JP5810442B2 - Layered cerium compound phosphor and method for producing the same - Google Patents
Layered cerium compound phosphor and method for producing the same Download PDFInfo
- Publication number
- JP5810442B2 JP5810442B2 JP2011128186A JP2011128186A JP5810442B2 JP 5810442 B2 JP5810442 B2 JP 5810442B2 JP 2011128186 A JP2011128186 A JP 2011128186A JP 2011128186 A JP2011128186 A JP 2011128186A JP 5810442 B2 JP5810442 B2 JP 5810442B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- layered
- dodecyl sulfate
- aqueous solution
- ceo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Description
本発明は、高い量子収率で紫外発光を示す蛍光体であって、ドデシル硫酸アニオン層がCe(OH)x層の間に挿入された層状有機無機ハイブリッド蛍光体、及びドデシル硫酸アニオン層がCeO2−y層の間に挿入された層状有機無機ハイブリッド蛍光体、ならびにその製造方法に関する。 The present invention relates to a phosphor exhibiting ultraviolet emission with high quantum yield, a layered organic-inorganic hybrid phosphor in which a dodecyl sulfate anion layer is inserted between Ce (OH) x layers, and a dodecyl sulfate anion layer is CeO. The present invention relates to a layered organic-inorganic hybrid phosphor inserted between 2-y layers and a method for producing the same.
紫外発光を示す蛍光体は、主に殺菌や消臭等の用途に用いられており、可視領域において発光を示す蛍光体と組み合わせることにより、LEDなどのデバイスにも使用されている。 Phosphors that emit ultraviolet light are mainly used for sterilization and deodorization, and are also used in devices such as LEDs by combining with phosphors that emit light in the visible region.
かかる蛍光体にとって、発光効率はもっとも重要な特性の一つである。しかし、例えば90%程度の高い量子収率で紫外発光を示す固体の有機蛍光体材料は非常に少ない。
また、紫外発光ELデバイスの分野では、主にGaNなどの窒化物蛍光体が使用されている。しかし、窒化物薄膜を作成するためには、高温での反応や、反応雰囲気の制御が必要となり、その合成は概してコストが高いという欠点を有する。また、高温処理に耐える基板を選択しなければならないという制約がある。
For such phosphors, luminous efficiency is one of the most important characteristics. However, there are very few solid organic phosphor materials that exhibit ultraviolet light emission with a high quantum yield of, for example, about 90%.
In the field of ultraviolet light-emitting EL devices, nitride phosphors such as GaN are mainly used. However, in order to produce a nitride thin film, it is necessary to react at a high temperature and to control the reaction atmosphere, and the synthesis thereof has a disadvantage that the cost is generally high. In addition, there is a restriction that a substrate that can withstand high-temperature processing must be selected.
一方、金属酸化物や金属水酸化物のナノシートを形成する方法として、ドデシル硫酸ナトリウムを用いた液相合成法が知られている。本発明者らは、Chemical Communication 2010,46,877−879(非特許文献1)において、酸化ユーロピウム又は水酸化ユーロピウムとドデシル硫酸アニオンとからなる層状化合物の液相合成法を開示し、Chemistry of Materials 2010,22,3158−3164(非特許文献2)において、酸化亜鉛又は水酸化亜鉛とドデシル硫酸アニオンとからなる層状化合物の液相合成法を開示している。 On the other hand, a liquid phase synthesis method using sodium dodecyl sulfate is known as a method for forming a metal oxide or metal hydroxide nanosheet. The present inventors disclosed in Chemical Communication 2010, 46, 877-879 (Non-Patent Document 1) a liquid phase synthesis method of a layered compound comprising europium oxide or europium hydroxide and dodecyl sulfate anion, and Chemistry of Materials. 2010, 22, 3158-3164 (Non-patent Document 2) discloses a liquid phase synthesis method of a layered compound composed of zinc oxide or zinc hydroxide and dodecyl sulfate anion.
また、Foggらは、Chemistry of Materials 2008,20,335−340(非特許文献3)において、水酸化ランタンを用いた層状体の合成方法を開示している。 Further, Fogg et al., In Chemistry of Materials 2008, 20, 335-340 (Non-patent Document 3) discloses a method for synthesizing a layered body using lanthanum hydroxide.
しかしながら、これらの合成法によって形成された酸化物及び水酸化物の層状化合物は、いずれも高い量子収率で紫外発光を示すものではなかった。 However, none of the oxide and hydroxide layered compounds formed by these synthesis methods exhibited ultraviolet light emission with a high quantum yield.
簡便なプロセスで合成が可能であり、かつ高い量子収率で紫外発光を示す蛍光体の開発が望まれている。 There is a demand for the development of a phosphor that can be synthesized by a simple process and exhibits ultraviolet emission with a high quantum yield.
本発明は、高い量子収率で紫外発光を示す蛍光体であって、ドデシル硫酸アニオン層がCe(OH)x層の間に挿入された層状有機無機ハイブリッド蛍光体、及びドデシル硫酸アニオン層がCeO2−y層の間に挿入された層状有機無機ハイブリッド蛍光体、ならびにその合成手法を提供する。 The present invention relates to a phosphor exhibiting ultraviolet emission with high quantum yield, a layered organic-inorganic hybrid phosphor in which a dodecyl sulfate anion layer is inserted between Ce (OH) x layers, and a dodecyl sulfate anion layer is CeO. A layered organic-inorganic hybrid phosphor inserted between 2-y layers and a synthesis method thereof are provided.
本発明の蛍光体は、ドデシル硫酸アニオン層と、Ce(OH)x層又はCeO2−y層とを交互に重ね合わせた層状構造を有する。Ce(OH)x層において、xはx=2〜3であり、CeO2−y層において、yはy=0〜0.5である。 The phosphor of the present invention has a layered structure in which dodecyl sulfate anion layers and Ce (OH) x layers or CeO 2-y layers are alternately stacked. In the Ce (OH) x layer, x is x = 2 to 3, and in the CeO 2-y layer, y is y = 0 to 0.5.
本発明の蛍光体において、ドデシル硫酸アニオン層はドデシル硫酸アニオンの二分子層であり、マイナスの電荷を有する硫酸基をCe(OH)x層又はCeO2−y層の表面に対向させるようにしてベシクルを形成している。 In the phosphor of the present invention, the dodecyl sulfate anion layer is a bimolecular layer of dodecyl sulfate anion, and a sulfate group having a negative charge is made to face the surface of the Ce (OH) x layer or CeO 2-y layer. A vesicle is formed.
本発明の蛍光体において、ドデシル硫酸アニオンは炭素鎖の伸長方向に一分子で1.9nmの長さを有し、ドデシル硫酸アニオン層の厚みは、1.9〜2.5nmである。
本発明の蛍光体において、CeO2−y層の厚みは、1nm〜2nmであり、Ce(OH)x層の厚みは、1nm〜3nmである。
In the phosphor of the present invention, the dodecyl sulfate anion has a length of 1.9 nm per molecule in the extending direction of the carbon chain, and the thickness of the dodecyl sulfate anion layer is 1.9 to 2.5 nm.
In the phosphor of the present invention, the CeO 2-y layer has a thickness of 1 nm to 2 nm, and the Ce (OH) x layer has a thickness of 1 nm to 3 nm.
本発明の蛍光体は、層状構造の各層を構成する面の面積が1〜1000μm2程度の板状体であり、一方、層状構造の積層方向の膜厚は、各層の面積に関わらず、50〜100nm程度である。 The phosphor of the present invention is a plate-like body having a surface area constituting each layer of the layered structure of about 1 to 1000 μm 2. On the other hand, the film thickness in the stacking direction of the layered structure is 50 regardless of the area of each layer. About 100 nm.
本発明の蛍光体は、約320〜380nmの範囲の紫外領域に発光のピーク波長を有し、約60%〜90%の高い量子収率を有する。
以下に、本発明の蛍光体を得るための方法を記載する。
The phosphor of the present invention has a peak wavelength of light emission in the ultraviolet region in the range of about 320 to 380 nm and a high quantum yield of about 60% to 90%.
Hereinafter, a method for obtaining the phosphor of the present invention will be described.
最初に、ドデシル硫酸アニオン層がCe(OH)x層の間に挿入された層状有機無機ハイブリッド蛍光体の合成方法を記載する。
まず、ドデシル硫酸ナトリウムの水溶液に硝酸セリウム水溶液を添加して、沈殿を形成させる。0.5mol/lの硝酸セリウム水溶液5〜20mlを、0.01mol/l〜0.1mol/lのドデシル硫酸ナトリウム水溶液5〜20mlに添加することが好ましい。ドデシル硫酸ナトリウムの水溶液に硝酸セリウム水溶液を添加することにより、即座に沈殿が形成されるので、遠心分離して固体沈殿物を分離する。遠心分離の条件としては、3000rpmで10分程度行うことが好ましい。
First, a method for synthesizing a layered organic-inorganic hybrid phosphor in which a dodecyl sulfate anion layer is inserted between Ce (OH) x layers will be described.
First, a cerium nitrate aqueous solution is added to an aqueous solution of sodium dodecyl sulfate to form a precipitate. It is preferable to add 5 to 20 ml of 0.5 mol / l cerium nitrate aqueous solution to 5 to 20 ml of 0.01 mol / l to 0.1 mol / l aqueous sodium dodecyl sulfate. By adding an aqueous solution of cerium nitrate to an aqueous solution of sodium dodecyl sulfate, a precipitate is immediately formed. Therefore, the solid precipitate is separated by centrifugation. Centrifugation is preferably performed at 3000 rpm for about 10 minutes.
最後に、当該固体沈殿物を洗浄し、0〜100℃の温度で真空乾燥させて、ドデシル硫酸アニオン層がCe(OH)x層の間に挿入された層状有機無機ハイブリッド蛍光体を得る。 Finally, the solid precipitate is washed and vacuum dried at a temperature of 0 to 100 ° C. to obtain a layered organic-inorganic hybrid phosphor in which a dodecyl sulfate anion layer is inserted between Ce (OH) x layers.
次に、ドデシル硫酸アニオン層がCeO2−y層の間に挿入された層状有機無機ハイブリッド蛍光体の合成方法を記載する。
まず、ドデシル硫酸ナトリウムと、セリウムを酸化させるための塩基とを含む水溶液に硝酸セリウム水溶液を添加して、沈殿を形成させる。0.5mol/lの硝酸セリウム水溶液5〜20mlを、塩基を添加した0.01mol/l〜0.1mol/lのドデシル硫酸ナトリウム水溶液5〜20mlに添加する。
Next, a method for synthesizing a layered organic-inorganic hybrid phosphor in which a dodecyl sulfate anion layer is inserted between CeO 2-y layers will be described.
First, an aqueous cerium nitrate solution is added to an aqueous solution containing sodium dodecyl sulfate and a base for oxidizing cerium to form a precipitate. 5 to 20 ml of 0.5 mol / l cerium nitrate aqueous solution is added to 5 to 20 ml of 0.01 mol / l to 0.1 mol / l sodium dodecyl sulfate aqueous solution to which a base has been added.
セリウムを酸化させるための塩基としては、Na(OH)、K(OH)、アンモニアをはじめとする様々な塩基を用いることができるが、ヘキサメチレンジアミン(HMDA)又はヘキサメチレンテトラミン(HMTA)が好ましく、ヘキサメチレンテトラミンが最も好ましい。塩基を混合した状態で、水溶液のpHが7〜14、好ましくは8〜9の範囲になるように塩基の量を調節することが必要であり、塩基としてHMTAを用いる場合には、ドデシル硫酸ナトリウム水溶液に、2mol/lのHMTA水溶液を1〜5ml添加する。 As the base for oxidizing cerium, various bases such as Na (OH), K (OH), and ammonia can be used, but hexamethylenediamine (HMDA) or hexamethylenetetramine (HMTA) is preferable. Most preferred is hexamethylenetetramine. When the base is mixed, it is necessary to adjust the amount of the base so that the pH of the aqueous solution is in the range of 7 to 14, preferably 8 to 9. When HMTA is used as the base, sodium dodecyl sulfate is used. 1-5 ml of 2 mol / l HMTA aqueous solution is added to the aqueous solution.
ドデシル硫酸ナトリウムと塩基とを含む水溶液に硝酸セリウムの水溶液を添加することにより、即座に沈殿が形成される。この沈殿が形成された水溶液を一定の反応温度に加熱し、一定時間その反応温度で維持する。このとき、蛍光体を合成する反応温度は、40℃〜100℃が好ましく、80〜90℃が更に好ましい。反応温度が90℃を超えると、結果として得られる蛍光体の層状構造が破壊され、発光特性が劣化するために好ましくない。水溶液を当該反応温度で維持する時間としては、1時間〜24時間が望ましい。 By adding an aqueous solution of cerium nitrate to an aqueous solution containing sodium dodecyl sulfate and a base, a precipitate is immediately formed. The aqueous solution in which the precipitate is formed is heated to a certain reaction temperature and maintained at the reaction temperature for a certain time. At this time, the reaction temperature for synthesizing the phosphor is preferably 40 ° C to 100 ° C, and more preferably 80 to 90 ° C. When the reaction temperature exceeds 90 ° C., the layered structure of the resulting phosphor is destroyed, and the light emission characteristics deteriorate, which is not preferable. The time for maintaining the aqueous solution at the reaction temperature is preferably 1 to 24 hours.
次いで、この水溶液を遠心分離して固体沈殿物を分離する。
最後に、当該固体沈殿物を洗浄し、真空乾燥させて、ドデシル硫酸アニオン層がCeO2−y層の間に挿入された層状有機無機ハイブリッド蛍光体を得る。
The aqueous solution is then centrifuged to separate the solid precipitate.
Finally, the solid precipitate is washed and vacuum dried to obtain a layered organic-inorganic hybrid phosphor in which a dodecyl sulfate anion layer is inserted between CeO 2-y layers.
本発明により、高い量子収率で紫外発光を示す新規な蛍光体、及び当該新規な蛍光体を合成するための、簡易で毒性の低い水溶液プロセスが提供される。
本発明の方法により、90%ないし60%という極めて高い量子収率を有する新規な層状化合物蛍光体が提供される。
INDUSTRIAL APPLICABILITY According to the present invention, a novel phosphor exhibiting ultraviolet emission with a high quantum yield and a simple and less toxic aqueous solution process for synthesizing the novel phosphor are provided.
The method of the present invention provides a novel layered compound phosphor having an extremely high quantum yield of 90% to 60%.
本発明の方法によって得られる蛍光体は、層状構造の各層を構成する面の面積が1〜1000μm2程度の大きさの板状体であるため、基板に対して本発明の蛍光体をスピンコートやディップコートなどの低温の湿式プロセスによって塗布することで、比較的緻密で平滑な蛍光体膜を基板上に形成することが可能となる。従って、ポリマーや紙などの熱に弱い材料を基板として用いることができ、有機EL素子に応用することが期待される。 Since the phosphor obtained by the method of the present invention is a plate-shaped body having a surface area constituting each layer of the layered structure having a size of about 1 to 1000 μm 2 , the phosphor of the present invention is spin coated on the substrate. By applying by a low temperature wet process such as dip coating, a relatively dense and smooth phosphor film can be formed on the substrate. Therefore, a heat-sensitive material such as a polymer or paper can be used as a substrate, and it is expected to be applied to an organic EL element.
以下に、本発明の実施例を具体的に示すが、本発明はこれらに限定されるものではない。 Examples of the present invention are specifically shown below, but the present invention is not limited thereto.
<CeO2−y/ドデシル硫酸(DS)アニオン層状化合物の合成(1)>
大気中、大気圧下において、50mlビーカーに、0.1mol/lのドデシル硫酸ナトリウム(SDS:CH3(CH2)11SO4Na)水溶液(溶媒:蒸留水)10mlと、2mol/lのヘキサメチレンテトラミン(HMTA)水溶液1mlを入れ、0.5mol/lの硝酸セリウム(CeNO3)水溶液20mlを添加した。添加するとすぐに沈殿が形成されるため、磁気攪拌機(AS ONE製:RS−6DR)を用いて良く撹拌して沈殿物を溶解させた。
<CeO 2-y / Synthesis of Dodecyl Sulfate (DS) Anion Layered Compound (1)>
Under atmospheric pressure and atmospheric pressure, in a 50 ml beaker, 10 ml of 0.1 mol / l sodium dodecyl sulfate (SDS: CH 3 (CH 2 ) 11 SO 4 Na) aqueous solution (solvent: distilled water) and 2 mol / l hexa 1 ml of an aqueous solution of methylenetetramine (HMTA) was added, and 20 ml of an aqueous solution of 0.5 mol / l cerium nitrate (CeNO 3 ) was added. Since a precipitate was formed as soon as it was added, the precipitate was dissolved by thoroughly stirring using a magnetic stirrer (manufactured by AS ONE: RS-6DR).
次いで、この水溶液を湯浴(SANSYO製:SSB−103)を用いて80℃に加熱し、そのまま一晩80℃で維持した。
次いで、この水溶液を常温に冷まし、沈殿を形成させた後、遠心分離機(Kubota製:2410)を用いて沈殿物を分離した。沈殿物を、蒸留水、エタノールでよく洗浄し、真空乾燥機(AS ONE製:AVO−200NS)を用いて室温で24時間真空乾燥した。
Next, this aqueous solution was heated to 80 ° C. using a hot water bath (manufactured by SANSYO: SSB-103) and maintained at 80 ° C. as it was overnight.
Next, the aqueous solution was cooled to room temperature to form a precipitate, and then the precipitate was separated using a centrifuge (manufactured by Kubota: 2410). The precipitate was thoroughly washed with distilled water and ethanol, and vacuum-dried at room temperature for 24 hours using a vacuum dryer (manufactured by AS ONE: AVO-200NS).
得られた結果物を、X線回折(XRD)(RIGAKU製:INT−2500VHF)、X線光電子分光(XPS)(Sigma Probe製:Thermo Scientific)、透過型電子顕微鏡(TEM)(Hitachi製:HF−2000)、ラマン分光(Raman)(Jasco製:NRS−3100)、走査型電子顕微鏡(SEM)(日立製:SU−8000)により解析した。 The obtained product was subjected to X-ray diffraction (XRD) (manufactured by RIGAKU: INT-2500VHF), X-ray photoelectron spectroscopy (XPS) (manufactured by Sigma Probe: Thermo Scientific), transmission electron microscope (TEM) (manufactured by Hitachi, HF) -2000), Raman spectroscopy (Raman) (manufactured by Jasco: NRS-3100), and scanning electron microscope (SEM) (manufactured by Hitachi: SU-8000).
図1に、得られた結果物のXRDパターンを示す。低角側に層状化合物の(00l)反射に対応する鋭いピークが存在し、一方でCeO2ーx層に対応するピークはほとんど観察されなかった。これは、CeO2−y層が1〜3分子程度の非常に薄い層であることを示していると考えられる。この(00l)ピークから計算した結果物の層間距離、すなわち1層のCeO2−y層と1層のドデシル硫酸アニオン層とを含む層の厚みは3.3nmであった。 FIG. 1 shows the XRD pattern of the resulting product. On the low angle side, a sharp peak corresponding to the (00 l) reflection of the layered compound was present, while a peak corresponding to the CeO 2−x layer was hardly observed. This is considered to indicate that the CeO 2-y layer is a very thin layer of about 1 to 3 molecules. The interlayer distance of the resultant product calculated from the (001) peak, that is, the thickness of the layer including one CeO 2-y layer and one dodecyl sulfate anion layer was 3.3 nm.
得られたCeO2−y/DS層状化合物のラマン分光の結果は、470cm−1にF2gバンドに対応するピークを示し、CeO2−y層が生成していることが示唆される。
TEM観察の結果からは、得られたCeO2−y/DSアニオン層状化合物において、CeO2−y層が、立方晶のホタル石構造を有することが明らかとなった。また、得られたCeO2−y/DS層状化合物は、扁平な板状の形状を有する層状構造体であり、その各層を構成する面と平行な方向の平均長径は20μm〜100μmであり、平均短径は1μm〜10μmであった。
The result of Raman spectroscopy of the obtained CeO 2-y / DS layered compound shows a peak corresponding to the F 2g band at 470 cm −1 , suggesting that a CeO 2-y layer is formed.
From the results of TEM observation, it was found that the CeO 2-y layer had a cubic fluorite structure in the obtained CeO 2-y / DS anion layered compound. Moreover, the obtained CeO 2-y / DS layered compound is a layered structure having a flat plate-like shape, and the average major axis in the direction parallel to the surface constituting each layer is 20 μm to 100 μm. The minor axis was 1 μm to 10 μm.
図2に、得られた結果物の高分解能TEM像を示す。CeO2−y層とドデシル硫酸アニオン層とが交互に積層した層状構造を形成していることが分かる。CeO2−y層の厚みは1〜2nm程度であり、ドデシル硫酸アニオン層の厚みは1.9〜2.5nm程度と見積もられる。このことから、図2の右下の模式図において示すように、ドデシル硫酸アニオンは、その一部が重なり合う形で二分子層を形成しており、マイナスの電荷を有する硫酸基をCeO2−y層の表面に対向させるようにしてベシクルを形成していると考えられる。 FIG. 2 shows a high-resolution TEM image of the resultant product. It can be seen that a layered structure in which CeO 2-y layers and dodecyl sulfate anion layers are alternately laminated is formed. The thickness of the CeO 2-y layer is about 1 to 2 nm, and the thickness of the dodecyl sulfate anion layer is estimated to be about 1.9 to 2.5 nm. From this, as shown in the schematic diagram at the lower right of FIG. 2, the dodecyl sulfate anion forms a bimolecular layer with a part of it overlapping, and the sulfate group having a negative charge is converted to CeO 2-y. It is considered that the vesicle is formed so as to face the surface of the layer.
図3は、得られたCeO2−y/DS層状化合物の、励起スペクトル及び発光スペクトルを示している。当該層状化合物は紫外または近紫外領域である380nmに発光のピーク波長を有する。発光フォトン数と吸収された励起光のフォトン数との比を量子収率として定義すると、層状化合物は、275nmの励起波長で60%程度の非常に高い発光量子収率を示すことが分かる。本発明のCeO2−y/DS層状化合物の発光特性は、CeO2−yの表面に存在するCe3+イオンとドデシル硫酸アニオンとがイオン結合することによって得られるものである。本発明のCeO2−y/DSアニオン層状化合物は薄層構造を有するために、粒子状化合物と比較して、Ce3+とドデシル硫酸との界面を高密度に形成することが可能であり、結果として、高い量子収率が得られる。薄層構造を有する本発明のCeO2−y/DS層状化合物が、粒子の場合と比較して高密度にCe3+とドデシル硫酸との界面を形成することができる理由の一つは、層状構造体を形成する過程でドデシル硫酸が吸着したCe3+は酸化されにくく、塩基によって酸化されずにCe3+のまま残るからであると考えられる。一方で、例えばCeOナノ粒子の場合には、CeO2−y中に存在するCe3+イオンのCe4+イオンに対する相対密度が低く、また、結合するドデシル硫酸の量も少ないために、層状化合物と比較して十分な発光を得ることができない。 FIG. 3 shows an excitation spectrum and an emission spectrum of the obtained CeO 2-y / DS layered compound. The layered compound has an emission peak wavelength at 380 nm, which is in the ultraviolet or near ultraviolet region. When the ratio between the number of photons emitted and the number of photons absorbed in the excitation light is defined as the quantum yield, it can be seen that the layered compound exhibits a very high emission quantum yield of about 60% at an excitation wavelength of 275 nm. The light emission characteristics of the CeO 2-y / DS layered compound of the present invention are obtained by ionic bonding of Ce 3+ ions and dodecyl sulfate anions present on the surface of CeO 2-y . Since the CeO 2-y / DS anionic layered compound of the present invention has a thin layer structure, it is possible to form an interface between Ce 3+ and dodecylsulfuric acid at a higher density than the particulate compound. As a result, a high quantum yield is obtained. One of the reasons why the CeO 2-y / DS layered compound of the present invention having a thin layer structure can form an interface between Ce 3+ and dodecyl sulfate at a higher density than in the case of particles is the layered structure. This is considered to be because Ce 3+ adsorbed with dodecylsulfuric acid in the process of forming the structure is not easily oxidized and remains as Ce 3+ without being oxidized by the base. On the other hand, in the case of CeO nanoparticles, for example, the relative density of Ce 3+ ions present in CeO 2-y with respect to Ce 4+ ions is low, and the amount of dodecyl sulfate to be bound is small. Thus, sufficient light emission cannot be obtained.
図4に、得られたCeO2−y/DS層状化合物の、SEM観察結果を示す。得られたCeO2−y/DS層状化合物は、サブミクロン(50nm−100nm程度)の厚み、及び1−5μm程度の幅を有する板状体であることがわかる。 In FIG. 4, the SEM observation result of the obtained CeO2 -y / DS layered compound is shown. It can be seen that the obtained CeO2 -y / DS layered compound is a plate-like body having a thickness of submicron (about 50 nm-100 nm) and a width of about 1-5 μm.
図5に、得られたCeO2−y/DS層状化合物のXPS観測結果を示す。870〜930eVの範囲に示されたこれらのピークは、Ceの3d電子軌道に対応する。当該ピークからCe3+とCe4+のモル比を計算すると、Ce3+とCe4+が1対1の割合で存在していることが分かった。このことから、Ce3+及びCe4+とO2−との電荷が全体として釣り合っていると考えると、当該CeO2−y層において、2−yは1.75の値、すなわちyは0.25の値であることが分かる。 In FIG. 5, the XPS observation result of the obtained CeO2 -y / DS layered compound is shown. These peaks shown in the range of 870-930 eV correspond to the 3d electron orbit of Ce. Calculating the molar ratio of Ce 3+ and Ce 4+ from the peak, it was found that the Ce 3+ and Ce 4+ are present in a ratio of 1: 1. From this, when it is considered that the charges of Ce 3+ and Ce 4+ and O 2− are balanced as a whole, in the CeO 2-y layer, 2-y is a value of 1.75, that is, y is 0.25. It turns out that it is the value of.
<Ce(OH)x/ドデシル硫酸(DS)アニオン層状化合物の合成>
大気中、大気圧下において、50mlビーカーに、0.1mol/lのドデシル硫酸ナトリウム(SDS:CH3(CH2)11SO4Na)水溶液(溶媒:蒸留水)10mlを入れ、0.5mol/lの硝酸セリウム(CeNO3)水溶液20mlを添加した。添加するとすぐに沈殿が形成されるため、磁気攪拌機(AS ONE製:RS−6DR)を用いて良く撹拌して沈殿物を溶解させた。
<Synthesis of Ce (OH) x / dodecylsulfuric acid (DS) anionic layered compound>
10 ml of 0.1 mol / l aqueous sodium dodecyl sulfate (SDS: CH 3 (CH 2 ) 11 SO 4 Na) (solvent: distilled water) was placed in a 50 ml beaker under atmospheric pressure at atmospheric pressure, and 0.5 mol / l 1 ml of an aqueous cerium nitrate (CeNO 3 ) solution was added. Since a precipitate was formed as soon as it was added, the precipitate was dissolved by thoroughly stirring using a magnetic stirrer (manufactured by AS ONE: RS-6DR).
次いで、遠心分離機(Kubota製:2410)を用いて溶解した沈殿物を再度沈降させて分離した。沈殿物を、蒸留水、エタノールでよく洗浄し、真空乾燥機(AS ONE製:AVO−200NS)を用いて室温で24時間真空乾燥した。 Next, the dissolved precipitate was again settled and separated using a centrifuge (manufactured by Kubota: 2410). The precipitate was thoroughly washed with distilled water and ethanol, and vacuum-dried at room temperature for 24 hours using a vacuum dryer (manufactured by AS ONE: AVO-200NS).
図1に、得られた結果物のXRDパターンを示す。CeO2−y/DSアニオン層状化合物(実施例1)の場合と同様に、低角側に層状化合物の(00l)反射に対応する鋭いピークが存在し、Ce(OH)x層に対応するピークはほとんど観察されなかった。この(00l)ピークから計算した結果物の層間距離は3.74nmであり、CeO2−y/DS層状化合物(実施例1)の3.3nmよりも層間距離が若干長いことが分かる。実施例1と同様、Ce(OH)x/ドデシル硫酸(DS)アニオンの相互に積層してなる層状化合物が得られた。 FIG. 1 shows the XRD pattern of the resulting product. As in the case of the CeO 2-y / DS anion layered compound (Example 1), a sharp peak corresponding to the (00 l) reflection of the layered compound exists on the low angle side, and the peak corresponding to the Ce (OH) x layer Was hardly observed. The interlayer distance of the resultant product calculated from this (001) peak is 3.74 nm, and it can be seen that the interlayer distance is slightly longer than 3.3 nm of CeO2 -y / DS layered compound (Example 1). As in Example 1, a layered compound obtained by laminating Ce (OH) x / dodecylsulfuric acid (DS) anions was obtained.
図3は、得られたCe(OH)x/DS層状化合物の、励起スペクトル及び発光スペクトルを示している。当該層状化合物は320nmに発光のピーク波長を有し、290nmの励起波長で90%程度の発光量子収率を示すことが分かる。 FIG. 3 shows an excitation spectrum and an emission spectrum of the obtained Ce (OH) x / DS layered compound. It can be seen that the layered compound has an emission peak wavelength at 320 nm and an emission quantum yield of about 90% at an excitation wavelength of 290 nm.
以上から明らかなように、本願発明の合成方法によって層状セリウム化合物蛍光体を合成すると、320〜380nmの範囲に発光のピーク波長を有し、60%〜90%という極めて高い量子収率を有する層状化合物蛍光体を合成することができる。これは、Ce3+の5d軌道電子のd→f遷移によるものである。通常、セリウム表面に酸素や水酸基が存在する場合には、セリウムの励起電子は熱緩和されるが、ドデシル硫酸アニオンがセリウム表面に吸着することにより、セリウムの励起電子が発光緩和過程を辿り、量子収率が増加すると考えられる。 As is clear from the above, when a layered cerium compound phosphor is synthesized by the synthesis method of the present invention, the layered cerium compound phosphor has a peak wavelength of light emission in the range of 320 to 380 nm and an extremely high quantum yield of 60% to 90%. Compound phosphors can be synthesized. This is due to the d → f transition of Ce 3+ 5d orbital electrons. Normally, when oxygen or a hydroxyl group is present on the cerium surface, the excited electrons of cerium are thermally relaxed, but the dodecyl sulfate anion is adsorbed on the cerium surface, so that the excited electrons of cerium follow the emission relaxation process, and quantum The yield is thought to increase.
Claims (9)
当該水溶液中の沈殿物を回収すること、
を含む、ドデシル硫酸アニオンの二分子層からなり、当該二分子層の厚さが1.9〜2.5nmであるドデシル硫酸アニオン層と、Ce(OH) x 層とを交互に重ね合わせた層状セリウム化合物蛍光体の製造方法。 Adding 5 to 20 ml of an aqueous solution of 0.5 mol / l cerium nitrate to 5 to 20 ml of 0.01 to 0.1 mol / l aqueous sodium dodecyl sulfate solution to form a precipitate, and precipitation in the aqueous solution Collecting things,
A dodecyl sulfate anion layer having a thickness of 1.9 to 2.5 nm and a Ce (OH) x layer alternately laminated. A method for producing a cerium compound phosphor.
当該沈殿物を溶解させた水溶液を40〜100℃の温度に加熱し、当該温度で1〜24時間維持して再度沈殿させること、及び、
当該水溶液中の沈殿物を回収すること、
を含む、ドデシル硫酸アニオンの二分子層からなり、当該二分子層の厚さが1.9〜2.5nmであるドデシル硫酸アニオン層と、CeO 2−y 層とを交互に重ね合わせた層状セリウム化合物蛍光体の製造方法。 Adding a base to 5-20 ml of 0.01-0.1 mol / l sodium dodecyl sulfate aqueous solution and adding 5-20 ml of 0.5 mol / l aqueous solution of cerium nitrate to produce a precipitate;
Heating the aqueous solution in which the precipitate is dissolved to a temperature of 40 to 100 ° C., maintaining the temperature at the temperature for 1 to 24 hours, and precipitating again; and
Collecting the precipitate in the aqueous solution,
A layered cerium comprising a dodecyl sulfate anion layer having a thickness of 1.9 to 2.5 nm and a CeO 2-y layer alternately laminated. A method for producing a compound phosphor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128186A JP5810442B2 (en) | 2011-06-08 | 2011-06-08 | Layered cerium compound phosphor and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128186A JP5810442B2 (en) | 2011-06-08 | 2011-06-08 | Layered cerium compound phosphor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012255064A JP2012255064A (en) | 2012-12-27 |
JP5810442B2 true JP5810442B2 (en) | 2015-11-11 |
Family
ID=47526929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011128186A Expired - Fee Related JP5810442B2 (en) | 2011-06-08 | 2011-06-08 | Layered cerium compound phosphor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5810442B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013163621A (en) * | 2012-02-13 | 2013-08-22 | Nissan Motor Co Ltd | Oxide-ion-conductive oxide nanosheet, manufacturing method for oxide-ion-conductive oxide nanosheet, and electrolyte for solid-oxide fuel cell |
-
2011
- 2011-06-08 JP JP2011128186A patent/JP5810442B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012255064A (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Adimule et al. | Morphology, structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO2 nanostructures | |
Tetsuka et al. | Highly luminescent flexible amino-functionalized graphene quantum dots@ cellulose nanofiber–clay hybrids for white-light emitting diodes | |
JP6255338B2 (en) | Inorganic particle scattering film with high light extraction performance | |
Zhang et al. | Defect-related luminescent materials: synthesis, emission properties and applications | |
WO2006009073A1 (en) | Silicon nanosheet, nanosheet solution and process for producing the same, nanosheet-containing composite, and nanosheet aggregate | |
Jain et al. | Facile synthesis of defect-induced highly-luminescent pristine MgO nanostructures for promising solid-state lighting applications | |
Aboulaich et al. | Rapid synthesis of Ce 3+-doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors | |
CN106674557B (en) | Rare earth-based nano cellulose fiber film with ultraviolet filtering performance and preparation method thereof | |
Bai et al. | Superlattice films of semiconducting oxide and rare-earth hydroxide nanosheets for tunable and efficient photoluminescent energy transfer | |
Bayat et al. | Optical and magnetic properties of zinc vanadates: synthetic design of colloidal Zn 3 V 2 O 7 (OH) 2 (H 2 O) 2, ZnV 2 O 4 and Zn 3 V 2 O 8 nanostructures | |
Zhang et al. | Enhanced fluorescence of europium-doped yttrium hydroxide nanosheets modified by 2-thenoyltrifluoroacetone | |
US9802396B2 (en) | Synthesis of quantum dot/polymer/layered-structure ceramic composite | |
JP5370740B2 (en) | Layered rare earth hydroxide, thin film thereof, and production method thereof | |
JP5810442B2 (en) | Layered cerium compound phosphor and method for producing the same | |
Viswanath et al. | A nanosheet phosphor of double-layered perovskite with unusual intrananosheet site activator concentration | |
Ren et al. | A novel red-emitting phosphor for white light-emitting diodes | |
TW200304900A (en) | Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor | |
Cho et al. | Quantum dot–layered double hydroxide composites for near-infrared emitting codes | |
JP2011016670A (en) | Method for synthesizing vanadate | |
Zhang et al. | Novel synthesis route to uniform nanosheet Bi2O2CO3: Eu3+ crystals with luminescence properties | |
JP5464404B2 (en) | Rare earth oxide phosphor manufacturing method and thin film manufacturing method using rare earth oxide phosphor | |
JP5156947B2 (en) | Oxide nanosheet phosphor and method for producing the same | |
Song et al. | Wet-chemical preparation of barium magnesium orthophosphate, Ba 2 Mg (PO 4) 2: Eu 2+, nanorod phosphor with enhanced optical and photoluminescence properties | |
Tang et al. | Synthesis of h-BN encapsulated spherical core–shell structured SiO2@ Sr2Si5N8: Eu2+ red phosphors | |
JP6595854B2 (en) | Method for producing tellurium compound nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150827 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5810442 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |