JP5805019B2 - Cutting tool gripper - Google Patents

Cutting tool gripper Download PDF

Info

Publication number
JP5805019B2
JP5805019B2 JP2012146856A JP2012146856A JP5805019B2 JP 5805019 B2 JP5805019 B2 JP 5805019B2 JP 2012146856 A JP2012146856 A JP 2012146856A JP 2012146856 A JP2012146856 A JP 2012146856A JP 5805019 B2 JP5805019 B2 JP 5805019B2
Authority
JP
Japan
Prior art keywords
cutting tool
holding tube
sleeve
cutting
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012146856A
Other languages
Japanese (ja)
Other versions
JP2014008572A (en
Inventor
文仁 櫻井
文仁 櫻井
健司 渡部
健司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Daido Steel Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Daido Steel Co Ltd
Priority to JP2012146856A priority Critical patent/JP5805019B2/en
Priority to SE1451635A priority patent/SE538022C2/en
Priority to CN201380034662.4A priority patent/CN104640656A/en
Priority to IN11026DEN2014 priority patent/IN2014DN11026A/en
Priority to KR20147036476A priority patent/KR20150040812A/en
Priority to PCT/JP2013/067119 priority patent/WO2014002905A1/en
Publication of JP2014008572A publication Critical patent/JP2014008572A/en
Application granted granted Critical
Publication of JP5805019B2 publication Critical patent/JP5805019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/002Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor with vibration damping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/007Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor for internal turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/04Tool holders for a single cutting tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2250/00Compensating adverse effects during turning, boring or drilling
    • B23B2250/16Damping of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/026Bushings, e.g. adapter sleeves

Description

本発明は、切削工具を切削機械に取付けるための切削工具把持具に関し、特に、取付孔に棒状の切削工具の一端部を挿入し固定した上で切削機械に取り付けるための切削工具把持具に関する。   The present invention relates to a cutting tool gripping tool for attaching a cutting tool to a cutting machine, and more particularly to a cutting tool gripping tool for attaching to a cutting machine after inserting and fixing one end of a rod-shaped cutting tool in an attachment hole.

被加工物と切削工具とを当接させながらこれらを互いに相対的に移動させて切削を行う切削加工において、振動による加工精度の低下が問題となる。特に、被加工物の孔内周面を切削する中ぐり加工では、ボーリングバーのような長尺棒状の切削工具の一端部近傍を片持ち支持して加工を行うため、切削工具に「ビビリ振動」を生じやすい。そこで切削工具を切削機械に取付けるための切削工具把持具に振動を抑制する制振合金からなる制振機構を設けることが行われている。   In cutting work in which cutting is performed by moving a workpiece and a cutting tool relative to each other while contacting each other, a reduction in machining accuracy due to vibration becomes a problem. In particular, in the boring process that cuts the inner peripheral surface of the workpiece, the cutting tool is supported by cantilevering the vicinity of one end of a long bar-like cutting tool such as a boring bar. "Is likely to occur. In view of this, a damping mechanism made of a damping alloy that suppresses vibration is provided in a cutting tool gripper for attaching the cutting tool to a cutting machine.

例えば、特許文献1では、切削加工時にボーリングバーに生じる振動が直接的に切削工具把持具に伝播するのを防止するよう、鋼材等からなる円筒状の把持具本体の軸線に沿った嵌合穴に制振部材からなる円筒状のスリーブを嵌挿し、このスリーブの内周面にボーリングバーのシャンク部を挿入、クランプネジによって押圧固定することを開示している。シャンク部のクランプネジへの当接部分とは反対側の外周面部分を押圧面とし、かかる押圧面と対向する嵌合穴の内面部分との間に制振部材を介装させることで、ボーリングバーに生じる振動を制振部材で減衰・吸収し、ボーリングバーの振れを抑え、特にシャンク部と把持具本体との共振による「ビビリ振動」を防止するとしている。かかる押圧面部分に使用され得る制振部材としては、アルミニウム、銅、亜鉛、真鍮、またはこれらを主成分とする合金、あるいは制振鋼板等を挙げている。   For example, in Patent Document 1, a fitting hole along the axis of a cylindrical gripping tool body made of steel or the like is used to prevent vibration generated in a boring bar during cutting from being directly transmitted to the cutting tool gripping tool. A cylindrical sleeve made of a damping member is inserted into the inner peripheral surface of the sleeve, and a shank portion of a boring bar is inserted into the inner peripheral surface of the sleeve and pressed and fixed with a clamp screw. The outer peripheral surface of the shank part opposite to the clamp screw is used as a pressing surface, and a damping member is interposed between the pressing surface and the inner surface of the fitting hole facing the boring. The vibration generated in the bar is attenuated and absorbed by the damping member to suppress the swing of the boring bar, and in particular, “batter vibration” due to resonance between the shank portion and the gripper main body is prevented. Examples of the damping member that can be used for the pressing surface portion include aluminum, copper, zinc, brass, an alloy containing these as a main component, a damping steel plate, and the like.

更に、特許文献2では、金属製のスリーブの軸中心に沿って芯部材を嵌合させるように螺着させ、該芯部材の工具保持穴に切削工具のシャンクを嵌合させて取り付けること、かかる芯部材に軽量、かつ振動吸収性に優れた純マグネシウム、あるいはマグネシウム合金を用い得ることを開示している。切削工具把持具におけるスリーブと芯部材とを別体とすることで、切削加工時に切削工具から切削工具把持具を介して切削機械の取付台に伝わる振動を芯部材で吸収しようとするのである。   Further, in Patent Document 2, the core member is screwed so as to be fitted along the axial center of the metal sleeve, and the shank of the cutting tool is fitted and attached to the tool holding hole of the core member. It is disclosed that pure magnesium or a magnesium alloy that is lightweight and excellent in vibration absorption can be used for the core member. By making the sleeve and the core member in the cutting tool gripping tool separate, the core member tries to absorb vibration transmitted from the cutting tool to the mounting base of the cutting machine via the cutting tool gripping tool during the cutting process.

また、特許文献3では、切削工具とこれを押圧固定する工具台座との間に制振部材を介在させることを開示するが、かかる制振部材において、減衰係数が高いほど切削加工時の振動を抑制でき切削工具の食いつき時などの衝撃応答を低下させるとする一方、減衰性能と、引張強さ等で表現される剛性や強度とはトレードオフの関係にあり、減衰性を高くしすぎると却って切削工具の振動を激しくし、加工精度の低下を招くことを述べている。その上で、制振部材としては、引張強さ500〜650MPa、対数減衰率0.2〜0.35の金属材料、例えば、Mnをべースとし、基本組成として、原子%で、Cu:20±5%、Ni:5±3%、Fe:2±1%を含有する制振合金などが好ましいとしている。   Patent Document 3 discloses that a damping member is interposed between a cutting tool and a tool base that presses and fixes the cutting tool. In such a damping member, the higher the damping coefficient, the more the vibration during cutting is performed. While it is possible to suppress the impact response when the cutting tool bites, etc., the damping performance and the rigidity and strength expressed by the tensile strength are in a trade-off relationship. It states that the vibration of the cutting tool is intensified and the machining accuracy is reduced. In addition, as the damping member, a metal material having a tensile strength of 500 to 650 MPa and a logarithmic attenuation rate of 0.2 to 0.35, for example, Mn is used as a base, and the basic composition is atomic%, Cu: Damping alloys containing 20 ± 5%, Ni: 5 ± 3%, and Fe: 2 ± 1% are preferred.

実開平05−088804号公報Japanese Utility Model Publication No. 05-088804 実登録3153247号公報Registration No. 3153247 特開2004−202649号公報JP 2004-202649 A

特許文献1乃至3に開示のように、切削工具とこれを押圧固定せしめる部分との間に制振部材を介在させることが広く行われている。しかしながら、制振部材の制振特性はその材料によって大きく異なるが、制振部材の材料毎に最適化された切削工具把持具などの設計は考慮されて来なかった。すなわち、必ずしも切削工具の振動を最大限抑制し、高い加工精度の切削加工を与えていたとは言えないのである。   As disclosed in Patent Documents 1 to 3, it is widely performed that a damping member is interposed between a cutting tool and a portion where the tool is pressed and fixed. However, although the damping characteristics of the damping member vary greatly depending on the material, the design of the cutting tool gripper and the like optimized for each material of the damping member has not been considered. That is, it cannot always be said that the cutting tool vibration is suppressed to the maximum and cutting with high processing accuracy is given.

本発明はかかる状況に鑑みてなされたものであって、その課題は、優れた加工精度の切削加工を行い得る切削工具把持具を提供することにある。   The present invention has been made in view of such a situation, and an object thereof is to provide a cutting tool gripper capable of performing cutting with excellent processing accuracy.

本発明による切削工具把持具は、取付孔に棒状の切削工具の一端部を挿入し固定した上で切削機械に取り付けるための切削工具把持具であって、質量%で、Cu:16.9〜27.7%、Ni:2.1〜8.2%、Fe:1.0〜2.9%を含むとともに、C:0.05%以下とし、残部をMn及び不可避的不純物とした成分組成の制振合金からなり、長手方向に沿った中央貫通穴を前記取付孔として与え且つねじ切りされた外周面を有する制振合金管体を該制振合金よりもヤング率を大とする材料からなる剛性保持管体のねじ切りされた筒内面に沿って螺合固着させたことを特徴とする。   The cutting tool gripping tool according to the present invention is a cutting tool gripping tool for attaching to a cutting machine after inserting and fixing one end portion of a rod-shaped cutting tool into an attachment hole, and is Cu: 16.9- 27.7%, Ni: 2.1 to 8.2%, Fe: 1.0 to 2.9%, C: 0.05% or less, the balance is Mn and inevitable impurities A damping alloy tube having a central through hole along the longitudinal direction as the mounting hole and having a threaded outer peripheral surface is made of a material having a Young's modulus larger than that of the damping alloy. The rigid holding tube body is screwed and fixed along the threaded inner surface of the cylinder.

かかる発明によれば、比較的高い剛性と強度を有しながら広い周波数範囲の振動を効率よく吸収できる高い減衰能を有するMn基の双晶型制振合金からなる制振合金管体を剛性保持管体の筒内面に沿って広い面積で螺合固着させて、かかる切削工具把持具に切削工具を取り付けての切削加工において、優れた加工精度を与え得るのである。   According to this invention, the damping alloy tube body made of an Mn-based twin type damping alloy having a high damping capacity capable of efficiently absorbing vibrations in a wide frequency range while having relatively high rigidity and strength is maintained rigid. In a cutting process in which a cutting tool is attached to such a cutting tool gripping tool by screwing and fixing in a wide area along the tube inner surface of the tubular body, excellent processing accuracy can be given.

上記した発明において、前記制振合金管体は、長手方向の端部に与えられた鍔部を前記剛性保持管体の端面に押圧させるように、その反対側端部を前記剛性保持管体に挿入させつつ前記筒内面に沿って螺合固着せしめられていることを特徴としてもよい。かかる発明によれば、比較的高い剛性と強度を有するMn基の双晶型制振合金からなる制振合金管体を剛性保持管体の筒内面に沿って広い面積でより強固に螺合固着させて、かかる切削工具把持具に切削工具を取り付けての切削加工において、より優れた加工精度を与え得るのである。   In the above-described invention, the damping alloy tube has an end on the opposite side to the rigid holding tube so as to press a flange provided at an end in the longitudinal direction against an end surface of the rigid holding tube. It may be characterized by being screwed and fixed along the inner surface of the cylinder while being inserted. According to this invention, a damping alloy tube made of an Mn-based twin type damping alloy having relatively high rigidity and strength is screwed and fixed more firmly along a cylindrical inner surface of the rigid holding tube. Thus, it is possible to give better processing accuracy in the cutting processing with the cutting tool attached to the cutting tool gripping tool.

本発明による切削工具把持具を示す側断面図及び正面図である。It is the sectional side view and front view which show the cutting tool holding tool by this invention. 本発明による切削工具把持具の構成部品を示す側断面図及び正面図である。It is the sectional side view and front view which show the component of the cutting tool holding tool by this invention. 本発明による切削工具把持具の構成部品を示す側面図及び正面図である。It is the side view and front view which show the component of the cutting tool holding tool by this invention. 本発明による切削工具把持具による切削工具の固定方法を示す側断面図である。It is a sectional side view which shows the fixing method of the cutting tool by the cutting tool holding tool by this invention. 切削加工における真円度の測定結果を示す図である。It is a figure which shows the measurement result of the roundness in cutting. 切削加工における表面粗さの測定結果を示す図である。It is a figure which shows the measurement result of the surface roughness in cutting. 本発明による他の実施例における切削工具把持具による切削工具の固定方法を示す側断面図である。It is a sectional side view which shows the fixing method of the cutting tool by the cutting tool holding tool in the other Example by this invention.

本発明による実施例の1つである切削工具把持具について、図1乃至図4を用いて説明する。   A cutting tool gripper which is one embodiment according to the present invention will be described with reference to FIGS. 1 to 4.

図1に示すように、切削工具を把持しこれを切削機械に取り付けるための把持具1は、略円筒形状の剛性材料からなる保持管体(剛性保持管体)2と、略円筒形状の制振合金からなるスリーブ(制振合金管体)3とを同軸に組み合わせてなる。保持管体2は、その一端部にフランジ21を有し、フランジ21と反対側の端部からスリーブ3を挿入され、スリーブ3の一端部に設けられた鍔部31の側面を保持管体2の端面24に当接させている。   As shown in FIG. 1, a gripping tool 1 for gripping a cutting tool and attaching the cutting tool to a cutting machine includes a holding tube (rigid holding tube) 2 made of a substantially cylindrical rigid material, and a substantially cylindrical control. A sleeve (damping alloy tube) 3 made of a vibration alloy is coaxially combined. The holding tube 2 has a flange 21 at one end thereof, the sleeve 3 is inserted from the end opposite to the flange 21, and the side surface of the flange portion 31 provided at one end of the sleeve 3 is held by the holding tube 2. It is made to contact | abut to the end surface 24 of this.

図2を併せて参照すると、保持管体2は、その内周面22に軸線に沿った全長に亘る雌ネジを与えられている。また、保持管体2には、外周面から内周面22に貫通し、後述するように切削工具を固定するためのボルトを取り付ける貫通孔23が設けられている。貫通孔23は、軸線方向に沿って複数設けられている。保持管体2は、例えば、S45Cのような鋼からなり、後述するスリーブ3よりも少なくとも大きなヤング率を有する剛性体であって、典型的には、スリーブ3よりも2倍以上大きいヤング率を有することが好ましい。   Referring also to FIG. 2, the holding tube body 2 is provided with an internal thread on its inner peripheral surface 22 over the entire length along the axis. Further, the holding tube body 2 is provided with a through hole 23 that penetrates from the outer peripheral surface to the inner peripheral surface 22 and attaches a bolt for fixing the cutting tool as will be described later. A plurality of through holes 23 are provided along the axial direction. The holding tube body 2 is made of, for example, steel such as S45C, and is a rigid body having a Young's modulus that is at least larger than that of a sleeve 3 to be described later, and typically has a Young's modulus that is twice or more larger than that of the sleeve 3. It is preferable to have.

図3に示すように、スリーブ3は、鍔部31以外の外周面32に軸線方向に沿って雄ネジを与えられており、上記した保持管体2の内周面22の雌ねじに対応して螺合可能である。管状のスリーブ3の内周面は、切削工具を挿入し取付けるための取付穴34を画定している。スリーブ3には、保持管体2の貫通孔23に対応するように、外周面32から内周面まで半径方向に貫通する複数の貫通孔33を設けられている。すなわち、貫通孔33の各々は、スリーブ3を保持管体2に螺合固着させたときに貫通孔23と連通する位置に設けられている(図1参照)。   As shown in FIG. 3, the sleeve 3 is provided with a male screw along the axial direction on the outer peripheral surface 32 other than the flange portion 31, and corresponds to the female screw on the inner peripheral surface 22 of the holding tube body 2 described above. It can be screwed. The inner peripheral surface of the tubular sleeve 3 defines a mounting hole 34 for inserting and mounting a cutting tool. The sleeve 3 is provided with a plurality of through holes 33 penetrating in the radial direction from the outer peripheral surface 32 to the inner peripheral surface so as to correspond to the through holes 23 of the holding tube body 2. That is, each of the through holes 33 is provided at a position that communicates with the through hole 23 when the sleeve 3 is screwed and fixed to the holding tube 2 (see FIG. 1).

スリーブ3は、双晶型のMn基制振合金からなり、質量%で、Cu:16.9〜27.7%、Ni:2.1〜8.2%、Fe:1.0〜2.9%を含むとともに、C:0.05%以下とし、残部をMn及び不可避的不純物(O、N等の低含有量元素)とした成分組成のMn−Cu−Ni−Fe系制振合金からなる。ここで、かかる制振合金における各成分の組成範囲(いずれも質量%)について説明する。Cuについては、16.9%未満では双晶が生成せず、27.7%超では偏析が大きくなって、十分な制振特性を得ることが出来ない。より好ましい組成範囲は、19.7〜25.0%である。Niについては、主要元素であるMn及びCuとともに第3元素として添加することで制振特性を向上せしめ得る。ここで、2.1%未満では双晶の生成に変化を与え得ず、8.2%超では双晶の生成への寄与が飽和する。Feについては、Mn及びCu、また、Niとともに、第4元素として添加することで制振特性をより向上せしめ得る。ここで、1.0%未満では双晶の生成に変化を与え得ず、2.9%超では双晶の生成への寄与が飽和する。また、Cについては、0.05%以下とすることで、Mnが蒸発してCの相対的濃度が上昇しても、制振特性の劣化を防止できるのである。   The sleeve 3 is made of a twin-type Mn-based damping alloy, and by mass, Cu: 16.9 to 27.7%, Ni: 2.1 to 8.2%, Fe: 1.0 to 2. From a Mn—Cu—Ni—Fe based vibration damping alloy having a component composition of 9% and C: 0.05% or less with the balance being Mn and inevitable impurities (low-content elements such as O and N) Become. Here, the composition range (all are mass%) of each component in this damping alloy is demonstrated. With respect to Cu, if less than 16.9%, twins are not generated, and if it exceeds 27.7%, segregation increases and sufficient vibration damping characteristics cannot be obtained. A more preferable composition range is 19.7 to 25.0%. About Ni, it can improve a damping characteristic by adding as a 3rd element with Mn and Cu which are main elements. Here, if it is less than 2.1%, the twin formation cannot be changed, and if it exceeds 8.2%, the contribution to the twin formation is saturated. About Fe, it can improve a damping characteristic more by adding as Mn, Cu, and Ni as a 4th element. Here, if it is less than 1.0%, the twin formation cannot be changed, and if it exceeds 2.9%, the contribution to the twin formation is saturated. Further, by setting C to 0.05% or less, even if Mn evaporates and the relative concentration of C rises, deterioration of damping characteristics can be prevented.

上記したように、本実施例の制振合金は、双晶を形成し、外部から与えられる振動エネルギーを双晶界面で摩擦熱へと変換することで振動を吸収する。一般的な制振合金と比較して、広い周波数範囲の振動について高い減衰能を有し、振動を効率よく吸収できる。特に、圧縮応力を負荷されることで、より小さな応力であっても双晶界面で摩擦熱を生じるようになり、振動を効率よく吸収し得る。また、一般的な制振合金と比較して高い剛性と強度とを有している。   As described above, the vibration damping alloy of this embodiment forms twins and absorbs vibrations by converting vibration energy given from the outside into frictional heat at the twin crystal interface. Compared with a general damping alloy, it has a high damping capacity for vibrations in a wide frequency range and can absorb the vibrations efficiently. In particular, by applying a compressive stress, frictional heat is generated at the twin interface even with a smaller stress, and vibration can be efficiently absorbed. Moreover, it has high rigidity and strength compared with a general damping alloy.

再び図1を参照すると、保持管体2の内周面22とスリーブ3の外周面32とは互いに螺合し、平滑な面同士で内嵌めされる場合と比較して、大なる面積で固着している。さらに、スリーブ3は、その鍔部31の側面をより大きなヤング率を有する剛性体である保持管体2の端面24に押圧させつつ螺合させて、ねじ切りされて軸線方向から傾斜する面からなる外周面32により大きな面圧を負荷し、スリーブ3が保持管体2に対してより強固に固着している。   Referring to FIG. 1 again, the inner peripheral surface 22 of the holding tube body 2 and the outer peripheral surface 32 of the sleeve 3 are screwed together, and are fixed in a larger area compared to the case where they are fitted with smooth surfaces. doing. Further, the sleeve 3 is made of a surface that is threaded and pressed from the end surface 24 of the holding tube body 2 that is a rigid body having a larger Young's modulus, and is threaded and inclined from the axial direction. A large surface pressure is applied to the outer peripheral surface 32, and the sleeve 3 is firmly fixed to the holding tube 2.

図4に示すように、上記した把持具1は、棒状の切削工具50の掴み部52を取付穴34に挿入させた上で、図示しない切削機械に固定されたホルダ60の保持穴64に挿入される。このとき、フランジ21の側面がホルダ60に当接し、切削工具50のチップ51がホルダ60から突出している。この状態で、ホルダ60に設けられた雌ネジを有するボルト穴63が把持具1の貫通孔23、33と連通した位置に配置されて、ボルト穴63を介して複数のボルト4を締め込むと、ボルト4の先端が切削工具50に当接する。切削工具50はボルト4の進行方向に押圧されて、ボルト4と当接する部分と反対側の外周面がスリーブ3の内周面に押圧され、固定される。これにより、チップ51を被加工物と相対的に移動させつつ、切削加工を行うことができる。   As shown in FIG. 4, the above-described gripping tool 1 is inserted into the holding hole 64 of the holder 60 fixed to the cutting machine (not shown) after the grip portion 52 of the rod-shaped cutting tool 50 is inserted into the mounting hole 34. Is done. At this time, the side surface of the flange 21 contacts the holder 60, and the tip 51 of the cutting tool 50 protrudes from the holder 60. In this state, when a bolt hole 63 having a female screw provided in the holder 60 is disposed at a position communicating with the through holes 23 and 33 of the gripping tool 1, and a plurality of bolts 4 are tightened through the bolt holes 63. The tip of the bolt 4 comes into contact with the cutting tool 50. The cutting tool 50 is pressed in the traveling direction of the bolt 4, and the outer peripheral surface on the opposite side to the portion in contact with the bolt 4 is pressed and fixed to the inner peripheral surface of the sleeve 3. Thereby, cutting can be performed while moving the tip 51 relative to the workpiece.

上記した実施例によれば、双晶型のMn基制振合金からなるスリーブ3を剛性の高い保持管体2の内周面に、平滑な内周面で嵌め合わせる場合と比較して、大なる面積で螺合固着させている。その上で、複数のボルト4を締め込んで、切削工具50のボルト4の当接した部分とは反対側の外周面をスリーブ3の内周面に対して押圧固定することとなる。すなわち、スリーブ3はその剛性により軸方向の全域に亘るより大なる面積で、なおかつ周方向の広い範囲に亘って保持管体2に付勢されて圧縮されつつ切削工具50を固定する。これにより、圧縮応力下でより高い振動減衰能を有する上記した双晶型のMn基制振合金の特徴を活かし、広い周波数範囲の振動を効率よく吸収できて高い減衰能を有する把持具1を与えるのである。つまり、優れた加工精度を与えるのである。   According to the above-described embodiment, the sleeve 3 made of a twin-type Mn-based damping alloy is larger than the case where the sleeve 3 is fitted to the inner peripheral surface of the highly rigid holding tube 2 with a smooth inner peripheral surface. The area is screwed and fixed. Then, the plurality of bolts 4 are tightened, and the outer peripheral surface of the cutting tool 50 opposite to the portion where the bolts 4 are in contact is pressed and fixed to the inner peripheral surface of the sleeve 3. That is, the sleeve 3 fixes the cutting tool 50 while being compressed by being biased and compressed by the holding tube 2 over a wide area in the circumferential direction with a larger area over the entire area in the axial direction due to its rigidity. This makes it possible to take advantage of the characteristics of the twin-type Mn-based damping alloy having higher vibration damping ability under compressive stress and to efficiently absorb vibrations in a wide frequency range and to obtain a gripping tool 1 having high damping ability. Give. That is, it gives excellent processing accuracy.

なお、スリーブ3の鍔部31の側面をより大きなヤング率を有する剛性体からなる保持管体2の端面24に押圧させつつ保持管体2の内部へねじ込みすることで、スリーブ3のねじの進行方向への力と、これに抗するようにスリーブ3の鍔部31によって働く力とがスリーブ3のねじ切りされた外周面32、すなわち、軸線方向に対して傾斜した面であるねじ切り面で構成される外周面32に与えられて、スリーブ3が保持管体2に対してより強固に固着できるのである。つまり、切削工具50に発生する振動をより効率よく吸収させ得るのである。   It is to be noted that the screw of the sleeve 3 is advanced by being screwed into the holding tube 2 while pressing the side surface of the collar portion 31 of the sleeve 3 against the end surface 24 of the holding tube 2 made of a rigid body having a larger Young's modulus. The force in the direction and the force exerted by the flange 31 of the sleeve 3 to counter this are constituted by the outer peripheral surface 32 of the sleeve 3 that is threaded, that is, the threaded surface that is inclined with respect to the axial direction. The sleeve 3 can be fixed to the holding tube 2 more firmly. That is, vibration generated in the cutting tool 50 can be absorbed more efficiently.

[評価試験]
次に、上記した本発明の実施例及び比較例における切削工具把持具を用いた切削加工(中ぐり加工)の結果について図5及び図6を用いて説明する。切削加工の結果は、後述するように真円度及び表面粗さを測定して評価した。
[Evaluation test]
Next, the results of cutting (boring) using the cutting tool gripper in the above-described embodiments of the present invention and comparative examples will be described with reference to FIGS. The results of cutting were evaluated by measuring roundness and surface roughness as described later.

実施例1は、S45Cからなる保持管体2に、質量%で、Cu:22.4%、Ni:5.2%、Fe:2.0%、C:0.01%、残部をMn及び不可避的不純物とした成分組成のMn−Cu−Ni−Fe系制振合金からなるスリーブ3を螺合させた切削工具把持具である(以下、「ネジ式」と称する)。詳細には、保持管体2は、外径40mmとされ、内周面にはM33×2の雌ネジをその全長に亘って切られている。スリーブ3は、内径25.2mmとされ、外周面にはM33×2の雄ネジを切られている。これらを螺合固着させた切削工具把持具の全長、すなわちスリーブ3の全長は96mmである。   In Example 1, the holding tube body 2 made of S45C has, in mass%, Cu: 22.4%, Ni: 5.2%, Fe: 2.0%, C: 0.01%, the balance being Mn and This is a cutting tool gripping tool in which a sleeve 3 made of a Mn—Cu—Ni—Fe based damping alloy having a component composition as an inevitable impurity is screwed (hereinafter referred to as “screw type”). Specifically, the holding tube body 2 has an outer diameter of 40 mm, and an M33 × 2 female screw is cut over the entire length on the inner peripheral surface. The sleeve 3 has an inner diameter of 25.2 mm, and an M33 × 2 male screw is cut on the outer peripheral surface. The total length of the cutting tool gripping tool to which these are screwed and fixed, that is, the total length of the sleeve 3 is 96 mm.

比較例1は、実施例1に対してスリーブ3を保持管体2に螺合させるのではなく、円筒形状のスリーブを保持管体に冷やし嵌めして固定した切削工具把持具である(以下、「嵌合式」と称する)。なお、境界径は31mmであり、その他の寸法は実施例1と同様である。また、比較例2及び比較例3は、保持管体及びスリーブを一体形成した切削工具把持具である(以下、「一体型」と称する)。比較例2及び比較例3の材質は、それぞれ実施例1の保持管体2に用いたS45C、及び、実施例1のスリーブ3に用いたMn−Cu−Ni−Fe系制振合金である。   Comparative Example 1 is a cutting tool gripping tool in which the sleeve 3 is not screwed to the holding tube 2 in the first embodiment, but a cylindrical sleeve is cooled and fixed to the holding tube (hereinafter, referred to as “cutting tool gripper”). Referred to as “fitting type”). The boundary diameter is 31 mm, and other dimensions are the same as those in the first embodiment. Comparative Example 2 and Comparative Example 3 are cutting tool gripping tools in which a holding tube and a sleeve are integrally formed (hereinafter referred to as “integrated type”). The materials of Comparative Example 2 and Comparative Example 3 are S45C used for the holding tube 2 of Example 1 and the Mn—Cu—Ni—Fe based damping alloy used for the sleeve 3 of Example 1, respectively.

切削加工は、SUS304からなる長さ200mm、外径100mm、内径62mmの円筒体の被加工物に対して、切削速度を100m/min、切り込み量を0.5mm、送り速度を0.2mm/rev、工具突き出し量を140mmとして、送り距離80mmの中ぐり加工を3パスで行った。   Cutting is performed on a cylindrical workpiece having a length of 200 mm, an outer diameter of 100 mm, and an inner diameter of 62 mm made of SUS304, with a cutting speed of 100 m / min, a cutting amount of 0.5 mm, and a feeding speed of 0.2 mm / rev. The boring of the tool with a feed distance of 80 mm was performed in 3 passes with a tool protrusion amount of 140 mm.

真円度については、中ぐり加工を3パス行った後の加工孔の内周面について、市販の3次元測定器を用いて測定した。測定は、加工孔の端面から深さ3mm、6mm、25mm、及び45mmの4箇所で測定し、各例の総合的な評価を行うために4カ所の測定値の平均値を記録した。各例の平均値を図5下段に示す。   The roundness was measured using a commercially available three-dimensional measuring instrument on the inner peripheral surface of the processed hole after three passes of boring. The measurement was performed at four locations at a depth of 3 mm, 6 mm, 25 mm, and 45 mm from the end face of the processed hole, and an average value of the measured values at the four locations was recorded for comprehensive evaluation of each example. The average value of each example is shown in the lower part of FIG.

表面粗さについては、被加工物の内周面の端面から深さ30mmの箇所において、中ぐり加工を1パス行う度に市販の表面粗さ計によって3点ずつ測定し、その平均値を求めた。中ぐり加工は3パス行い、1パス毎の表面粗さRaの平均値をそれぞれ記録した。   Regarding the surface roughness, three points are measured with a commercially available surface roughness meter every time one pass of boring at a position 30 mm deep from the end surface of the inner peripheral surface of the workpiece, and the average value is obtained. It was. Boring was performed for 3 passes, and the average value of the surface roughness Ra for each pass was recorded.

図5及び図6に示すように、「ネジ式」の実施例1では、真円度は6.3〜8.7μm、平均7.4μmであり、表面粗さRaは1.69〜1.93μmであった。表面粗さRaは、パス回数を重ねても安定した値であった。   As shown in FIGS. 5 and 6, in the “screw type” Example 1, the roundness is 6.3 to 8.7 μm, the average is 7.4 μm, and the surface roughness Ra is 1.69 to 1. It was 93 μm. The surface roughness Ra was a stable value even when the number of passes was repeated.

一方、「嵌合式」の比較例1では、真円度は11.9〜21.4μm、平均16.3μmと実施例1よりも大きくなった。また、表面粗さRaは2.42〜5.01μmであり、これも実施例1と比較して大きくなった。つまり、真円度及び表面粗さRaで評価される加工精度において、比較例1よりも実施例1が優れていた。   On the other hand, in Comparative Example 1 of “fitting type”, the roundness was 11.9 to 21.4 μm, and the average was 16.3 μm, which was larger than that of Example 1. Further, the surface roughness Ra was 2.42 to 5.01 μm, which was larger than that in Example 1. That is, Example 1 was superior to Comparative Example 1 in processing accuracy evaluated by roundness and surface roughness Ra.

S45Cからなる「一体型」の比較例2では、真円度は9.2〜10.1μm、平均9.7μmと実施例1よりも大きくなった。また、表面粗さRaは3.99〜5.35μmと実施例1よりも大きくなった。つまり、真円度及び表面粗さRaで評価される加工精度において、比較例2よりも実施例1が優れていた。比較例2では、切削工具に発生する振動の振幅が比較的小さく真円度は比較的高いが、発生した振動を吸収できずに表面粗さが粗くなってしまったものと考えられる。   In the “integrated” comparative example 2 made of S45C, the roundness was 9.2 to 10.1 μm, and the average was 9.7 μm, which was larger than that of the first example. Further, the surface roughness Ra was 3.99 to 5.35 μm, which was larger than that of Example 1. That is, Example 1 was superior to Comparative Example 2 in processing accuracy evaluated by roundness and surface roughness Ra. In Comparative Example 2, although the amplitude of vibration generated in the cutting tool is relatively small and the roundness is relatively high, it is considered that the surface roughness becomes rough because the generated vibration cannot be absorbed.

実施例1と同じ成分組成のMn−Cu−Ni−Fe系制振合金からなる「一体型」の比較例3では、真円度は15.0〜25.3μm、平均18.4μmと実施例1よりも大きくなった。また、表面粗さRaは6.54〜9.19μmと実施例1よりも大きくなった。つまり、真円度及び表面粗さRaで評価される加工精度において、比較例3よりも実施例1が優れていた。ネジ式(実施例1)や嵌合式(比較例1)に比べて制振合金をより厚く与えたため、双晶変形が不十分となって、振動を摩擦熱へ効率的に変換できず、良好な制振性を得られなかったものと考える。   In Comparative Example 3 of “integrated type” made of a Mn—Cu—Ni—Fe based damping alloy having the same composition as that of Example 1, the roundness was 15.0 to 25.3 μm and the average was 18.4 μm It became larger than 1. Further, the surface roughness Ra was 6.54 to 9.19 μm, which was larger than that of Example 1. That is, Example 1 was superior to Comparative Example 3 in processing accuracy evaluated by roundness and surface roughness Ra. Compared to the screw type (Example 1) and fitting type (Comparative Example 1), the damping alloy is thicker, so twin deformation becomes insufficient, and vibration cannot be efficiently converted into frictional heat, which is good I think that it was not possible to obtain a good vibration control.

以上のように、実施例1の切削工具把持具を用いた中ぐり加工では、真円度及び表面粗さで評価される加工精度において非常に優れていた。かかる把持具1は、一般的な制振合金と比較して高い剛性と強度を有しつつ特に圧縮応力下で広い周波数範囲で振動を効率よく吸収できる双晶型のMn基制振合金を用いたスリーブ3を剛性の高い保持管体2に螺合固着させてかかる高い加工精度を達成し得るのである。   As described above, the boring processing using the cutting tool gripping tool of Example 1 was very excellent in processing accuracy evaluated by roundness and surface roughness. The gripping tool 1 uses a twin-type Mn-based damping alloy that has high rigidity and strength as compared with a general damping alloy, and can efficiently absorb vibrations in a wide frequency range, particularly under a compressive stress. The high processing accuracy can be achieved by screwing and fixing the sleeve 3 to the highly rigid holding tube 2.

また、図7に示すように、保持管体2の貫通孔23及びスリーブ3の貫通孔33の内周面に連続した雌ネジを与え、これに止めネジ42を締め込んで先端を切削工具50に当接させて切削工具50をスリーブ3の内周面に押圧、固定してもよい。このとき、止めネジ42は保持管体2の外周面から突出せず、ホルダ60に接触しない。なお、保持管体2は、図示しないボルトでホルダ60に押圧され固定されている。止めネジ42がホルダ60に接触せず、切削工具50に発生する振動が切削工具把持具1の外部へと伝達することを減じ得る。他の例として、より短い止めネジ42を用いて、スリーブ3の外周面から突出しないようにしてもよい。すなわち、止めネジ42をホルダ60だけでなく保持管体2にも接触させないようにすることで、切削工具50に発生する振動をスリーブ3を介さずに外部へ伝達させないようにし得る。   Further, as shown in FIG. 7, a continuous female screw is given to the inner peripheral surfaces of the through hole 23 of the holding tube body 2 and the through hole 33 of the sleeve 3, and a set screw 42 is fastened to the tip so that the tip is cut by the cutting tool 50. The cutting tool 50 may be pressed against and fixed to the inner peripheral surface of the sleeve 3. At this time, the set screw 42 does not protrude from the outer peripheral surface of the holding tube 2 and does not contact the holder 60. The holding tube body 2 is pressed and fixed to the holder 60 with a bolt (not shown). It can reduce that the set screw 42 does not contact the holder 60 and the vibration generated in the cutting tool 50 is transmitted to the outside of the cutting tool gripping tool 1. As another example, a shorter set screw 42 may be used so as not to protrude from the outer peripheral surface of the sleeve 3. That is, by preventing the set screw 42 from contacting not only the holder 60 but also the holding tube 2, vibration generated in the cutting tool 50 can be prevented from being transmitted outside without passing through the sleeve 3.

ここまで本発明による代表的実施例について説明したが、本発明は必ずしもこれに限定されるものではない。当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   Although the exemplary embodiments according to the present invention have been described so far, the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the spirit of the invention or the scope of the appended claims.

1 把持具
2 保持管体
3 スリーブ
22 内周面
31 鍔部
32 外周面
34 取付穴
50 切削工具
DESCRIPTION OF SYMBOLS 1 Grasping tool 2 Holding tube 3 Sleeve 22 Inner peripheral surface 31 Gutter part 32 Outer peripheral surface 34 Mounting hole 50 Cutting tool

Claims (2)

取付孔に棒状の切削工具の一端部を挿入し固定した上で切削機械に取り付けるための切削工具把持具であって、
質量%で、Cu:16.9〜27.7%、Ni:2.1〜8.2%、Fe:1.0〜2.9%を含むとともに、C:0.05%以下とし、残部をMn及び不可避的不純物とした成分組成の制振合金からなり、長手方向に沿った中央貫通穴を前記取付孔として与え且つねじ切りされた外周面を有する制振合金管体を該制振合金よりもヤング率を大とする材料からなる剛性保持管体のねじ切りされた筒内面に沿って螺合固着させたことを特徴とする切削工具把持具。
A cutting tool gripping tool for attaching to a cutting machine after inserting and fixing one end of a rod-shaped cutting tool in an attachment hole,
In mass%, Cu: 16.9 to 27.7%, Ni: 2.1 to 8.2%, Fe: 1.0 to 2.9%, C: 0.05% or less, the balance A damping alloy tube body comprising a damping alloy having a component composition with Mn and unavoidable impurities, a central through hole along the longitudinal direction as the mounting hole, and having a threaded outer peripheral surface. A cutting tool gripping tool, wherein the rigid holding tube made of a material having a large Young's modulus is screwed and fixed along the threaded inner surface of the cylinder.
前記制振合金管体は、長手方向の端部に与えられた鍔部を前記剛性保持管体の端面に押圧させるように、その反対側端部を前記剛性保持管体に挿入させつつ前記筒内面に沿って螺合固着せしめられていることを特徴とする請求項1記載の切削工具把持具。
The vibration-damping alloy tube is inserted into the rigid holding tube while the opposite end thereof is inserted into the rigid holding tube so that the flange provided at the end in the longitudinal direction is pressed against the end surface of the rigid holding tube. The cutting tool gripping tool according to claim 1, wherein the cutting tool gripping tool is screwed and fixed along the inner surface.
JP2012146856A 2012-06-29 2012-06-29 Cutting tool gripper Expired - Fee Related JP5805019B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012146856A JP5805019B2 (en) 2012-06-29 2012-06-29 Cutting tool gripper
SE1451635A SE538022C2 (en) 2012-06-29 2013-06-21 Cutting tool gripping tool
CN201380034662.4A CN104640656A (en) 2012-06-29 2013-06-21 Cutting tool gripping tool
IN11026DEN2014 IN2014DN11026A (en) 2012-06-29 2013-06-21
KR20147036476A KR20150040812A (en) 2012-06-29 2013-06-21 Cutting tool gripping tool
PCT/JP2013/067119 WO2014002905A1 (en) 2012-06-29 2013-06-21 Cutting tool gripping tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146856A JP5805019B2 (en) 2012-06-29 2012-06-29 Cutting tool gripper

Publications (2)

Publication Number Publication Date
JP2014008572A JP2014008572A (en) 2014-01-20
JP5805019B2 true JP5805019B2 (en) 2015-11-04

Family

ID=49783057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146856A Expired - Fee Related JP5805019B2 (en) 2012-06-29 2012-06-29 Cutting tool gripper

Country Status (6)

Country Link
JP (1) JP5805019B2 (en)
KR (1) KR20150040812A (en)
CN (1) CN104640656A (en)
IN (1) IN2014DN11026A (en)
SE (1) SE538022C2 (en)
WO (1) WO2014002905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108367365A (en) * 2015-12-21 2018-08-03 伊斯卡有限公司 Cutting tool retainer with vibration damping pouring weight component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436984B1 (en) 2012-10-04 2014-09-04 한국기계연구원 Apparatus and method for reduction of vibration in machine tool
JP2016087708A (en) * 2014-10-29 2016-05-23 独立行政法人国立高等専門学校機構 Inner sleeve for taper collet and cutting tool holder
KR101693839B1 (en) * 2015-01-05 2017-01-06 두산중공업 주식회사 Boring head
JP6352850B2 (en) * 2015-04-10 2018-07-04 株式会社新興鉄工所 Tool positioning jig
CN108747558B (en) * 2018-05-28 2019-05-07 西北工业大学 A kind of cylindrical parts milling vibration suppression realization device and its milling vibration suppression method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928984A (en) * 1972-07-13 1974-03-14
JPS63191506A (en) * 1987-02-04 1988-08-09 Nippon Denso Co Ltd Cutter holder for machine tool
JPH0570808U (en) * 1991-02-01 1993-09-24 三菱マテリアル株式会社 Boring bar mounting structure
JPH0768403A (en) * 1993-06-25 1995-03-14 Takamatsu Kikai Kogyo Kk Tool rest of machine tool
SE528470C2 (en) * 2004-02-03 2006-11-21 Mircona Ab Vibration-damped tool holder with viscoelastic damping material
SE532721C2 (en) * 2007-10-01 2010-03-23 Mircona Ab Product with anti-vibration ceramic coating for chip removal during material processing and method of manufacture
JP3153247U (en) * 2009-06-17 2009-08-27 株式会社宮本製作所 Tool holding jig

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108367365A (en) * 2015-12-21 2018-08-03 伊斯卡有限公司 Cutting tool retainer with vibration damping pouring weight component
CN108367365B (en) * 2015-12-21 2020-12-18 伊斯卡有限公司 Cutting tool holder with vibration damping weight assembly

Also Published As

Publication number Publication date
WO2014002905A1 (en) 2014-01-03
CN104640656A (en) 2015-05-20
SE538022C2 (en) 2016-02-09
IN2014DN11026A (en) 2015-09-25
SE1451635A2 (en) 2015-02-24
KR20150040812A (en) 2015-04-15
SE1451635A1 (en) 2014-12-22
JP2014008572A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5805019B2 (en) Cutting tool gripper
JP2016087708A (en) Inner sleeve for taper collet and cutting tool holder
WO2011108108A1 (en) Cutting tool
JPWO2008053638A1 (en) Collet chuck components, collet and clamping nut, and collet chuck
CN102139464A (en) Plug matched with end part of shaft to be ground
US20170189971A1 (en) Vibration Absorption Cutter Holder
WO2014125951A1 (en) Collet
JP5131826B2 (en) Damping member, damping device and cutting tool for suppressing chatter vibration during cutting
JP2004202649A (en) Cutting tool
JP6371005B1 (en) Main body of tip exchange type cutting tool and tip exchange type cutting tool
US10016817B2 (en) Vibration absorption cutter holder
KR102454639B1 (en) A method for processing rolling for long shaft sleeve of nuclear main pump of nuclear power plant
JP4313482B2 (en) Cutting tools
JP3146417U (en) Damping cutting tool
JP2004249441A (en) Tool holder
CN102848226A (en) Slender workpiece connecting pipe
JP2003136301A (en) Cutting tool
TWM293103U (en) Damping tool shank
CN102303138A (en) Special clamping tool to cutter
JP3153247U (en) Tool holding jig
CN209272499U (en) A kind of adjustable yielding formula clamped cutting bit
CN206677216U (en) Knife bar for machining
CN202861801U (en) Long and thin workpiece connecting pipe
JP4512677B2 (en) Damping composite
JP2016128197A (en) Tool holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R150 Certificate of patent or registration of utility model

Ref document number: 5805019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees