JP5805576B2 - Resonant type wireless power transmission device - Google Patents

Resonant type wireless power transmission device Download PDF

Info

Publication number
JP5805576B2
JP5805576B2 JP2012089333A JP2012089333A JP5805576B2 JP 5805576 B2 JP5805576 B2 JP 5805576B2 JP 2012089333 A JP2012089333 A JP 2012089333A JP 2012089333 A JP2012089333 A JP 2012089333A JP 5805576 B2 JP5805576 B2 JP 5805576B2
Authority
JP
Japan
Prior art keywords
power
power transmission
transmission side
coil
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012089333A
Other languages
Japanese (ja)
Other versions
JP2013153636A (en
Inventor
秀幸 坪井
秀幸 坪井
守 秋元
守 秋元
後藤 弘明
弘明 後藤
篤也 安藤
篤也 安藤
秀哉 宗
秀哉 宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012089333A priority Critical patent/JP5805576B2/en
Publication of JP2013153636A publication Critical patent/JP2013153636A/en
Application granted granted Critical
Publication of JP5805576B2 publication Critical patent/JP5805576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、マンホール外の送電側装置からマンホール内の受電側装置へ電磁誘導方式により給電するとともに、送電側装置と受電側装置との間で電磁誘導方式により通信を行う共鳴型無線電力伝送装置に関する。   The present invention relates to a resonance type wireless power transmission apparatus that feeds power from a power transmission side device outside a manhole to a power reception side device in a manhole by an electromagnetic induction method and communicates between the power transmission side device and the power reception side device by an electromagnetic induction method. About.

携帯電話等の2次電池の充電や、非接触ICカード、RFIDタグ等への電力供給には、有線接続を要しない給電方法が採用されている。これは電磁誘導方式によるもので、送電側と受電側とにコイルを配置し、両者が近接して送電側コイルの磁束が受電側コイルを通過することで、受電側に電力が伝送される(非特許文献1)。電磁誘導方式は一般に、十分な伝送効率を得るために、送受信コイルは近接して漏れ磁束を少なくする方法がとられる。さらに、近年では、ある程度(例えば2〜3m)の伝送距離を有する場合でも高い給電効率が得られる共鳴型無線電力伝送装置が提案されている(非特許文献2)。   A power feeding method that does not require a wired connection is used for charging a secondary battery such as a mobile phone or supplying power to a non-contact IC card, an RFID tag, or the like. This is based on the electromagnetic induction method, and coils are arranged on the power transmission side and the power reception side, and the power is transmitted to the power reception side when they are close to each other and the magnetic flux of the power transmission side coil passes through the power reception side coil ( Non-patent document 1). In general, in order to obtain a sufficient transmission efficiency, the electromagnetic induction method is a method in which the transmitting and receiving coils are close to each other to reduce the leakage magnetic flux. Furthermore, in recent years, a resonance-type wireless power transmission apparatus has been proposed that can obtain high power supply efficiency even when a certain transmission distance (for example, 2 to 3 m) is provided (Non-Patent Document 2).

図14は、共鳴型無線電力伝送装置の構成例を示す。
図14において、送電側装置10の電源11に接続される送電側コイル13と受電側装置20の負荷23に接続される受電側コイル22が、それぞれ送電側共鳴コイル14および受電側共鳴コイル21を介して共鳴現象により電磁誘導で電気的に結合し、電源11から負荷23に電力が伝達される。共鳴は特定の周波数でのみ発生する。図15は共鳴コイルのSパラメータ(S21) の例を示す。図よりピークが得られる周波数は限定的であること、負荷に依存してピークの周波数が変動することがわかる。また、ピークの周波数は、送電側装置10と受電側装置20との間隔によっても変動する。さらに、図16に示すように、送受電コイル間の距離に応じて受電電力ピーク値が変動し、最適距離が存在する。
FIG. 14 shows a configuration example of a resonance type wireless power transmission apparatus.
In FIG. 14, a power transmission side coil 13 connected to the power source 11 of the power transmission side device 10 and a power reception side coil 22 connected to the load 23 of the power reception side device 20 are respectively connected to the power transmission side resonance coil 14 and the power reception side resonance coil 21. The electric power is transmitted from the power source 11 to the load 23 by being electrically coupled by electromagnetic induction through a resonance phenomenon. Resonance occurs only at specific frequencies. FIG. 15 shows an example of the S parameter (S21) of the resonance coil. From the figure, it can be seen that the frequency at which the peak is obtained is limited, and that the peak frequency varies depending on the load. Further, the peak frequency varies depending on the interval between the power transmission side device 10 and the power reception side device 20. Furthermore, as shown in FIG. 16, the received power peak value varies according to the distance between the power transmitting and receiving coils, and there is an optimum distance.

ところで、マンホール内で収集されるセンサ情報等をマンホールの出入り口の蓋を開けずに、例えば上記の共鳴型無線電力伝送装置で供給する電力を用いてそのセンサ情報等を送信させて収集できれば、マンホールを保守点検する作業が大幅に簡易になる。   By the way, if the sensor information collected in the manhole can be collected by transmitting the sensor information etc. using the power supplied by the above-mentioned resonance type wireless power transmission device without opening the lid of the entrance / exit of the manhole, Maintenance work is greatly simplified.

苅部浩、「非接触ICカード設計入門」、日刊工業新聞社.Hiroshi Isobe, “Introduction to contactless IC card design”, Nikkan Kogyo Shimbun. Aristeidis Karalis, J.D. Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.Aristeidis Karalis, J.D.Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.

図14に示す共鳴型無線電力伝送装置において、送電側の電源周波数が共鳴周波数と異なる周波数に設定されていた場合、受電側に十分な電力が到達しない。また、送電側の電源周波数が共鳴周波数と大きく異なっているときに、受電側で負荷インピーダンスを変化させる負荷変調により受電側から送信データを送信しようとした場合、送電側で受電側の負荷インピーダンスの変化による電流または電圧の変化を検出できず、上りリンクの情報伝送が失敗する。例えば、受電側に対する給電電力が十分でないために送電側に電源周波数の変更を要求する情報を送信しようとしても、それが送電側に到達せず、結果的に送電側から受電側に給電を行うことができなくなる。   In the resonance type wireless power transmission apparatus shown in FIG. 14, when the power supply frequency on the power transmission side is set to a frequency different from the resonance frequency, sufficient power does not reach the power reception side. In addition, when the power frequency on the power transmission side is significantly different from the resonance frequency, if transmission data is transmitted from the power receiving side by load modulation that changes the load impedance on the power receiving side, the load impedance of the power receiving side on the power transmission side A change in current or voltage due to the change cannot be detected, and uplink information transmission fails. For example, even if an attempt is made to transmit information requesting the power transmission side to change the power supply frequency because the power supplied to the power receiving side is not sufficient, it does not reach the power transmitting side, and consequently power is supplied from the power transmitting side to the power receiving side. I can't do that.

一方、マンホールの内外で電磁誘導方式により給電や通信を行う場合、マンホール内の電子機器の動作に十分な電力を安定して供給し、また伝送信号を復調するための十分な受信レベルの確保が必要になる。そのため、マンホールの内外で、送電側共鳴コイルと受電側共鳴コイルとを正対させ、さらに送電側の電源周波数と共鳴周波数が一致するように制御することが求められる。   On the other hand, when power is supplied or communicated inside or outside the manhole by electromagnetic induction, it is possible to stably supply sufficient power for the operation of the electronic equipment in the manhole and to secure a sufficient reception level for demodulating the transmission signal. I need it. Therefore, it is required to control the power transmission side resonance coil and the power reception side resonance coil to face each other inside and outside the manhole, and to control the power transmission frequency and the resonance frequency to coincide with each other.

ただし、送電側共鳴コイルと受電側共鳴コイルとの間の距離に応じて、図16に示すように受電電力ピーク値が異なる。また、自由空間環境と異なりマンホール設置環境では、図17に示すように受電電力値の周波数特性が異なり、ピークの周波数が変動する。   However, the received power peak value varies as shown in FIG. 16 according to the distance between the power transmission resonance coil and the power reception resonance coil. Further, in the manhole installation environment, unlike the free space environment, the frequency characteristics of the received power value are different as shown in FIG. 17, and the peak frequency varies.

また、マンホールには鋳鉄製の厚い蓋があり、この蓋により磁力線が吸収されるために十分な給電電力や信号電力を得ることが困難な場合、受電側共鳴コイルの位置や傾きを調整してマンホールの蓋の影響を回避する方法が考えられている。例えば、図18に示すように、マンホールの蓋を避けるように受電側共鳴コイルの傾きを30°にすると、マンホールの蓋が障害となる傾き0°の場合に比べて、受電電力値を大きくすることができる。また、受電側共鳴コイルの位置をマンホールの中心線からずらすとともに傾けることにより、さらにマンホールの蓋の影響を回避して受電電力値を大きくすることができる。ただし、受電側共鳴コイルの位置や傾きは、マンホールごとのサイズに応じて調整可能な範囲があるため、マンホール内の受電側共鳴コイルの位置や傾きがマンホールごとに異なることがある。   If the manhole has a thick cast iron lid, and the magnetic field lines are absorbed by the lid, it is difficult to obtain sufficient power supply or signal power. A method for avoiding the influence of the manhole cover is considered. For example, as shown in FIG. 18, when the inclination of the power receiving resonance coil is set to 30 ° so as to avoid the manhole cover, the received power value is increased as compared with the case where the inclination of the manhole cover is an obstacle of 0 °. be able to. Further, by shifting and tilting the position of the power receiving resonance coil from the center line of the manhole, the influence of the manhole cover can be further avoided and the power receiving power value can be increased. However, since the position and inclination of the power reception side resonance coil have a range that can be adjusted according to the size of each manhole, the position and inclination of the power reception side resonance coil in the manhole may be different for each manhole.

したがって、マンホールごとに受電側共鳴コイルの位置や傾きに合せて、送電側共鳴コイルの位置や傾きや高さを調整したり、電源周波数を調整する必要が生じることになる。そのとき、受電側から通知される受電電力値が1つの基準となるため、受電側から送電側に受電電力値を確実に伝送し、さらに送電側において送電側共鳴コイルの位置や傾きや高さや電源周波数を調整することが必要になる。   Therefore, it is necessary to adjust the position, inclination, and height of the power transmission side resonance coil and adjust the power supply frequency in accordance with the position and inclination of the power reception side resonance coil for each manhole. At that time, since the received power value notified from the power receiving side becomes one reference, the received power value is reliably transmitted from the power receiving side to the power transmitting side, and further, the position, inclination, height, It is necessary to adjust the power supply frequency.

本発明は、マンホール外の送電側装置とマンホール内の受電側装置との間で、電磁誘導方式により給電および通信を安定して行うことができる共鳴型無線電力伝送装置を提供することを目的とする。   It is an object of the present invention to provide a resonance type wireless power transmission device capable of stably performing power feeding and communication by an electromagnetic induction method between a power transmission side device outside a manhole and a power reception side device inside a manhole. To do.

本発明は、マンホールの外部に送電側装置を配置し、マンホールの内部に受電側装置を配置し、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側コイルに接続された電源から受電側コイルに接続された負荷へ電力を伝送する共鳴型無線電力伝送装置において、受電側装置は、負荷が受電した電力を測定して受電電力値を出力する手段と、スイッチのオンオフにより負荷の負荷インピーダンスを所定の範囲で変化させる手段と、受電電力値対応付けてスイッチのオンオフを制御する制御部とを備え、送電側装置は、スイッチのオンオフに対応する負荷インピーダンスの変化に応じて発生する送電側コイルの電流の過渡応答を検出し、当該過渡応答により受電電力値を復元する復調部を備え、制御部は、受電電力値と過渡応答の発生の有無とが対応するようにスイッチのオンオフを制御し、復調部は、送電側コイルの電流を包絡線検波し、過渡応答を検出し、当該過渡応答の発生の有無から受電電力値を復元するThe present invention includes a power transmission side device disposed outside a manhole, a power reception side device disposed within a manhole, a power transmission side resonance coil electrically coupled to a power transmission side coil of the power transmission side device by electromagnetic induction, Using the resonance phenomenon between the power receiving side coil of the side device and the power receiving side resonance coil electrically coupled by electromagnetic induction, power is supplied from the power source connected to the power transmission side coil to the load connected to the power receiving side coil. In the resonance type wireless power transmission device for transmitting, the power receiving side device measures the power received by the load and outputs the received power value, and means for changing the load impedance of the load within a predetermined range by turning on and off the switch in association with the received power value and a control unit which controls the on-off switch, power-transmitting-side apparatus is generated in response to a change in load impedance corresponding to oFF of the switch transmission Detecting a transient response of the coil current, a demodulation unit that restores the received power value by the transient response, the control unit controls the on-off switch as the occurrence of the received power value and the transient response associated Then, the demodulation unit detects the current of the power transmission side coil by envelope detection, detects the transient response, and restores the received power value from the presence or absence of the transient response .

本発明の共鳴型無線電力伝送装置において、送電側装置は、復調部で復元された受電電力値に基づいて、電源の電源周波数が送電側共鳴コイルと受電側共鳴コイルの共鳴周波数に合うように調整する調整手段を備える。   In the resonant wireless power transmission device of the present invention, the power transmission side device is configured so that the power supply frequency of the power supply matches the resonance frequency of the power transmission side resonance coil and the power reception side resonance coil based on the received power value restored by the demodulation unit. Adjustment means for adjusting is provided.

本発明の共鳴型無線電力伝送装置において、送電側装置は、復調部で復元された受電電力値に基づいて、送電側共鳴コイルの位置および傾きを調整し、送電側共鳴コイルと受電側共鳴コイルが正対するように調整する調整手段を備える。   In the resonance type wireless power transmission device of the present invention, the power transmission side device adjusts the position and inclination of the power transmission side resonance coil based on the power reception power value restored by the demodulation unit, and the power transmission side resonance coil and the power reception side resonance coil Adjusting means for adjusting so as to face each other.

本発明の共鳴型無線電力伝送装置において、送電側装置は、復調部で復元された受電電力値に基づいて、送電側共鳴コイルの高さを調整し、送電側共鳴コイルと受電側共鳴コイルとの間隔を調整する調整手段を備える。   In the resonance type wireless power transmission device of the present invention, the power transmission side device adjusts the height of the power transmission side resonance coil based on the received power value restored by the demodulation unit, and the power transmission side resonance coil, the power reception side resonance coil, Adjusting means for adjusting the distance between the two.

本発明は、マンホールの蓋の影響を回避するように設定された受電側共鳴コイルの位置および傾きに合せて、送電側装置の電源周波数を共鳴周波数に合うように調整し、また送電側共鳴コイルの位置、傾き、高さを調整することにより、マンホール外の送電側装置とマンホール内の受電側装置との間で、電磁誘導方式により給電および通信を安定して行うことができる。   The present invention adjusts the power supply frequency of the power transmission side device so as to match the resonance frequency according to the position and inclination of the power reception side resonance coil set so as to avoid the influence of the lid of the manhole. By adjusting the position, inclination, and height, power feeding and communication can be stably performed by an electromagnetic induction method between the power transmission side device outside the manhole and the power reception side device inside the manhole.

本発明の共鳴型無線電力伝送装置の第1の構成例を示す図である。It is a figure which shows the 1st structural example of the resonance type wireless power transmission apparatus of this invention. 送信データと受信波形の例1を示す図である。It is a figure which shows the example 1 of transmission data and a received waveform. 送信データと受信波形の例2を示す図である。It is a figure which shows the example 2 of transmission data and a received waveform. 送信データと受信波形の例3を示す図である。It is a figure which shows the example 3 of transmission data and a received waveform. 復調部12の構成例を示す図である。3 is a diagram illustrating a configuration example of a demodulation unit 12. FIG. 送電側からみたインピーダンスと受電レベル(電流)の関係を示す図である。It is a figure which shows the relationship between the impedance seen from the power transmission side, and a power receiving level (electric current). 送電側からみたインピーダンスの選択変更手順を説明する図である。It is a figure explaining the selection change procedure of the impedance seen from the power transmission side. 本発明の共鳴型無線電力伝送装置の第2の構成例を示す図である。It is a figure which shows the 2nd structural example of the resonance type wireless power transmission apparatus of this invention. 本発明の共鳴型無線電力伝送装置の第3の構成例を示す図である。It is a figure which shows the 3rd structural example of the resonance type wireless power transmission apparatus of this invention. 本発明の共鳴型無線電力伝送装置の第4の構成例を示す図である。It is a figure which shows the 4th structural example of the resonance type wireless power transmission apparatus of this invention. インピーダンス調整部31,32のインピーダンス調整方法を説明する図である。It is a figure explaining the impedance adjustment method of the impedance adjustment parts 31 and 32. FIG. 送電側装置の位置調整手順1を説明する図である。It is a figure explaining the position adjustment procedure 1 of the power transmission side apparatus. 送電側装置の位置調整手順2を説明する図である。It is a figure explaining the position adjustment procedure 2 of the power transmission side apparatus. 共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of a resonance type wireless power transmission apparatus. 共鳴コイルのSパラメータ(S21)の例を示す図である。It is a figure which shows the example of S parameter (S21) of a resonance coil. 送受電コイル間の距離と受電電力ピーク値を示す図である。It is a figure which shows the distance between power transmission / reception coils, and received power peak value. マンホール設置環境における受電電力値の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the received electric power value in a manhole installation environment. 受電側共鳴コイルの傾きとSパラメータ(S21)を示す図である。It is a figure which shows the inclination of a receiving side resonance coil, and S parameter (S21).

図1は、本発明の共鳴型無線電力伝送装置の第1の構成例を示す。
図1において、共鳴型無線電力伝送装置は、電力の送電を担う送電側装置10と、送電された電力を受け取る受電側装置20とからなり、受電側装置20から送電側装置10に送信データを伝送するための構成を含む。送電側装置10から受電側装置20への電力、送信データの流れが下り、受電側装置20から送電側装置10への送信データの流れが上りである。
FIG. 1 shows a first configuration example of a resonance type wireless power transmission apparatus of the present invention.
In FIG. 1, the resonance type wireless power transmission device includes a power transmission side device 10 that is responsible for power transmission and a power reception side device 20 that receives the transmitted power, and transmits transmission data from the power reception side device 20 to the power transmission side device 10. Includes a configuration for transmitting. The flow of power and transmission data from the power transmission side device 10 to the power reception side device 20 is downward, and the flow of transmission data from the power reception side device 20 to the power transmission side device 10 is upward.

送電側装置10は、電源11、受電側装置20から送られた上り送信データを復元する復調部12、送電側コイル13、送電側共鳴コイル14、電源11の電源周波数を調整する周波数調整部15を備える。受電側装置20は、受電側共鳴コイル21、受電側コイル22、負荷23、抵抗24、スイッチ25、制御部26、受電電力測定部27を備える。送電側コイル13と送電側共鳴コイル14とは電磁誘導で電気的に結合している。送電側共鳴コイル14と受電側共鳴コイル21とは共鳴により電気的に結合している。受電側共鳴コイル21と受電側コイル22とは電磁誘導で電気的に結合している。これにより電源11から負荷23に給電し、受電電力値が受電電力測定部27で測定され、制御部26に通知される。制御部26は、以下に説明するようにスイッチ25を操作し、受電電力値を送信データとして送信する処理を行う。また、制御部26は、無線タグシステムにおけるセンサデータについても、同様に送信データとして送信する処理を行う。   The power transmission side device 10 includes a power source 11, a demodulation unit 12 that restores uplink transmission data sent from the power reception side device 20, a power transmission side coil 13, a power transmission side resonance coil 14, and a frequency adjustment unit 15 that adjusts the power frequency of the power source 11. Is provided. The power receiving side device 20 includes a power receiving side resonance coil 21, a power receiving side coil 22, a load 23, a resistor 24, a switch 25, a control unit 26, and a received power measuring unit 27. The power transmission side coil 13 and the power transmission side resonance coil 14 are electrically coupled by electromagnetic induction. The power transmission resonance coil 14 and the power reception resonance coil 21 are electrically coupled by resonance. The power receiving side resonance coil 21 and the power receiving side coil 22 are electrically coupled by electromagnetic induction. As a result, power is supplied from the power source 11 to the load 23, and the received power value is measured by the received power measuring unit 27 and notified to the control unit 26. As described below, the control unit 26 operates the switch 25 to perform processing for transmitting the received power value as transmission data. Similarly, the control unit 26 performs processing for transmitting sensor data in the wireless tag system as transmission data.

ここで、簡単のため負荷23単体のインピーダンスは不変とし、図中のB−B’から右側をみたインピーダンスを負荷インピーダンスと呼ぶ。負荷インピーダンスは、スイッチ25のオンオフで抵抗24の通過の有無を選択することにより、2つの状態を取り得る。制御部26は、送信データに応じてスイッチ25をオンオフし、負荷インピーダンスを変化させる構成である。ただし、本実施例の構成では、スイッチ25がオンの場合もオフの場合も負荷23への接続は開放されないため、負荷23への電力供給は継続される。   Here, for the sake of simplicity, the impedance of the load 23 alone is not changed, and the impedance when the right side is viewed from B-B ′ in the figure is referred to as load impedance. The load impedance can take two states by selecting whether or not the resistor 24 is passed when the switch 25 is turned on / off. The control unit 26 is configured to turn on and off the switch 25 in accordance with transmission data and change the load impedance. However, in the configuration of the present embodiment, the power supply to the load 23 is continued because the connection to the load 23 is not released regardless of whether the switch 25 is on or off.

なお、図1の構成では、抵抗24とスイッチ25が並列に接続され、抵抗24と負荷23とが直列に接続されているが、抵抗24とスイッチ25を直列に接続し、抵抗24と負荷23とを並列に接続してもよい。さらに、抵抗と容量の可変構成により回路定数CRを調整する構成としてもよい。   In the configuration of FIG. 1, the resistor 24 and the switch 25 are connected in parallel, and the resistor 24 and the load 23 are connected in series. However, the resistor 24 and the switch 25 are connected in series, and the resistor 24 and the load 23 are connected. May be connected in parallel. Further, the circuit constant CR may be adjusted by a variable configuration of resistance and capacitance.

受電側装置20と送電側装置10とは電気的に結合しているため、負荷インピーダンスの変化は送電側装置10のA−A’から受電側装置20をみたインピーダンスの変化となり、電流または電圧の変化として現れる。復調部12はこの変化を検出し、受電側装置20から送信された送信データを復元する。   Since the power receiving side device 20 and the power transmitting side device 10 are electrically coupled, the change in the load impedance is a change in impedance when the power receiving side device 20 is viewed from AA ′ of the power transmitting side device 10, and the current or voltage is changed. Appears as a change. The demodulator 12 detects this change and restores the transmission data transmitted from the power receiving side device 20.

図2は、送電側装置10の復調部12における電流または電圧を包絡線検波した波形を表しており、送信データの変化に連動して電流または電圧が変化するのがわかる。復調部12はこの変化を適当なタイミングでサンプリングすることにより、受電側装置20から送信された送信データを復元することができる。   FIG. 2 shows a waveform obtained by envelope detection of the current or voltage in the demodulator 12 of the power transmission side device 10, and it can be seen that the current or voltage changes in conjunction with the change of transmission data. The demodulation unit 12 can restore the transmission data transmitted from the power receiving side device 20 by sampling this change at an appropriate timing.

ただし、送電側装置10の電源周波数が共鳴周波数と異なる場合には、図3に示すような受信波形になる。平均受信レベル(受信電力)は、図2の場合と比較して低下するだけでなく、信号波形の振幅の変化も小さくなる。さらに、送電側装置10の電源周波数が共鳴周波数と大きく異なる場合には、信号波形の振幅の変化が非常に小さくなり、送信データの復元が困難になる。   However, when the power supply frequency of the power transmission side device 10 is different from the resonance frequency, a reception waveform as shown in FIG. 3 is obtained. The average reception level (reception power) not only decreases compared to the case of FIG. 2, but also changes in the amplitude of the signal waveform are reduced. Furthermore, when the power supply frequency of the power transmission side device 10 is greatly different from the resonance frequency, the change in the amplitude of the signal waveform becomes very small, and it is difficult to restore the transmission data.

一方、送電側装置10の復調部12では、図4に示すように送信データの変化に応じた電流または電圧の過渡応答を観測することができる。ここで、送電側装置10で観測される電流または電圧の過渡応答とは、送信データに応じてスイッチ25がオンオフし、それに伴う負荷インピーダンスの変化に応じて電流または電圧の立ち上がりおよび立ち下がりの部分で波形が大きく変化する現象である。受電側装置20の制御部26は、送信データと過渡応答の発生の有無が対応するようにスイッチ25を操作し、送電側装置10の復調部12は過渡応答の発生の有無から送信データを復元する。   On the other hand, the demodulator 12 of the power transmission side device 10 can observe a transient response of current or voltage corresponding to a change in transmission data as shown in FIG. Here, the transient response of the current or voltage observed in the power transmission side device 10 is a part where the switch 25 is turned on / off according to transmission data and the current or voltage rises and falls according to the change in the load impedance accompanying it. This is a phenomenon in which the waveform changes greatly. The control unit 26 of the power receiving side device 20 operates the switch 25 so that the transmission data corresponds to the occurrence of the transient response, and the demodulation unit 12 of the power transmission side device 10 restores the transmission data from the presence of the occurrence of the transient response. To do.

図5は、復調部12の構成例を示す。
図5において、復調部12は、検波部121、A/D変換部122、符号判定部123により構成される。検波部121は、受信波形、すなわち送電側装置10における電流または電圧を検波する。この検波出力をA/D変換部122でデジタル化し、符号判定部123でビット判定して出力する。
FIG. 5 shows a configuration example of the demodulation unit 12.
In FIG. 5, the demodulation unit 12 includes a detection unit 121, an A / D conversion unit 122, and a code determination unit 123. The detector 121 detects the received waveform, that is, the current or voltage in the power transmission side device 10. The detection output is digitized by the A / D converter 122, and the bit is determined by the code determination unit 123 and output.

符号判定部123は2つの符号判定論理をもつ。符号判定論理1では、受信波形から正の過渡応答を判定した場合に「1」を出力し、負の過渡応答を判定した場合に「0」を出力し、定常状態(過渡応答なし)を判定した場合に直前の判定結果を出力する。なお、定常状態に対する符号判定は、符号判定部123に接続される記憶部に直前の判定結果を記憶しておき、定常状態を判定したときに記憶部から読み出す構成でもよいし、符号判定部123で正または負の過渡応答を判定するまで直前の判定結果を出力する構成でもよい。   The code determination unit 123 has two code determination logics. The sign determination logic 1 outputs “1” when a positive transient response is determined from the received waveform, and outputs “0” when a negative transient response is determined, and determines a steady state (no transient response). If it does, the previous determination result is output. The code determination for the steady state may be configured such that the previous determination result is stored in a storage unit connected to the code determination unit 123 and read from the storage unit when the steady state is determined. The configuration may be such that the previous determination result is output until a positive or negative transient response is determined.

この符号判定部123に対応する受電側装置20の制御部26は、送信データにそのまま対応するようにスイッチ25を操作する。すなわち、送信データが1であればスイッチ25をオンとし、送信データが0であればスイッチ25をオフとする。符号判定部123は、送信データが反転して過渡応答が生じるタイミングでビットを判定し、過渡応答が生じなかったタイミングでは過渡応答が生じた直前のビットと同じビットを出力し、送信データを復元する。   The control unit 26 of the power receiving device 20 corresponding to the code determination unit 123 operates the switch 25 so as to correspond to the transmission data as it is. That is, if the transmission data is 1, the switch 25 is turned on, and if the transmission data is 0, the switch 25 is turned off. The sign determination unit 123 determines the bit at the timing when the transmission data is inverted and a transient response occurs, and outputs the same bit as the bit immediately before the transient response occurs at the timing when the transient response does not occur, thereby restoring the transmission data. To do.

このような過渡応答の有無を検出することにより、送電側装置10の電源周波数が共鳴周波数から多少ずれていても、送電側装置10で受電側装置20から送信された送信データ(受電電力値)を復元できる。   By detecting the presence or absence of such a transient response, transmission data (received power value) transmitted from the power receiving side device 20 by the power transmitting side device 10 even if the power frequency of the power transmitting side device 10 is slightly deviated from the resonance frequency. Can be restored.

したがって、受電側装置20において、受電電力の低下から共鳴周波数に対する送電側装置10の電源周波数のずれを検知した場合には、制御部26で対応する送信データを生成してスイッチ25を上記のパターンで操作することにより、送電側装置10の復調部12でその送信データを復元し、共鳴周波数に対する送電側装置10の電源周波数のずれを通知することができる。ただし、受電側装置20では、共鳴周波数に対する送電側装置10の電源周波数のずれの方向や量までわからないので、送信データとして受電電力値を送信する。送電側装置10の復調部12は制御信号から受電電力値を読み取り、それが規定の受電電力値に満たない場合に、周波数調整部15を介して電源11の電源周波数を調整する。このとき、電源周波数のシフトに対する受電電力値の変化から、電源周波数のシフト方向およびシフト量をフィードバック制御することにより、電源周波数が共鳴周波数に近づくように調整することができる。その結果、受電側装置20における受電電力値を大きくすることができる。   Therefore, when the power receiving side device 20 detects a shift in the power source frequency of the power transmitting side device 10 with respect to the resonance frequency due to a decrease in received power, the control unit 26 generates corresponding transmission data and switches the switch 25 to the above pattern. , The demodulator 12 of the power transmission side device 10 restores the transmission data, and can notify the deviation of the power supply frequency of the power transmission side device 10 with respect to the resonance frequency. However, since the power receiving side device 20 does not know the direction or amount of the power frequency shift of the power transmitting side device 10 with respect to the resonance frequency, the power receiving side device 20 transmits the received power value as transmission data. The demodulator 12 of the power transmission side device 10 reads the received power value from the control signal, and adjusts the power frequency of the power source 11 via the frequency adjuster 15 when it is less than the specified received power value. At this time, the power supply frequency can be adjusted so as to approach the resonance frequency by feedback control of the shift direction and shift amount of the power supply frequency from the change in the received power value with respect to the shift of the power supply frequency. As a result, the received power value in the power receiving device 20 can be increased.

また、受電電力値が規定値に満たない場合、(1) 電源周波数を共振周波数に合うように調整する他に、(2) 受電側共鳴コイル21に送電側共鳴コイル14を正対させるために送電側共鳴コイル14の位置と傾きの調整、(3) 共鳴コイル間の距離を最適にするために送電側共鳴コイル14の高さの調整、さらに(4) 電源周波数の調整に合せて送電側装置の回路定数CRの調整などを組み合わせることが有効である。なお、送電側共鳴コイル14の位置や傾きや高さを変更すれば、共振周波数も変わってくるので、それに合せて電源周波数の調整および回路定数CRの調整も必要になる。図1では、送電側装置10における回路定数CRの調整手段は省略している。このような調整を行いながら、受電側装置20の受電電力値を送電側装置10にフィードバックして調整を繰り返すことにより、受電電力値が規定値を満たすように設定することができる。   In addition, when the received power value is less than the specified value, (1) In addition to adjusting the power supply frequency to match the resonance frequency, (2) In order to make the power receiving side resonance coil 21 directly face the power transmission side resonance coil 14 Adjustment of the position and inclination of the power transmission side resonance coil 14, (3) Adjustment of the height of the power transmission side resonance coil 14 to optimize the distance between the resonance coils, and (4) Power transmission side in accordance with adjustment of the power supply frequency It is effective to combine adjustment of the circuit constant CR of the device. Note that if the position, inclination, or height of the power transmission resonance coil 14 is changed, the resonance frequency also changes, and accordingly, adjustment of the power supply frequency and adjustment of the circuit constant CR are also required. In FIG. 1, the circuit constant CR adjusting means in the power transmission side device 10 is omitted. While performing such adjustment, the received power value of the power receiving side device 20 is fed back to the power transmitting side device 10 and the adjustment is repeated, whereby the received power value can be set to satisfy the specified value.

なお、送電側装置10を可搬型の台車に搭載することにより、送電側共鳴コイル14の位置をマンホールの周辺で容易に調整することができる。さらに、送電側共鳴コイル14の傾き、高さの調整は、台車上で送電側装置10を昇降させたり傾ける機構を備えることにより対応できる。   In addition, by mounting the power transmission side device 10 on a portable carriage, the position of the power transmission side resonance coil 14 can be easily adjusted around the manhole. Further, the tilt and height of the power transmission side resonance coil 14 can be adjusted by providing a mechanism for raising and lowering or tilting the power transmission side device 10 on the carriage.

以上の実施例では、送信データ「1」, 「0」に対して受電側装置20で2つのインピーダンス値(Za1,Za2)を変化させたときの過渡応答により信号で送信する方法について説明した。ここで、さらにそれぞれのインピーダンス値における受電レベル(電圧/電流)を測定すれば、いずれのインピーダンス値の方が受電レベルが高くなるかを判定できる。よって、次の変調に用いるインピーダンス値を受電レベルが高い方の値とし、さらにそれを高める可能性のあるインピーダンス値に変更することによって、信号の伝送を確実にしつつ、受電レベルを高めるインピーダンス値を選択することが可能となる。以下、詳しく説明する。   In the above embodiment, the method of transmitting a signal by a transient response when two impedance values (Za1, Za2) are changed in the power receiving side device 20 with respect to the transmission data “1”, “0” has been described. Here, if the power reception level (voltage / current) at each impedance value is further measured, it can be determined which impedance value has a higher power reception level. Therefore, by changing the impedance value used for the next modulation to a value with a higher power reception level and changing it to an impedance value that may further increase the impedance value, the impedance value that increases the power reception level while ensuring signal transmission is obtained. It becomes possible to select. This will be described in detail below.

図6は、送電側からみたインピーダンスと受電レベル(電流)の関係を示す。
図6において、横軸は送電側装置10から受電側装置20をみたインピーダンスZa である。既に過渡応答を用いて受電側装置20のインピーダンスを変えた時の受電レベル(電流)が分かっているので、それらに対応する送電側からみたインピーダンスZa1, Za2の状態での受電レベル(電流Ia1,Ia2)を図6のグラフ上にプロットする。次に、この2つのインピーダンスZa1, Za2の状態を基にして、次に選ぶインピーダンスZa3を決める。
FIG. 6 shows the relationship between the impedance and the power reception level (current) as seen from the power transmission side.
In FIG. 6, the horizontal axis represents the impedance Za as seen from the power transmission side device 10 to the power reception side device 20. Since the power receiving level (current) when the impedance of the power receiving side device 20 is changed using the transient response is already known, the power receiving level (currents Ia1, Za2) in the state of the impedance Za1, Za2 viewed from the power transmitting side corresponding to them is known. Ia2) is plotted on the graph of FIG. Next, the impedance Za3 to be selected next is determined based on the states of these two impedances Za1 and Za2.

例えば、Za1からZa2へ変えた時の受電レベルの変化量(電流Ia1からIa2へ増加)に応じ、Za1から受電レベルの高いZa2の方向へ線形延長されたZa3を決定する。このインピーダンスZa3へ変えた時に、想定される受電レベル(電流Ia3’)と、実際に測定される受電レベル(電流Ia3)は差があるが、これまでに確認した受電レベル(電流Ia1,Ia2)よりも高くなっている。この操作を繰り返すことにより順に、次のインピーダンスを決めることができる。   For example, Za3 linearly extended from Za1 in the direction of Za2 having a higher power reception level is determined in accordance with the amount of change in power reception level (increase from current Ia1 to Ia2) when changing from Za1 to Za2. There is a difference between the expected power reception level (current Ia3 ′) and the actually measured power reception level (current Ia3) when changing to this impedance Za3, but the power reception levels (currents Ia1 and Ia2) confirmed so far Higher than. By repeating this operation, the next impedance can be determined in sequence.

図7は、送電側からみたインピーダンスの選択変更手順を示す。
図7において、上記のようにインピーダンスZa1よりZa2における電流値が大きくなっていることから、インピーダンスZa2の次のインピーダンスをZa3,Za4,Za5,Za6,Za7,…と順に、適宜方向転換しながら変更していく。これに伴い、想定される電流値(想定値)Ia3’,Ia4’,Ia5’,Ia6’,Ia7’,…と、実際に測定される電流値(測定値)Ia3,Ia4,Ia5,Ia6,Ia7,…が変わる。ここで、測定値が前インピーダンスにおける測定値を下回ったときにインピーダンスを逆方向に展開し、その移動距離を半分にする。例えば、Za5における測定値Ia5がZa4における測定値Ia4を下回ったときに、次のZa6は、Za5から逆方向のZa4の方向へ半分の距離を延長したポイントとする。さらに、この操作を繰り返し、より高い測定値が得られるインピーダンスの値を探索する。
FIG. 7 shows an impedance selection change procedure as seen from the power transmission side.
In FIG. 7, since the current value at Za2 is larger than the impedance Za1 as described above, the impedance next to the impedance Za2 is changed in the order of Za3, Za4, Za5, Za6, Za7,. I will do it. Accordingly, assumed current values (assumed values) Ia3 ′, Ia4 ′, Ia5 ′, Ia6 ′, Ia7 ′,... And actually measured current values (measured values) Ia3, Ia4, Ia5, Ia6, Ia7, ... changes. Here, when the measured value falls below the measured value at the previous impedance, the impedance is developed in the reverse direction, and the moving distance is halved. For example, when the measured value Ia5 at Za5 falls below the measured value Ia4 at Za4, the next Za6 is a point obtained by extending a half distance from Za5 in the opposite direction of Za4. Further, this operation is repeated to search for an impedance value that can provide a higher measured value.

図7では、太線矢印の向きでレベル差の符号を示し、その長さでレベル差の大きさを示す。以下、レベル差は、想定値と測定値の差分の絶対値とする。ここで、インピーダンスZa(X)におけるレベル差が所定値以下となり、かつその前後のインピーダンスZa(X-1)、Za(X+1)におけるレベル差より小さい場合には、当該インピーダンスZa(X)を確定値とする。例えば、インピーダンスZa6におけるレベル差が所定値以下となり、その前後のインピーダンスZa5,Za7におけるレベル差より小さいので、インピーダンスZa6を確定値とする。したがって、所定値(閾値)に応じて、例えばインピーダンスZa4におけるレベル差が所定値以下になれば、その前後のインピーダンスZa3,Za5におけるレベル差より小さいので、インピーダンスZa4が確定値となる。   In FIG. 7, the sign of the level difference is indicated by the direction of the thick arrow, and the magnitude of the level difference is indicated by its length. Hereinafter, the level difference is the absolute value of the difference between the assumed value and the measured value. Here, when the level difference in the impedance Za (X) is less than a predetermined value and is smaller than the level difference in the impedances Za (X-1) and Za (X + 1) before and after the impedance Za (X), the impedance Za (X) Is a definite value. For example, since the level difference in the impedance Za6 is equal to or smaller than a predetermined value and is smaller than the level difference in the impedances Za5 and Za7 before and after that, the impedance Za6 is set as a definite value. Therefore, if the level difference in the impedance Za4 becomes equal to or smaller than the predetermined value according to the predetermined value (threshold value), for example, the impedance Za4 becomes a definite value because it is smaller than the level difference in the impedances Za3 and Za5 before and after that.

送電側装置10では、図6および図7に示すように送電側からみたインピーダンスの値を変えながらインピーダンス整合をとる必要がある。そのためのインピーダンス調整部を備えた構成例を図8〜図10に示す。   In the power transmission side device 10, as shown in FIGS. 6 and 7, it is necessary to achieve impedance matching while changing the impedance value viewed from the power transmission side. A configuration example provided with an impedance adjustment unit for this purpose is shown in FIGS.

図8は、送電側装置10のA−A’と送電側コイル13との間にインピーダンス調整部31を接続した構成である。インピーダンス調整部31は、可変インダクタンスLと可変容量Cの2対2端子LC回路であり、スイッチを左右どちらかに倒してLまたはCを変化させる場合、あるいはスイッチを左右どちらにも倒さずにLを変化させる構成である。   FIG. 8 shows a configuration in which an impedance adjustment unit 31 is connected between A-A ′ of the power transmission side device 10 and the power transmission side coil 13. The impedance adjusting unit 31 is a two-to-two terminal LC circuit having a variable inductance L and a variable capacitor C. When the switch is tilted to the left or right to change L or C, or the switch L is not tilted to the left or right. It is the structure which changes.

図9は、送電側共鳴コイル14にインピーダンス調整部32を接続した構成であり、図10は、受電側共鳴コイル21にインピーダンス調整部32を接続した構成である。インピーダンス調整部32は、可変インダクタンスLと可変容量Cの1対2端子LC回路であり、Cの一端が接地される。   9 shows a configuration in which the impedance adjustment unit 32 is connected to the power transmission side resonance coil 14, and FIG. 10 shows a configuration in which the impedance adjustment unit 32 is connected to the power reception side resonance coil 21. The impedance adjusting unit 32 is a one-to-two terminal LC circuit having a variable inductance L and a variable capacitor C, and one end of C is grounded.

このようなインピーダンス調整部31,32を用い、どのようにインピーダンスを変えるかについて、図11に示すスミスチャートを参照して説明する。   How to change the impedance using such impedance adjusting units 31 and 32 will be described with reference to the Smith chart shown in FIG.

まず、送電側からみた最初のインピーダンスが、図11のスミスチャートで「1」の位置にあるとする。このスミスチャートで「1」の位置から等抵抗円上を「2」の位置へ回転させる。この「1」から「2」への移動には、図8の構成ではインピーダンス調整部31のスイッチを左に倒して可変インダクタンスLを調整(増加)する。この後、位置「2」から「3」へ等コンダクタンス円上を回転させて整合を取る。この「2」から「3」への移動には、図8の構成ではインピーダンス調整部31のスイッチを右に倒して可変容量Cを調整(増加)し、インピーダンスを調整する。   First, it is assumed that the initial impedance viewed from the power transmission side is at the position “1” in the Smith chart of FIG. In this Smith chart, the isoresistance circle is rotated from the position “1” to the position “2”. To move from “1” to “2”, the variable inductance L is adjusted (increased) by tilting the switch of the impedance adjusting unit 31 to the left in the configuration of FIG. Thereafter, alignment is performed by rotating on the equiconductance circle from the position “2” to “3”. For the movement from “2” to “3”, in the configuration of FIG. 8, the switch of the impedance adjustment unit 31 is tilted to the right to adjust (increase) the variable capacitor C to adjust the impedance.

なお、図9の構成および図10の構成では、インピーダンス調整部32のスイッチを左右に倒さずに可変インダクタンスLを調整すると、スミスチャートの「1」から「2」へ移動し、次にスイッチを左右どちらかに倒して可変容量Cを調整すると、スミスチャートの「2」から「3」へ移動し、インピーダンスが調整される。   In the configuration of FIG. 9 and the configuration of FIG. 10, when the variable inductance L is adjusted without tilting the switch of the impedance adjustment unit 32 to the left and right, the shift is made from “1” to “2” on the Smith chart, and then the switch is moved. When the variable capacitor C is adjusted by tilting it to the left or right, the impedance is adjusted from “2” to “3” on the Smith chart.

このような整合の取り方に関しては次の参考資料で詳しく説明されている。
(参考資料1)北野劭,高橋博,唐木秀峰、短波帯アンテナオートチューナ、電興技報No.24 ,1990, pp.48-52
(参考資料2)市川裕一,青木勝著、GHz 時代の高周波回路設計、CQ出版社、2003年、2.7 節高周波信号を効率良く伝えるテクニック「マッチング」
The details of how to do this are explained in the following reference material.
(Reference Material 1) Satoshi Kitano, Hiroshi Takahashi, Hidemine Karaki, Shortwave Antenna Autotuner, Dengeki Technical Review No.24, 1990, pp.48-52
(Reference Material 2) Yuichi Ichikawa, Masaru Aoki, High-frequency circuit design in the GHz era, CQ Publishing Co., Ltd., 2003, Section 2.7 Technique for efficiently transmitting high-frequency signals "matching"

次に、送電側装置10(送電側共鳴コイル14)の位置の調整方法について説明する。たとえば、上記のように最大となるインピーダンス値を推定した後、当該インピーダンス値を用いて送電側装置10の最適な位置を定める。本調整方法では、複数地点間の受電レベルに基づき、次に測定すべき地点を定めることに特徴がある。   Next, a method for adjusting the position of the power transmission side device 10 (power transmission side resonance coil 14) will be described. For example, after estimating the maximum impedance value as described above, the optimum position of the power transmission side device 10 is determined using the impedance value. This adjustment method is characterized in that the next point to be measured is determined based on the power reception level between a plurality of points.

図12は、送電側装置の位置調整手順1を示す。ここでは、2地点間の受電レベルを比較して次に測定すべき地点を定める手順について説明する。   FIG. 12 shows the position adjustment procedure 1 of the power transmission side device. Here, a procedure for determining the next point to be measured by comparing the power reception level between the two points will be described.

図12において、XY平面における各地点の受電レベル(電流)を縦軸に示す。地点a,b,c,d,eはXY座標で表され、数値は各地点における受電レベルを示す。まず、送電側装置10の2つの地点aと地点bに対応する受電レベルが受電側装置20でそれぞれ測定され、送電側装置10に送信される。ここでは、地点aの受電レベルが「4」、地点bの受電レベルが「6」とする。この場合、地点aより地点bの受電レベルが高いので、地点aから地点bの方向に等距離延長した地点cに移動し、地点cにおける受電レベルが測定される。ここで、地点cの受電レベルが地点bより高くなっていれば、地点bから地点cの方向にさらに等距離延長した地点に移動して受電レベルが測定される。ここでは、地点cの受電レベルが「5」であり、地点bの受電レベルより低下しているので、地点bを最適位置と決定する。   In FIG. 12, the power reception level (current) at each point on the XY plane is shown on the vertical axis. The points a, b, c, d, and e are represented by XY coordinates, and the numerical value indicates the power reception level at each point. First, the power reception levels corresponding to the two points a and b of the power transmission side device 10 are respectively measured by the power reception side device 20 and transmitted to the power transmission side device 10. Here, it is assumed that the power reception level at the point a is “4” and the power reception level at the point b is “6”. In this case, since the power reception level at the point b is higher than the point a, the power reception level at the point c is measured by moving from the point a to the point c extended by the same distance in the direction of the point b. Here, if the power reception level at the point c is higher than the point b, the power reception level is measured by moving from the point b to a point further extended by an equal distance in the direction of the point c. Here, since the power reception level at the point c is “5”, which is lower than the power reception level at the point b, the point b is determined as the optimum position.

すなわち、2つの地点の受電レベルが高い方の延長線上に次の地点を設定し、その受電レベルがさらに高くなればその延長線上に次の地点を設定する。一方、次の地点の受電レベルが直前の地点の受電レベルより低下すれば、その直前の地点を最適位置と決定する。これは、最初の2つの地点の延長線上の地点に限定されるので、その延長線上にない地点、例えば図12に示す地点dや地点eのように、地点a,b,cのいずれよりも受電レベルが高い地点があっても選択されることはない。   That is, the next point is set on the extension line having the higher power reception level at the two points, and the next point is set on the extension line when the power reception level is further increased. On the other hand, if the power reception level at the next point is lower than the power reception level at the immediately preceding point, the immediately preceding point is determined as the optimum position. Since this is limited to the points on the extension line of the first two points, the point is not on the extension line, for example, point d or point e shown in FIG. Even if there is a point with a high power reception level, it is not selected.

図13は、送電側装置の位置調整手順2を示す。ここでは、面展開する複数の地点の受電レベルが高い方に次に測定すべき地点を定める手順について説明する。表記法は図12と同じである。   FIG. 13 shows the position adjustment procedure 2 of the power transmission side device. Here, a procedure for determining a point to be measured next in a higher power reception level at a plurality of points to be developed will be described. The notation is the same as in FIG.

図13において、地点aの受電レベルが「4」、地点bの受電レベルが「6」とする。このとき、受電レベルが高い地点bの周辺にそれより受電レベルが高い地点を検索する。まず、地点bを中心に地点a−bを半径とする同心円で、例えば左回りに地点cから順番に受電レベルを測定し、地点bの受電レベル「6」より高い地点で終了する。ここでは、地点cの受電レベルが「4」であるので、次の地点dに移る。この地点dの受電レベルが「5」であるので、次の地点eに移る。この地点eの受電レベルが「7」であり、地点bより高いので終了する。   In FIG. 13, it is assumed that the power reception level at point a is “4” and the power reception level at point b is “6”. At this time, a point having a higher power reception level is searched around the point b having a higher power reception level. First, a power reception level is measured in a concentric circle with a point ab as a center around a point b, for example, counterclockwise from the point c, and the process ends at a point higher than the power reception level “6” at the point b. Here, since the power reception level at the point c is “4”, the process proceeds to the next point d. Since the power reception level at this point d is “5”, the process moves to the next point e. Since the power reception level at this point e is “7”, which is higher than the point b, the processing ends.

次に、地点eを中心に地点b−eを半径とする同心円で、今度は右回りに地点fから順番に受電レベルを測定し、地点eの受電レベル「7」より高い地点で終了する。ここでは、地点fの受電レベルが「5」であるので、次の地点gに移る。この地点gの受電レベルが「4」であるので、次の地点hに移る。この地点hの受電レベルが「9」であり、地点eより高いので終了する。   Next, the power reception level is measured in order from the point f in a concentric circle centered on the point e and having a radius of the point be, and then ends at a point higher than the power reception level “7” of the point e. Here, since the power reception level at the point f is “5”, the process proceeds to the next point g. Since the power reception level at this point g is “4”, the process moves to the next point h. Since the power reception level at this point h is “9”, which is higher than that at point e, the processing ends.

なお、地点bを中心に最初に右回りから検索を始めると、より受電レベルの高い地点eがすぐに見つかり、次に地点eを中心に左回りに検索すると、より受電レベルの高いhがすぐに見つかる。   If the search is first started clockwise from the point b, the point e with a higher power reception level is immediately found, and then the search is performed counterclockwise around the point e, the h with a higher power reception level is immediately found. To be found.

このような手順を繰り返し、地点xの周辺にその受電レベルより高い地点がなくなったときに、地点xを最適位置と決定する。   Such a procedure is repeated, and when there is no point higher than the power reception level around the point x, the point x is determined as the optimum position.

すなわち、2つの地点の受電レベルが高い方を中心に、その周辺の地点の受電レベルを探索してより高い受電レベルの地点に移動し、その地点を中心に同様の操作を繰り返して次の地点を設定する。ある地点の周辺により高い受電レベルの地点がなくなったときに、当該地点を最適位置と決定する。ここで、周辺の地点の探索順番は地点が移動するごとに逆回りとする。これにより、より高い受電レベルの地点を求めて最短で最適地点を見つけることが可能になる。   In other words, centering on the higher power reception level of two points, search for the power reception level of the surrounding points, move to a point with a higher power reception level, and repeat the same operation centering on that point to the next point Set. When there is no higher power reception level near a certain point, the point is determined as the optimum position. Here, the search order of the surrounding points is reversed every time the points move. As a result, it is possible to find a point with a higher power reception level and find the optimum point in the shortest time.

10 送電側装置
11 電源
12 復調部
121 検波部
122 A/D変換部
123 符号判定部
13 送電側コイル
14 送電側共鳴コイル
15 周波数調整部
20 受電側装置
21 受電側共鳴コイル
22 受電側コイル
23 負荷
24 抵抗
25 スイッチ
26 制御部
27 受電電力測定部
31,32 インピーダンス調整部
DESCRIPTION OF SYMBOLS 10 Power transmission side apparatus 11 Power supply 12 Demodulation part 121 Detection part 122 A / D conversion part 123 Code | symbol determination part 13 Power transmission side coil 14 Power transmission side resonance coil 15 Frequency adjustment part 20 Power reception side apparatus 21 Power reception side resonance coil 22 Power reception side coil 23 Load 24 resistance 25 switch 26 control unit 27 received power measurement unit 31, 32 impedance adjustment unit

Claims (4)

マンホールの外部に送電側装置を配置し、マンホールの内部に受電側装置を配置し、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、前記送電側コイルに接続された電源から前記受電側コイルに接続された負荷へ電力を伝送する共鳴型無線電力伝送装置において、
前記受電側装置は、
前記負荷が受電した電力を測定して受電電力値を出力する手段と、
スイッチのオンオフにより前記負荷の負荷インピーダンスを所定の範囲で変化させる手段と、
前記受電電力値対応付けて前記スイッチのオンオフを制御する制御部と
を備え、
前記送電側装置は、
前記スイッチのオンオフに対応する前記負荷インピーダンスの変化に応じて発生する前記送電側コイルの電流の過渡応答を検出し、当該過渡応答により前記受電電力値を復元する復調部を備え
前記制御部は、前記受電電力値と前記過渡応答の発生の有無とが対応するように前記スイッチのオンオフを制御し、
前記復調部は、前記送電側コイルの電流を包絡線検波し、前記過渡応答を検出し、当該過渡応答の発生の有無から前記受電電力値を復元する
ことを特徴とする共鳴型無線電力伝送装置。
A power transmission side device is disposed outside the manhole, a power reception side device is disposed inside the manhole, a power transmission side resonance coil electrically coupled to a power transmission side coil of the power transmission side device by electromagnetic induction, and power reception by the power reception side device utilizing resonance phenomenon between the power receiving side resonance coil that is electrically coupled with the side coil and the electromagnetic induction, the transmitting power from the connected power source to the power transmission coil to a load connected to the power receiving coil In the resonance type wireless power transmission device,
The power receiving device is:
Means for measuring the power received by the load and outputting a received power value;
Means for changing the load impedance of the load in a predetermined range by turning on and off the switch;
A controller that controls on / off of the switch in association with the received power value , and
The power transmission side device is:
A demodulator that detects a transient response of the current of the power transmission side coil that occurs in response to a change in the load impedance corresponding to the on / off of the switch, and restores the received power value by the transient response ;
The control unit controls the on / off of the switch so that the received power value corresponds to the occurrence of the transient response,
The resonance type wireless power transmission device , wherein the demodulator detects an electric current of the coil on the power transmission side, detects the transient response, and restores the received power value from the presence or absence of the transient response. .
請求項1に記載の共鳴型無線電力伝送装置において、
前記送電側装置は、前記復調部で復元された前記受電電力値に基づいて、前記電源の電源周波数が前記送電側共鳴コイルと前記受電側共鳴コイルの共鳴周波数に合うように調整する調整手段を備えた
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1,
The power transmission side device includes an adjusting unit configured to adjust a power supply frequency of the power source to match a resonance frequency of the power transmission side resonance coil and the power reception side resonance coil based on the received power value restored by the demodulation unit. A resonance type wireless power transmission apparatus comprising:
請求項1に記載の共鳴型無線電力伝送装置において、
前記送電側装置は、前記復調部で復元された前記受電電力値に基づいて、前記送電側共鳴コイルの位置および傾きを調整し、前記送電側共鳴コイルと前記受電側共鳴コイルが正対するように調整する調整手段を備えた
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1,
The power transmission side device adjusts the position and inclination of the power transmission side resonance coil based on the received power value restored by the demodulator so that the power transmission side resonance coil and the power reception side resonance coil face each other. A resonance type wireless power transmission apparatus comprising an adjusting means for adjusting.
請求項1に記載の共鳴型無線電力伝送装置において、
前記送電側装置は、前記復調部で復元された前記受電電力値に基づいて、前記送電側共鳴コイルの高さを調整し、前記送電側共鳴コイルと前記受電側共鳴コイルとの間隔を調整する調整手段を備えた
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1,
The power transmission side device adjusts a height of the power transmission side resonance coil based on the received power value restored by the demodulation unit, and adjusts an interval between the power transmission side resonance coil and the power reception side resonance coil. A resonance type wireless power transmission apparatus comprising an adjusting means.
JP2012089333A 2011-12-28 2012-04-10 Resonant type wireless power transmission device Active JP5805576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012089333A JP5805576B2 (en) 2011-12-28 2012-04-10 Resonant type wireless power transmission device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011289053 2011-12-28
JP2011289053 2011-12-28
JP2012089333A JP5805576B2 (en) 2011-12-28 2012-04-10 Resonant type wireless power transmission device

Publications (2)

Publication Number Publication Date
JP2013153636A JP2013153636A (en) 2013-08-08
JP5805576B2 true JP5805576B2 (en) 2015-11-04

Family

ID=49049521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089333A Active JP5805576B2 (en) 2011-12-28 2012-04-10 Resonant type wireless power transmission device

Country Status (1)

Country Link
JP (1) JP5805576B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265769B2 (en) * 2014-02-10 2018-01-24 キヤノン株式会社 Power transmission device, control method, and program
KR20160038410A (en) 2014-09-30 2016-04-07 엘지이노텍 주식회사 Wireless Power Transfer System
US9711972B2 (en) * 2015-03-27 2017-07-18 Qualcomm Incorporated Auxiliary receiver coil to adjust receiver voltage and reactance
WO2017017828A1 (en) * 2015-07-30 2017-02-02 浩康 佐々木 Power transmission device, power reception device, and magnetic field resonance power transmission system equipped with same
CN106936224B (en) * 2015-12-31 2020-08-25 比亚迪股份有限公司 Wireless charging method and device
CN105488912B (en) * 2016-02-04 2016-11-02 国网山东省电力公司蓬莱市供电公司 The charging system of coin charging
CN105528834B (en) * 2016-02-04 2016-09-14 中能东道集团有限公司 Electric automobile lease management system based on charging pile
CN105957251A (en) * 2016-02-04 2016-09-21 刘杰 Charging pile using mobile payment
CN108886271B (en) * 2016-06-06 2022-04-01 株式会社村田制作所 Wireless power supply system, wireless power transmission device, and wireless power receiving device
KR102554457B1 (en) * 2016-09-20 2023-07-11 주식회사 위츠 Apparatus for transmitting power wirelessly and control method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108391A (en) * 1996-09-26 1998-04-24 Nec Corp Power supply for device to be implanted inside body
JPH10317410A (en) * 1997-05-20 1998-12-02 Haneda Hume Pipe Co Ltd Information system of object embedded in underground
JP4255575B2 (en) * 1999-08-06 2009-04-15 吉川アールエフシステム株式会社 Road equipment management system
JP2009273327A (en) * 2008-05-10 2009-11-19 Sanyo Electric Co Ltd Battery built-in apparatus and charging cradle
JP5288958B2 (en) * 2008-09-11 2013-09-11 矢崎総業株式会社 Wireless power transmission apparatus and resonance frequency adjustment method
JP5526795B2 (en) * 2010-01-15 2014-06-18 ソニー株式会社 Wireless power supply system
JP2011155733A (en) * 2010-01-26 2011-08-11 Equos Research Co Ltd Noncontact power transmission system and noncontact power transmission device

Also Published As

Publication number Publication date
JP2013153636A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5805576B2 (en) Resonant type wireless power transmission device
JP5673783B2 (en) Power transmission device and power reception device in magnetic resonance power transmission system
US9190850B2 (en) Wireless power transmitter
KR101830734B1 (en) Wireless power transmission method and apparatus
US9865391B2 (en) Wireless power repeater and method thereof
JP5456625B2 (en) Resonant type wireless power transmission device
US20160012966A1 (en) Method and apparatus for adjustable coupling for improved wireless high q resonant power transfer
US8559873B2 (en) Forward link signaling within a wireless power system
JP2011142769A (en) Method and device for transmitting magnetic resonance power
JP6612886B2 (en) Method and apparatus for wireless power transfer utilizing a power transmission coil driven by a phase shifted current
KR101968687B1 (en) Method for driving power supply system
JP6079026B2 (en) Coil unit and wireless power feeder using the same
EP3032701B1 (en) Wireless power transmission device
JPWO2014118895A1 (en) Wireless power transmission system, power receiver, and wireless power transmission method
US20190089571A1 (en) Adaptive Backscatter Modulation
JP2012139033A (en) Non-contact power transmission system and power reception antenna
JP5523540B2 (en) Transmission system using wireless power transmission and transmission apparatus on transmission side
US11824373B2 (en) Wireless power transmission antenna with parallel coil molecule configuration
JP5454590B2 (en) Resonance frequency control method, power transmission device, and power reception device in magnetic resonance power transmission system
JP5599447B2 (en) Wireless power transmission transmission system and receiving side transmission apparatus
KR102150521B1 (en) Wireless power transmission systme which enables to transmit and receive induced power signal and resonance power signal
WO2015125263A1 (en) Power transmission apparatus and wireless power transmission system
JP5801240B2 (en) Resonant type wireless power transmission device
KR20200104273A (en) Wireless power transmission systme which enables to transmit and receive induced power signal and resonance power signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150