JP5806829B2 - Dispersion particle size estimation method and design method for perforated element type static disperser - Google Patents

Dispersion particle size estimation method and design method for perforated element type static disperser Download PDF

Info

Publication number
JP5806829B2
JP5806829B2 JP2011062980A JP2011062980A JP5806829B2 JP 5806829 B2 JP5806829 B2 JP 5806829B2 JP 2011062980 A JP2011062980 A JP 2011062980A JP 2011062980 A JP2011062980 A JP 2011062980A JP 5806829 B2 JP5806829 B2 JP 5806829B2
Authority
JP
Japan
Prior art keywords
dispersed
vorticity
particle size
fluid
distribution width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011062980A
Other languages
Japanese (ja)
Other versions
JP2012196631A (en
Inventor
建二 久保
建二 久保
下村 嘉徳
嘉徳 下村
曽我尾 昌彦
昌彦 曽我尾
克利 小路
克利 小路
恵一 長谷川
恵一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2011062980A priority Critical patent/JP5806829B2/en
Publication of JP2012196631A publication Critical patent/JP2012196631A/en
Application granted granted Critical
Publication of JP5806829B2 publication Critical patent/JP5806829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、化学関係や薬品関係、食品関係、塗料関係、製紙関係、半導体関係、電池関係等のプラントに於いて主に利用される静止型分散器を用いて分散処理される流体中の分散粒子の粒子径及びその分布幅を推定する方法、及び、該静止型分散器の設計方法に関する。   The present invention relates to dispersion in a fluid that is dispersed using a static disperser that is mainly used in plants such as chemicals, chemicals, foods, paints, papermaking, semiconductors, and batteries. The present invention relates to a method for estimating the particle diameter and distribution width of particles, and a method for designing the static disperser.

従来、分散器として、タービン・ステータ型高速回転式分散器、高速回転式分散器、超音波式分散器、超高圧ジェット式分散器、多孔エレメント式静止型分散器などが知られている。   Conventionally, as a disperser, a turbine-stator type high-speed rotating disperser, a high-speed rotating disperser, an ultrasonic disperser, an ultra-high pressure jet disperser, a perforated element static disperser, and the like are known.

この中でも、多孔エレメント式静止型分散器は、機械的動力が不要、装填・脱着が簡単で構造がシンプル、コンパクトである、分散処理すべき流体を高速で通過させるだけの簡単な操作で平均粒径0.3〜600μmの範囲で分布幅の狭い分散が得られる、流速や多孔エレメントを変更することにより簡単に粒子径の異なる分散が行える、等の点で優れている(特許文献1,2、非特許文献1,2等)。   Among these, perforated element type static dispersers do not require mechanical power, are easy to load and unload, have a simple structure, are compact, and have an average particle size with a simple operation that allows a fluid to be dispersed to pass through at high speed. Dispersion with a narrow distribution width is obtained in the range of 0.3 to 600 μm in diameter, and dispersion with different particle diameters can be easily performed by changing the flow rate and the porous element (Patent Documents 1 and 2). Non-Patent Documents 1, 2, etc.).

この多孔エレメント式静止型分散器は、図3及び図4に示すようなディスク状の多孔エレメント4A,4Bが積層されて構成される。多孔エレメント4Aと多孔エレメント4Bとは、それぞれ配置パターンの異なる通孔11,12が形成されている。図示例では、多孔エレメント4Aは中心軸線から等距離且つ等角度間隔の計4つの通孔11が形成され、多孔エレメント4Bは中心の通孔12と中心軸線から等距離で等角度間隔の4つの通孔12が計5つ形成されている。通孔11、12は、図3及び図4に示すように、中間部に形成された縮径部11a、12aと、縮径部11a,12aの各々の両端部から外側へ漸次拡径するテーパー部11b、11c、12b、12cとを備えている。図示例に於いて、多孔エレメント4A、4Bは、外径27.5mm、厚み5mm、縮径部11a、12aの内径5mm、テーパー部11b、11c、12b、12cの傾斜45°、入口及び出口の開口径(d)6mmである。多孔エレメント4Aと多孔エレメント4Bとは、図5に多孔エレメント4A上に多孔エレメント4Bを積層した状態を示すように、隣接する多孔エレメントの一方の一つの通孔に対して、他方の多孔エレメントの複数の通孔がオーバーラップするように、積層される。このように通孔をオーバーラップさせて積層した多孔エレメント4A、4Bを一組とし、用途に応じて、一組だけで用いるか、或いは、複数組を積層して用いられる。多孔エレメントは、外径、孔の数及び配置の異なる複数種のエレメントが設計され、用途に応じて適宜組み合わせて使用される。   This perforated element type static disperser is configured by laminating disc-shaped perforated elements 4A and 4B as shown in FIGS. The porous element 4A and the porous element 4B are formed with through holes 11 and 12 having different arrangement patterns, respectively. In the illustrated example, the porous element 4A is formed with a total of four through holes 11 equidistant from the central axis and equiangularly spaced, and the porous element 4B has four equiangular intervals equidistant from the central through hole 12 and the central axis. A total of five through holes 12 are formed. As shown in FIGS. 3 and 4, the through-holes 11 and 12 are tapered diameters 11a and 12a formed in the intermediate part, and taper that gradually increases from both ends of the reduced diameter parts 11a and 12a to the outside. Parts 11b, 11c, 12b, and 12c. In the illustrated example, the porous elements 4A and 4B have an outer diameter of 27.5 mm, a thickness of 5 mm, an inner diameter of the reduced diameter portions 11a and 12a of 5 mm, an inclination of the tapered portions 11b, 11c, 12b and 12c of 45 °, and an inlet and an outlet. The opening diameter (d) is 6 mm. As shown in FIG. 5 in which the porous element 4B is laminated on the porous element 4A, the porous element 4A and the porous element 4B correspond to the one porous hole of one of the adjacent porous elements. The plurality of through holes are stacked so as to overlap each other. Thus, the porous elements 4A and 4B laminated with the through-holes being overlapped are used as a set, and depending on the application, only one set is used, or a plurality of sets are stacked and used. As the porous element, a plurality of types of elements having different outer diameters, numbers of holes, and arrangements are designed and used in combination as appropriate according to the application.

上記構成を有する多孔エレメント式静止型分散器に分散処理すべき流体を高速で通過させると、流体は、通孔11,12の縮径部11a,12aを通過する際に流速が最大となり、縮径部11a,12aの周壁との間に働く剪断力によって分散される。続いて、縮径部11a,12aを通過した主流が前方(下流側)のエレメントに衝突し、反転して3次元的な渦を巻く(図6の矢印参照)。このときの衝突によるキャビテーション力によりさらに分散力が促進すると考えられる。また、多孔エレメントを通過するごとに流体が複数に分割されることと、流路の拡大縮小、乱流混合によって激しく攪拌される。この操作が積層されたエレメントの数だけ繰り返される。こうして、多孔エレメント式静止型分散器により、分散処理すべき流体を機械的に分散させる。   When the fluid to be dispersed is passed through the perforated element type static disperser having the above configuration at a high speed, the fluid has the maximum flow velocity when passing through the reduced diameter portions 11a and 12a of the through holes 11 and 12, and the contraction is reduced. Dispersed by the shearing force acting between the peripheral portions of the diameter portions 11a and 12a. Subsequently, the main flow that has passed through the reduced diameter portions 11a and 12a collides with the forward (downstream side) element, reverses, and winds a three-dimensional vortex (see arrows in FIG. 6). It is considered that the dispersion force is further promoted by the cavitation force due to the collision at this time. In addition, the fluid is divided into a plurality of parts each time it passes through the porous element, and is vigorously stirred by enlargement / reduction of the flow path and turbulent mixing. This operation is repeated for the number of stacked elements. Thus, the fluid to be dispersed is mechanically dispersed by the porous element type static disperser.

多孔エレメント式静止型分散器は、流速や多孔エレメントを変更することにより簡単に粒子径の異なる分散が行え、分布幅の狭い平均粒子径の分散を得ることができる。   The perforated element type static disperser can easily disperse with different particle diameters by changing the flow rate or the perforated element, and can obtain dispersion with an average particle diameter with a narrow distribution width.

従来、多孔エレメント式静止型分散器について、分散メカニズムを解明すべく種々の研究がつづけられている(非特許文献1,2等)が、分散粒子径及びその分布幅の予測は容易でなかった。   Conventionally, various studies have been continued to clarify the dispersion mechanism of porous element type static dispersers (Non-Patent Documents 1, 2, etc.), but it is not easy to predict the dispersed particle size and distribution width. .

特開2000−254469号公報JP 2000-254469 A 特開2003−236355号公報JP 2003-236355 A

久保建二,小路克利,鈴木 洋、「新静止型ミキサー「分散君」の分散特性」、化学工学論文集、社団法人化学工学会、Volume34、Number6、Page545‐550、2008年(「分散君」は登録商標である。)Kenji Kubo, Katsutoshi Koji, Hiroshi Suzuki, “Dispersion Characteristics of New Static Mixer“ Dispersion-kun ””, Chemical Engineering Papers, Japan Society for Chemical Engineering, Volume 34, Number 6, Pages 545-550, 2008 (“Distribution-kun”) Is a registered trademark.) 鈴木 洋(Hiroshi Suzuki)、久保建二(Kenji Kubo)、小路克利(Katsutoshi Shoji)、菰田 悦之(Yoshiyuki Komoda)、and薄井 洋基(Hiromoto Usui)、 JOURNAL OF CHEMICAL ENGINEERING OF JAPAN、社団法人化学工学会(The Society of Chemical Engineers,Japan)、41(3)、139〜144頁、2008年3月1日Hiroshi Suzuki, Kenji Kubo, Katsutoshi Shoji, Yoshiyuki Komoda, Hiromoto Usui, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Chemical Society of Japan ( The Society of Chemical Engineers, Japan), 41 (3), pp. 139-144, March 1, 2008

上記問題に鑑み、本発明は、多孔エレメント式静止型分散器を用いた分散処理において、分散粒子径及びその分布幅を推定する方法を提供することを目的とする。また、その逆に、必要な分散粒子径及びその分布幅の範囲が予め決まっている場合に、多孔エレメントを設計する条件を決定することにより多孔エレメント式静止型分散器を設計する方法を提供することをも目的とする。   In view of the above problems, an object of the present invention is to provide a method for estimating a dispersed particle size and a distribution width thereof in a dispersion process using a porous element type static disperser. On the contrary, when the required dispersed particle diameter and the range of the distribution width are predetermined, a method for designing a porous element type static disperser is provided by determining conditions for designing a porous element. Also aimed at.

本発明者等による鋭意研究の結果、多孔エレメントの通孔内に生じる渦流の渦度が、分散粒子の粒子径とその分布幅に影響していることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, it has been found that the vorticity of the vortex generated in the through-hole of the porous element affects the particle size of the dispersed particles and the distribution width thereof, and the present invention has been completed. .

上記目的を達成するため、本発明は、複数の通孔が形成されたディスク状のエレメントを重ね合わせた多孔エレメント式静止型分散器に分散処理すべき流体を流通させることにより分散処理される流体中の分散粒子の粒子径及びその分布幅を推定する方法であって、流体解析による三次元数値計算により、該通孔内で発生する渦流の渦度を求めるステップと、渦度と、分散処理された分散粒子の粒子径とその分布幅との関係について予め実験により求められた関係に基づいて、前記三次元数値計算により求められた渦度から、分散粒子の粒子径及びその分布幅を推定するステップと、を含むことを特徴とする。   In order to achieve the above object, the present invention provides a fluid to be dispersed by passing a fluid to be dispersed through a porous element type static disperser in which a plurality of disk-shaped elements having through holes formed thereon are overlapped. A method for estimating the particle diameter and distribution width of dispersed particles therein, the step of obtaining vorticity of vortex generated in the through-hole by three-dimensional numerical calculation by fluid analysis, vorticity, and dispersion processing Estimate the particle size and distribution width of the dispersed particles from the vorticity obtained by the three-dimensional numerical calculation based on the relationship obtained by experiments in advance on the relationship between the particle size of the dispersed particles and the distribution width. And a step of performing.

また、本発明は、上記目的を達成するため、複数の通孔が形成されたディスク状のエレメントを重ね合わせた多孔エレメント式静止型分散器を用いて分散処理される流体中の分散粒子を所望の粒子径及びその分布幅に制御するために、前記エレメントの設計条件に基づいて前記多孔エレメント式静止型分散器を設計する方法であって、前記通孔内で発生する渦流の渦度と、分散処理された分散粒子の粒子径とその分布幅との関係について予め実験により求められた関係に基づいて、前記所望の粒子径と分布幅に対応する渦度を求めるステップと、前記求められた渦度から、流体解析による三次元数値計算により、前記エレメントの設計条件を求めるステップと、を含むことを特徴とする。   In addition, in order to achieve the above object, the present invention desires dispersed particles in a fluid to be dispersed using a perforated element type static disperser in which disc-shaped elements having a plurality of through holes are stacked. In order to control the particle diameter and the distribution width thereof, a method of designing the porous element type static disperser based on the design conditions of the element, the vorticity of the vortex generated in the through hole, A step of obtaining a vorticity corresponding to the desired particle size and distribution width based on a relationship obtained by experiments in advance on the relationship between the particle size of the dispersed particles subjected to the dispersion treatment and the distribution width thereof, and the obtained Obtaining a design condition of the element from the vorticity by three-dimensional numerical calculation by fluid analysis.

本発明によれば、分散処理された分散粒子の粒子径及び分布幅と渦度との関係を予め実験により求められておき、流体解析による渦度の三次元数値計算を用いることにより、分散粒子の粒子径及び分布幅を推定することができ、また、エレメントの設計条件を算出することもできる。   According to the present invention, the relationship between the particle size and distribution width of the dispersion-processed dispersed particles and the vorticity is obtained in advance by experiments, and by using the three-dimensional numerical calculation of the vorticity by fluid analysis, the dispersed particles The particle diameter and the distribution width of the element can be estimated, and the element design conditions can be calculated.

本発明に用いる多孔エレメント式静止型分散器の流体の流れを可視化する装置を示す概念図である。It is a conceptual diagram which shows the apparatus which visualizes the flow of the fluid of the porous element type static disperser used for this invention. 可視化装置の多孔エレメントにおける流体の様子を示す拡大写真である。It is an enlarged photograph which shows the mode of the fluid in the porous element of a visualization apparatus. 本発明に用いられる多孔エレメントの一実施形態を示す平面図及び断面図である。It is the top view and sectional drawing which show one Embodiment of the porous element used for this invention. 図3の多孔エレメントに積層される多孔エレメントを示す平面図及び断面図である。It is the top view and sectional drawing which show the porous element laminated | stacked on the porous element of FIG. 図3の多孔エレメント上に図4の多孔エレメントを積層した状態を示す平面図である。FIG. 5 is a plan view showing a state in which the porous element of FIG. 4 is laminated on the porous element of FIG. 3. 図3の多孔エレメント上に図4の多孔エレメントを積層した状態で流体の流れを示す斜視図である。FIG. 5 is a perspective view showing a fluid flow in a state where the porous element of FIG. 4 is laminated on the porous element of FIG. 3. 渦度と乳化時のエマルジョンの粒子径(メディアン径)との関係を示すグラフである。It is a graph which shows the relationship between vorticity and the particle diameter (median diameter) of the emulsion at the time of emulsification. 渦度と乳化時のエマルジョンの分散幅(分散値)との関係を示すグラフである。It is a graph which shows the relationship between vorticity and the dispersion width (dispersion value) of the emulsion at the time of emulsification.

本発明に係る多孔エレメント式静止型分散器を用いた分散粒径制御方法の好ましい実施形態について、以下に図面を参照しつつ説明する。なお、以下の説明においては、従来技術を含めて同一又は類似の構成部分には同符号を付すことにより、重複説明を省略することがある。   A preferred embodiment of a dispersed particle size control method using a porous element type static disperser according to the present invention will be described below with reference to the drawings. In the following description, the same or similar components including the prior art are denoted by the same reference numerals, and redundant description may be omitted.

図1は、多孔エレメント式静止型分散器の通孔内に発生する渦流を可視化するための装置を示している。この可視化装置において、流体はタンク1からポンプ2によって鉛直に置かれた円管3に流入し、再びタンク1に戻る。円管3には、多孔エレメント4A、4Bが積層されて内蔵されている。この可視化装置のための多孔エレメント4A、4Bは、透明なアクリル樹脂によって形成されている。円管3の下流には円管3の内部を観察する透明なガラス製の窓5が設けてある。円管3の側方には、投光用の光源6が配置されている。円管3の流路中央に配置されたノズル7から色素(ウラニン)を混入した同一の粘度を有する流体を周囲流体と同速度で注入する。色素を混入した流体は、トレーサータンク8に収容されており、窒素ガス源9から供給される窒素ガスによって押し出され、ノズル7から吐出される。多孔エレメント4A、4Bの通孔内の流体の様子は、デジタル高速カメラ10によって撮像される。なお、可視化装置においては、多孔エレメントの通孔内の渦流を視認するために、多孔エレメントを透明樹脂によって形成しているが、一般の多孔エレメント式静止型分散器では、多孔エレメントはステンレス鋼等の金属材料で形成される。   FIG. 1 shows an apparatus for visualizing a vortex generated in a through hole of a porous element type static disperser. In this visualization device, the fluid flows from the tank 1 into the circular pipe 3 placed vertically by the pump 2 and returns to the tank 1 again. In the circular tube 3, porous elements 4A and 4B are laminated and incorporated. The porous elements 4A and 4B for the visualization device are formed of a transparent acrylic resin. A transparent glass window 5 for observing the inside of the circular tube 3 is provided downstream of the circular tube 3. A light source 6 for projecting light is disposed on the side of the circular tube 3. A fluid having the same viscosity mixed with a pigment (uranin) is injected from a nozzle 7 disposed in the center of the flow path of the circular tube 3 at the same speed as the surrounding fluid. The fluid mixed with the dye is accommodated in the tracer tank 8, pushed out by the nitrogen gas supplied from the nitrogen gas source 9, and discharged from the nozzle 7. The state of the fluid in the through holes of the porous elements 4A and 4B is imaged by the digital high-speed camera 10. In the visualization device, the porous element is formed of a transparent resin in order to visually recognize the vortex flow in the through hole of the porous element. However, in a general porous element type static disperser, the porous element is made of stainless steel or the like. It is made of a metal material.

図2は、可視化装置によって撮影された通孔内の渦流の様子を示している。この時、可視化装置に用いた多孔エレメントは、図3及び図4に示した2種類の多孔エレメントと同寸法のものを、2枚一組として5組積層している。図2の写真は、上流側から数えて8番目の多孔エレメント(4孔)と9番目の多孔エレメント(5孔)の通孔内の様子を示している。なお、例えば8番目の多孔エレメントを観察する場合には、その他の多孔エレメントの周囲を遮光フィルム等で遮光する。タンク1内の流体は、濃度調整によって粘度を0.0978Pa・Sにした水飴水溶液(ニュートン性流体)とした。多孔エレメントの上流70mmよりトレーサー流体(ウラニン)をノズル7から流入させた。円管断面平均流速Um(m/秒)は、0.0301(m/秒)、0.154(m/秒)、0.306(m/秒)、0.382(m/秒)とした。図2を参照すれば、円管断面平均流速Umが小さい場合(Um=0.0301(m/秒))にはなんら明確な流動構造は観測されないが、流速が増加するに従って、通孔の縮径部内に、半径方向を2分する渦流が発生することが分かる。なお、図2中、Reaは、多孔エレメントの通孔の縮径部を通る流体のレイノルズ数である。   FIG. 2 shows a state of vortex flow in the through-hole photographed by the visualization device. At this time, the porous elements used in the visualization device are stacked in a set of two, each having the same dimensions as the two types of porous elements shown in FIGS. 3 and 4. The photograph in FIG. 2 shows the inside of the through holes of the eighth porous element (4 holes) and the ninth porous element (5 holes) counted from the upstream side. For example, when observing the eighth porous element, the surroundings of the other porous elements are shielded from light by a light shielding film or the like. The fluid in the tank 1 was a water tank aqueous solution (Newtonian fluid) having a viscosity of 0.0978 Pa · S by adjusting the concentration. Tracer fluid (uranin) was introduced from the nozzle 7 from 70 mm upstream of the porous element. The circular pipe cross-sectional average flow velocity Um (m / second) was set to 0.0301 (m / second), 0.154 (m / second), 0.306 (m / second), and 0.382 (m / second). . Referring to FIG. 2, when the average cross-sectional flow velocity Um of the pipe is small (Um = 0.0301 (m / sec)), no clear flow structure is observed. It turns out that the vortex | eddy_current which divides a radial direction into 2 generate | occur | produces in a radial part. In FIG. 2, Rea is the Reynolds number of the fluid passing through the reduced diameter portion of the through hole of the porous element.

これを流体解析した結果は、上記した非特許文献2にも示されており、エレメントの形状・寸法(エレメントの直径、厚さ、通孔の内径、通孔の数、エレメントの積層枚数、通孔の配置)が決定されると各流速及びレイノルズ数Reaに対する平均渦度(mean vorticies,ωz)を求めることができ、そして、平均渦度は、レイノルズ数とともに直線的に増加することが分かっている(非特許文献2)。   The result of the fluid analysis is also shown in Non-Patent Document 2 described above, and the shape and dimensions of the element (element diameter, thickness, through-hole inside diameter, number of through-holes, number of stacked elements, number of through-holes, Once the hole arrangement is determined, the mean vorticies (ωz) can be determined for each flow velocity and Reynolds number Rea, and the mean vorticity increases linearly with the Reynolds number. (Non-Patent Document 2).

一方、上記と同じ寸法の多孔エレメント(2A,2B)2種一組を5組積層した多孔エレメント式静止型分散器を用いて、水に植物油脂を乳化分散させ、得られたエマルションの分散粒子径(メディアン径)ならびに分布幅(分散値)と多孔エレメントの通孔内の渦度との関係について調べた。分散処理すべき流体として、水を94.5wt%、大豆白絞油(昭和産業)を5wt%、乳化剤(花王TW‐O120)を0.5wt%に調製した。また、多孔エレメントの平均渦度(ωz[1/s])と多孔エレメントの組数(枚数)を変えて調べた。その結果をグラフに示したものが図7および図8である。こうして得られたグラフは、最小二乗法等の近似法を用いて、関数で近似することもできる。   On the other hand, using a porous element type static disperser in which 5 sets of 2 types of porous elements (2A, 2B) having the same dimensions as above are laminated, vegetable oils and fats are emulsified and dispersed in water, and the dispersed particles of the obtained emulsion The relationship between the diameter (median diameter) and distribution width (dispersion value) and the vorticity in the through hole of the porous element was investigated. As fluids to be dispersed, water was prepared at 94.5 wt%, soybean white oil (Showa Sangyo) at 5 wt%, and an emulsifier (Kao TW-O120) at 0.5 wt%. Further, the average vorticity (ωz [1 / s]) of the porous element and the number of the porous elements (number) were changed. The results are shown in graphs in FIGS. The graph thus obtained can be approximated by a function using an approximation method such as a least square method.

なお、平均渦度(ωz)は、数値流体力学(Computational Fluid Dynamics:CFD)に基づく三次元流体解析ソフトウェアを利用したコンピュータ数値シミュレーションにより三次元数値計算し、その時のエマルジョン粒子径ならびに分散値はレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製LA‐300)を用いて計測し、該装置に付属のソフトウェアを用いてメディアン径(D50)と算術分散(σ)を算出した。 The mean vorticity (ωz) is calculated three-dimensionally by computer numerical simulation using three-dimensional fluid analysis software based on Computational Fluid Dynamics (CFD). Measurement was performed using a diffraction / scattering particle size distribution measuring apparatus (LA-300 manufactured by Horiba, Ltd.), and the median diameter (D 50 ) and arithmetic dispersion (σ 2 ) were calculated using software attached to the apparatus.

前記三次元流体解析ソフトウェアを用いて、孔径、孔数、及び、エレメント枚数等のエレメント条件と、分散処理すべき流体(主としてエマルション)の流動条件(通孔内を流れる流体の流速、密度、粘度、レイノルズ数等)とから渦度を三次元数値計算し、次いで、エマルションの分散粒子径(メディアン径)ならびに分布幅(分散値)と多孔エレメントの通孔内の渦度との関係について予め実験により得られた関係(図7,8のようなグラフ或いは近似関数)を用いることで、三次元数値計算により算出された渦度から、その時のメディアン径や分散値を推定できる。   Using the 3D fluid analysis software, element conditions such as pore diameter, number of holes, number of elements, etc., and flow conditions of fluid (mainly emulsion) to be dispersed (flow velocity, density, viscosity of fluid flowing in the through holes) , The Reynolds number, etc.), and then conducting a preliminary experiment on the relationship between the dispersed particle diameter (median diameter) and distribution width (dispersion value) of the emulsion and the vorticity in the pores of the porous element By using the relationship (graphs or approximate functions as shown in FIGS. 7 and 8) obtained by the above, the median diameter and the dispersion value at that time can be estimated from the vorticity calculated by the three-dimensional numerical calculation.

また逆に、必要とするメディアン径や分散値をもつエマルションを得るためには、エマルションの分散粒子径(メディアン径)ならびに分布幅(分散値)と多孔エレメントの通孔内の渦度との関係について予め実験により得られた関係(図7,8のようなグラフ或いは近似関数)から、必要な分散粒子径(メディアン径)ならびに分布幅(分散値)を満たすかそれに近い渦度を求め、求めた渦度と分散処理すべき流体の流動条件(通孔内を流れる流体の流速、密度、粘度、レイノルズ数等)とを前記三次元流体解析ソフトウェアに入力して三次元数値計算すれば、エレメントの形状寸法である最適な通孔径、通孔数、通孔の配置、エレメント数、エレメント外径、エレメント厚さ等、エレメントの設計条件を算出することができる。   Conversely, in order to obtain an emulsion having the required median diameter and dispersion value, the relationship between the dispersed particle diameter (median diameter) and distribution width (dispersion value) of the emulsion and the vorticity in the pores of the porous element Find the required dispersion particle diameter (median diameter) and distribution width (dispersion value) or close to or close to the required dispersion particle diameter (median diameter) and the distribution width (dispersion value) from the relationship obtained by experiment in advance. If the vorticity and flow conditions of the fluid to be dispersed (flow velocity, density, viscosity, Reynolds number, etc. of the fluid flowing in the through holes) are input to the three-dimensional fluid analysis software and the three-dimensional numerical calculation is performed, the element The element design conditions such as the optimum through hole diameter, the number of through holes, the arrangement of the through holes, the number of elements, the element outer diameter, and the element thickness can be calculated.

4A,4B 多孔エレメント
11,12 通孔
4A, 4B Porous element 11, 12 Through hole

Claims (2)

複数の通孔が形成されたディスク状のエレメントを重ね合わせた多孔エレメント式静止型分散器に分散処理すべき流体を流通させることにより分散処理される流体中の分散粒子の粒子径及びその分布幅を推定する方法であって、
流体解析による三次元数値計算により、前記通孔内で発生する渦流の渦度を求めるステップと、
渦度と、分散処理された分散粒子の粒子径とその分布幅との関係について予め実験により求められた関係に基づいて、前記三次元数値計算により求められた渦度から、分散粒子の粒子径及びその分布幅を推定するステップと、
を含む前記方法。
The particle size and distribution width of dispersed particles in the fluid to be dispersed by circulating the fluid to be dispersed through a perforated element type static disperser in which disk-shaped elements having a plurality of through holes are stacked. Is a method of estimating
Obtaining the vorticity of the vortex generated in the through hole by three-dimensional numerical calculation by fluid analysis;
From the vorticity obtained by the three-dimensional numerical calculation based on the relationship obtained in advance by experiment on the relationship between the vorticity, the particle size of the dispersed particles subjected to dispersion treatment and the distribution width, the particle size of the dispersed particles And estimating its distribution width;
Including said method.
複数の通孔が形成されたディスク状のエレメントを重ね合わせた多孔エレメント式静止型分散器を用いて分散処理される流体中の分散粒子を所望の粒子径及びその分布幅に制御するために、前記エレメントの設計条件に基づいて前記多孔エレメント式静止型分散器を設計する方法であって、
前記通孔内で発生する渦流の渦度と、分散処理された分散粒子の粒子径とその分布幅との関係について予め実験により求められた関係に基づいて、前記所望の粒子径と分布幅に対応する渦度を求めるステップと、
前記求められた渦度から、流体解析による三次元数値計算により、前記エレメントの設計条件を求めるステップと、
を含む前記方法。
In order to control the dispersed particles in the fluid to be dispersed using the perforated element type static disperser in which the disk-shaped elements in which a plurality of through holes are formed are superposed, to a desired particle diameter and distribution width thereof, A method for designing the porous element type static disperser based on the design conditions of the element,
Based on the relationship obtained by experiments in advance on the relationship between the vorticity of the vortex generated in the through hole, the particle size of the dispersed particles dispersed and the distribution width thereof, the desired particle size and distribution width are set. Determining the corresponding vorticity;
Obtaining a design condition of the element from the obtained vorticity by three-dimensional numerical calculation by fluid analysis;
Including said method.
JP2011062980A 2011-03-22 2011-03-22 Dispersion particle size estimation method and design method for perforated element type static disperser Active JP5806829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062980A JP5806829B2 (en) 2011-03-22 2011-03-22 Dispersion particle size estimation method and design method for perforated element type static disperser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062980A JP5806829B2 (en) 2011-03-22 2011-03-22 Dispersion particle size estimation method and design method for perforated element type static disperser

Publications (2)

Publication Number Publication Date
JP2012196631A JP2012196631A (en) 2012-10-18
JP5806829B2 true JP5806829B2 (en) 2015-11-10

Family

ID=47179399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062980A Active JP5806829B2 (en) 2011-03-22 2011-03-22 Dispersion particle size estimation method and design method for perforated element type static disperser

Country Status (1)

Country Link
JP (1) JP5806829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959603B2 (en) * 2015-04-07 2021-11-02 アイセル株式会社 Fine particle production unit and production method
KR102586253B1 (en) * 2018-12-12 2023-10-11 (주)금강씨엔티 spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
CN115231656A (en) * 2022-08-02 2022-10-25 中国船舶重工集团公司第七一九研究所 Water distribution method with multiple flow rates and high adaptability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009035B2 (en) * 1999-03-05 2007-11-14 株式会社フジキン Static mixing and stirring device
JP3433906B2 (en) * 1999-03-18 2003-08-04 富士通株式会社 Fluid visualization device and recording medium
JP3784725B2 (en) * 2002-02-20 2006-06-14 株式会社フジキン Mixing and stirring device
JP2009241001A (en) * 2008-03-31 2009-10-22 Okayama Prefecture Industrial Promotion Foundation Micromixer

Also Published As

Publication number Publication date
JP2012196631A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
Cook et al. Mixing evaluation of a passive scaled-up serpentine micromixer with slanted grooves
JP5806829B2 (en) Dispersion particle size estimation method and design method for perforated element type static disperser
Ngo et al. Effects of junction angle and viscosity ratio on droplet formation in microfluidic cross-junction
Mesquita et al. Design and hydrodynamic performance testing of a new pressure sand filter diffuser plate using numerical simulation
Heniche et al. Numerical investigation of blade shape in static mixing
Liu et al. Turbulent mixing in the confined swirling flow of a multi‐inlet vortex reactor
JP2020128994A (en) Method for measuring mixing performance
Stamou et al. Modeling settling tanks for water treatment using computational fluid dynamics
Wahba et al. On the performance of air-lift pumps: from analytical models to large eddy simulation
Al-Atabi Experimental investigation of the use of synthetic jets for mixing in vessels
Liu et al. A Batchelor vortex model for mean velocity of turbulent swirling flow in a macroscale multi-inlet vortex reactor
Das et al. Laminar liquid–liquid dispersion in the SMX static mixer
Mohammadidinani et al. Experimental investigation of sand jets passing through immiscible fluids
Bebina Devi et al. Turbulence characteristics of vegetated channel with downward seepage
Cerbelli et al. Effective dispersion and separation resolution in continuous particle fractionation
Sasmal A simple yet efficient approach for electrokinetic mixing of viscoelastic fluids in a straight microchannel
Ullah et al. Membrane oscillation and oil drop rejection during produced water purification
Kowalski et al. Experimental study on cavitation-induced air release in orifice flows
Kurdzinski et al. Dynamics of high viscosity contrast confluent microfluidic flows
Roberts Near field flow dynamics of concentrate discharges and diffuser design
Haghighinia et al. Experimental investigation and CFD simulation of cavity flow effects on liquids mixing in vortex-based microfluidic chips: Quantitative visualization and optimization by response surface method (RSM)
Jamshed et al. Channel-confined wake structure interactions between two permeable side-by-side bars of a square cross-section
Chapokpour et al. The numerical investigation on vortex flow behavior using FLOW-3D
Mahmud et al. A review of enhanced micromixing techniques in microfluidics for the application in wastewater analysis
Gidde On effects of shape, aspect ratio and position of obstacle on the mixing enhancement in micromixer with hexagonal-shaped chambers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5806829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250