the above reaction conditions can be employed.

流動床方式でjテう場合には、反応温度(反応器の温度
)を、通常、350〜700゜C、好ましくは450〜
600″Cの範囲内とし、反応圧力を通常、O〜10k
g/cdG、好ましくはO 〜5 kg/ClllGの
範囲内とし、空間速度(WHSV)を0. 1〜1 5
 h r−’の範囲内とし、一方、触媒再生器の温度を
、通常、400〜800゜C、好ましくは500〜75
0゜Cの範囲内とし、触媒再生圧力を通常、O〜10k
g/c1iG、好ましくはO〜5kg/cIINGの範
囲内とするのが適当である。
When using a fluidized bed method, the reaction temperature (reactor temperature) is usually 350 to 700°C, preferably 450 to 700°C.
The temperature is within the range of 600″C, and the reaction pressure is usually O~10k.
g/cdG, preferably within the range of O to 5 kg/ClllG, and the space velocity (WHSV) is 0. 1-1 5
h r-', while the temperature of the catalyst regenerator is usually 400-800°C, preferably 500-75°C.
within the range of 0°C, and the catalyst regeneration pressure is usually O~10k.
g/c1iG, preferably within the range of 0 to 5 kg/cIING.

反応温度が、あまり高すぎると不都合な分解反応が多く
なり、BTXの収率が低下したり、触媒の劣化や破壊が
起こり易くなり、一方、反応温度があまり低すぎると十
分な反応速度が得られないことがある。
If the reaction temperature is too high, undesirable decomposition reactions will occur, resulting in a decrease in the yield of BTX and the deterioration or destruction of the catalyst. On the other hand, if the reaction temperature is too low, sufficient reaction rate may not be achieved. Sometimes I can't.

また、触媒再生温度があまり高すぎると、触媒の破壊が
起こり易くなり、またエネルギーコストやそのバランス
上不利になることがあり、一方、あまり低すぎると触媒
の再生が不十分となることがある。
In addition, if the catalyst regeneration temperature is too high, the catalyst may be easily destroyed, which may be disadvantageous in terms of energy costs and balance. On the other hand, if the catalyst regeneration temperature is too low, catalyst regeneration may be insufficient. .

以上のようにして、前記炭素数2〜8の軽質炭化水素を
高い収率でBTX (ベンゼン、トルエン、キシレン)
に転化することができる。また、添加した前記炭素数9
以上の炭化水素も同時に効率よ< BTXに転化するこ
とができる。
In the above manner, the light hydrocarbons having 2 to 8 carbon atoms can be converted into BTX (benzene, toluene, xylene) with high yield.
can be converted into. In addition, the number of carbon atoms added is 9.
The above hydrocarbons can also be efficiently converted to BTX at the same time.

このようにして得られた反応生底物中は多量のBTXを
含有しているが、通常ナフタレンなどの2環芳香族炭化
水素、水素及び軽質炭化水素(炭素数1〜5程度のバラ
フィンとオレフィン)等も含んでいる。
The reaction raw bottom obtained in this way contains a large amount of BTX, but it usually contains two-ring aromatic hydrocarbons such as naphthalene, hydrogen, and light hydrocarbons (baraffins and olefins with about 1 to 5 carbon atoms). ) etc. are also included.

このようにして得られたBTXを高濃度で含有する反応
生成物は、通常の分離手段、例えば気液分離、蒸留等に
より軽質な炭化水素や水素ガス等のガス或分や重質炭化
水素留分等を適宜分離除去することにより、所望の留分
範囲のBTXに冨む炭化水素(高オクタンガソリン留分
なと)として回収することができる。その際、気液分離
等によりガス側に逃げた芳香族炭化水素は、例えば重質
芳香族炭化水素による向流接触処理により回収すること
もできる。気液分離後の液は、通常、蒸留により分離精
製するが、蒸留塔ボトム液(ガソリン沸点より重質な炭
化水素)は、所望により適宜反応器にリサイクルし有効
に利用することもできる。また、反応生戒物に伴って反
応器より流出した触媒が気液分離器や蒸留塔の底部に堆
積する場合には、これは適宜上記リサイクル油と共に反
応器に戻すこともできる。さらに、ガソリン留分より軽
質な炭化水素ガス(通常、炭素数1〜5程度の炭化水素
)や水素ガスは、所望により適宜反応器ヘリサイクルし
で、芳香族の転化率をさらに向上させることもできる。
The reaction product containing a high concentration of BTX thus obtained is separated into light hydrocarbons, gases such as hydrogen gas, and heavy hydrocarbon distillates by conventional separation means such as gas-liquid separation and distillation. By appropriately separating and removing the fractions, etc., it is possible to recover hydrocarbons (such as high-octane gasoline fractions) rich in BTX in a desired fraction range. At this time, the aromatic hydrocarbons that escaped to the gas side due to gas-liquid separation or the like can be recovered, for example, by countercurrent contact treatment with heavy aromatic hydrocarbons. The liquid after gas-liquid separation is usually separated and purified by distillation, but the distillation column bottom liquid (hydrocarbons heavier than the boiling point of gasoline) can be appropriately recycled to a reactor and used effectively if desired. Furthermore, if the catalyst discharged from the reactor together with the reactants is deposited at the bottom of the gas-liquid separator or distillation column, it can be appropriately returned to the reactor together with the recycled oil. Furthermore, hydrocarbon gases lighter than gasoline fractions (usually hydrocarbons with about 1 to 5 carbon atoms) and hydrogen gas can be recycled to the reactor as needed to further improve the aromatic conversion rate. can.

以上のようにして所望のBTXに冨む炭化水素を効率よ
く製造することができる。
In the manner described above, hydrocarbons enriched in desired BTX can be efficiently produced.

以上のようにして得られたBTXに冨む炭化水素は、そ
のまま混合液として、あるいは適宜組成を調整して、例
えば畜オクタン化ガソリン用の基材等として好適に利用
することができるし、あるいはベンゼン、トルエン、キ
シレン等の単環芳香族炭化水素等の有用な威分を適宜分
離して、それぞれを石油化学原料や高品質の溶剤などと
して好通に利用することもできる。
The hydrocarbons enriched in the BTX obtained as described above can be suitably used as a mixed liquid as is, or by adjusting the composition as appropriate, for example, as a base material for livestock octanized gasoline, or It is also possible to appropriately separate useful components such as monocyclic aromatic hydrocarbons such as benzene, toluene, and xylene, and utilize them as petrochemical raw materials, high-quality solvents, and the like.

〔実施例〕〔Example〕

次に、本発明を実施例及び比較例によってさらに具体的
に説明するが、本発明は、これらに限定されるものでは
ない。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(触媒の調製例) 硫酸アルミニウム7.6g,硝酸ガリウム6.9g,テ
トラプ口ビルアンモニウムブロマイド2 6. 4 g
、硫酸(97%)15.0g、水250dからなる溶液
を(a)液、水ガラス(SiOz 2 8. 4%、N
az09.5%)214g、水2 1 211Zi!か
らなる(b)液、塩化ナトリウム80g、水122dか
らなる溶液を(C)液とする。(a)液、(b)液を(
C)液に同時に徐々に滴下しながら混合した。この反応
混合物を、そのpHを硫酸によりP H 9. 5に調
整後、Ifオートクレープ中で自己圧力下、170″C
で20時間、300rpn+で攪拌しながら保持した。
(Catalyst Preparation Example) 7.6 g of aluminum sulfate, 6.9 g of gallium nitrate, 2 grams of tetrapyrammonium bromide 6. 4 g
, a solution consisting of 15.0 g of sulfuric acid (97%) and 250 d of water was mixed with liquid (a), water glass (SiOz 2 8.4%, N
az09.5%) 214g, water 2 1 211Zi! A solution consisting of (b) consisting of 80 g of sodium chloride and 122 d of water is referred to as (C) liquid. (a) liquid, (b) liquid (
C) They were mixed while gradually dropping the mixture into the liquid at the same time. The reaction mixture was adjusted to pH 9.0 with sulfuric acid. After adjusting to
The mixture was maintained at 300 rpm+ for 20 hours with stirring.

冷却した後、混合液を濾過し、過剰の純水で十分洗浄し
た。その後、120℃で一昼夜乾燥することにより、Z
SM−5構造をもつガロアルミノシリケートゼオライト
を合威した.そして、これを空気気流中、540゜Cで
3hr焼威した.その後、INのNH4NO3水溶液に
て80゜Cで2hrかけてイオン交換し、次いで濾過、
水洗し、1 2 0 ’Cで乾燥後、空気気流中5 4
 0 ’C焼威し、焼成物をさらに、INのN84NO
i水でイオン交換し、濾過、水洗し、120゜Cで乾燥
を繰り返した後、720゜Cで3hr空気気流中で焼威
した.このガロアル業ノシリケートの元素m戒は、St
yx : Alz(h  : Gates  (モル比
)=80:1:0.7であり、そのCI値は8.1であ
った。その後、このガロアルミノシリケートとアルミナ
バインダーを混練し、バインダー含135Wt%とし、
スプレードライヤーにて造粒し、600゜Cで3hr焼
成して、触媒とした。
After cooling, the mixture was filtered and thoroughly washed with excess pure water. After that, Z
We have synthesized a galloaluminosilicate zeolite with an SM-5 structure. This was then incinerated at 540°C for 3 hours in an air stream. After that, ion exchange was performed with IN aqueous solution of NH4NO3 at 80°C for 2 hours, followed by filtration,
After washing with water and drying at 120'C, in a stream of air 54
Burn it at 0'C, then heat the fired product to IN N84NO.
After ion exchange with water, filtration, washing with water, and repeated drying at 120°C, it was incinerated at 720°C in an air stream for 3 hours. The element m precept of this Galoal karma silicate is St.
yx : Alz (h : Gates (molar ratio) = 80:1:0.7, and its CI value was 8.1. Then, this galloaluminosilicate and alumina binder were kneaded to obtain a binder containing 135 wt%. year,
The mixture was granulated using a spray dryer and fired at 600°C for 3 hours to obtain a catalyst.

実施例1及び2並びに比較例1及び2 上記調製例で得た触媒を用い、反応器/再生器それぞれ
の触媒量が200ccである流動床触媒循環再生式反応
器を用いて反応を実施した。
Examples 1 and 2 and Comparative Examples 1 and 2 Using the catalysts obtained in the above preparation examples, a reaction was carried out using a fluidized bed catalyst circulation regeneration type reactor in which the amount of catalyst in each reactor/regenerator was 200 cc.

原料は■DLN (デサルファイドライトナフサ)10
0wt%、■DLN/LC○−75wt%/ 2 5 
w t%、■DLN/LCO=50wt%/ 5 0 
w t%、■DLN/軽油=50wt.%/50wtを
用い、全体の原料供給量は1 0 0 g/h一定とし
た。使用したDLN,LCO、軽油の一般性状を第1表
、第2表、第3表に示す。
The raw material is ■DLN (desulfide light naphtha) 10
0wt%,■DLN/LC○-75wt%/2 5
wt%, ■DLN/LCO=50wt%/5 0
wt%, ■DLN/light oil=50wt. %/50wt was used, and the total raw material supply amount was kept constant at 100 g/h. The general properties of the DLN, LCO, and light oil used are shown in Tables 1, 2, and 3.

反応器の温度及び再生器の温度は、原料油か■の場合に
おいて、それぞれ5 3 0 ’C及び650゜Cとな
るように電気ヒーターの出力を調節して加熱した。なお
、反応器のヒーター出力は、原料油が■、■、■の場合
にものと同一とした。原料油■、■、■の再生器ヒータ
ーの出力は再生器温度が650゜C一定となるように調
整した。なお、反応器及び再生器等には保温材を巻き外
表面から熱ができる限り逃げないよう努めたが、完全断
熱にはなっていない。
The temperature of the reactor and the regenerator were heated by adjusting the output of the electric heater so that the temperature of the reactor and the regenerator were 530° C. and 650° C., respectively, in the case of feedstock oil and (2). In addition, the heater output of the reactor was the same as that when the raw material oil was ①, ②, or ②. The outputs of the regenerator heaters for feedstock oils (1), (2), and (2) were adjusted so that the regenerator temperature was constant at 650°C. Although efforts were made to prevent as much heat from escaping from the outer surface of the reactor and regenerator by wrapping heat insulating material around them, complete insulation was not achieved.

触媒の循環量は原料油■のとき約1.8kg/hとなる
よう調整した。また原料油■、■、■のときは反応器の
温度が5 3 0 ’Cとなるよう循環量を調整した。
The circulation rate of the catalyst was adjusted to be about 1.8 kg/h when using raw oil (3). In the case of feedstock oils ①, ②, and ③, the circulation rate was adjusted so that the temperature of the reactor was 530'C.

また、系全体の圧力は約0.7kg/cnGとなるよう
調整した。
Further, the pressure of the entire system was adjusted to be approximately 0.7 kg/cnG.

反応で得られた生成物はガスクロマトグラフを用いて分
析した。
The products obtained in the reaction were analyzed using a gas chromatograph.

触媒循環量及び生或物の分析結果(0.5hr後)を第
4表に示す.本結果の触媒循環量はLCOの添加により
、反応熱(吸熱)が低減することを示している。これは
、LCOに含まれる単環芳香族炭化水素の脱アルキル、
もしくは多環芳香族炭化水素の単環芳香族炭化水素への
反応(発熱)が関与しているためと考えられる。
Table 4 shows the amount of catalyst circulation and the analysis results of raw materials (after 0.5 hr). The catalyst circulation amount in this result shows that the heat of reaction (endotherm) is reduced by adding LCO. This is dealkylation of monocyclic aromatic hydrocarbons contained in LCO,
Alternatively, this may be due to the reaction (heat generation) of polycyclic aromatic hydrocarbons to monocyclic aromatic hydrocarbons.

原料油■とLC○を添加した原料油■の結果の比較から
、生威物炭化水素中のBTX量はほとんど変化せず、少
なくともLCO量2 5wt%以下ではBTX収量を変
化させずに反応熱(吸熱)が低減されることがわかる。
Comparison of the results for feedstock oil ■ and feedstock oil with LC○ added shows that the amount of BTX in the raw material hydrocarbons hardly changes, and at least when the LCO amount is 25 wt% or less, the reaction heat is reduced without changing the BTX yield. It can be seen that (endotherm) is reduced.

なお、LCOを添加した原料油■の方が、原料油■の場
合よりも、炭素数2〜8の軽質炭化水素あたりのBTX
の生或量は増加しているとみることができる。また、■
と■の比較より、LCO添加■の方が軽油添加■よりコ
ーク量が増加しており、これによって再生器の温度を保
持するために必要な外部からの熱供給を低減できること
がわかる。
In addition, feedstock oil (■) with LCO added has a higher BTX per light hydrocarbon having 2 to 8 carbon atoms than feedstock (■).
It can be seen that the amount of production is increasing. Also,■
From the comparison between and (2), it can be seen that the amount of coke increases with LCO addition (2) than with light oil addition (2), which makes it possible to reduce the external heat supply required to maintain the temperature of the regenerator.

第1表 原料DLN組成 DMB :ジメチルブタン MP ;メチルペンタン MCP:メチルシクロベンタン 箪3裏 添加原料戒分軽油の性状 〔発明の効果〕 本発明によると、炭素数2〜8の軽質炭化水素に特定の
組戒の炭素数9以上の炭化水素を特定量以上添加して反
応を行っているので、以下に示す効果を奏することがで
きる。
Table 1 Raw material DLN composition DMB: Dimethylbutane MP; Methylpentane MCP: Methylcyclobentane Since the reaction is carried out by adding a specified amount or more of a hydrocarbon having 9 or more carbon atoms, the following effects can be achieved.

(1)添加した炭素数9以上の炭化水素中の多環芳香族
の水素化分解、単環及び多環芳香族炭化水素の脱アルキ
ル化反応は発熱であるので、これらの反応の併発等によ
り反応器における反応熱(吸熱31)を低減することが
できる。
(1) Since the hydrogenolysis of polycyclic aromatics in the added hydrocarbons having 9 or more carbon atoms and the dealkylation of monocyclic and polycyclic aromatic hydrocarbons are exothermic, due to the simultaneous occurrence of these reactions, etc. The heat of reaction (endotherm 31) in the reactor can be reduced.

(2)触媒再生器付きの流動床反応器を用いることによ
り、反応と触媒再生を短時間で繰り返すことができ、初
期の劣化の少ない触媒の高活性を常時利用することがで
きる上に、炭素数9以上の炭化水素留分中の多環芳香族
炭化水素等の芳香族炭化水素分の作用等により触媒上へ
のコークの生成量が適度に増加し、これが触媒再生時の
熱源として有効に利用され、触媒再生器の温度保持のた
めの外部からの補給熱量すなわちエネルギーコストを大
幅に削減することができる.また、再生触媒の顕熱を流
動床反応器に有効に利用することができ、これにより、
上記(1)の効果をさらに改善することができる. 以上のように、本発明によると、炭素数2〜8の軽質炭
化水素をはじめとする原料炭化水素或分を高収率でBT
Xに転化することができ、BTXに富む炭化水素を効率
よく製造することができる実用上著しく有利なBTXに
冨む炭化水素の製造方法を提供することができる。
(2) By using a fluidized bed reactor equipped with a catalyst regenerator, the reaction and catalyst regeneration can be repeated in a short time, and the high activity of the catalyst with little initial deterioration can be constantly utilized. Due to the action of aromatic hydrocarbons such as polycyclic aromatic hydrocarbons in the hydrocarbon fraction of number 9 or more, the amount of coke produced on the catalyst increases moderately, and this becomes effective as a heat source during catalyst regeneration. This makes it possible to significantly reduce the amount of heat required from outside to maintain the temperature of the catalyst regenerator, that is, the energy cost. In addition, the sensible heat of the regenerated catalyst can be effectively used in the fluidized bed reactor.
The effect of (1) above can be further improved. As described above, according to the present invention, a certain amount of raw material hydrocarbons including light hydrocarbons having 2 to 8 carbon atoms can be converted into BT with high yield.
It is possible to provide a method for producing BTX-rich hydrocarbons that can be converted to X and efficiently produce BTX-rich hydrocarbons, which is extremely advantageous in practice.

Claims (1)

【特許請求の範囲】 1、炭素数2〜8の軽質炭化水素に、芳香族炭化水素を
40重量%以上、且つ多環芳香族炭化水素を3重量%以
上含有する炭素数9以上の炭化水素を添加割合が炭化水
素全体の1〜50重量%となるように添加し、CI値が
1以上であるゼオライトを含有する触媒の存在下で反応
させることを特徴とするBTXに冨む炭化水素の製造方
法。 2、炭素数9以上の炭化水素の添加割合が炭化水素全体
の1〜30重量%である請求項1記載のBTXに富む炭
化水素の製造方法。 3、触媒がCu、Ag、Zn、Cd、Ga、Cr、W、
Se、Te、Re、Co、Ni、Pd、Ir及びPtか
ら選ばれる1種又は2種以上の金属元素を含有するもの
である請求項1又は2記載のBTXに富む炭化水素の製
造方法。 4、反応を反応系に供給する水素(H_2)と全炭化水
素(HC)とのモル比(H_2/HC)を0以上かつ1
以下の範囲内として行う請求項1、2又は3記載のBT
Xに富む炭化水素の製造方法。 5、反応を流動床反応装置及び流動床再生装置からなる
装置を用いて行う請求項1〜4のいずれか記載のBTX
に富む炭化水素の製造方法。 6、炭素数9以上の炭化水素がFCC(フルイドキャタ
リティッククラッキング)循環油、石炭液化油、重質油
熱分解プロセス生成油又は重質油水素化分解生成油のも
のである請求項1〜5のいずれかに記載のBTXに富む
炭化水素の製造方法。
[Scope of Claims] 1. A hydrocarbon having 9 or more carbon atoms containing 40% by weight or more of an aromatic hydrocarbon and 3% or more by weight of a polycyclic aromatic hydrocarbon in a light hydrocarbon having 2 to 8 carbon atoms. is added in an amount of 1 to 50% by weight of the total hydrocarbons, and the reaction is carried out in the presence of a catalyst containing zeolite having a CI value of 1 or more. Production method. 2. The method for producing a BTX-rich hydrocarbon according to claim 1, wherein the addition ratio of the hydrocarbon having 9 or more carbon atoms is 1 to 30% by weight of the total hydrocarbon. 3. The catalyst is Cu, Ag, Zn, Cd, Ga, Cr, W,
The method for producing a BTX-rich hydrocarbon according to claim 1 or 2, which contains one or more metal elements selected from Se, Te, Re, Co, Ni, Pd, Ir, and Pt. 4. The molar ratio (H_2/HC) of hydrogen (H_2) and total hydrocarbons (HC) supplied to the reaction system is 0 or more and 1
BT according to claim 1, 2 or 3, which is carried out within the following range:
A method for producing an X-rich hydrocarbon. 5. BTX according to any one of claims 1 to 4, wherein the reaction is carried out using a device consisting of a fluidized bed reactor and a fluidized bed regenerator.
A method for producing hydrocarbons rich in 6. Claims 1 to 5 wherein the hydrocarbon having 9 or more carbon atoms is from FCC (fluid catalytic cracking) circulating oil, coal liquefied oil, heavy oil pyrolysis process oil, or heavy oil hydrocracking oil. A method for producing a BTX-rich hydrocarbon according to any one of the above.
JP15943689A 1989-06-23 1989-06-23 Production of hydrocarbon Pending JPH0326791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15943689A JPH0326791A (en) 1989-06-23 1989-06-23 Production of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15943689A JPH0326791A (en) 1989-06-23 1989-06-23 Production of hydrocarbon

Publications (1)

Publication Number Publication Date
JPH0326791A true JPH0326791A (en) 1991-02-05

Family

ID=15693715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15943689A Pending JPH0326791A (en) 1989-06-23 1989-06-23 Production of hydrocarbon

Country Status (1)

Country Link
JP (1) JPH0326791A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190575B1 (en) 1996-07-08 2001-02-20 Sony Corporation Polymer electrolyte, a polymer aggregating agent prepared therefrom, and a disposal of waste water
WO2010109897A1 (en) 2009-03-27 2010-09-30 新日本石油株式会社 Method for producing aromatic hydrocarbons
WO2011001572A1 (en) 2009-06-30 2011-01-06 新日本石油株式会社 Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
WO2011013272A1 (en) 2009-07-29 2011-02-03 新日本石油株式会社 Catalyst for production of monocyclic aromatic hydrocarbon, and process for production of monocyclic aromatic hydrocarbon
JP2011032333A (en) * 2009-07-30 2011-02-17 Chiyoda Kako Kensetsu Kk Operation method of aromatic product production plant of continuous fluid catalytic system
WO2011090121A1 (en) 2010-01-20 2011-07-28 Jx日鉱日石エネルギー株式会社 Catalyst for use in production of monocyclic aromatic hydrocarbon, and process for production of monocyclic aromatic hydrocarbon
WO2011118753A1 (en) * 2010-03-26 2011-09-29 Jx日鉱日石エネルギー株式会社 Method for producing monocyclic aromatic hydrocarbon
JP2011202082A (en) * 2010-03-26 2011-10-13 Chiyoda Kako Kensetsu Kk Operation method of aromatic-manufacturing plant of continuous fluidized catalytic system
WO2012036186A1 (en) 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 Aromatic hydrocarbon production process
WO2012036182A1 (en) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 Method for manufacturing aromatic hydrocarbon
WO2012091099A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Method for producing monocyclic aromatic hydrocarbon
WO2012091100A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
WO2012091119A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
WO2012091092A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
WO2012133180A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons
WO2012133138A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons
WO2012133170A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing monocyclic aromatic hydrocarbon
WO2012133197A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons
WO2012161264A1 (en) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 Method for producing monocylic aromatic hydrocarbons
WO2012161281A1 (en) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 Method for producing monocylic aromatic hydrocarbons
WO2012161263A1 (en) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 Method for producing xylene
JP2015044199A (en) * 2014-11-26 2015-03-12 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
KR101600430B1 (en) 2015-01-08 2016-03-07 한국화학연구원 A direct method for preparing monocyclic aromatics and longer-chain olefin by using CO2-rich syngas
US9827558B2 (en) 2010-01-20 2017-11-28 Jx Nippon Oil & Energy Corporation Catalyst for production of hydrocarbons and method of producing hydrocarbons
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190575B1 (en) 1996-07-08 2001-02-20 Sony Corporation Polymer electrolyte, a polymer aggregating agent prepared therefrom, and a disposal of waste water
WO2010109897A1 (en) 2009-03-27 2010-09-30 新日本石油株式会社 Method for producing aromatic hydrocarbons
US9243192B2 (en) 2009-03-27 2016-01-26 Jx Nippon Oil & Energy Corporation Method for producing aromatic hydrocarbons
KR20120001731A (en) 2009-03-27 2012-01-04 제이엑스 닛코닛세키에너지주식회사 Method for producing aromatic hydrocarbons
WO2011001572A1 (en) 2009-06-30 2011-01-06 新日本石油株式会社 Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
KR20120104078A (en) 2009-06-30 2012-09-20 제이엑스 닛코닛세키에너지주식회사 Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
US9809507B2 (en) 2009-06-30 2017-11-07 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
KR20120040706A (en) 2009-07-29 2012-04-27 제이엑스 닛코닛세키에너지주식회사 Catalyst for production of monocyclic aromatic hydrocarbon, and process for production of monocyclic aromatic hydrocarbon
WO2011013272A1 (en) 2009-07-29 2011-02-03 新日本石油株式会社 Catalyst for production of monocyclic aromatic hydrocarbon, and process for production of monocyclic aromatic hydrocarbon
US9815750B2 (en) 2009-07-29 2017-11-14 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
JP2011032333A (en) * 2009-07-30 2011-02-17 Chiyoda Kako Kensetsu Kk Operation method of aromatic product production plant of continuous fluid catalytic system
WO2011090121A1 (en) 2010-01-20 2011-07-28 Jx日鉱日石エネルギー株式会社 Catalyst for use in production of monocyclic aromatic hydrocarbon, and process for production of monocyclic aromatic hydrocarbon
US10087376B2 (en) 2010-01-20 2018-10-02 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
US9827558B2 (en) 2010-01-20 2017-11-28 Jx Nippon Oil & Energy Corporation Catalyst for production of hydrocarbons and method of producing hydrocarbons
JP4961052B2 (en) * 2010-03-26 2012-06-27 Jx日鉱日石エネルギー株式会社 Monocyclic aromatic hydrocarbon production method
JP2011202082A (en) * 2010-03-26 2011-10-13 Chiyoda Kako Kensetsu Kk Operation method of aromatic-manufacturing plant of continuous fluidized catalytic system
WO2011118753A1 (en) * 2010-03-26 2011-09-29 Jx日鉱日石エネルギー株式会社 Method for producing monocyclic aromatic hydrocarbon
US8846995B2 (en) 2010-03-26 2014-09-30 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
EP2957622A1 (en) 2010-03-26 2015-12-23 JX Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
WO2012036182A1 (en) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 Method for manufacturing aromatic hydrocarbon
WO2012036186A1 (en) 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 Aromatic hydrocarbon production process
US9446997B2 (en) 2010-09-14 2016-09-20 Jx Nippon Oil & Energy Corporation Method for producing aromatic hydrocarbons
US9382484B2 (en) 2010-12-28 2016-07-05 Jx Nippon Oil & Energy Corporation Production method of monocyclic aromatic hydrocarbons
JP5750434B2 (en) * 2010-12-28 2015-07-22 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
WO2012091099A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Method for producing monocyclic aromatic hydrocarbon
WO2012091100A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
WO2012091119A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
US9815047B2 (en) 2010-12-28 2017-11-14 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbon and production method of monocyclic aromatic hydrocarbon
CN103282119A (en) * 2010-12-28 2013-09-04 吉坤日矿日石能源株式会社 Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
WO2012091092A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
JP2012139640A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Catalyst for producing monocyclic aromatic hydrocarbon and method of producing the monocyclic aromatic hydrocarbon
JP2012139641A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Catalyst for producing monocyclic aromatic hydrocarbon and method of producing the monocyclic aromatic hydrocarbon
WO2012133170A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing monocyclic aromatic hydrocarbon
US9573864B2 (en) 2011-03-25 2017-02-21 Jx Nippon Oil & Energy Corporation Method of producing monocyclic aromatic hydrocarbons
WO2012133180A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons
JP2012201631A (en) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp Method for producing monocyclic aromatic hydrocarbon
US9382174B2 (en) 2011-03-25 2016-07-05 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
US9382173B2 (en) 2011-03-25 2016-07-05 Jx Nippon Oil & Energy Corporation Method of producing single-ring aromatic hydrocarbons
KR20140022814A (en) 2011-03-25 2014-02-25 제이엑스 닛코닛세키에너지주식회사 Method for producing monocyclic aromatic hydrocarbon
WO2012133197A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons
US9776934B2 (en) 2011-03-25 2017-10-03 JX Nippon Oil Energy Corporation Method for producing monocyclic aromatic hydrocarbons
WO2012133138A1 (en) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons
US9487457B2 (en) 2011-05-24 2016-11-08 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
WO2012161263A1 (en) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 Method for producing xylene
WO2012161281A1 (en) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 Method for producing monocylic aromatic hydrocarbons
US9828309B2 (en) 2011-05-24 2017-11-28 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
WO2012161264A1 (en) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 Method for producing monocylic aromatic hydrocarbons
US9862654B2 (en) 2011-05-24 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing xylene
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon
JP2015044199A (en) * 2014-11-26 2015-03-12 Jx日鉱日石エネルギー株式会社 Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
KR101600430B1 (en) 2015-01-08 2016-03-07 한국화학연구원 A direct method for preparing monocyclic aromatics and longer-chain olefin by using CO2-rich syngas
US10208256B2 (en) 2015-01-08 2019-02-19 Korea Research Institute Of Chemical Technology Method for preparing monocyclic aromatic compounds and long-chain olefin compounds from carbon dioxide-rich synthesis gas

Similar Documents

Publication Publication Date Title
JPH0326791A (en) Production of hydrocarbon
JPH0352993A (en) Production of hydrocarbon rich in btx
US3957621A (en) Production of alkyl aromatic hydrocarbons
US3928174A (en) Combination process for producing LPG and aromatic rich material from naphtha
US3827968A (en) Aromatization process
JP5351766B2 (en) Multi-zone production method of xylene compounds
KR100385290B1 (en) How to convert hydrocarbons
EP0000812A1 (en) A process for isomerizing xylenes
JPH032128A (en) Production of monocyclic aromatic-containing hydrocarbon
US4320242A (en) Process for selective dealkylation of alkyl-substituted aromatic hydrocarbons
JP2688486B2 (en) Process for producing pseudocumene and mesitylene and process for mixing them with xylene
JPS6012325B2 (en) Process for producing alkyl aromatic hydrocarbons
WO1996013331A1 (en) Hydrocarbon conversion catalyst and method of catalytic conversion therewith
KR20020042174A (en) Process for producing aromatic hydrocarbons and liquefied petroleum gas from hydrocarbon mixture, and catalysts therefor
PL98226B1 (en) THE METHOD OF MAKING LOWER AROMATIC CARBONES
MXPA02000372A (en) Catalytic production of light olefins rich in propylene.
JP2005529978A (en) Production of xylene using modified oil
MXPA02000373A (en) Catalytic production of light olefins from naphtha feed.
US20190359542A1 (en) Transalkylation of Heavy Aromatic Hydrocarbons
JP2015504002A (en) Catalyst for producing paraxylene by mixed conversion of methanol and / or dimethyl ether and C4 liquefied gas, and production method and use
JPH0291031A (en) Isomerization of xylene
US20050059847A1 (en) Process for xylene isomerization and ethylbenzene conversion
KR20020010143A (en) Zeolite bound catalyst containing at least three different zeolites, use for hydrocarbon conversion
WO2018067194A1 (en) Dealkylation and transalkylation of heavy aromatic hydrocarbons
EP0093477B1 (en) Conversion of certain hydrocarbons using divalent-copper-containing zsm-5 type catalyst