JP5813066B2 - Permeability test equipment - Google Patents

Permeability test equipment Download PDF

Info

Publication number
JP5813066B2
JP5813066B2 JP2013175866A JP2013175866A JP5813066B2 JP 5813066 B2 JP5813066 B2 JP 5813066B2 JP 2013175866 A JP2013175866 A JP 2013175866A JP 2013175866 A JP2013175866 A JP 2013175866A JP 5813066 B2 JP5813066 B2 JP 5813066B2
Authority
JP
Japan
Prior art keywords
water
ground
cylindrical
permeability
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013175866A
Other languages
Japanese (ja)
Other versions
JP2015045527A (en
Inventor
慶徳 久保
慶徳 久保
Original Assignee
株式会社四電技術コンサルタント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社四電技術コンサルタント filed Critical 株式会社四電技術コンサルタント
Priority to JP2013175866A priority Critical patent/JP5813066B2/en
Priority to CN201410121695.9A priority patent/CN104420455A/en
Publication of JP2015045527A publication Critical patent/JP2015045527A/en
Application granted granted Critical
Publication of JP5813066B2 publication Critical patent/JP5813066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/027Investigation of foundation soil in situ before construction work by investigating properties relating to fluids in the soil, e.g. pore-water pressure, permeability

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Soil Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本願発明は、透水性を異にする各種地盤の透水性を効率良く測定できるようにした透水試験装置の構成に関するものである。   The present invention relates to a configuration of a water permeability test apparatus capable of efficiently measuring the water permeability of various grounds having different water permeability.

ため池堤防や河川堤防などの盛土構造物(堤体)には、その重要な機能の一つとして、水位変動と降雨時の雨水の浸透に対する安全性が要求される。この水理学的な安全性を支配するのは地盤の透水性であり、これを適切に管理し検査するためには、当該地盤の透水性を、簡便に、精度よく測定できる透水試験装置が必要となる。   An embankment structure (bank body) such as a pond embankment or river embankment is required to have safety against fluctuations in water level and infiltration of rainwater during rainfall as one of its important functions. It is the water permeability of the ground that dominates this hydraulic safety, and in order to properly manage and inspect this, a water permeability test device that can measure the water permeability of the ground easily and accurately is required. It becomes.

最近では、このような透水試験装置として、装置本体となる円筒体よりなる気密水槽と、該気密水槽の上端側に設けられたシール可能な給水口と、上記気密水槽の下端側に設けられたシール可能な開口とからなり、同構成の気密水槽を所定量の水を貯留した地盤側試験孔内に設置し、上記気密水槽下端側の開口をマリオットサイフォン式の定水位保持管および注水管として機能させることにより、上記試験孔を設けた地盤の透水性に応じて上記気密水槽内の水位量を減少させ、同水位量の減少度合から透水性を測定するようにしたものが提供されている(例えば特許文献1を参照)。   Recently, as such a water permeability test apparatus, an airtight water tank made of a cylindrical body as the apparatus main body, a sealable water supply port provided on the upper end side of the airtight water tank, and a lower end side of the airtight water tank are provided. An airtight water tank with the same configuration is installed in the ground side test hole that stores a predetermined amount of water, and the opening on the lower end side of the airtight water tank is used as a Marriott Siphon-type constant water level holding pipe and water injection pipe. By making it function, the water level amount in the airtight water tank is reduced according to the water permeability of the ground provided with the test hole, and the water permeability is measured from the degree of decrease in the water level amount. (For example, refer to Patent Document 1).

このような装置によると、装置本体となる気密水槽の下端側に設けられた開口が、従来のマリオットサイフォン式透水試験装置の定水位保持管および注水管として機能することになり、従来のような定水位保持管や注水管が不要となる。   According to such an apparatus, the opening provided on the lower end side of the airtight water tank as the apparatus body functions as a constant water level holding pipe and a water injection pipe of a conventional Marriott siphon-type water permeability test apparatus. No constant water level holding pipe or water injection pipe is required.

その結果、同装置では、装置が基本的に小径の1本の円筒体で構成されることになり、大きくコストが低減される。また、持ち運びも便利で、それを対象地盤の試験孔内に挿入し、同試験孔内に充填した砕石上等に水平に設置しさえすれば足りるから、測定試験作業も著しく容易になる、などの大きなメリットがある。   As a result, in this apparatus, the apparatus is basically composed of one cylindrical body having a small diameter, and the cost is greatly reduced. In addition, it is convenient to carry, and it is sufficient to insert it into the test hole of the target ground and install it horizontally on the crushed stone filled in the test hole, so the measurement test work becomes remarkably easy, etc. There are great benefits.

特開2012−127673号公報(明細書第5〜7頁、図1〜図3)JP 2012-127673 A (specifications, pages 5 to 7, FIGS. 1 to 3)

上記透水試験装置の場合、装置本体である筒体構造の気密水槽が1本であり、対象地盤の透水性如何に関係なく、常に1本の気密水槽内全体に測定用の水を溜めて、透水試験がなされる。したがって、通常、同気密水槽の筒体容積は、砂礫層など透水性の高い地盤に対応した大きな容積に設定されている。   In the case of the above-mentioned water permeability test apparatus, there is one airtight water tank with a cylindrical structure which is the main body of the apparatus. Regardless of the water permeability of the target ground, water for measurement is always accumulated in one whole airtight water tank, A water permeability test is performed. Therefore, the cylinder volume of the airtight water tank is usually set to a large volume corresponding to a highly permeable ground such as a gravel layer.

このため、同装置を用いて、例えば粘土層など極めて透水性の低い地盤(不透水性地盤)の透水性を測定しようとすると、試験孔内の水の地盤内への浸透が非常に遅いために、気密水槽内の水位の低下量も極めて少なく、測定に極めて長い時間(数時間〜数日)がかかる問題がある。   For this reason, when trying to measure the permeability of ground with very low water permeability (impervious ground) such as a clay layer, the penetration of water in the test hole into the ground is very slow. In addition, the amount of water level in the airtight water tank is very small, and there is a problem that the measurement takes a very long time (several hours to several days).

このような不透水性地盤をも含めた対象地盤の透水性の相違に応じて、適正な測定時間を実現しようとする場合、一つの方法として、たとえば大、中、小と容積(測定水量)の異なる複数種の機密水槽を用いて複数の種類の透水装置を構成することが考えられる。   In order to achieve an appropriate measurement time according to the difference in water permeability of the target ground including such impermeable ground, one method is, for example, large, medium, small and volume (measured water volume). It is conceivable to construct a plurality of types of water permeable devices using a plurality of types of secret water tanks having different types.

しかし、そのようにした場合、地質調査会社などは、多くの台数の透水試験装置を購入し、携行しなければならず、経費が嵩むだけでなく、測定作業自体にも煩雑さを伴う。   However, in such a case, a geological survey company or the like has to purchase and carry a large number of water permeability test apparatuses, which not only increases the cost but also complicates the measurement work itself.

本願発明は、このような問題を解決するためになされたもので、当該装置における気密水槽を容積の異なる複数の筒体空間よりなるものとし、それら各筒体空間の下端側に定水位保持管および注水管として機能する開口を設け、対象となる地盤の透水性に応じて、同容積の異なる複数の筒体空間のいずれかを選択して測定することにより、測定しようとする地盤の透水性に対応した適切な測定時間で透水性を測定することができるようにした透水試験装置を提供することを目的とするものである。   The present invention was made to solve such a problem, and the airtight water tank in the apparatus is composed of a plurality of cylindrical spaces having different volumes, and a constant water level holding pipe is provided at the lower end side of each cylindrical space. In addition, the water permeability of the ground to be measured is provided by providing an opening that functions as a water injection pipe and selecting and measuring one of a plurality of cylindrical spaces having the same volume according to the water permeability of the target ground. It is an object of the present invention to provide a water permeation test apparatus capable of measuring water permeability in an appropriate measurement time corresponding to the above.

本願発明は、そのために、次のような有効な課題解決手段を備えて構成されている。
(1)請求項1の発明の課題解決手段
この発明の課題解決手段は、測定用の水が溜められる筒体構造の気密水槽と、この機密水槽の下端側に設けられたシール可能な開口とからなり、同構成の上記気密水槽を所定量の水を貯留した地盤側試験孔内に設置するとともに、上記下端側の開口をマリオットサイフォン式の定水位保持管および注水管として機能させ、上記気密水槽内の水位量の減少から対象となる地盤の透水性を測定するようにしてなる透水試験装置であって、上記気密水槽を容積の異なる複数の筒体空間よりなるものとし、それら各筒体空間の下端側に上記定水位保持管および注水管として機能する開口を設け、対象となる地盤の透水性に応じて、同容積の異なる複数の筒体空間のいずれかを選択して測定することにより、測定しようとする地盤の透水性に対応した適切な測定時間で透水性を測定することができるようにしたことを特徴としている。
For this purpose, the present invention comprises the following effective problem solving means.
(1) Problem-solving means of the invention of claim 1 The problem-solving means of the present invention is an airtight water tank having a cylindrical structure in which water for measurement is stored, and a sealable opening provided on the lower end side of the confidential water tank. The airtight water tank having the same configuration is installed in a ground side test hole in which a predetermined amount of water is stored, and the opening on the lower end side functions as a Marriott siphon type constant water level holding pipe and a water injection pipe. A water permeability test apparatus configured to measure water permeability of a target ground from a decrease in the water level in a water tank, wherein the airtight water tank is composed of a plurality of cylindrical spaces having different volumes, and each of the cylinders An opening that functions as the constant water level holding pipe and the water injection pipe is provided at the lower end side of the space, and according to the water permeability of the target ground, one of a plurality of cylindrical spaces having the same volume is selected and measured. Measured by It is characterized in that the water permeability can be measured in an appropriate measurement time corresponding to the water permeability of the ground to be tried.

このような構成によると、測定用の水が溜められるとともに、装置本体となると筒体構造の気密水槽部分が、容積の異なる複数の筒体空間よりなっており、それら各筒体空間の下端側に、マリオットサイフォン式の定水位保持管および注水管として機能する開口が各々設けられている。   According to such a configuration, the water for measurement is stored, and when it becomes the apparatus main body, the airtight water tank portion of the cylindrical structure is composed of a plurality of cylindrical spaces having different volumes, and the lower end side of each cylindrical space In addition, an opening that functions as a Marriott Siphon-type constant water level holding pipe and a water injection pipe is provided.

したがって、対象となる地盤の透水性に応じて、たとえば透水性が高い地盤の測定を行なう場合には容積の大きな筒体空間、透水性が低い地盤の測定を行う場合には容積の小さな筒体空間というように、容積の異なる複数の筒体空間の最適な容積空間のものを任意に選択して測定することにより、それぞれ適切な測定時間で透水性を測定することができるようになる。そして、その場合における容積差を十分に大きなものとすれば、上述した不透水性地盤の測定にも有効に対応することができ、測定時間を大きく短縮することができる。   Therefore, depending on the water permeability of the target ground, for example, when measuring a ground with a high water permeability, a cylindrical space with a large volume, and when measuring a ground with a low water permeability, a cylindrical body with a small volume By selecting and measuring an optimal volume space of a plurality of cylindrical spaces having different volumes such as a space, the water permeability can be measured in an appropriate measurement time. And if the volume difference in that case is made sufficiently large, it is possible to effectively cope with the measurement of the above-mentioned impermeable ground, and the measurement time can be greatly shortened.

この場合、上記装置本体となる筒体構造の気密水槽における容積の異なる複数の筒体空間は、たとえば1本の筒体の内部を容積の異なる複数の筒体空間に仕切ることにより形成しても良いし、容積の異なる複数本の筒体を一体化することにより形成しても良い。
(2)請求項2の発明の課題解決手段
この発明の課題解決手段は、上記請求項1の発明の課題解決手段において、容積の異なる複数の筒体空間は、上下方向の高さを共通にし、筒体部の内径または断面積を異ならせることにより、容積を異にするようにしたことを特徴としている。
In this case, the plurality of cylindrical spaces having different volumes in the airtight water tank having the cylindrical structure serving as the apparatus main body may be formed by partitioning the inside of one cylindrical body into a plurality of cylindrical spaces having different volumes, for example. Alternatively, a plurality of cylinders having different volumes may be integrated.
(2) The problem solving means of the invention of claim 2 The problem solving means of the invention is the problem solving means of the invention of claim 1, wherein the plurality of cylindrical spaces having different volumes have a common vertical height. The volume is made different by making the inner diameter or the cross-sectional area of the cylindrical body different.

このような構成によると、透水性が一定の場合でも、筒体空間の内径または断面積が小さければ小さいほど、水位低下の変化量を大きくすることができる。したがって、透水性が低い地盤の場合に、内径または断面積が小さい筒体空間を選んで水を入れ、測定するようにすると、その分だけ水位目盛りに対応した水位の変化量を大きく、かつ速くすることができるようになり、測定時間自体も有効に短縮することができる。   According to such a configuration, even when the water permeability is constant, the smaller the inner diameter or cross-sectional area of the cylindrical space, the larger the amount of change in the water level drop. Therefore, in the case of ground with low water permeability, if you select a cylindrical space with a small inner diameter or cross-sectional area and put water in and measure it, the amount of change in the water level corresponding to the water level scale is increased accordingly and quickly. Measurement time itself can be effectively shortened.

また、このような構成の場合、各筒体空間が上下方向の高さを共通にして構成されていることから、水位目盛を各筒体間で共通に使用することができ、複数の水位目盛を設ける必要はなくなる。   In addition, in the case of such a configuration, since each cylindrical space is configured with a common vertical height, the water level scale can be used in common between the cylindrical bodies, and a plurality of water level scales can be used. Need not be provided.

以上の結果、本願発明の透水試験装置によると、粘土層のような極めて透水性が低い不透水性地盤の場合にも、有効に気密水槽部における水位量の変化を大きく、かつ速くすることができ、従来に比べて遥かに短い測定時間で正確に透水性を測定することができるようになる。   As a result of the above, according to the water permeability test apparatus of the present invention, even in the case of impermeable ground such as a clay layer, it is possible to effectively and rapidly increase the amount of water level in the airtight water tank. In addition, the water permeability can be accurately measured in a much shorter measurement time than in the past.

この結果、同透水試験装置では、一つの試験装置で、対象地盤の透水性が高い場合から極度に低い場合まで、幅広く、高精度に対応して測定できるようになる。   As a result, with the same water permeability test apparatus, measurement can be performed with a wide range and high accuracy from one case where the water permeability of the target ground is high to extremely low.

本願発明の実施の形態1に係る透水試験装置の構成を示す試験装置本体の正面図である。It is a front view of the test apparatus main body which shows the structure of the water-permeation test apparatus which concerns on Embodiment 1 of this invention. 同試験装置本体の平面図である。It is a top view of the same test apparatus main body. 同試験装置本体の前後方向中央部での縦断面図である(図2のA−A線切断部の断面図)。It is a longitudinal cross-sectional view in the front-back direction center part of the test apparatus main body (cross-sectional view of the AA line cutting part of FIG. 2). 同試験装置本体の下端側注水口部分での水平断面図である(図1のB−B線切断部の断面図)である。It is a horizontal sectional view in the lower end side water injection port portion of the main body of the test apparatus (cross sectional view taken along line BB in FIG. 1). 同試験装置本体の下端側第2の注水口部分の構成を示す要部の拡大断面図である。It is an expanded sectional view of the principal part which shows the structure of the 2nd water inlet part of the lower end side of the test apparatus main body. 同試験装置本体を測定対象である地盤側の試験孔内に設置し、実際に透水試験を行っている状態における試験装置本体および地盤側試験孔の構成を示す説明図である(装置本体内第2の筒体空間S2を使用した不透水性地盤の透水性試験状態の図)。It is explanatory drawing which shows the structure of the test apparatus main body in the state which installs the test apparatus main body in the test hole of the ground side which is a measuring object, and is actually performing the water permeability test, and a ground side test hole (inside of an apparatus main body) The figure of the water-permeable test state of the water-impermeable ground using 2 cylindrical space S2. 同試験装置本体を用いた図6の透水試験状態における地盤側試験孔内外周部の構成(水位低下促進マット敷設状態)を示す一部切欠平面図である。It is a partially notched top view which shows the structure (water level fall acceleration | stimulation mat | laying state) of the ground side test hole inner periphery part in the water permeability test state of FIG. 6 using the test apparatus main body. 同試験装置本体を地盤側の試験孔内に設置し、実際に透水試験を行っている状態における試験装置本体および地盤側試験孔の構成を示す説明図である(装置本体側第1の筒体空間S1を使用した通常地盤の透水試験状態の図)。It is explanatory drawing which shows the structure of the test apparatus main body in the state which installs the said test apparatus main body in the test hole of the ground side, and is actually performing the water permeability test, and a ground side test hole (the apparatus main body side 1st cylinder) The figure of the water permeability test state of the normal ground using space S1).

図1〜図8は、本願発明の実施の形態に係る地盤の透水試験装置の構成および同試験装置を用いた透水試験の実施状態を示している。
<透水試験装置本体部の構成>
まず図1〜図5は、同透水試験装置の装置本体部および同装置本体各部分の構成をそれぞれ示している。
FIGS. 1-8 has shown the structure of the water permeability test apparatus of the ground which concerns on embodiment of this invention, and the implementation state of the water permeability test using the test apparatus.
<Configuration of water permeability test device main body>
First, FIGS. 1-5 has each shown the structure of the apparatus main-body part of the same water permeability test apparatus, and each part of the same apparatus main body.

すなわち、本実施の形態1に係る透水試験装置10は、例えば図1〜図4に示すように、材質が透明度の高いアクリル樹脂、全体の長さ(高さ)がh1、内径がΦ1の円筒体よりなり、内側に第1の筒体空間S1を形成した第1の筒体(円筒体)10aと、該第1の筒体10aの筒体部内側に設けられ、全体の長さがh1、内部の直径がΦ2の半円筒体よりなり、内側に第2の筒体空間S2を形成した第2の筒体(半円筒体)14と、上記第1、第2の筒体10a、14の底部を形成する厚さt1で円板状の底部材10bと、上記第1、第2の筒体10a、14の蓋部を形成する厚さt2で円板状の着脱可能な蓋部材10cとからなっている。   That is, the water permeability test apparatus 10 according to the first embodiment includes, as shown in FIGS. 1 to 4, for example, a highly transparent acrylic resin, a cylinder having an overall length (height) of h1 and an inner diameter of Φ1. A first cylindrical body (cylindrical body) 10a having a first cylindrical space S1 formed on the inner side thereof, provided inside the cylindrical body portion of the first cylindrical body 10a, and having an overall length of h1 A second cylindrical body (semi-cylindrical body) 14 formed of a semi-cylindrical body having an inner diameter of Φ 2 and having a second cylindrical space S2 formed therein, and the first and second cylindrical bodies 10a, 14 A disc-shaped bottom member 10b having a thickness t1 that forms the bottom of the disc, and a disc-shaped removable lid member 10c having a thickness t2 that forms the lid portions of the first and second cylinders 10a, 14 It is made up of.

上記第1、第2の筒体10a、14は、内径、外径共に下端側から上端側までの全体に亘って等しい径のものとなっている。また、上記底部材10bおよび蓋部材10cは、いずれも上記第1の筒体10aの外径よりも所定寸法大径のものに形成されている。そして、上記第1の筒体10aの底部材10b側端部の所定の高さ位置h2部分には、第1,第2,第3,第4,第5,第6の注水口11a,11b,11c,11d,11e、11fが、周方向に所定の間隔(この実施の形態では、例えば60度間隔:図2、図4参照)を置いて、かつ半径方向の内側から外側に貫通する状態で設けられている。これら第1〜第6の注水口11a〜11fは、それぞれ上記底部材10bの上面から開口部上端側(後述する定水位に対応)までの高さ位置h2を同一にして設けられているとともに、それらの各々には、それぞれシール手段として、挿脱可能な注水栓(図示省略)が設けられている。   The first and second cylinders 10a and 14 have the same diameters over the entire length from the lower end side to the upper end side in terms of the inner diameter and the outer diameter. Further, the bottom member 10b and the lid member 10c are both formed to have a larger diameter than the outer diameter of the first cylindrical body 10a. And in the predetermined height position h2 part of the bottom member 10b side edge part of the said 1st cylinder 10a, it is 1st, 2nd, 3rd, 4th, 5th, 6th water injection port 11a, 11b. , 11c, 11d, 11e, and 11f are in a state of penetrating from the inner side to the outer side in the radial direction with a predetermined interval in the circumferential direction (in this embodiment, for example, an interval of 60 degrees: see FIGS. 2 and 4) Is provided. The first to sixth water injection ports 11a to 11f are provided with the same height position h2 from the upper surface of the bottom member 10b to the upper end side of the opening (corresponding to a constant water level described later), respectively. Each of them is provided with a water plug (not shown) that can be inserted and removed as a sealing means.

これら第1〜第6の注水口11a〜11fのうち、第2の注水口11bを除く、第1,第3〜第6の注水口11a,11c〜11fは、例えば口径が14mm前後の比較的大きな口径のものに形成され、中心軸位置から半径方向外方に向けてストレート(水平)に形成されている。他方、第2の注水口11bのみは、上述した第2の筒体14内の第2の筒体空間S2に対応して設けられており、その口径は3〜5mm程度の相当に小さな口径のものに形成され、例えば図5に詳細に示されているように、上記第1の筒体10aの外周面側開口部から内側第2の筒体14の第2の筒体空間S2側に、所定の上り傾斜角θを有して形成されている。   Of these first to sixth water injection ports 11a to 11f, the first and third to sixth water injection ports 11a and 11c to 11f, excluding the second water injection port 11b, are comparatively about 14 mm in diameter, for example. It has a large aperture and is formed straight (horizontal) from the center axis position outward in the radial direction. On the other hand, only the second water inlet 11b is provided corresponding to the second cylindrical space S2 in the second cylindrical body 14 described above, and the diameter of the second water inlet 11b is a small diameter of about 3 to 5 mm. For example, as shown in detail in FIG. 5, from the outer peripheral surface side opening of the first cylindrical body 10a to the second cylindrical space S2 side of the inner second cylindrical body 14, It is formed with a predetermined upward inclination angle θ.

この上り傾斜角θは、後述するように、注水される水の表面張力を考慮し、上記のような小さな口径にすることによって、表面張力を小さくし、それによって上記第2の筒体空間S2内の測定水中に生じる注水時の気泡の径を小さくし、連続した多数の気泡がスムーズに生じるようにして、効率的な空気の流入、水の注出を可能とした上で、さらに同注水作用が、後述する試験孔2内の水位低下に応答性良く追従して行なわれるようにしたもので、たとえば水の接触角20度前後の値に設定されている。   As will be described later, the upward inclination angle θ takes the surface tension of the water to be poured into consideration, and reduces the surface tension by setting it to a small diameter as described above, thereby the second cylindrical space S2. The diameter of the air bubbles generated during measurement in the measurement water is reduced so that a large number of continuous air bubbles can be generated smoothly, enabling efficient air inflow and water extraction. The action is made to follow a drop in the water level in the test hole 2 to be described later with good responsiveness. For example, the water contact angle is set to a value around 20 degrees.

このように、口径を小さくして水の表面張力を小さくした注水口11bを、さらに水の接触角に応じて導入口側から排出口側に下降するように傾斜させると、通路長自体は長くなるが、導入口と排出口間の高さの差が生じ、導入口部分における水が位置のエネルギーをもつことになり、それが測定水の圧力を受けながら排出口側に移動し、下降することによって、次第に運動のエネルギーを増大させながら流出することになる。また、上記導入口部分における水の表面張力は、同部分における上記傾斜角θを水の接触角20度前後
とした場合が最も小さくなる。
As described above, when the water injection port 11b having a reduced diameter and a reduced surface tension of water is inclined so as to descend from the introduction port side to the discharge port side according to the contact angle of water, the passage length itself becomes longer. However, there is a difference in height between the inlet and outlet, and the water at the inlet has energy in position, which moves to the outlet while receiving the pressure of the measured water, and descends. As a result, it gradually flows out while increasing the energy of kinetics. Further, the surface tension of water in the inlet port portion is the smallest when the inclination angle θ in the same portion is set to a water contact angle of about 20 degrees.

このため、同構成によると、後述する試験孔2側の水位(定水位)の低下に対する追従性、応答性も大きく向上し、上述のように注水口11bの口径を絞ったとしても十分に試験孔2側の水位変動に追従させることができる。   For this reason, according to the same structure, the followability and response to the lowering of the water level (constant water level) on the test hole 2 side described later are greatly improved, and even if the diameter of the water injection port 11b is reduced as described above, the test is sufficiently performed. It is possible to follow the fluctuation of the water level on the hole 2 side.

なお、この第2の注水口11bにも、上記第1,第3〜第6の注水口11a,11c〜11f同様の注水栓が設けられている。   The second water injection port 11b is also provided with water injection plugs similar to the first, third to sixth water injection ports 11a, 11c to 11f.

上記蓋部材10cは、上記第1の筒体10aの上端側開口部に対して着脱可能な状態で嵌合されており、上記第1の筒体10aの上端から取り外され、かつ上記第1,第3〜第6の注水口11a,11c〜11fに注水栓が挿入された状態で、上記第1の筒体10a内の第1の筒体空間S1部分に満水位置まで透水性測定用の水(測定水)W2が入れられると、その後嵌合される。また、上記蓋部材10cの上面部中央には、後述する地盤1側試験孔2内に当該装置を設置するときの水平状態を確認するための水準器12が設けられており、該水準器12を用いて正確に設置時の水平状態が確認されるようになっている。   The lid member 10c is detachably fitted to the upper end opening of the first cylinder 10a, is removed from the upper end of the first cylinder 10a, and Water for water permeability measurement up to the full water position in the first cylindrical space S1 portion in the first cylindrical body 10a in the state where the water injection plugs are inserted into the third to sixth water injection ports 11a, 11c to 11f. (Measurement water) When W2 is introduced, it is fitted thereafter. Further, a level 12 for confirming a horizontal state when the apparatus is installed in the ground 1 side test hole 2 described later is provided at the center of the upper surface of the lid member 10c. The horizontal state at the time of installation is confirmed accurately using the.

上記第1,第3〜第6の注水口11a,11c〜11fは、測定対象たる通常地盤(不透水性地盤以外の地盤)の透水性の大きさに対応して、その開口状態(挿入されている注水栓を抜く数)が調整される。   The first, third to sixth water injection ports 11a, 11c to 11f correspond to the water permeability of the normal ground (ground other than the water-impermeable ground) to be measured. The number of water taps to be removed) is adjusted.

すなわち、それにより上記内径の大きな第1の筒体10aを用いて透水試験を行なう時に、測定対象である地盤1の透水性の大きさ(相違)に応じて、試験孔2内の水位の低下に対応し、単位時間内に試験孔2内に注水しうる注水量(注水速度)を最適なものに調整する(後述する図8の説明を参照)。   That is, when the water permeability test is performed using the first cylindrical body 10a having a large inner diameter, the water level in the test hole 2 is lowered according to the water permeability size (difference) of the ground 1 to be measured. , The amount of water that can be injected into the test hole 2 within a unit time (water injection speed) is adjusted to an optimum value (see the description of FIG. 8 described later).

このように、この実施形態の構成では、上記第1の筒体10aの周方向に複数の注水口11a、11c〜11fを設け、その数を選択することにより、一定の範囲で対象となる地盤の透水性、すなわち後述する試験孔2から測定地盤1内へ滲み込んでゆく単位時間内の水の量の相違に応じた試験孔2内への注水量(注水速度)の調節を行い、測定する地盤の透水性に応じた適切で効率の良い測定時間での測定を可能としている。   Thus, in the configuration of this embodiment, a plurality of water inlets 11a, 11c to 11f are provided in the circumferential direction of the first cylindrical body 10a, and by selecting the number thereof, the target ground within a certain range. Measured by adjusting the amount of water injected into the test hole 2 (water injection speed) according to the difference in the amount of water per unit time that permeates into the measurement ground 1 from the test hole 2 described later. This makes it possible to measure in an appropriate and efficient measurement time according to the water permeability of the ground.

しかし、この場合、それだけだと、ある程度は地盤1の透水性の相違に対応できるとしても、使用する気密水槽が第1の筒体10a内の第1の筒体空間S1のみであり、その容積、内径、断面積自体は一定であり、測定対象地盤1の透水性如何に関係なく、常に第1の筒体空間S1内全体に測定用の水W2を溜めて透水試験がなされる。したがって、同第1の筒体空間S1の容積、内径、断面積は、通常砂礫層など透水性の高い地盤に対応した大きな容積、内径、断面積に設定されている。   However, in this case, even if it is only that, even if it can cope with the difference in water permeability of the ground 1 to some extent, the airtight water tank to be used is only the first cylindrical space S1 in the first cylindrical body 10a, and its volume The inner diameter and the cross-sectional area itself are constant, and regardless of the water permeability of the ground 1 to be measured, the water W2 for measurement is always accumulated in the entire first cylindrical space S1, and the water permeability test is performed. Therefore, the volume, the inner diameter, and the cross-sectional area of the first cylindrical space S1 are set to a large volume, an inner diameter, and a cross-sectional area corresponding to a highly permeable ground such as a gravel layer.

このため、同第1の筒体空間S1のみを用いて、例えば粘土層など極めて透水性の低い不透水性地盤の透水性を測定しようとすると、試験孔2内の水の地盤1内への浸透が極めて遅いために、第1の筒体空間S1内の水位の低下量も極端に少なく(たとえば数時間で1mm)、測定に極めて長い時間(数時間〜数日)がかかる。すなわち、すでに述べた従来例の課題が残されていることになる。   For this reason, when it is going to measure the water permeability of impermeable ground with extremely low water permeability, such as a clay layer, using only the first cylindrical space S1, water in the test hole 2 into the ground 1 is measured. Since the penetration is extremely slow, the amount of decrease in the water level in the first cylindrical space S1 is extremely small (for example, 1 mm in several hours), and the measurement takes a very long time (several hours to several days). That is, the problem of the conventional example already described remains.

このような測定対象地盤1の透水性の差に応じて、適正な(実用的な)測定時間を実現しようとする場合、すでに述べたように、例えば大、中、小と筒体容積、筒体内径の異なる複数種の透水試験装置を製作し、それら内の最適なものを用いて透水試験を行なうことが考えられる。しかし、そのようにした場合、地質調査会社などは、多くの台数の透水試験装置を購入し、携行しなければならず、経費が嵩むだけでなく、測定作業自体にも相当な煩雑さを伴う欠点がある。   When an appropriate (practical) measurement time is to be realized according to the difference in water permeability of the measurement target ground 1, as described above, for example, large, medium, small and cylindrical volume, cylinder It is conceivable to manufacture a plurality of types of water permeability test apparatuses having different body inner diameters and perform a water permeability test using the optimum ones among them. However, in such a case, a geological survey company or the like has to purchase and carry a large number of water permeability test apparatuses, which is not only expensive, but also involves considerable complexity in the measurement work itself. There are drawbacks.

そこで、この実施の形態では、そのような問題を解決するために、上述のように、上記第1の筒体10aの内側、第1の筒体空間S1内に、上記第1の筒体10aと上下方向の長さ(高さ)が同じで、上記第1の筒体10aよりも遥かに内径が小さい断面半円形状の第2の筒体14を設け、この第2の筒体14の両端部14a,14bを上記第1の筒体10aの内周面に接合一体化することによって、相互の間に上記第1の筒体空間S1と上下方向の長さ(高さ)h1が同じで、上記第1の筒体空間S1よりも容積および内径(断面積)が遥かに小さい第2の筒体空間S2を設け、該第2の筒体空間S2の下端側所定の高さ位置h2部分に上記第1の筒体空間S1用の第1,第3〜第6の注水口11a、11c〜11fよりも相当に口径が小さく、しかも、上記第2の筒体空間S2内に所定角θ上り傾斜(逆方向に見ると、下降傾斜)して連通開口する図5のような第2の注水口11bを設け、それら第2の筒体空間S2および第2の注水口11bを用いて透水性を測定することにより、測定しようとする地盤1が粘土層などで極めて透水性が低く、上記第1の筒体空間S1および第1,第3〜第6の注水口11a,11c〜11fを用いて測定したのでは、仮に第1,第3〜第6の注水口11a,11c〜11fの殆どのものに注水栓をし、いずれか1個だけにしたとしても、測定に数時間から数日を要するような場合にも、可能な限り迅速な測定ができるように構成している。   Therefore, in this embodiment, in order to solve such a problem, as described above, the first cylindrical body 10a is disposed inside the first cylindrical body 10a and in the first cylindrical body space S1. And a second cylindrical body 14 having a semicircular cross section having the same vertical length (height) and a much smaller inner diameter than the first cylindrical body 10a. By joining and integrating the end portions 14a and 14b to the inner peripheral surface of the first cylinder 10a, the length (height) h1 in the vertical direction is the same as that of the first cylinder space S1. Thus, a second cylindrical space S2 having a much smaller volume and inner diameter (cross-sectional area) than the first cylindrical space S1 is provided, and a predetermined height position h2 on the lower end side of the second cylindrical space S2 is provided. The diameter is considerably smaller than the first, third to sixth water injection ports 11a, 11c to 11f for the first cylindrical space S1. In addition, a second water injection port 11b as shown in FIG. 5 is provided in the second cylindrical space S2 so as to communicate with a predetermined angle θ ascending (decreasing when viewed in the opposite direction). By measuring the water permeability using the second cylindrical space S2 and the second water inlet 11b, the ground 1 to be measured is a clay layer or the like and has extremely low water permeability, and the first cylindrical space S1 and In the measurement using the first, third to sixth water injection ports 11a, 11c to 11f, the water injection plugs were put on almost all of the first, third to sixth water injection ports 11a, 11c to 11f. Even if only one of them is used, the measurement can be performed as quickly as possible even when the measurement takes several hours to several days.

そして、この実施の形態では、上記第1の筒体10aの外周面には、その下端側から上端側にかけて上記第1の筒体空間S1内に測定用の水W2を入れた透水試験時において、減少する測定水W2の水量の変化ΔW2を読み取るための水量目盛(水位目盛)13が設けられているが、この水量目盛13は、上記第2の筒体14の正面視左側の端部14b部分に接する状態で設けられており、上記第1、第2の筒体空間で共通に兼用されるようになっている(後述する測定状態図6と図8を参照)。   In this embodiment, the outer circumferential surface of the first cylindrical body 10a is subjected to a water permeability test in which measurement water W2 is placed in the first cylindrical space S1 from the lower end side to the upper end side. A water scale (water level scale) 13 for reading the change ΔW2 in the amount of the measuring water W2 that decreases is provided. The water scale 13 is an end portion 14b on the left side of the second cylindrical body 14 when viewed from the front. It is provided in a state in contact with the portion, and is commonly used in the first and second cylindrical spaces (see measurement state diagrams 6 and 8 described later).

このように構成された透水試験装置10は、その底部材10b部分を介して、例えば図6および図7または図8に示すように、従来と同様の試験孔2内に鉛直状態に設置して使用される。   The water permeability test apparatus 10 configured as described above is installed in a vertical state in the test hole 2 similar to the conventional one through the bottom member 10b portion, for example, as shown in FIG. 6, FIG. 7 or FIG. used.

ここで、まず図6および図7は、測定対象である地盤1の透水性が極度に低く、上述した内径、断面積の大きい第1の筒体空間S1を用いて測定したのでは余りに時間がかかりすぎて、実用に耐えない不透水性地盤の場合の測定状態(第1の筒体空間S1よりも遥かに内径、断面積が小さい第2の筒体空間S2を用いて測定する場合)を示している。   Here, FIG. 6 and FIG. 7 show that the water permeability of the ground 1 to be measured is extremely low, and it takes too much time to measure using the first cylindrical space S1 having a large inner diameter and a large sectional area. Measurement state in the case of impermeable ground that is too much to be practically used (when measuring using the second cylindrical space S2 having an inner diameter and sectional area far smaller than those of the first cylindrical space S1). Show.

次に図8は、測定対象である地盤1の透水性が極端に低いわけではなく、上述した第1の筒体空間S1を用いても、比較的通常の測定時間で測定することができる場合の測定状態を示している。
<図6および図7における測定の手順:透水性が極端に低い不透水性地盤の場合の測定>
(1)試験孔の作成
一例として、例えば図6に示すように、測定対象となる地盤1上に、地盤工学会の基準に基づく直径約0.3m、深さ約0.3m程度の有底円筒状の試験孔(定水位槽)2を掘り、掘った試験孔2の実際の半径、地表面からの深さを測定記録する。
(2)砕石の充填
上記試験孔2内に、底面から約2/3程度の高さまで、水洗いした多数個の砕石(粒径10mm程度)3,3・・を敷き詰め、上述した透水試験装置10の設置面を形成すると共に、試験孔2内に溜まる測定水の絶対量が可能な限り少なくて済むようにする。
Next, FIG. 8 is a case where the water permeability of the ground 1 to be measured is not extremely low, and the measurement can be performed in a relatively normal measurement time even using the first cylindrical space S1 described above. The measurement state is shown.
<Measurement procedure in FIGS. 6 and 7: Measurement in case of impermeable ground with extremely low water permeability>
(1) Creation of test hole As an example, as shown in FIG. 6, for example, as shown in FIG. 6, a bottom having a diameter of about 0.3 m and a depth of about 0.3 m on the ground 1 to be measured based on the standards of the Geotechnical Society A cylindrical test hole (constant water level tank) 2 is dug, and the actual radius of the dug test hole 2 and the depth from the ground surface are measured and recorded.
(2) Filling of crushed stone In the test hole 2, a large number of washed crushed stones (particle size of about 10 mm) 3, 3,... In addition, the absolute amount of measurement water collected in the test hole 2 can be reduced as much as possible.

この場合、測定終了後の砕石3,3・・・の取り出し、また収納設置時の取扱いの容易さ、設置面の安定度などから、図示のように、砕石3,3・・・を小分け状態で網袋に収納したものを使用する。
(3)試験孔2内への所定量の水の注入
試験孔2は定水位槽として機能する。そこで、同試験孔2内にバケツなどを用いて所定量の水W1を注入する。そして、しばらく時間をおき、注入した水W1がある程度地盤1に浸透して、注入した水W1の減少度合が小さくなり、貯溜状態が安定するのを待つ。
(4)透水試験装置10の第2の筒体空間S2内への給水
その間に、上記透水試験装置10の第2の筒体空間S2内への測定水W2の給水を行なう。同給水は、略上端部まで行なう。この状態では、上記第2の注水口11bには注水栓が挿入されている。
(5)試験孔2内への透水試験装置10の設置
所定の時間が経過して、試験孔2内の水W1の減少度合が小さくなり、貯溜状態が安定すると、例えば図6に示すように、上記測定水W2を入れた透水試験装置10が試験孔2内に挿入され、上述した砕石3,3・・・面上に設置される。同設置状態では、上述した水準器12を用いて確実に水平な状態となるように調整される。
In this case, the crushed stones 3, 3... Are taken out after measurement, and the crushed stones 3, 3. Use the one stored in the mesh bag.
(3) Injection of a predetermined amount of water into the test hole 2 The test hole 2 functions as a constant water level tank. Therefore, a predetermined amount of water W1 is injected into the test hole 2 using a bucket or the like. Then, after waiting for a while, the injected water W1 penetrates into the ground 1 to some extent, the degree of decrease of the injected water W1 becomes small, and the storage state is stabilized.
(4) Water supply into the second cylindrical space S2 of the water permeability test device 10 In the meantime, the measurement water W2 is supplied into the second cylindrical space S2 of the water permeability test device 10. The water supply is performed up to substantially the upper end. In this state, a water tap is inserted into the second water inlet 11b.
(5) Installation of the water permeability test apparatus 10 in the test hole 2 When a predetermined time has elapsed and the decrease degree of the water W1 in the test hole 2 is reduced and the storage state is stabilized, for example, as shown in FIG. The water permeability test apparatus 10 containing the measurement water W2 is inserted into the test hole 2 and installed on the crushed stones 3, 3. In the same installation state, the level 12 is adjusted so as to be surely in a horizontal state.

そして、以後の設置状態においては、図示のように、その第2の注水口11bの上端が水没する程度の水量レベル(定水位)に維持される。しかし、この場合にも、当該試験孔2内の絶対水量が少ないほど試験孔2内の水の減少が速く、透水装置10側の第2の筒体空間S2内の水位の低下も速くなる。   In the subsequent installation state, as shown in the figure, the water level (constant water level) is maintained such that the upper end of the second water inlet 11b is submerged. However, also in this case, the smaller the absolute water amount in the test hole 2 is, the faster the water in the test hole 2 is reduced, and the lowering of the water level in the second cylindrical space S2 on the water permeation device 10 side is also accelerated.

そこで、この実施の形態では、例えば図6および図7に示すように、設置された透水装置10の下端側底部材10bの上面側周囲に、上述した試験孔2内の砕石3,3・・・上方部の1/3程度の水貯留空間をシールするだけの体積(厚さと幅)を持った扇形のブロック構造をした水位低下促進マット4,4・・・を、例えば相互の間に注水用の隙間4a、4a・・・を保った状態で充填することにより、試験孔2内に貯留される水W1の絶対量を可及的に少なくするようにしている。   Therefore, in this embodiment, for example, as shown in FIGS. 6 and 7, the crushed stones 3, 3... In the test hole 2 described above are disposed around the upper surface side of the lower end side bottom member 10 b of the installed water permeable device 10.・ Water level lowering promotion mats 4, 4... Having a fan-shaped block structure having a volume (thickness and width) sufficient to seal a water storage space of about 1/3 of the upper part, for example, water is injected between each other. .., The absolute amount of water W1 stored in the test hole 2 is made as small as possible.

この場合、上記水位低下促進マット4、4・・・は、もちろん水に沈むゴム材などで一体に形成し、隙間4a,4a・・・を形成したものでもよい。また、掘り起こした粘土を、同様の形態にして使用することもできる。
(6)第2の注水口11bの注水栓を抜く
その後、上記第2の注水口11bの注水栓を抜いて、上記第2の筒体空間S2内の測定水W1を出し、同第2の注水口11bを開けた状態で、上記試験孔2内の水W1の水位が確実に図示定水位(仮想線参照)状態で安定するようにする。
(7)本試験
そして、その後、上記第2の筒体空間S2から上記試験孔2内への測定水W2の流出が停止した時点で、測定試験を開始する。
In this case, the water level lowering facilitating mats 4, 4,... May of course be formed integrally with a rubber material or the like that sinks in water to form the gaps 4a, 4a,. Also, the dug up clay can be used in the same form.
(6) Pulling out the water pouring tap of the second water pouring port 11b Thereafter, the water pouring tap of the second water pouring port 11b is pulled out, and the measured water W1 in the second cylindrical space S2 is taken out. In a state where the water injection port 11b is opened, the water level of the water W1 in the test hole 2 is surely stabilized in the illustrated constant water level (see the phantom line).
(7) Main test Then, the measurement test is started when the outflow of the measurement water W2 from the second cylindrical space S2 into the test hole 2 is stopped.

測定試験では、一定の時間(単位時間)の経過と気密水槽である第2の筒体空間S2内の測定水位の変化量(減少量)ΔW2の読み取りを3回程度行う。そして、それらの平均値に基いて、当該地盤1の透水度合を判定する。   In the measurement test, the passage of a fixed time (unit time) and the change amount (decrease amount) ΔW2 of the measured water level in the second cylindrical space S2 that is an airtight water tank are read about three times. And based on those average values, the water permeability of the ground 1 is determined.

もちろん、この場合、上記3回の読取値の内の1つが異常であった場合には、再度試験を行い、3回の値がほぼ同様の値になるまで繰返し試験をする。
<図8における測定の手順:透水性が極端に低くはない通常地盤1の測定の場合>
(1)試験孔の作成
一例として、例えば図8に示すように、測定対象となる地盤1上に、地盤工学会の基準に基づく直径約0.3m、深さ約0.3m程度の有底円筒状の試験孔(定水位槽)2を掘り、掘った試験孔2の実際の半径、地表面からの深さを測定し記録する。
(2)砕石の充填
上記試験孔2内に、底面から約2/3程度の高さまで、水洗いした多数個の砕石(粒径10mm程度)3,3・・・を敷き詰め、上述した透水試験装置10の設置面を形成すると共に、試験孔2内に溜まる測定水の絶対量が少なくて済むようにする。
Of course, in this case, if one of the three readings is abnormal, the test is performed again, and the test is repeated until the three values become substantially similar.
<Measurement procedure in FIG. 8: Measurement of normal ground 1 whose water permeability is not extremely low>
(1) Creation of test hole As an example, for example, as shown in FIG. 8, a bottom having a diameter of about 0.3 m and a depth of about 0.3 m on the ground 1 to be measured based on the standards of the Geotechnical Society A cylindrical test hole (constant water level tank) 2 is dug, and the actual radius of the dug test hole 2 and the depth from the ground surface are measured and recorded.
(2) Filling of crushed stone In the test hole 2, a large number of washed crushed stones (particle size of about 10 mm) 3, 3... 10 installation surfaces are formed, and the absolute amount of measurement water accumulated in the test hole 2 is reduced.

この場合、測定終了後の砕石3,3・・・の取り出し、また収納設置時の取扱いの容易さ、設置面の安定度などから、図示のように、砕石3,3・・・を小分け状態で網袋に収納したものを使用する。
(3)試験孔2内への所定量の水の注入
試験孔2は定水位槽として機能する。そこで、同試験孔2内にバケツなどを用いて所定量の水W1を注入する。そして、しばらく時間をおき、注入した水W1がある程度地盤1に浸透して、注入した水W1の減少度合が小さくなり、貯溜状態が安定するのを待つ。
(4)透水試験装置10の第1の筒体空間S1内への給水
その間に、上記透水試験装置10の第1の筒体空間S1内への測定水W2の給水を行なう。同給水は、略上端部まで行なう。この状態では、上記複数の注水口11a,11c〜11fには全て注水栓が挿入されている。
(5)試験孔2内への透水試験装置10の設置
所定の時間が経過して、試験孔2内の水の減少度合が小さくなり、貯溜状態が安定すると、例えば図8に示すように、上記測定水W2を入れた透水試験装置10が試験孔2内に挿入され、上述した砕石3,3・・・面上に設置される。同設置状態では、上述した水準器12を用いて確実に水平な状態となるように調整される。
In this case, the crushed stones 3, 3... Are taken out after measurement, and the crushed stones 3, 3. Use the one stored in the mesh bag.
(3) Injection of a predetermined amount of water into the test hole 2 The test hole 2 functions as a constant water level tank. Therefore, a predetermined amount of water W1 is injected into the test hole 2 using a bucket or the like. Then, after waiting for a while, the injected water W1 penetrates into the ground 1 to some extent, the degree of decrease of the injected water W1 becomes small, and the storage state is stabilized.
(4) Water supply to the 1st cylinder space S1 of the water-permeable test apparatus 10 In the meantime, the measurement water W2 is supplied to the 1st cylinder space S1 of the said water-permeable test apparatus 10. FIG. The water supply is performed up to substantially the upper end. In this state, all of the plurality of water inlets 11a, 11c to 11f are inserted with water injection taps.
(5) Installation of the water permeability test apparatus 10 in the test hole 2 When a predetermined time has passed and the decrease degree of water in the test hole 2 is reduced and the storage state is stabilized, for example, as shown in FIG. The water permeability test apparatus 10 containing the measurement water W2 is inserted into the test hole 2 and installed on the crushed stones 3, 3. In the same installation state, the level 12 is adjusted so as to be surely in a horizontal state.

そして、以後の設置状態においては、図示のように、それら各注水口11a,11c〜11fの上端が水没する程度の水量レベル(定水位)に維持される。   In the subsequent installation state, as shown in the drawing, the water level (constant water level) is maintained such that the upper ends of the water injection ports 11a, 11c to 11f are submerged.

なお、この場合、上述の不透水性地盤の測定に際しては、試験孔2内の水W1の減少度合が極端に低いことから、水位低下を促進するために水位低下促進マット4、4・・・を敷設するようにしたが、通常地盤の場合には十分な透水性があり、試験孔2内の水の減少度合も高いので、水位低下促進マット4,4・・・は必要としない。   In this case, when measuring the above-mentioned impervious ground, since the degree of reduction of the water W1 in the test hole 2 is extremely low, the water level lowering promotion mats 4, 4,. However, in the case of normal ground, there is sufficient water permeability, and since the degree of water reduction in the test hole 2 is high, the water level lowering promotion mats 4, 4,.

もっとも、通常地盤の中でも、特に透水性が低い地盤の場合には、必要に応じて使用することもできる。
(6)注水栓を抜く数を調整
その後、当該測定対象地盤1自体の透水性の大きさ(差)に対応して、上記試験孔2内に貯留される水W1の水位が一定(定水位)となるように、上記第1の筒体空間S1の下端側に設けられている第1,第3〜第6の注水口11a,11c〜11fの内の注水栓を抜くべき数(対象)を調整する。
However, it can also be used as necessary in the case of ground having low water permeability, among normal ground.
(6) Adjusting the number of water taps to be removed Thereafter, the water level of the water W1 stored in the test hole 2 is constant (constant water level) corresponding to the water permeability (difference) of the measurement target ground 1 itself. ), The number to be extracted from the first, third to sixth water injection ports 11a, 11c to 11f provided on the lower end side of the first cylindrical space S1 (target) Adjust.

すなわち、砂地等で透水性が大きい場合には、試験孔2内の水の減少も速いので、それに対応して第1,第3〜第6の全ての注水口11a,11c〜11fの注水栓を抜いて注水量を多くする一方、逆に相対的に透水性が小さい場合には、第1の注水口11aまたは第3の注水口11cの注水栓、あるいは第3の注水口11cのみの注水栓を抜くなどして、細かく注水量を調整する。
(7)本試験
そして、その後、上記第1の筒体空間S1から上記試験孔2内への測定水W2の流出が停止した時点で、測定試験を開始する。
That is, when the water permeability is large in sandy ground or the like, the water in the test hole 2 is rapidly reduced, so that the water injection plugs of all the first, third to sixth water injection ports 11a, 11c to 11f are correspondingly provided. On the other hand, when the water injection amount is increased by increasing the water injection amount, the water injection plug of the first water injection port 11a or the third water injection port 11c or the water injection only of the third water injection port 11c is reversed. Finely adjust the water injection volume by removing the stopper.
(7) Main test Then, when the outflow of the measurement water W2 from the first cylindrical space S1 into the test hole 2 is stopped, the measurement test is started.

測定試験では、一定の時間(単位時間)の経過と気密水槽である第1の筒体空間S1内の測定水位の変化量(減少量)ΔW2の読み取りを3回程度行う。そして、それらの平均値に基づいて、当該地盤1の透水度合を判定する。   In the measurement test, the passage of a fixed time (unit time) and the change amount (decrease amount) ΔW2 of the measured water level in the first cylindrical space S1, which is an airtight water tank, are read about three times. And based on those average values, the water permeability of the ground 1 is determined.

もちろん、この場合、上記3回の読取値の内の1つが異常であった場合には、再度試験を行い、3回の値がほぼ同様の値になるまで繰返し試験をする。
<本実施の形態の構成上の特徴と作用および効果>
以上のような構成によると、測定用の水が溜められるとともに、装置本体となる筒体構造の気密水槽部分に、容積が大きく異なる第1、第2の複数の筒体空間S1、S2が設けられることになり、これら各筒体空間S1、S2が各々気密水槽として機能する。そして、それらの下端側には、それぞれマリオットサイフォン式の定水位保持管および注水管として機能する空気流入用および空気の流入に対応して水を排出する注水口11a,11c〜11f、11bが設けられている。
Of course, in this case, if one of the three readings is abnormal, the test is performed again, and the test is repeated until the three values become substantially similar.
<Characteristics, operation, and effect of configuration of this embodiment>
According to the above configuration, the measurement water is stored, and the first and second cylindrical spaces S1 and S2 having greatly different volumes are provided in the airtight water tank portion of the cylindrical structure serving as the apparatus body. Thus, each of the cylindrical spaces S1 and S2 functions as an airtight water tank. In addition, water inlets 11a, 11c to 11f, and 11b for discharging water corresponding to the inflow of air and the inflow of air functioning as the Marriott Siphon-type constant water level holding pipe and the water injection pipe, respectively, are provided on the lower ends thereof. It has been.

したがって、対象となる地盤の透水性の差に応じて、たとえば透水性が高い地盤の測定を行なう場合には容積、内径、断面積の大きな筒体空間S1、透水性が極めて低い地盤の測定を行う場合には容積、内径、断面積の小さな筒体空間S2というように、容積、内径、断面積の異なる複数の筒体空間S1、S2の最適な容積、内径、断面積のものを任意に選択して測定することにより、それぞれ適切な測定時間で透水性を測定することができるようになる。   Therefore, according to the difference in water permeability of the target ground, for example, when measuring the ground having high water permeability, the cylindrical space S1 having a large volume, inner diameter and cross-sectional area, and measuring the ground having extremely low water permeability. When carrying out, the cylindrical space S2 having a small volume, inner diameter, and cross-sectional area is arbitrarily selected, such as a plurality of cylindrical spaces S1, S2 having different volumes, inner diameters, and cross-sectional areas. By selecting and measuring, the water permeability can be measured in an appropriate measurement time.

また、以上の構成では、上記複数の筒体空間S1、S2は、それぞれ上下方向の高さh1を共通にし、筒体部の内径または断面積(もしくはそれらの両方)を異にすることにより、それぞれ容積を異にするようにしている。   In the above configuration, the plurality of cylindrical spaces S1, S2 have a common height h1 in the vertical direction, and have different inner diameters or cross-sectional areas (or both) of the cylindrical portions, Each has a different volume.

このような構成によると、透水性が一定の場合でも、筒体空間S1、S2の内径または断面積が小さければ小さいほど、水位低下の変化量を大きくすることができる。したがって、極めて透水性が低い粘土層などの地盤の場合に、内径または断面積が特に小さい筒体空間S2を選んで測定用の水W2を入れ、測定するようにすると、その分だけ水位目盛13に対応した水位の変化量を大きく、かつ速くすることができるようになり、測定時間自体も大幅に短縮することができる。   According to such a configuration, even when the water permeability is constant, the smaller the inner diameter or the cross-sectional area of the cylindrical spaces S1, S2, the larger the amount of change in the water level decrease. Accordingly, in the case of a ground such as a clay layer with extremely low water permeability, if the cylindrical water space S2 having a particularly small inner diameter or cross-sectional area is selected and the measurement water W2 is put in and measured, the water level scale 13 is correspondingly increased. The amount of change in the water level corresponding to can be made large and fast, and the measurement time itself can be greatly shortened.

また、このような構成にした場合、各筒体空間S1、S2が上下方向の高さを共通にして構成されていることから、水位目盛13を各筒体空間S1、S2間で相互に共通に使用することができ、複数の水位目盛を設ける必要もなくなる。   Further, in such a configuration, since the cylindrical spaces S1 and S2 are configured to have the same height in the vertical direction, the water level scale 13 is shared between the cylindrical spaces S1 and S2. It is not necessary to provide a plurality of water level scales.

しかも、この実施の形態の場合、上記第2の筒体14内の第2の筒体空間S2に対応して設けられている第2の注水口11bは、上述のように、その口径が3〜5mmの相当に小さな口径のものに形成され、可及的に表面張力が小さくなるように構成されている。   Moreover, in the case of this embodiment, the second water injection port 11b provided corresponding to the second cylindrical space S2 in the second cylindrical body 14 has a diameter of 3 as described above. It is formed so as to have a considerably small diameter of ˜5 mm, and the surface tension is made as small as possible.

したがって、空気の流入によって筒体空間S2内に発生する気泡の大きさが小さくなり、その数も多くなって、発生する時間間隔も非常に短かい、連続したものとなる。その結果、水位の低下も促進される。   Therefore, the size of the bubbles generated in the cylindrical space S2 due to the inflow of air is reduced, the number thereof is increased, and the generated time intervals are very short and continuous. As a result, the reduction of the water level is also promoted.

この場合において、さらに図5に示されるように、該第2の注水口11bが、第1の筒体10aの外周面側開口部から内側第2の筒体14の第2の筒体空間S2側に向けて、所定の上り傾斜角θを有して形成されており、この上り傾斜角θが、水のもつ表面張力の大きさを考慮し、水の接触角20度前後の値に設定されていると、より表面張力の影響を受けることなく、上述した位置のエネルギー、運動のエネルギーの作用によって、よりスムーズな空気の流入、水の流出状態が実現され、粒径の揃った細かい気泡が短い一定の時間間隔で極めて効率よく発生するようになる。   In this case, as further shown in FIG. 5, the second water injection port 11b extends from the outer peripheral surface side opening of the first cylinder 10a to the second cylinder space S2 of the inner second cylinder 14. The upward inclination angle θ is set to a value around 20 degrees of water contact angle in consideration of the surface tension of water. If this is done, smoother air inflow and water outflow are realized by the action of the energy at the position and kinetic energy described above without being affected by the surface tension. Will occur very efficiently at short, constant time intervals.

このため、上記のように水位低下促進マット4,4・・・の設置により、試験孔2内の水位低下が促進されることと相俟って、それに効率よく追随して応答性良く、測定水W2が注水されるようになる。その結果、第2の筒体空間S2内の水位も応答性良く低下し、測定時間が大幅に短縮される。   For this reason, in combination with the fact that the lowering of the water level in the test hole 2 is promoted by the installation of the water level lowering promotion mats 4, 4,. Water W2 is poured. As a result, the water level in the second cylindrical space S2 also decreases with good responsiveness, and the measurement time is greatly shortened.

これらの結果、同透水試験装置によると、粘土層のような極めて透水性の低い不透水性地盤の場合にも、有効に気密水槽部における水位量の変化を大きく、かつ速くすることができ、従来に比べて遥かに短い測定時間で正確に透水性を測定することができるようになる。   As a result, according to the water permeability test apparatus, even in the case of impermeable ground with extremely low water permeability such as a clay layer, the change in the amount of water level in the airtight water tank can be effectively and rapidly increased. Water permeability can be accurately measured in a much shorter measurement time than in the past.

この結果、この実施の形態における透水試験装置では、一つの試験装置で、対象地盤の透水性が高い場合から極めて低い不透水性地盤の場合まで、幅広く、高精度に対応して測定できるようになる。
<その他の実施の形態>
本願発明の場合、上記装置本体となる筒体構造の気密水槽における容積、内径、断面
積の異なる複数の筒体空間S1、S2は、上記の実施の形態のように、従来と同様の1本の筒体である大径の第1の筒体10aの内部を、高さh1が同じで、遥かに内径の小さい断面半円形状の第2の筒体14で仕切ることにより形成しても良いが、これは、例えば高さh1が同じで、内径が異なる複数本の筒体を接合一体化することにより1台の装置として構成したものでも良い。
As a result, in the water permeability test apparatus in this embodiment, a single test apparatus can perform measurement in a wide range from the case where the water permeability of the target ground is high to the case of a very low water-impervious ground corresponding to high accuracy. Become.
<Other embodiments>
In the case of the present invention, a plurality of cylindrical spaces S1 and S2 having different volumes, inner diameters, and cross-sectional areas in the cylindrical airtight water tank as the apparatus main body are the same as the conventional one as in the above embodiment. The inside of the first cylindrical body 10a having a large diameter, which is a cylindrical body, may be formed by partitioning the second cylindrical body 14 having the same height h1 and a semicircular cross section having a much smaller inner diameter. However, this may be configured as one device by joining and integrating a plurality of cylindrical bodies having the same height h1 and different inner diameters, for example.

また、上記実施の形態の構成では、上記断面半円形状の弟2の筒体14を1本だけ設けているが、これらを2〜3本の複数本とし、それぞれ内径または断面積を異にする複数の筒体空間S2〜S4を形成することもできる。   Further, in the configuration of the above embodiment, only one cylindrical body 14 of the younger brother 2 having a semicircular cross section is provided. However, these are a plurality of two or three, each having a different inner diameter or cross sectional area. It is also possible to form a plurality of cylindrical spaces S2 to S4.

1は地盤、2は試験孔、3は砕石、4は水位低下促進マット、10は透水試験装置、10aは第1の筒体、10bは底部材、10cは蓋部材、11a〜11fは第1〜第6の注水口、12は水準器、13は水量目盛である。   1 is ground, 2 is a test hole, 3 is crushed stone, 4 is a water level lowering acceleration mat, 10 is a water permeability test device, 10a is a first cylinder, 10b is a bottom member, 10c is a lid member, and 11a to 11f are first To a sixth water inlet, 12 is a level, and 13 is a water volume scale.

Claims (2)

測定用の水が溜められる筒体構造の気密水槽と、この機密水槽の下端側に設けられたシール可能な開口とからなり、同構成の上記気密水槽を所定量の水を貯留した地盤側試験孔内に設置するとともに、上記下端側の開口をマリオットサイフォン式の定水位保持管および注水管として機能させ、上記気密水槽内の水位量の減少から対象となる地盤の透水性を測定するようにしてなる透水試験装置であって、上記気密水槽を容積の異なる複数の筒体空間よりなるものとし、それら各筒体空間の下端側に上記定水位保持管および注水管として機能する開口を設け、対象となる地盤の透水性に応じて、同容積の異なる複数の筒体空間のいずれかを選択して測定することにより、測定しようとする地盤の透水性に対応した適切な測定時間で透水性を測定することができるようにしたことを特徴とする透水試験装置。   A ground-side test consisting of an airtight water tank with a cylindrical structure in which water for measurement is stored and a sealable opening provided on the lower end side of the confidential water tank, and storing the predetermined amount of water in the airtight water tank of the same configuration In addition to installing in the hole, the opening on the lower end side functions as a Marriott Siphon-type constant water level holding pipe and water injection pipe, and the water permeability of the target ground is measured from the decrease in the water level in the airtight water tank. The airtight water tank is composed of a plurality of cylindrical spaces having different volumes, and provided with openings serving as the constant water level holding pipe and the water injection pipe on the lower end side of each cylindrical space, By selecting and measuring one of multiple cylindrical spaces with the same volume according to the water permeability of the target ground, the water permeability can be measured at an appropriate measurement time corresponding to the water permeability of the ground to be measured. Measure Permeability test apparatus being characterized in that to allow Rukoto. 容積の異なる複数の筒体空間は、上下方向の高さを共通にし、筒体部の内径または断面積を異ならせることにより、容積を異にするようにしたことを特徴とする請求項1記載の透水試験装置。   2. The plurality of cylindrical spaces having different volumes have the same height in the vertical direction, and have different volumes by changing the inner diameter or the cross-sectional area of the cylindrical portion. Permeability test equipment.
JP2013175866A 2013-08-27 2013-08-27 Permeability test equipment Active JP5813066B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013175866A JP5813066B2 (en) 2013-08-27 2013-08-27 Permeability test equipment
CN201410121695.9A CN104420455A (en) 2013-08-27 2014-03-28 Permeability test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175866A JP5813066B2 (en) 2013-08-27 2013-08-27 Permeability test equipment

Publications (2)

Publication Number Publication Date
JP2015045527A JP2015045527A (en) 2015-03-12
JP5813066B2 true JP5813066B2 (en) 2015-11-17

Family

ID=52671146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175866A Active JP5813066B2 (en) 2013-08-27 2013-08-27 Permeability test equipment

Country Status (2)

Country Link
JP (1) JP5813066B2 (en)
CN (1) CN104420455A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610232B1 (en) 2015-08-04 2016-04-07 주식회사 지오그린21 Infiltrometer for infiltrating rate of rock and disposing method thereof
JP6953665B2 (en) * 2017-06-19 2021-10-27 株式会社安藤・間 Test water injection device and test water injection method
CN108645772B (en) * 2018-03-30 2021-05-25 重庆大学 Rainfall infiltration simulation experiment system considering slope runoff
JP2019199766A (en) * 2018-05-17 2019-11-21 ランデックス工業株式会社 Ground permeability testing device
CN108918384B (en) * 2018-07-18 2022-04-26 重庆大学 Rainwater infiltration soil column seepage erosion experimental device and soil-water separation experimental method
CN109629547B (en) * 2019-01-11 2023-09-08 中国水利水电科学研究院 System and method for measuring hydrodynamic characteristic parameters of large-burial-depth soil
CN110146654A (en) * 2019-05-30 2019-08-20 徐州市水利科学研究所 A kind of flood stain comprehensive draining index Test device and its application method
CN110296875B (en) * 2019-07-10 2024-04-16 中交第二公路勘察设计研究院有限公司 Compaction sample cylinder for dry and wet cycle test of roadbed soil and operation method
CN113322933A (en) * 2021-06-15 2021-08-31 甘肃恒捷路桥养护科技有限公司 Layered water immersion method for treating deep collapsible loess foundation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615653B1 (en) * 2001-09-27 2003-09-09 Geosierra, Llc In situ method for determining soil liquefaction tendency and its prevention by electro-osmosis
CN2816810Y (en) * 2005-06-13 2006-09-13 中国农业大学 Soil-water-content space distribution quick detector
CN101251524B (en) * 2008-04-01 2011-04-13 长江水利委员会长江勘测规划设计研究院 Aggregation type multifunctional earth work current surveying machine
JP5270650B2 (en) * 2010-12-13 2013-08-21 株式会社四電技術コンサルタント Permeability test equipment
CN102900063B (en) * 2012-10-30 2014-12-17 东南大学 Dynamic pore-pressure static sounding probe for detecting sludge

Also Published As

Publication number Publication date
JP2015045527A (en) 2015-03-12
CN104420455A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5813066B2 (en) Permeability test equipment
US9769045B2 (en) Valve system for a fiberglass swimming pool body
CN101831924B (en) Simulator for blocking groundwater seepage by underground structure
CN107761753B (en) A kind of foundation pit water burst rapid rescue slip casting method for blocking
CN102410014B (en) Method for testing pressure of gas in water-containing wall rock coal seam
Brandl Vertical barriers for municipal and hazardous waste containment
JP2002515098A (en) Apparatus and method for liquefaction improvement of liquefiable soil
JP5430783B2 (en) Fresh water storage system
JP2009150076A (en) Water intake system and freshwater reserve and intake system
US20150033842A1 (en) In-Situ Scour Testing Device
CN105352867A (en) Simulation multi-gap assembled medium tunnel seepage test method
CN110672491A (en) Research method for water immersion amount of deep collapsible soil layer
JP5270650B2 (en) Permeability test equipment
KR101752813B1 (en) The Water Level Maintenance Apparatus Of Underground Water
CN107447751B (en) Slurry leakage control device and method for cast-in-place pile in offshore riprap area
KR20160067080A (en) Side gutter for mountain ridge
CN115876590A (en) Early-stage degradation, permeation and damage test device and method for water-intercepting curtain
RU2563682C1 (en) Vertical drainage method
JP6441692B2 (en) Underground structure with flood control function and its construction method
JP4596469B2 (en) Landfill partition revetment
CN106948388A (en) A kind of magnet ring type test excavation of foundation pit causes the device and method that ground swells
CN102350150A (en) Filter pipe for suction and discharge of biogas-containing stratum gas
JP3181247U (en) Impervious device, interval water pressure measuring device using this
CN214737933U (en) Infiltration line observation device
US20230313472A1 (en) Perforated box culvert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5813066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250