JP5804469B2 - Multi-axis load test apparatus and method - Google Patents

Multi-axis load test apparatus and method Download PDF

Info

Publication number
JP5804469B2
JP5804469B2 JP2011077656A JP2011077656A JP5804469B2 JP 5804469 B2 JP5804469 B2 JP 5804469B2 JP 2011077656 A JP2011077656 A JP 2011077656A JP 2011077656 A JP2011077656 A JP 2011077656A JP 5804469 B2 JP5804469 B2 JP 5804469B2
Authority
JP
Japan
Prior art keywords
specimen
load
axial
pressure
external pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011077656A
Other languages
Japanese (ja)
Other versions
JP2012211823A (en
Inventor
隆基 伊藤
隆基 伊藤
理史 中澤
理史 中澤
雅健 旭吉
雅健 旭吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Institute of National Colleges of Technologies Japan
Original Assignee
Ritsumeikan Trust
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust, Institute of National Colleges of Technologies Japan filed Critical Ritsumeikan Trust
Priority to JP2011077656A priority Critical patent/JP5804469B2/en
Publication of JP2012211823A publication Critical patent/JP2012211823A/en
Application granted granted Critical
Publication of JP5804469B2 publication Critical patent/JP5804469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造物、部材、部品等に用いられる構造材料の多軸負荷試験装置及び方法に関する。   The present invention relates to a multiaxial load test apparatus and method for structural materials used for structures, members, parts, and the like.

構造物、部材、部品等に用いられる構造材料の代表的なものとして金属材料が挙げられるが、金属材料を構造材料として用いる場合、構造材料として必要となる耐久性を検証するために様々な試験が行われている。その中で機械的な試験としては、引張試験、圧縮試験、曲げ試験、ねじり試験といった材料に様々な負荷を与えて機械的な強度を測定する試験が行われており、また、こうした負荷を繰り返し与えて材料に生じる破壊現象等を分析する疲労試験が行われている。   Metal materials are listed as typical structural materials used for structures, members, parts, etc., but when metal materials are used as structural materials, various tests are conducted to verify the durability required as structural materials. Has been done. Among the mechanical tests, tensile tests, compression tests, bending tests, torsion tests, and other tests are performed to measure the mechanical strength by applying various loads to the material. Fatigue tests are conducted to analyze the fracture phenomena that occur in materials.

機械的な負荷を材料に与える負荷試験では、材料に対して軸荷重、曲げ荷重又はねじり荷重といった負荷を与えることで材料内部に様々な負荷状態を実現している。材料内部の負荷状態は、一般に応力及びひずみの状態で表わされるが、主応力又は主ひずみの方向が1つの軸方向にのみ作用する場合には単軸状態と称され、主応力又は主ひずみが複数の軸方向に作用する場合には多軸状態と称されている。そして、実際の構造材料における負荷状態は、ほとんどの場合多軸状態であることが知られている。   In a load test in which a mechanical load is applied to a material, various load states are realized inside the material by applying a load such as an axial load, a bending load, or a torsion load to the material. The load state inside the material is generally expressed in the state of stress and strain. However, when the direction of principal stress or principal strain acts only in one axial direction, it is called a uniaxial state. When acting in a plurality of axial directions, it is called a multiaxial state. And it is known that the load state in an actual structural material is a multiaxial state in most cases.

したがって、構造材料に関する機械的強度を検証するためには、構造材料を多軸状態に設定して試験を行う必要がある。こうした多軸状態による構造材料の試験方法としては、例えば、特許文献1では、互いに独立して作用する回転曲げ荷重負荷機構と、ねじり荷重負荷機構と、軸方向荷重負荷機構とを備え、各負荷機構を単独又は複数で同時に作用させるように作動することができる疲労試験装置が記載されている。また、特許文献2では、薄肉中空円筒状の試験片の軸方向の引張荷重及び圧縮荷重、試験片の軸を回転中心とするねじり荷重、及び試験片の内部及び外部からの内外圧荷重の3種類の荷重を組み合せて負荷を与える多軸負荷試験機が記載されている。また、円筒状の試験片に対して内圧又は外圧を付与する試験装置としては、例えば、特許文献3では、鋼管の端部が圧力ベッセルから外に突き出すように取り付けられ、圧力ベッセルに穿設された外圧水供給ポートから水を供給して鋼管に外圧を印加するようにした外圧負荷試験装置が記載されている。   Therefore, in order to verify the mechanical strength related to the structural material, it is necessary to perform a test while setting the structural material in a multiaxial state. As a method for testing a structural material in such a multiaxial state, for example, Patent Document 1 includes a rotary bending load load mechanism, a torsion load load mechanism, and an axial load load mechanism that operate independently of each other. A fatigue testing device is described that can be operated to act alone or in combination with a plurality of mechanisms. Further, in Patent Document 2, the tensile load and the compressive load in the axial direction of a thin hollow cylindrical test piece, the torsional load around the axis of the test piece, and the internal and external pressure loads from the inside and outside of the test piece are described. A multi-axis load testing machine that applies loads by combining various types of loads is described. Moreover, as a test apparatus for applying an internal pressure or an external pressure to a cylindrical test piece, for example, in Patent Document 3, the end of a steel pipe is attached so as to protrude outward from the pressure vessel, and is drilled in the pressure vessel. In addition, an external pressure load test apparatus is described in which water is supplied from an external pressure water supply port to apply an external pressure to the steel pipe.

特開昭50−142279号公報JP 50-142279 A 特開昭57−072042号公報JP-A-57-072042 特開2001−074624号公報Japanese Patent Laid-Open No. 2001-074624

発電所や化学プラントの配管部では、内部流体の移動や圧力の変化等による機械的負荷及び内部流体の温度変化による熱負荷を受けて複雑な負荷状態となり、こうした負荷状態では、配管を構成する管体の内部において主応力及び主ひずみの方向が時間的に変化する非比例負荷の状態が生じることが知られている。非比例負荷の状態では、主応力及び主ひずみの方向が固定された比例負荷の状態よりも構造材料の強度が低下しやすくなるため、実際の使用状態での構造材料の強度を検証するには、非比例負荷の状態で負荷試験を行うことが望ましい。   In the piping section of a power plant or chemical plant, a mechanical load due to the movement of internal fluid or a change in pressure and a thermal load due to a change in temperature of the internal fluid result in a complicated load state. It is known that a state of non-proportional load in which the direction of principal stress and principal strain changes with time inside the pipe body is known. In the non-proportional load state, the strength of the structural material is more likely to decrease than in the proportional load state in which the directions of principal stress and principal strain are fixed. It is desirable to perform a load test in a non-proportional load state.

上述した特許文献に記載された試験装置では、多軸状態に設定可能であるものの実際の使用状態に近い非比例負荷の状態のような複雑な負荷状態に設定することは難しい。例えば、特許文献2では、軸方向の荷重、ねじり荷重及び内外圧荷重を中空円筒状の試験片に印加するようになっているが、内圧及び外圧については、外部の油圧装置から試験片の内側及び外側に油を供給して油圧を印加することで負荷状態を設定している。そのため、油圧を供給する配管が必要となるが、配管の強度以上の高圧状態とすることができないため、内圧及び外圧を高圧に設定することが難しくなる。また、内圧及び外圧を変化させる場合に、配管を通して油圧制御を行うため内圧及び外圧を高速で正確に変化させることが難しく、実際の使用状態に近い負荷状態で精度のよい負荷試験を行う点で難点がある。   In the test apparatus described in the above-mentioned patent document, it is difficult to set a complex load state such as a non-proportional load state close to an actual use state although it can be set to a multi-axis state. For example, in Patent Document 2, an axial load, a torsional load, and an internal / external pressure load are applied to a hollow cylindrical test piece. The internal pressure and the external pressure are measured from an external hydraulic device to the inside of the test piece. The load state is set by supplying oil to the outside and applying hydraulic pressure. For this reason, piping for supplying hydraulic pressure is required, but it is difficult to set the internal pressure and the external pressure to high pressure because it cannot be in a high pressure state higher than the strength of the piping. Also, when changing the internal pressure and external pressure, it is difficult to change the internal pressure and external pressure accurately at high speed because the hydraulic control is performed through the piping, and it is possible to perform a precise load test in a load state close to the actual use state. There are difficulties.

そこで、本発明は、多軸状態で精度のよい負荷試験を行うことができる多軸負荷試験装置及び方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a multi-axis load test apparatus and method that can perform a load test with high accuracy in a multi-axis state.

本発明に係る多軸負荷試験装置は、構造材料からなる供試体に対して荷重を印加して多軸状態で負荷試験を行う多軸負荷試験装置であって、前記供試体に対して軸方向に荷重を印加する軸圧印加部と、前記供試体を収容する収容孔が形成されるとともに当該収容孔に収容された前記供試体の周囲に作動流体を貯留する圧力容器部と、前記供試体を軸方向に移動させて前記収容孔と前記供試体との間に形成された作用空間の容積を増加又は減少させることで前記作動流体により前記供試体の外周に外圧を印加する外圧印加部とを備えている。さらに、前記供試体に印加される軸方向の荷重を検知する軸圧検知センサと、前記供試体に印加される外圧を検知する外圧検知センサと、前記軸圧検知センサからの検知信号に基づいて前記軸圧印加部をフィードバック制御する軸圧制御回路と、前記外圧検知センサからの検知信号に基づいて前記外圧印加部をフィードバック制御する外圧制御回路とを備えている。さらに、前記軸圧印加部に取り付けられるとともに前記供試体の内部空間に貯留する作動流体により前記供試体に内圧を印加する内圧印加部を備えている。さらに、前記外圧印加部に取り付けられるとともに前記外圧印加部の作動体を回転させて当該作動体に接続固定された前記供試体にねじり荷重を印加するねじり印加部を備えている。 A multi-axis load test apparatus according to the present invention is a multi-axis load test apparatus that applies a load to a specimen made of a structural material to perform a load test in a multi-axis state, and is axial with respect to the specimen. An axial pressure applying unit for applying a load to the test piece, a pressure hole for storing a working fluid around the test piece accommodated in the accommodation hole, and a test hole containing the test piece, and the test piece An external pressure applying unit that applies an external pressure to the outer periphery of the specimen by the working fluid by increasing or decreasing the volume of the working space formed between the accommodation hole and the specimen by moving the shaft in the axial direction; It has. Further, based on an axial pressure detection sensor for detecting an axial load applied to the specimen, an external pressure detection sensor for detecting an external pressure applied to the specimen, and a detection signal from the axial pressure detection sensor. An axial pressure control circuit that feedback-controls the axial pressure application unit, and an external pressure control circuit that feedback-controls the external pressure application unit based on a detection signal from the external pressure detection sensor. Furthermore, an internal pressure application unit is provided which is attached to the axial pressure application unit and applies an internal pressure to the sample by a working fluid stored in an internal space of the sample. Furthermore, a torsion applying unit is provided which is attached to the external pressure applying unit and applies a torsional load to the test body connected and fixed to the operating body by rotating the operating body of the external pressure applying unit.

本発明に係る多軸負荷試験方法は、構造材料からなる供試体に対して荷重を印加して多軸状態で負荷試験を行う多軸負荷試験方法であって、圧力容器部に形成された収容孔に前記供試体を収容して当該収容孔に収容された前記供試体の周囲に作動流体を貯留し、前記供試体を軸方向に移動させて前記収容孔と前記供試体との間に形成された作用空間の容積を増加又は減少させることで前記作動流体により前記供試体の外周に外圧を印加し、前記供試体に対して軸方向に荷重を印加して負荷試験を行う。さらに、前記供試体に印加される外圧を検知する外圧検知センサからの検知信号に基づいて印加する外圧が設定条件に合致するようにフィードバック制御を行い、前記供試体に印加される軸方向の荷重を検知する軸圧検知センサからの検知信号に基づいて軸方向の荷重が設定条件に合致するようにフィードバック制御を行う。 A multiaxial load test method according to the present invention is a multiaxial load test method in which a load test is performed in a multiaxial state by applying a load to a specimen made of a structural material, and a housing formed in a pressure vessel portion. The specimen is accommodated in the hole, the working fluid is stored around the specimen accommodated in the accommodation hole, and the specimen is moved in the axial direction to be formed between the accommodation hole and the specimen. By increasing or decreasing the volume of the working space , an external pressure is applied to the outer periphery of the specimen by the working fluid, and a load test is performed by applying a load to the specimen in the axial direction. Furthermore, feedback control is performed so that the external pressure applied based on a detection signal from an external pressure detection sensor for detecting the external pressure applied to the specimen matches a set condition, and an axial load applied to the specimen Based on the detection signal from the shaft pressure detection sensor that detects the feedback, feedback control is performed so that the axial load matches the set condition.

本発明は、上記のような構成を有することで、多軸状態で精度のよい負荷試験を行うことができる。   By having the above-described configuration, the present invention can perform a load test with high accuracy in a multi-axis state.

本発明に係る実施形態に関する概略構成図である。It is a schematic block diagram regarding embodiment which concerns on this invention. 圧力容器部に関する部分拡大図である。It is the elements on larger scale regarding a pressure vessel part. 図1で説明した実施形態の動作制御に関するブロック構成図である。It is a block block diagram regarding the operation control of embodiment described in FIG.

以下、本発明に係る実施形態について詳しく説明する。図1は、本発明に係る実施形態に関する概略構成図である。多軸負荷試験装置は、基台1の上面に支持フレーム2が立設されており、支持フレーム2に上部取付台3及び下部取付台4が支持されている。上部取付台3及び下部取付台4のほぼ中間には圧力容器部5が支持フレーム2に支持固定されている。   Hereinafter, embodiments according to the present invention will be described in detail. FIG. 1 is a schematic configuration diagram relating to an embodiment of the present invention. In the multi-axis load test apparatus, a support frame 2 is erected on the upper surface of a base 1, and an upper mount 3 and a lower mount 4 are supported on the support frame 2. A pressure vessel portion 5 is supported and fixed to the support frame 2 substantially in the middle between the upper mounting base 3 and the lower mounting base 4.

上部取付台3の上面には、軸荷重を印加するための軸圧印加部6が支持固定されており、軸圧印加部6の上部には内圧印加部7が設けられている。軸圧印加部6は、内部に油圧用の作動油を貯留するシリンダ部60が軸方向を軸圧印加方向(上下方向)に沿うように形成されており、シリンダ部60内にはピストン部61が軸圧印加方向(上下方向)に摺動可能に設けられている。そして、ピストン部61の軸圧印加側に作動体62が延設されており、作動体62はシリンダ部60及び取付台3に形成された取付孔から下方に突き抜けて軸圧印加方向に移動可能に取り付けられている。また、ピストン部61の軸圧印加側とは反対側に連結体63が上方に延設されており、後述するように、連結体63の先端部が内圧印加部7に挿入されている。   An axial pressure application unit 6 for applying an axial load is supported and fixed on the upper surface of the upper mounting base 3, and an internal pressure application unit 7 is provided above the axial pressure application unit 6. The axial pressure application section 6 is formed such that a cylinder section 60 that stores hydraulic fluid for hydraulic oil is formed so that the axial direction is along the axial pressure application direction (vertical direction). Is slidable in the axial pressure application direction (vertical direction). An operating body 62 is extended on the axial pressure application side of the piston portion 61, and the operating body 62 penetrates downward from the mounting holes formed in the cylinder portion 60 and the mounting base 3 and can move in the axial pressure applying direction. Is attached. Further, a connecting body 63 extends upward on the opposite side of the piston portion 61 from the axial pressure application side, and the distal end portion of the connecting body 63 is inserted into the internal pressure application portion 7 as described later.

シリンダ部60の内部には、図示せぬ油圧ポンプから作動油が油路64を介してピストン部61の上下両側の作動空間に供給される。そして、上側作動空間への作動油の油圧及び下側作動空間への作動油の油圧を制御することで、ピストン部61を上下動させて作動体62を介して供試体100に対して油圧による軸圧を印加するようになっている。   Inside the cylinder portion 60, hydraulic oil is supplied from an unillustrated hydraulic pump to the upper and lower working spaces of the piston portion 61 via an oil passage 64. And by controlling the hydraulic pressure of the hydraulic fluid to the upper working space and the hydraulic pressure of the hydraulic fluid to the lower working space, the piston 61 is moved up and down and the hydraulic pressure is applied to the specimen 100 via the working body 62. Axial pressure is applied.

内圧印加部7は、内部に油圧用の作動油を貯留するシリンダ部70が軸方向を軸圧印加方向(上下方向)に沿うように形成されており、シリンダ部70内にはピストン部71が軸圧印加方向(上下方向)に摺動可能に設けられている。そして、ピストン部71の内部には、油貯留部72が形成されており、油貯留部72から下方に向かって軸圧印加方向に沿ってピストン部71内に形成された取付孔に連結体63が摺動可能に挿入されている。連結体63、ピストン部61及び作動体62には、中心軸に沿って連通油路73が貫通するように形成されており、連通油路73は、後述する供試体100の内部空間と油貯留部72との間を連通するようになっている。   The internal pressure application unit 7 is formed such that a cylinder unit 70 that stores hydraulic fluid for hydraulic oil is formed so that the axial direction is along the axial pressure application direction (vertical direction), and a piston unit 71 is provided in the cylinder unit 70. It is slidable in the axial pressure application direction (vertical direction). An oil reservoir 72 is formed inside the piston portion 71, and the connecting body 63 is attached to an attachment hole formed in the piston portion 71 along the axial pressure application direction downward from the oil reservoir 72. Is slidably inserted. The connecting body 63, the piston portion 61, and the operating body 62 are formed so that a communication oil path 73 penetrates along the central axis. The communication oil path 73 is connected to an internal space of the specimen 100 described later and an oil reservoir. The unit 72 communicates with the unit 72.

シリンダ部70の内部には、図示せぬ油圧ポンプから作動油が油路74を介してピストン部71の上下両側の作動空間に供給される。そして、上側作動空間への作動油の油圧及び下側作動空間への作動油の油圧を制御することで、ピストン部71を上下動させて油貯留部72を連結体63に対して上下動させるようにすることができる。   Inside the cylinder portion 70, hydraulic oil is supplied from an unillustrated hydraulic pump to the working spaces on both the upper and lower sides of the piston portion 71 via an oil passage 74. Then, by controlling the hydraulic oil pressure to the upper working space and the hydraulic oil pressure to the lower working space, the piston part 71 is moved up and down to move the oil storage part 72 up and down with respect to the coupling body 63. Can be.

油貯留部72内を作動油で満たした状態では、油貯留部72が連結体63に対して下方に移動した場合、連結体63の先端部が油貯留部72の内部にさらに挿入されて油貯留部72内の容積が減少し、減少した容積分の作動油が連通油路73を流通して供試体100の内部空間に流出するようになる。また、油貯留部72が連結体63に対して上方に移動した場合には、連結体63の先端部における油貯留部72内への挿入部分が短くなってその分だけ油貯留部72内の容積が増加し、供試体100内の作動油が連通油路73を流通して油貯留部72内に流入するようになる。したがって、ピストン部71を上下動することで、油貯留部72内と供試体100の内部空間との間で作動油を流通させて供試体100に内圧を印加するようになっている。   In a state where the oil reservoir 72 is filled with hydraulic oil, when the oil reservoir 72 moves downward with respect to the coupling body 63, the tip of the coupling body 63 is further inserted into the oil reservoir 72 and the oil is stored. The volume in the reservoir 72 is reduced, and the hydraulic oil corresponding to the reduced volume flows through the communication oil passage 73 and flows out into the internal space of the specimen 100. Moreover, when the oil storage part 72 moves upward with respect to the connection body 63, the insertion part in the oil storage part 72 in the front-end | tip part of the connection body 63 becomes short, and the part in the oil storage part 72 is equivalent to it. The volume increases, and the hydraulic oil in the specimen 100 flows through the communication oil passage 73 and flows into the oil reservoir 72. Therefore, by moving the piston part 71 up and down, the working oil is circulated between the oil storage part 72 and the internal space of the specimen 100 to apply an internal pressure to the specimen 100.

圧力容器部5には、中央部分に供試体100を収容するための収容孔50が貫通して形成されている。図2は、圧力容器部5に関する部分拡大図である。供試体100は、略円筒状で中央部分が薄肉となるように絞られた形状となっている。下側支持部101及び上側支持部102は厚肉に形成されており、図示していないがシール用のOリングを装着するための溝が形成されている。そして、上側支持部102よりも下側支持部101の外径が大きくなるように設定されている。また、供試体100の内部には、所定の内径で中心軸に沿って内部空間104が形成されている。供試体100の形状は、構造材料に生じる多軸負荷状態に相当する負荷状態が印加されるように外形寸法や肉厚を設定すればよい。   An accommodation hole 50 for accommodating the specimen 100 is formed in the pressure vessel portion 5 so as to penetrate the central portion. FIG. 2 is a partially enlarged view of the pressure vessel unit 5. The specimen 100 has a substantially cylindrical shape and is narrowed so that the central portion is thin. The lower support portion 101 and the upper support portion 102 are formed thick, and although not shown, a groove for mounting a sealing O-ring is formed. Further, the outer diameter of the lower support portion 101 is set to be larger than that of the upper support portion 102. An internal space 104 is formed in the specimen 100 along the central axis with a predetermined inner diameter. As for the shape of the specimen 100, the outer dimensions and thickness may be set so that a load state corresponding to the multiaxial load state generated in the structural material is applied.

収容孔50は、下部において供試体100の下側支持部101の外径とほぼ一致するように円形状に形成されており、上部に行くに従い拡径して供試体100の上側支持部102の外径よりも広い円形状に設定され、供試体100の作用部103に外圧を印加するための作動油を貯留する作用空間が形成される。収容孔50の上側開口は蓋体51で密閉されており、蓋体51の中央部分には、供試体100の上側支持部102の外径とほぼ一致するように取付孔51aが形成されている。   The accommodation hole 50 is formed in a circular shape so as to substantially coincide with the outer diameter of the lower support portion 101 of the specimen 100 at the lower portion, and the diameter of the accommodation hole 50 increases toward the upper portion of the upper support portion 102 of the specimen 100. A working space for storing hydraulic oil for applying an external pressure to the working part 103 of the specimen 100 is formed in a circular shape wider than the outer diameter. The upper opening of the accommodation hole 50 is sealed with a lid 51, and a mounting hole 51 a is formed at the center of the lid 51 so as to substantially match the outer diameter of the upper support portion 102 of the specimen 100. .

そして、収容孔50の下部に供試体100の下側支持部101を密着させるように配置するとともに取付孔51aに供試体100の上側支持部102を密着させるように配置することで、作動油を貯留する作用空間が供試体100の作用部103の周囲に水密状態に設定される。蓋体51には、作用空間と連通する一対の連通路51b及び51cが穿設されており、一方の連通路から作動油を供給していき、その際に他方の連通路から内部の空気を抜くようにすることで、作用空間内を作動油で満たすことができる。そして、作動油を満たした状態で連通路の一方を密閉栓等で閉鎖し、他方の連通路に後述する外圧検知センサを取り付けることで、印加される外圧を検知することができる。   And by arranging the lower support portion 101 of the specimen 100 in close contact with the lower part of the accommodation hole 50 and arranging the upper support portion 102 of the test specimen 100 in close contact with the mounting hole 51a, the hydraulic oil is disposed. The working space to be stored is set in a watertight state around the working portion 103 of the specimen 100. The lid 51 is provided with a pair of communication passages 51b and 51c communicating with the working space. The hydraulic fluid is supplied from one communication passage, and the internal air is supplied from the other communication passage. By pulling out, the working space can be filled with hydraulic oil. Then, one of the communication passages is closed with a sealing plug or the like in a state where the hydraulic oil is filled, and an external pressure detection sensor described later is attached to the other communication passage, whereby the applied external pressure can be detected.

蓋体51から上方に突出した状態に設定された供試体100の上側支持部102には、作動体62が接続固定されており、作動体62の内部に形成された連通油路73と供試体100の内部空間104とが接続されて連通した状態となる。また、圧力容器部5から下方に突出した状態に設定された供試体100の下側支持部101の下面には、当接体52が密着した状態で取り付けられる。当接体52の内部には供試体100の内部空間104と接続して連通する連通路52aが形成されており、連通路52aの一端が外部に開口して供給口となっている。また、図1では図示されていないが、油貯留部72と外部を連通する流通管が内圧印加部7に設けられており、連通路52aの供給口から作動油を流入させて、内部空間104から連通油路73を通って油貯留部72内に流入させて流通管から作動油を流出させるように循環させる。そして、油貯留部72、連通油路73、内部空間104及び連通路52a内が作動油で満たされた空気の抜けた状態に設定した後、連通路52a及び流通管を栓により封止する。こうして、油貯留部72、連通油路73及び内部空間104全体を作動油で満たした状態に設定することができる。   An operating body 62 is connected and fixed to the upper support portion 102 of the specimen 100 set so as to protrude upward from the lid 51, and a communication oil path 73 formed in the inside of the operating body 62 and the specimen. 100 internal spaces 104 are connected and communicated. In addition, the abutting body 52 is attached to the lower surface of the lower support portion 101 of the specimen 100 set so as to protrude downward from the pressure vessel portion 5. A communication path 52a is formed in the contact body 52 so as to connect to and communicate with the internal space 104 of the specimen 100, and one end of the communication path 52a is opened to the outside to serve as a supply port. Although not shown in FIG. 1, a flow pipe that communicates between the oil reservoir 72 and the outside is provided in the internal pressure application unit 7, and hydraulic oil is introduced from the supply port of the communication path 52 a to thereby create the internal space 104. Is circulated so as to flow into the oil reservoir 72 through the communication oil passage 73 and to let the hydraulic oil flow out from the flow pipe. And after setting the oil storage part 72, the communicating oil path 73, the internal space 104, and the inside of the communicating path 52a to the state where the air filled with the hydraulic fluid escaped, the communicating path 52a and the flow pipe are sealed with a stopper. In this way, the oil reservoir 72, the communication oil passage 73, and the entire internal space 104 can be set to be filled with hydraulic oil.

下部取付台4の下面には、外圧を印加するための外圧印加部8が支持固定されており、外圧印加部8の下部には、ねじり荷重を印加するためのねじり印加部9が設けられている。外圧印加部8は、内部に油圧用の作動油を貯留するシリンダ部80が軸方向を軸圧印加方向(上下方向)に沿うように形成されており、シリンダ部80内にはピストン部81が軸圧印加方向(上下方向)に摺動可能に設けられている。そして、ピストン部81の軸圧印加側に作動体82が延設されており、作動体82はシリンダ部80及び下部取付台4に形成された取付孔から上方に突き抜けて軸圧印加方向に移動可能に取り付けられている。作動体82の上端部に接続体83を介して当接体52に接続固定されている。また、ピストン部81の軸圧印加側とは反対側には、ねじり印加部9の回転駆動体91が接続固定されて下方に延設されている。   An external pressure application unit 8 for applying external pressure is supported and fixed on the lower surface of the lower mounting base 4, and a torsion application unit 9 for applying a torsion load is provided below the external pressure application unit 8. Yes. The external pressure application unit 8 is formed such that a cylinder unit 80 that stores hydraulic fluid for hydraulic oil is formed so that the axial direction is along the axial pressure application direction (vertical direction), and a piston unit 81 is provided in the cylinder unit 80. It is slidable in the axial pressure application direction (vertical direction). An operating body 82 is extended on the axial pressure application side of the piston portion 81, and the operating body 82 penetrates upward from mounting holes formed in the cylinder portion 80 and the lower mounting base 4 and moves in the axial pressure application direction. It is attached as possible. The working body 82 is connected and fixed to the abutting body 52 via the connecting body 83 at the upper end portion thereof. Further, on the side opposite to the axial pressure application side of the piston portion 81, a rotational drive body 91 of the torsion application portion 9 is connected and fixed and extends downward.

シリンダ部80の内部には、図示せぬ油圧ポンプから作動油が油路84を介してピストン部81の上下両側の作動空間に供給される。そして、上側作動空間への作動油の油圧及び下側作動空間への作動油の油圧を制御することで、ピストン部81を上下動させて作動体82を介して接続体83及び当接体52に接続された供試体100に油圧を印加するようになっている。   Inside the cylinder portion 80, hydraulic oil is supplied from an unillustrated hydraulic pump to the upper and lower working spaces of the piston portion 81 via an oil passage 84. Then, by controlling the hydraulic oil pressure to the upper working space and the hydraulic oil pressure to the lower working space, the piston 81 is moved up and down to connect the connecting body 83 and the contact body 52 via the operating body 82. The hydraulic pressure is applied to the specimen 100 connected to.

外圧印加部8により供試体100を押し上げるように作用させる場合、供試体100の下側支持部101が圧力容器5の作用空間内に進入していき、下側支持部101が進入した分だけ作用空間の容積が減少する。一方、供試体100の上昇に伴って上側支持部102が上方に移動する分だけ作用空間の容積が増加するが、下側支持部101の外径が上側支持部102の外径よりも大きいため下側支持部101の進入分による容積減少の方が大きくなり、供試体100の上昇により作用空間全体の容積は減少する。また、供試体100の下降により作用空間全体の容積は増加するようになる。したがって、外圧印加部8により供試体100を上下動させることで、作用空間の容積を増減させて内部に充満した作動油の油圧を調整することができ、供試体100の作用部103の外周に加わる外圧を調整することが可能となる。   When the specimen 100 is actuated to be pushed up by the external pressure application unit 8, the lower support part 101 of the specimen 100 enters the working space of the pressure vessel 5 and acts as much as the lower support part 101 enters. The volume of the space is reduced. On the other hand, as the specimen 100 is raised, the volume of the working space increases as the upper support portion 102 moves upward, but the outer diameter of the lower support portion 101 is larger than the outer diameter of the upper support portion 102. The volume decrease due to the entry of the lower support portion 101 becomes larger, and the volume of the entire working space decreases as the specimen 100 rises. Further, the volume of the entire working space increases as the specimen 100 is lowered. Therefore, by moving the specimen 100 up and down by the external pressure application unit 8, the hydraulic pressure of the hydraulic oil filled inside can be adjusted by increasing or decreasing the volume of the working space, and the outer circumference of the working part 103 of the specimen 100 can be adjusted. It is possible to adjust the applied external pressure.

圧力容器部5に形成した収容孔50内に作動油を充満させて供試体100の上下動により作用部103に外圧を印加するように構成しているので、少量の作動油で外圧印加を行うことができ、装置のコンパクト化を図るとともに装置の安全性を向上させることが可能となる。また、供試体100の上下動により直接外圧を変動させることができるので、高圧に設定することが可能で、高速かつ正確な外圧変動を行うことが可能となる。また、作動油が少量で外部からの出入りがないため温度管理が容易になり、高精度で様々な試験条件の設定ができ、幅広い構造材料の多軸負荷試験を行うことが可能となる。   Since the housing hole 50 formed in the pressure vessel portion 5 is filled with the hydraulic oil and the external pressure is applied to the action portion 103 by the vertical movement of the specimen 100, the external pressure is applied with a small amount of hydraulic oil. Therefore, the device can be made compact and the safety of the device can be improved. Further, since the external pressure can be directly changed by the vertical movement of the specimen 100, it is possible to set the pressure to a high pressure, and it is possible to change the external pressure at high speed and accurately. In addition, since the amount of hydraulic oil is small and does not enter or exit from the outside, temperature control becomes easy, various test conditions can be set with high accuracy, and a multiaxial load test of a wide range of structural materials can be performed.

ねじり印加部9は、回転駆動体91の周囲に油貯留体90が設けられており、回転駆動体91は油貯留体90に対して軸方向に摺動可能となるように設定されている。そして、油貯留体90に外部から油圧ポンプ等により作動油が供給されて回転駆動体91を軸回りに回転動作させる。例えば、油貯留体90内に形成された作動空間に回転駆動体91の周囲に羽根状の作動部分を形成しておき、作動部分に作動油の圧力を作用させることで、回転駆動体91を軸回りに回転させることができる。   The torsion applying unit 9 is provided with an oil reservoir 90 around the rotary drive body 91, and the rotary drive body 91 is set to be slidable in the axial direction with respect to the oil reservoir 90. Then, hydraulic oil is supplied to the oil reservoir 90 from the outside by a hydraulic pump or the like, and the rotary drive body 91 is rotated about the axis. For example, a blade-like working part is formed around the rotary driving body 91 in the working space formed in the oil reservoir 90, and the pressure of the working oil is applied to the working part to It can be rotated around its axis.

回転駆動体91の回転動作によりピストン部81及び作動体82も一体となって回転するようになり、作動体82から接続体83及び当接体52を介して供試体100の下側支持部101を軸回りに回転させるように作用する。供試体100の上側支持部102は、作動体62に接続固定されているので、供試体100の作用部103には、上側支持部102が軸回りの回転に対して固定された状態での下側支持部101の軸回りの回転動作に伴うねじり荷重が印加されるようになる。   The piston 81 and the actuating body 82 are also rotated together by the rotation operation of the rotation driving body 91, and the lower support portion 101 of the specimen 100 is connected from the actuating body 82 via the connecting body 83 and the contact body 52. Acts to rotate around the axis. Since the upper support portion 102 of the specimen 100 is connected and fixed to the operating body 62, the upper support portion 102 is fixed to the action portion 103 of the specimen 100 with the upper support portion 102 being fixed against rotation about the axis. A torsional load accompanying the rotation operation of the side support portion 101 around the axis is applied.

供試体100の作用部103の外周面には、図示されていないが、軸方向のひずみ、周方向のひずみ及びねじりひずみを検知する複数のひずみゲージが予め貼付されて収容されており、これらのひずみゲージからの検知信号に基づいて負荷試験中の供試体100の荷重による変化をリアルタイムで検知することができる。また、軸方向の荷重を検知するために上部取付台3の下面にロードセル等の軸圧検知センサS1が取り付けられており、軸圧印加部6により印加される軸方向の荷重を常時検知するようになっている。また、圧力容器5の収容孔50に連通する蓋体51の連通路51cには、開口部分に圧力計等の外圧検知センサS2が取り付けられており、収容孔50内の油圧を常時検知するようになっている。また、作動体62には、軸方向と直交する方向に連通油路73と連通する連通路が形成されており、その連通路の開口部分に圧力計等の内圧検知センサS3が取り付けられている。内圧検知センサS3は、供試体100の内部空間104内の油圧を常時検知するようになっている。また、接続体83の内部には軸・トルク力計等を用いてねじり量を検知するねじり検知センサS4が配置されており、供試体100に印加されるねじり荷重を常時検知するようになっている。なお、軸・トルク力計を用いることで、軸方向の荷重についても検知することができる。   Although not shown, a plurality of strain gauges that detect axial strain, circumferential strain, and torsional strain are pasted and accommodated on the outer peripheral surface of the action portion 103 of the specimen 100. Based on the detection signal from the strain gauge, a change due to the load of the specimen 100 during the load test can be detected in real time. In addition, an axial pressure detection sensor S1 such as a load cell is attached to the lower surface of the upper mounting base 3 in order to detect the axial load, so that the axial load applied by the axial pressure application unit 6 is always detected. It has become. An external pressure detection sensor S2 such as a pressure gauge is attached to the opening of the communication passage 51c of the lid 51 that communicates with the accommodation hole 50 of the pressure vessel 5, so that the oil pressure in the accommodation hole 50 is always detected. It has become. The operating body 62 is formed with a communication passage communicating with the communication oil passage 73 in a direction orthogonal to the axial direction, and an internal pressure detection sensor S3 such as a pressure gauge is attached to an opening portion of the communication passage. . The internal pressure detection sensor S3 always detects the hydraulic pressure in the internal space 104 of the specimen 100. In addition, a torsion detection sensor S4 that detects the amount of torsion using a shaft / torque force meter or the like is disposed inside the connection body 83, and the torsion load applied to the specimen 100 is always detected. Yes. In addition, it can detect also about the load of an axial direction by using an axis | shaft torque torque meter.

供試体100を試験装置にセットする場合には、まず、供試体100を圧力容器部5の収容孔50内に挿入し、供試体100の下側支持部101を当接体52の上面に接続固定し、上側支持部102を作動体62の下面に接続固定する。そして、供試体100の内部空間104に作動油を注入するとともに収容孔50内に作動油を注入して供試体100の作用部103の内側及び外側を作動油で満たした状態に設定する。   When setting the specimen 100 in the test apparatus, first, the specimen 100 is inserted into the accommodation hole 50 of the pressure vessel portion 5, and the lower support portion 101 of the specimen 100 is connected to the upper surface of the contact body 52. The upper support portion 102 is connected and fixed to the lower surface of the operating body 62. Then, the working oil is injected into the internal space 104 of the specimen 100 and the working oil is injected into the accommodation hole 50 so that the inside and the outside of the action portion 103 of the specimen 100 are filled with the working oil.

次に、内圧印加部7を動作させてピストン部71を下方に移動させ、供試体100の内部空間104内の圧力が所定の内圧となるまで動作させる。そして、外圧印加部8を動作させてピストン部81を上方に移動させて作動体82により供試体100を押し上げるように作用させ、収容孔50内の作用空間の圧力が所定の外圧となるまで動作させる。その際に、軸圧印加部6の作動体62は、作動体82の上昇動作に連動して上昇するように動作させる。また、作動体62の移動に伴い内圧印加部7で生じる内圧が変化するが、内圧検知センサS3の検知信号に基づいてフィードバック制御を行うことで所定の内圧に維持される。   Next, the internal pressure application unit 7 is operated to move the piston unit 71 downward, and is operated until the pressure in the internal space 104 of the specimen 100 reaches a predetermined internal pressure. Then, the external pressure application unit 8 is operated to move the piston unit 81 upward so that the specimen 100 is pushed up by the operating body 82 and operates until the pressure in the working space in the accommodation hole 50 reaches a predetermined external pressure. Let At that time, the operating body 62 of the axial pressure applying unit 6 is operated so as to rise in conjunction with the ascending operation of the operating body 82. Further, the internal pressure generated in the internal pressure application unit 7 changes with the movement of the operating body 62, but is maintained at a predetermined internal pressure by performing feedback control based on the detection signal of the internal pressure detection sensor S3.

内圧及び外圧を所定の圧力に設定した状態で、軸圧印加部6を動作させてピストン部61を下方に移動させ、供試体100に所定の軸圧が印加されるまで動作させる。その際に供試体100が押し下げられるようになるが、外圧印加部8では、外圧検知センサS2の検知信号に基づいてフィードバック制御を行うことで、所定の外圧に維持される。同様に、作動体62の移動に伴い内圧印加部7で生じる内圧が変化するが、フィードバック制御により所定の内圧に維持される。   In a state where the internal pressure and the external pressure are set to predetermined pressures, the axial pressure application unit 6 is operated to move the piston unit 61 downward, and the sample 100 is operated until a predetermined axial pressure is applied. At that time, the specimen 100 is pushed down, but the external pressure application unit 8 maintains the predetermined external pressure by performing feedback control based on the detection signal of the external pressure detection sensor S2. Similarly, the internal pressure generated in the internal pressure application unit 7 changes as the operating body 62 moves, but is maintained at a predetermined internal pressure by feedback control.

内圧、外圧及び軸圧を所定の圧力に設定した状態で、ねじり印加部9を動作させて回転駆動体91を回転させ、所定のねじり量だけ供試体100の下側支持部101を軸回りに回転するよう動作させる。   With the internal pressure, the external pressure, and the axial pressure set to predetermined pressures, the torsion applying section 9 is operated to rotate the rotary drive body 91, and the lower support section 101 of the specimen 100 is rotated about the axis by a predetermined twist amount. Operate to rotate.

以上のように、軸圧印加部6、内圧印加部7、外圧印加部8及びねじり印加部9をそれぞれ独立して動作させるとともに各印加部を各検知センサの検知信号に基づいてフィードバック制御することで所定の圧力状態又はねじり状態に維持することができ、任意の複雑な応力状態を容易に実現することが可能となる。また、供試体100の一方の側から軸圧印加部6により軸方向に押圧し、他方の側から外圧印加部8により軸圧印加部6とは反対方向に押圧するように構成されているので、供試体100を安定した状態で軸圧及び外圧をフィードバック制御により所定の圧力状態に設定することができる。   As described above, the axial pressure application unit 6, the internal pressure application unit 7, the external pressure application unit 8 and the torsion application unit 9 are independently operated, and each application unit is feedback-controlled based on the detection signal of each detection sensor. Thus, a predetermined pressure state or a twisted state can be maintained, and any complicated stress state can be easily realized. In addition, since it is configured to be pressed in the axial direction by the axial pressure application unit 6 from one side of the specimen 100 and to be pressed in the opposite direction from the axial pressure application unit 6 by the external pressure application unit 8 from the other side. The shaft pressure and the external pressure can be set to a predetermined pressure state by feedback control while the specimen 100 is stable.

そして、供試体100の作用部103に軸方向の荷重、ねじり荷重及び内外圧荷重を高精度で印加して様々な多軸状態で負荷試験を安定して行うことができる。また、疲労試験を行う場合でも各印加部を独立して動作制御することで、正確に各荷重を独立して繰り返し変化させることもでき、精度の高い疲労試験を行うことができる。また、応答速度を高速化して各荷重を変化させることも可能で、幅広い条件設定で負荷試験を行うことが可能となる。   Then, the load test can be stably performed in various multiaxial states by applying an axial load, a torsional load, and an internal / external pressure load to the action part 103 of the specimen 100 with high accuracy. Further, even when a fatigue test is performed, by controlling the operation of each application unit independently, each load can be accurately and independently changed repeatedly, and a highly accurate fatigue test can be performed. It is also possible to change the load by increasing the response speed, and it is possible to perform a load test with a wide range of condition settings.

図3は、図1で説明した実施形態の動作制御に関するブロック構成図である。多軸負荷試験装置は、装置本体200及び制御装置300から構成されており、装置本体200については、図1及び図2を用いて既に詳述したので、説明を省略する。制御装置300は、装置の全体を制御する制御部310、負荷試験に必要な設定データ等を入力する入力部311、試験結果等を表示する表示部312、装置の制御に必要なプログラムやデータ等を記憶する記憶部313、及び、ひずみゲージ、検知センサからの検知信号を受信するとともに各印加部の制御回路に制御信号を送信する送受信部314を備えている。また、各印加部の動作制御を行うために、軸圧印加部6を動作制御する軸圧制御回路320、ねじり印加部9を動作制御するねじり制御回路321、外圧印加部8を動作制御する外圧制御回路322、及び、内圧印加部7を動作制御する内圧制御回路323を備えており、軸圧及びねじりによるフィードバック制御又はひずみによるフィードバック制御に切り換える切換回路330を備えている。   FIG. 3 is a block configuration diagram relating to operation control of the embodiment described in FIG. 1. The multi-axis load test apparatus includes an apparatus main body 200 and a control apparatus 300, and the apparatus main body 200 has already been described in detail with reference to FIGS. The control device 300 includes a control unit 310 that controls the entire device, an input unit 311 that inputs setting data and the like necessary for a load test, a display unit 312 that displays test results and the like, programs and data necessary for controlling the device, and the like. And a transmission / reception unit 314 that receives a detection signal from a strain gauge and a detection sensor and transmits a control signal to the control circuit of each application unit. Further, in order to control the operation of each application unit, an axial pressure control circuit 320 that controls the operation of the axial pressure application unit 6, a torsion control circuit 321 that controls the operation of the torsion application unit 9, and an external pressure that controls the operation of the external pressure application unit 8 A control circuit 322 and an internal pressure control circuit 323 for controlling the operation of the internal pressure application unit 7 are provided, and a switching circuit 330 for switching to feedback control by axial pressure and torsion or feedback control by strain is provided.

制御部310は、条件設定部310a、検知データ処理部310b及び解析部310cを備えており、条件設定部310aでは、入力部311からの入力データ及び記憶部313に記憶された設定データ、検知データ及び算出データ等に基づいて負荷試験を行うための条件設定を行い、送受信部314を介して各制御回路に設定条件に応じた制御信号を送信する。検知データ処理部310bでは、供試体100の作用部103に設けられたひずみゲージS5及びS6、外圧及び内圧を検知する検知センサS2及びS3、軸圧及びねじり量を検知する検知センサS1及びS4から送信される検知データに基づいてデータ処理を行い、供試体100に作用する各種応力成分(軸方向主応力、周方向主応力、せん断応力等)、各種ひずみ成分(軸方向ひずみ、周方向ひずみ、せん断ひずみ等)を算出する。そして、得られた検知データ及び算出データは記憶部313に記憶する。解析部310cでは、記憶部313に記憶された検知データ、算出データ等の試験結果に基づいてデータの解析を行う。   The control unit 310 includes a condition setting unit 310a, a detection data processing unit 310b, and an analysis unit 310c. In the condition setting unit 310a, input data from the input unit 311 and setting data and detection data stored in the storage unit 313 are included. Then, a condition setting for performing a load test is performed based on the calculation data and the like, and a control signal corresponding to the setting condition is transmitted to each control circuit via the transmission / reception unit 314. In the detection data processing unit 310b, the strain gauges S5 and S6 provided in the action unit 103 of the specimen 100, the detection sensors S2 and S3 that detect the external pressure and the internal pressure, and the detection sensors S1 and S4 that detect the axial pressure and the torsion amount. Data processing is performed based on the transmitted detection data, and various stress components (axial principal stress, circumferential principal stress, shear stress, etc.) acting on the specimen 100, various strain components (axial strain, circumferential strain, Shear strain etc. are calculated. The obtained detection data and calculation data are stored in the storage unit 313. The analysis unit 310c analyzes data based on test results such as detection data and calculation data stored in the storage unit 313.

外圧制御回路322は、外圧検知センサS2の検知信号が入力されて外圧を設定条件に合致するようにフィードバック制御を行う。また、内圧制御回路323は、内圧検知センサS3の検知信号が入力されて内圧を設定条件に合致するようにフィードバック制御を行う。軸圧制御回路320及びねじり制御回路321は、切換回路330からのフィードバック信号に基づいてフィードバック制御を行う。軸圧及びねじりによるフィードバック制御の場合には、軸圧検知センサS1の検知信号が軸圧制御回路320に入力されて軸圧を設定条件に合致するようにフィードバック制御され、ねじり検知センサS4の検知信号がねじり制御回路321に入力されてねじり量を設定条件に合致するようにフィードバック制御が行われる。また、ひずみによるフィードバック制御の場合には、軸方向のひずみを検知するひずみゲージS5の検知信号が軸圧制御回路320に入力されて軸圧を設定条件に合致するようにフィードバック制御され、ねじりによるひずみを検知するひずみゲージS6の検知信号がねじり制御回路321に入力されてねじり量を設定条件に合致するようにフィードバック制御が行われる。   The external pressure control circuit 322 performs feedback control so that the detection signal of the external pressure detection sensor S2 is input and the external pressure matches the set condition. The internal pressure control circuit 323 performs feedback control so that the detection signal of the internal pressure detection sensor S3 is input and the internal pressure matches the set condition. The shaft pressure control circuit 320 and the torsion control circuit 321 perform feedback control based on the feedback signal from the switching circuit 330. In the case of feedback control using shaft pressure and torsion, a detection signal from the shaft pressure detection sensor S1 is input to the shaft pressure control circuit 320, and feedback control is performed so that the shaft pressure matches the set condition, and detection by the torsion detection sensor S4. A signal is input to the torsion control circuit 321 and feedback control is performed so that the torsion amount matches the set condition. In the case of feedback control using strain, a detection signal from the strain gauge S5 that detects strain in the axial direction is input to the shaft pressure control circuit 320, and feedback control is performed so that the shaft pressure matches the set condition. A detection signal of the strain gauge S6 that detects strain is input to the torsion control circuit 321 and feedback control is performed so that the torsion amount matches the set condition.

以上説明した実施形態では、圧力容器部5、軸圧印加部6、外圧印加部8及びねじり印加部9において作動油を用いて油圧により荷重を印加するようにしているが、油圧以外の方法により荷重を印加するものであってもよく、特に限定されない。例えば、気体等の作動流体を用いた圧力印加装置、電磁作用により動作する圧力印加装置といった装置を用いることもできる。   In the embodiment described above, a load is applied by hydraulic pressure using hydraulic oil in the pressure vessel section 5, the axial pressure application section 6, the external pressure application section 8 and the torsion application section 9, but by a method other than hydraulic pressure. A load may be applied and is not particularly limited. For example, a device such as a pressure applying device using a working fluid such as gas or a pressure applying device that operates by electromagnetic action can be used.

また、圧力容器部5、軸圧印加部6、内圧印加部7、外圧印加部8及びねじり印加部9は、上部取付台3や下部取付台4に取り外し可能に取り付けられているため、様々な負荷試験に応じて各部を適宜取り付けることで負荷試験に合わせた装置構成に容易に変更することができる。例えば、軸圧印加部6、内圧印加部7、外圧印加部8及びねじり印加部9を取り付けて装置構成すれば、内圧荷重、軸方向の荷重及びねじり荷重を組み合せた負荷試験を行うことが可能となり、内圧印加部7を省略すれば、軸方向の荷重及びねじり荷重を組み合せた負荷試験を行うことが可能となる。この場合、ねじり検知センサS4として、軸・トルク力計を用いることで、軸方向の荷重及びねじり荷重の両方を検知することができる。   Moreover, since the pressure vessel part 5, the axial pressure application part 6, the internal pressure application part 7, the external pressure application part 8 and the torsion application part 9 are detachably attached to the upper mounting base 3 and the lower mounting base 4, various By appropriately attaching each part according to the load test, it is possible to easily change to a device configuration adapted to the load test. For example, if the apparatus is configured by attaching the axial pressure application unit 6, the internal pressure application unit 7, the external pressure application unit 8 and the torsion application unit 9, it is possible to perform a load test combining internal pressure load, axial load and torsion load. Thus, if the internal pressure application unit 7 is omitted, it is possible to perform a load test combining an axial load and a torsional load. In this case, both the axial load and the torsional load can be detected by using a shaft / torque force meter as the torsion detection sensor S4.

また、本発明では、供試体100の外形を円筒状以外の様々な形状に形成して負荷試験を行うこともでき、例えば、角柱状や角筒状に形成したものでも負荷試験を行うことが可能である。そして、内部空間のない中実体の場合でも、ねじり荷重及び内圧荷重以外を印加する負荷試験を行うことができる。   Further, in the present invention, the load test can be performed by forming the outer shape of the specimen 100 in various shapes other than the cylindrical shape. For example, the load test can be performed even in the case of a prismatic shape or a rectangular tube shape. Is possible. And even in the case of a solid body having no internal space, a load test for applying a load other than the torsional load and the internal pressure load can be performed.

1・・・基台、2・・・支持フレーム、3・・・上部取付台、4・・・下部取付台、5・・・圧力容器部、6・・・軸圧印加部、7・・・内圧印加部、8・・・外圧印加部、9・・・ねじり印加部、50・・・収容孔、100・・・供試体、S1・・・軸圧検知センサ、S2・・・外圧検知センサ、S3・・・内圧検知センサ、S4・・・ねじり検知センサ DESCRIPTION OF SYMBOLS 1 ... Base, 2 ... Support frame, 3 ... Upper mounting base, 4 ... Lower mounting base, 5 ... Pressure vessel part, 6 ... Axial pressure application part, 7 ... -Internal pressure application unit, 8 ... external pressure application unit, 9 ... torsion application unit, 50 ... accommodation hole, 100 ... specimen, S1 ... axial pressure detection sensor, S2 ... external pressure detection Sensor, S3 ... Internal pressure detection sensor, S4 ... Torsion detection sensor

Claims (6)

構造材料からなる供試体に対して荷重を印加して多軸状態で負荷試験を行う多軸負荷試験装置であって、前記供試体に対して軸方向に荷重を印加する軸圧印加部と、前記供試体を収容する収容孔が形成されるとともに当該収容孔に収容された前記供試体の周囲に作動流体を貯留する圧力容器部と、前記供試体を軸方向に移動させて前記収容孔と前記供試体との間に形成された作用空間の容積を増加又は減少させることで前記作動流体により前記供試体の外周に外圧を印加する外圧印加部とを備えている多軸負荷試験装置。 A multi-axis load test apparatus that applies a load to a specimen made of a structural material and performs a load test in a multi-axis state, and an axial pressure application unit that applies a load in an axial direction to the specimen; An accommodation hole for accommodating the specimen is formed and a pressure vessel portion for storing a working fluid around the specimen accommodated in the accommodation hole; and the accommodation hole by moving the specimen in the axial direction A multi-axis load testing apparatus comprising: an external pressure application unit configured to apply an external pressure to an outer periphery of the specimen by the working fluid by increasing or decreasing a volume of a working space formed between the specimen and the specimen . 前記供試体に印加される軸方向の荷重を検知する軸圧検知センサと、前記供試体に印加される外圧を検知する外圧検知センサと、前記軸圧検知センサからの検知信号に基づいて前記軸圧印加部をフィードバック制御する軸圧制御回路と、前記外圧検知センサからの検知信号に基づいて前記外圧印加部をフィードバック制御する外圧制御回路とを備えている請求項1に記載の多軸負荷試験装置。   An axial pressure detection sensor for detecting an axial load applied to the specimen, an external pressure detection sensor for detecting an external pressure applied to the specimen, and the shaft based on a detection signal from the axial pressure detection sensor The multi-axis load test according to claim 1, further comprising: an axial pressure control circuit that feedback-controls the pressure application unit; and an external pressure control circuit that feedback-controls the external pressure application unit based on a detection signal from the external pressure detection sensor. apparatus. 前記軸圧印加部に取り付けられるとともに前記供試体の内部空間に貯留する作動流体により前記供試体に内圧を印加する内圧印加部を備えている請求項1又は2に記載の多軸負荷試験装置。   The multiaxial load test apparatus according to claim 1, further comprising an internal pressure application unit that is attached to the axial pressure application unit and applies an internal pressure to the test sample by a working fluid stored in an internal space of the test sample. 前記外圧印加部に取り付けられるとともに前記外圧印加部の作動体を回転させて当該作動体に接続固定された前記供試体にねじり荷重を印加するねじり印加部を備えている請求項1から3のいずれかに記載の多軸負荷試験装置。   The torsion application part which applies the torsional load to the said test body which is attached to the said external pressure application part and rotates the action body of the said external pressure application part and is fixedly connected to the said operation body is provided. The multi-axis load test apparatus according to claim 1. 構造材料からなる供試体に対して荷重を印加して多軸状態で負荷試験を行う多軸負荷試験方法であって、圧力容器部に形成された収容孔に前記供試体を収容して当該収容孔に収容された前記供試体の周囲に作動流体を貯留し、前記供試体を軸方向に移動させて前記収容孔と前記供試体との間に形成された作用空間の容積を増加又は減少させることで前記作動流体により前記供試体の外周に外圧を印加し、前記供試体に対して軸方向に荷重を印加して負荷試験を行う多軸負荷試験方法。 A multi-axial load test method for applying a load to a specimen made of a structural material and performing a load test in a multi-axial state, wherein the specimen is accommodated in an accommodation hole formed in a pressure vessel portion. The working fluid is stored around the specimen accommodated in the hole, and the specimen is moved in the axial direction to increase or decrease the volume of the working space formed between the accommodation hole and the specimen. Thus, a multiaxial load test method in which an external pressure is applied to the outer periphery of the specimen by the working fluid, and a load test is performed by applying a load to the specimen in the axial direction. 前記供試体に印加される外圧を検知する外圧検知センサからの検知信号に基づいて印加する外圧が設定条件に合致するようにフィードバック制御を行い、前記供試体に印加される軸方向の荷重を検知する軸圧検知センサからの検知信号に基づいて軸方向の荷重が設定条件に合致するようにフィードバック制御を行う請求項5に記載の多軸負荷試験方法。   Based on the detection signal from the external pressure detection sensor that detects the external pressure applied to the specimen, feedback control is performed so that the external pressure applied matches the set condition, and the axial load applied to the specimen is detected. The multi-axis load test method according to claim 5, wherein feedback control is performed based on a detection signal from an axial pressure detection sensor that performs an axial load so as to match a set condition.
JP2011077656A 2011-03-31 2011-03-31 Multi-axis load test apparatus and method Expired - Fee Related JP5804469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077656A JP5804469B2 (en) 2011-03-31 2011-03-31 Multi-axis load test apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077656A JP5804469B2 (en) 2011-03-31 2011-03-31 Multi-axis load test apparatus and method

Publications (2)

Publication Number Publication Date
JP2012211823A JP2012211823A (en) 2012-11-01
JP5804469B2 true JP5804469B2 (en) 2015-11-04

Family

ID=47265902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077656A Expired - Fee Related JP5804469B2 (en) 2011-03-31 2011-03-31 Multi-axis load test apparatus and method

Country Status (1)

Country Link
JP (1) JP5804469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627389A (en) * 2018-05-14 2018-10-09 广州锦宏科技有限公司 A kind of fatigue tester

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389243B (en) * 2013-07-31 2015-04-08 吉林大学 Micro material mechanical performance testing platform under stretching-bending-twisting multi-loads
CN103528900B (en) * 2013-10-28 2015-06-03 吉林大学 Ultrahigh-strain-rate precise-stretching in-situ testing platform
WO2016009510A1 (en) * 2014-07-16 2016-01-21 株式会社島津製作所 Material tester
CN104155193B (en) * 2014-08-14 2016-08-17 浙江巨人控股有限公司 A kind of Elevator Principal Axis test device
CN104406782B (en) * 2014-11-28 2018-07-13 宁夏天地重型装备科技有限公司 Test the experimental rig of the middle pan of scraper conveyor and dumbbell pin vertical bending moment
US10184864B2 (en) * 2015-12-10 2019-01-22 Mechanical Testing Services, Llc Intelligent automated load control system and method
CN105424481B (en) * 2015-12-28 2017-11-24 江苏格纳特连接系统有限公司 A kind of threaded fastener ensures load test device and method of testing
CN106248557B (en) * 2016-09-28 2023-04-07 中国科学院武汉岩土力学研究所 Rock tension and compression ring shear seepage coupling rheological tester
CN106404557B (en) * 2016-11-14 2023-09-01 中国科学院武汉岩土力学研究所 Rock hollow cylinder torsion shear instrument
CN106680096B (en) * 2017-03-28 2023-10-31 吉林大学 Multi-test-piece bonding joint bidirectional loading fatigue experiment device
CN109374428A (en) * 2018-08-27 2019-02-22 南方科技大学 A kind of flexible pipe cable Apparatus for Bending at low-temp
CN110758768B (en) * 2019-10-15 2022-07-26 中国直升机设计研究所 Loading device for stiffness test of flexible beam of bearingless rotor wing
CN113237737B (en) * 2021-06-16 2022-11-29 中国石油大学(华东) Comprehensive testing device for internal pressure, tensile, torsional and bending loads of flexible composite pipeline
CN113916702A (en) * 2021-08-26 2022-01-11 华东理工大学 Multi-axis creep-fatigue mechanical property testing device suitable for high-temperature environment
CN113959850B (en) * 2021-09-17 2022-10-25 江苏顺隆鸿泰电力设备有限公司 Hydraulic testing machine for steel structure material
CN116642779B (en) * 2023-07-21 2023-10-27 成都阿斯贝瑞科技有限公司 High-temperature composite loading test system for coiled tubing tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125039A (en) * 1982-12-30 1984-07-19 Yamamoto Suiatsu Kogyosho:Kk Composite crushing testing method
JPH0625719B2 (en) * 1985-04-09 1994-04-06 株式会社日立製作所 Alternating fatigue testing machine
US4679441A (en) * 1986-03-27 1987-07-14 Terra Tek, Inc. Pressure balanced loading piston for triaxial test cells
JP3749397B2 (en) * 1999-05-06 2006-02-22 株式会社鷺宮製作所 Control method and material test apparatus in material test apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627389A (en) * 2018-05-14 2018-10-09 广州锦宏科技有限公司 A kind of fatigue tester

Also Published As

Publication number Publication date
JP2012211823A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5804469B2 (en) Multi-axis load test apparatus and method
WO2018113063A1 (en) High pressure true triaxial hard rock constant-temperature aging cracking testing device and method
JP4856696B2 (en) Hydraulic screw bolt fastening device and method for fastening a large screw with the device.
CN105910919B (en) A kind of high temperature axial compression test device and test method
CN101718725B (en) Device for measuring sample thermo-physical property in situ
KR101362115B1 (en) Hydraulic system and general-purpose test device
CN104006034B (en) Hydraulic servo variable-load loading test bench
CN103674679B (en) Fracture-cavity type carbonate reservoir environment mechanical property test device and test method
KR102309369B1 (en) Test device for metallic materials resistant to hydrogen embrittlement
US8024961B2 (en) Simultaneous normal and radial liquid permeameter
CN102322257A (en) Pressure equaliser
NO341370B1 (en) Magnetic stirring system in a pVT cell
KR20030024184A (en) A Multi-functional Friction and Abrasion Tester of a Rotary Machine Component
JP2005338026A (en) Compact apparatus and method for testing material
CN108593884B (en) Wheeled THMC- rock multifunction test instrument and wheeled rock test method
JP2016020880A (en) Internal pressure fatigue tester
CN205786127U (en) A kind of high temperature axial compression test device
CN211453275U (en) Soft rock damage failure instability and dynamic permeability characteristic basic data acquisition device
KR100931546B1 (en) Micro cone penetration device
CN106194157B (en) Giant magnetostrictive drilling variable-mode measuring probe and measuring method
CN111024519A (en) Visual interface ring shear apparatus for interaction of underwater structure and soil body and use method
CN113916702A (en) Multi-axis creep-fatigue mechanical property testing device suitable for high-temperature environment
KR200291236Y1 (en) A testing machine for compress performance
CN117740547B (en) Device and method for evaluating interaction between deep anisotropic stratum and wellbore fluid
CN201193998Y (en) Vibration three-axis determinator with confined pressure stabilizing compensator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150825

R150 Certificate of patent or registration of utility model

Ref document number: 5804469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees