JP5804384B2 - Method and apparatus for measuring temperature of continuous casting mold copper plate - Google Patents

Method and apparatus for measuring temperature of continuous casting mold copper plate Download PDF

Info

Publication number
JP5804384B2
JP5804384B2 JP2012188522A JP2012188522A JP5804384B2 JP 5804384 B2 JP5804384 B2 JP 5804384B2 JP 2012188522 A JP2012188522 A JP 2012188522A JP 2012188522 A JP2012188522 A JP 2012188522A JP 5804384 B2 JP5804384 B2 JP 5804384B2
Authority
JP
Japan
Prior art keywords
copper plate
mold copper
temperature
mold
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012188522A
Other languages
Japanese (ja)
Other versions
JP2014046312A (en
Inventor
望 吉廣
望 吉廣
本田 達朗
達朗 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012188522A priority Critical patent/JP5804384B2/en
Publication of JP2014046312A publication Critical patent/JP2014046312A/en
Application granted granted Critical
Publication of JP5804384B2 publication Critical patent/JP5804384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融金属(溶鋼等)の連続鋳造用鋳型を構成する鋳型銅板の温度を超音波を用いて測定する方法及び装置に関する。特に、本発明は、超音波の反射源として、鋳型銅板の溶融金属との近接面に対向する面で開口し、前記鋳型銅板の内部に延びる孔を設けた場合において、当該孔の深さに関わらず、精度良く鋳型銅板の温度を測定し得る方法及び装置に関する。   The present invention relates to a method and an apparatus for measuring the temperature of a mold copper plate constituting a continuous casting mold for molten metal (molten steel or the like) using ultrasonic waves. In particular, the present invention provides an ultrasonic reflection source having a hole that opens on the surface of the mold copper plate facing the molten metal and faces the molten metal, and has a hole extending inside the mold copper plate. Regardless, the present invention relates to a method and apparatus that can accurately measure the temperature of a cast copper plate.

従来より、製鋼工程で用いられる連続鋳造機の鋳型銅板には熱電対が埋め込まれ、該熱電対で鋳型銅板の温度を測定することにより、鋳型内の監視や制御が行われている。より具体的に説明すれば、前記熱電対で測定した温度は、鋳型内での溶鋼のブレークアウトの予知や検知の他、鋳片の品質推定に利用されている。また、鋳型に設けられた電磁攪拌装置や電磁ブレーキ装置を制御するための指標としても利用されている。一般的に、前記熱電対は、鋳型銅板の溶鋼に近接する面から5〜20mm離れた位置に測温点が位置するように、鋳型銅板に設けた孔(鋳型銅板の背面(溶鋼との近接面に対向する面)で開口し、鋳型銅板の内部に延びる孔)内に設置される。   Conventionally, a thermocouple is embedded in a mold copper plate of a continuous casting machine used in a steelmaking process, and monitoring and control in the mold is performed by measuring the temperature of the mold copper plate with the thermocouple. More specifically, the temperature measured by the thermocouple is used to estimate the quality of the slab, as well as to predict and detect the breakout of the molten steel in the mold. Moreover, it is utilized also as a parameter | index for controlling the electromagnetic stirring apparatus and electromagnetic brake apparatus which were provided in the casting_mold | template. In general, the thermocouple is provided with a hole (a back surface of the mold copper plate (proximity to the molten steel) provided in the mold copper plate so that the temperature measuring point is located 5 to 20 mm away from the surface of the mold copper plate adjacent to the molten steel. It is opened in a surface facing the surface) and is installed in a hole) that extends into the interior of the mold copper plate.

しかしながら、熱電対の取り付け位置が鋳型用冷却水の経路と隣接し、且つ、鋳型がオシレーションと呼ばれる振動に常時晒されている。このため、冷却水によって熱電対の保護管が腐食したり、熱電対の挿入孔に冷却水が浸入して、大きな測温誤差が生じる場合がある。   However, the attachment position of the thermocouple is adjacent to the path of the cooling water for the mold, and the mold is constantly exposed to vibration called oscillation. For this reason, the protective tube of the thermocouple may be corroded by the cooling water, or the cooling water may enter the thermocouple insertion hole, resulting in a large temperature measurement error.

また、上記の熱電対は、多数設置すればするほど、鋳型銅板の温度(温度分布)を詳細に測定できる点で好都合である。つまり、鋳型銅板の温度を詳細に測定できれば、より確実に溶鋼のブレークアウトの予知や検知ができることや、溶鋼の流動状態の推定やシェル厚みの推定精度が向上する結果、鋳片の表面品質の推定精度が向上するといった効果が期待できる。しかしながら、熱電対を多数設置することで、熱電対の故障頻度が増大するという問題が生じる。特に近年では、鋳型に設けられた電磁攪拌装置や電磁ブレーキ装置により、鋳型内で形成される鋳片の品質を制御するようになってきており、これら設備との物理的干渉が生じるために、故障した熱電対の交換や修理等が極めて難しくなっている。   Further, the more thermocouples are installed, the more convenient the temperature (temperature distribution) of the mold copper plate can be measured in detail. In other words, if the temperature of the mold copper plate can be measured in detail, it is possible to predict and detect the breakout of molten steel more reliably, improve the estimation of the flow state of the molten steel and the estimation of the shell thickness. The effect that estimation accuracy improves can be expected. However, the installation of a large number of thermocouples causes a problem that the frequency of failure of the thermocouple increases. Especially in recent years, the quality of the slabs formed in the mold has been controlled by the electromagnetic stirring device and electromagnetic brake device provided in the mold, and because physical interference with these facilities occurs, Replacing and repairing a broken thermocouple has become extremely difficult.

さらに、鋳型銅板での冷却における熱流束を測定するには、鋳型銅板の厚み方向(溶鋼との対向方向)の位置が異なる点での温度を測定する必要があるが、このためには鋳型銅板の厚み方向の位置が異なる点に熱電対を正確に設置する必要がある。しかしながら、鋳型に設けられた電磁攪拌装置や電磁ブレーキ装置による誘導電流等の影響で、熱電対による測定精度が劣化するおそれがある。   Furthermore, in order to measure the heat flux in cooling with the mold copper plate, it is necessary to measure the temperature at a point where the thickness direction of the mold copper plate (direction opposite to the molten steel) is different. It is necessary to accurately install thermocouples at different points in the thickness direction. However, the measurement accuracy by the thermocouple may deteriorate due to the influence of an induced current or the like by the electromagnetic stirring device or the electromagnetic brake device provided in the mold.

以上に説明したような問題点を解決することを目的として、例えば、特許文献1に記載のような鋳型銅板の温度測定方法が提案されている。具体的には、特許文献1には、鋳型銅板の温度を熱電対によって測定する際の問題点や、特に電磁攪拌装置を設けた場合の問題点が示され、その解決策として、鋳型銅板の上面で開口し、鋳型銅板の内部に延びる挿入孔を設け、該挿入孔に熱電対を挿入して、鋳型銅板内部の所定位置の温度を測定する方法が記載されている。   For the purpose of solving the problems as described above, for example, a method for measuring the temperature of a mold copper plate as described in Patent Document 1 has been proposed. Specifically, Patent Document 1 shows a problem when measuring the temperature of the mold copper plate with a thermocouple, and particularly a problem when an electromagnetic stirrer is provided. A method is described in which an insertion hole opened at the upper surface and extending into the mold copper plate is provided, and a thermocouple is inserted into the insertion hole to measure the temperature at a predetermined position inside the mold copper plate.

一般的に、熱電対としては、要求される機械的強度、耐食性、応答性等の観点より、φ3mm〜φ5mm程度の外形を有するシース熱電対が用いられる。この熱電対を鋳型銅板内部に設置するには、特許文献1の図1に示すように、ドリル等を用いて、細くて深い挿入孔を精度良く開ける必要がある。
しかしながら、上記のような小径で深い挿入孔を開ける事は難しい。少なくとも市販の超硬ドリル等の仕様から推し量ると、φ3mm程度の挿入孔を鋳型銅板に開ける場合には、せいぜい50mm〜60mm程度の深さが限界と思われる。特許文献1の図1に示すように、熱電対よりも少し大きめの挿入孔を鋳型銅板の上面から開ける場合でも、あまり大きな挿入孔を開けると鋳型銅板の熱伝導を阻害し望ましくない。このため、例えばφ6mmの挿入孔を開けるとすると、深さ90mm程度が限界と思われる。換言すれば、この挿入孔に挿入される熱電対の測温点は、鋳型銅板の上面から下方に90mm程度離れた位置よりも高い位置に限定される。
一般的に、溶鋼の湯面位置においては湯面の波立ちにより安定した値が得られないため、湯面から数cm〜10cm程度下がった位置及びその下方の位置が測温領域とされる。このため、例えば、鋳型銅板の上面から90mmの位置に測温点を設けると、溶鋼の湯面はその位置より少なくとも数cm高くなるため、わずかな湯面変動が生じたときや非定常時において、溶鋼が鋳型からオーバーフローする危険性が高くなる。また、測温点は、鋳型銅板の上面から下方に90mm程度離れた位置よりも高い位置に限定される。このため、鋳型銅板の上面から90mm離れた位置よりもさらに下方の位置での温度を測定することができず、鋳型内での溶鋼のブレークアウトの検知には不十分な場合がある。
以上に述べたように、特許文献1に記載の方法には、次のような問題がある。
(a)適切な深さの挿入孔を開けるのが困難で実現性に乏しい。
(b)測温点が、鋳型銅板の上面から下方に90mm程度までの範囲に限られる。このため、溶鋼のオーバフローの危険性が生じることや、測温点より下方の位置での溶鋼のブレークアウトを検知できないことが問題である。
Generally, as a thermocouple, a sheathed thermocouple having an outer shape of about φ3 mm to φ5 mm is used from the viewpoint of required mechanical strength, corrosion resistance, responsiveness, and the like. In order to install this thermocouple inside the mold copper plate, as shown in FIG. 1 of Patent Document 1, it is necessary to accurately open a narrow and deep insertion hole using a drill or the like.
However, it is difficult to make a deep insertion hole with a small diameter as described above. At least from the specifications of commercially available carbide drills and the like, when an insertion hole of about φ3 mm is opened in the mold copper plate, a depth of about 50 mm to 60 mm at most seems to be the limit. As shown in FIG. 1 of Patent Document 1, even when an insertion hole slightly larger than the thermocouple is opened from the upper surface of the mold copper plate, if the insertion hole is too large, the heat conduction of the mold copper plate is hindered. For this reason, for example, if an insertion hole of φ6 mm is opened, a depth of about 90 mm seems to be the limit. In other words, the temperature measuring point of the thermocouple inserted into the insertion hole is limited to a position higher than a position about 90 mm away from the upper surface of the mold copper plate.
In general, since a stable value cannot be obtained at the molten steel surface level due to the undulation of the molten steel surface, the temperature measurement region is a position that is lowered by several cm to 10 cm from the molten metal surface and a position below it. For this reason, for example, when a temperature measuring point is provided at a position 90 mm from the upper surface of the mold copper plate, the molten steel surface is at least several centimeters higher than the position, so that when a slight molten metal surface fluctuation occurs or in an unsteady state The risk of the molten steel overflowing from the mold increases. Further, the temperature measuring point is limited to a position higher than a position about 90 mm away from the upper surface of the mold copper plate. For this reason, the temperature at a position further lower than the position 90 mm away from the upper surface of the mold copper plate cannot be measured, and it may be insufficient for detecting a breakout of molten steel in the mold.
As described above, the method described in Patent Document 1 has the following problems.
(A) It is difficult to open an insertion hole having an appropriate depth, and the feasibility is poor.
(B) The temperature measuring point is limited to a range of about 90 mm downward from the upper surface of the mold copper plate. For this reason, there is a problem that there is a risk of overflow of the molten steel and that the breakout of the molten steel at a position below the temperature measuring point cannot be detected.

以上に説明したような問題点を解決することを目的として、本発明者らは、特許文献2に記載の鋳型銅板の温度測定方法を提案した。すなわち、特許文献2に記載の方法は、溶融金属の連続鋳造用鋳型を構成する鋳型銅板の温度を測定する方法であって、前記鋳型銅板の内部に超音波の反射源を設ける第1の手順と、前記反射源に向けて、超音波送受信子から前記鋳型銅板の溶融金属との近接面に対して略平行な方向に超音波を伝搬させる第2の手順と、前記反射源で反射し前記超音波送受信子によって検出した超音波エコーに基づき、前記鋳型銅板の温度を算出する第3の手順とを含むことを特徴としている。より具体的には、特許文献2に記載の方法では、前記第1の手順で設ける反射源として、前記鋳型銅板の溶融金属との近接面に対向する面で開口し、前記鋳型銅板の内部に延びる孔を用いている。   In order to solve the problems as described above, the present inventors have proposed a method for measuring a temperature of a mold copper plate described in Patent Document 2. That is, the method described in Patent Document 2 is a method for measuring the temperature of a mold copper plate constituting a mold for continuous casting of molten metal, and is a first procedure in which an ultrasonic wave reflection source is provided inside the mold copper plate. And a second procedure for propagating ultrasonic waves from the ultrasonic transmitter / receiver toward the reflection source in a direction substantially parallel to the proximity surface of the mold copper plate with the molten metal, and reflected by the reflection source and And a third procedure for calculating the temperature of the mold copper plate based on the ultrasonic echo detected by the ultrasonic transceiver. More specifically, in the method described in Patent Document 2, as a reflection source provided in the first procedure, an opening is made on a surface of the mold copper plate facing a surface close to the molten metal, and the inside of the mold copper plate is opened. An extending hole is used.

超音波送受信子から送信された超音波は鋳型銅板内を伝搬中の散乱等によって拡がる。このため、超音波送受信子から遠方に設けられた反射源は、十分な超音波エコー強度を得るために、超音波送受信子からの距離に応じてその面積(超音波伝搬方向から見た投影面積)を大きくする必要がある。
図1は、超音波送受信子から反射源までの距離と、超音波伝搬方向から見た反射源の投影面積と、超音波エコーの検出可否との関係を実際に調査した結果の一例を示す図である。図1に示す「●」でプロットしたデータは反射源からの超音波エコーの強度がノイズ強度よりも十分に大きかった場合を、「×」でプロットしたデータは反射源からの超音波エコーの強度がノイズ強度と識別できなかった場合を示す。図1に示すように、反射源からの超音波エコーが十分な強度を得るには、超音波送受信子からの距離に応じて反射源の投影面積を大きくする必要があることがわかる。
特に、1つの超音波送受信子から複数の反射源に超音波を送受信する場合には、超音波送受信子からの距離に応じて反射源としての孔の深さ(鋳型銅板の厚み方向の寸法)を深くする必要が生じ、反射源の中心の位置(鋳型銅板の厚み方向の位置)が超音波送受信子からの距離に応じて変わることになる。
The ultrasonic wave transmitted from the ultrasonic transmitter / receiver spreads by scattering during propagation in the mold copper plate. For this reason, in order to obtain a sufficient ultrasonic echo intensity, the reflection source provided far away from the ultrasonic transmitter / receiver has its area (projected area viewed from the ultrasonic propagation direction) according to the distance from the ultrasonic transmitter / receiver. ) Must be increased.
FIG. 1 is a diagram showing an example of a result of an actual investigation on a relationship between a distance from an ultrasonic transmitter / receiver to a reflection source, a projection area of the reflection source viewed from the ultrasonic wave propagation direction, and whether ultrasonic echoes can be detected. It is. The data plotted with “●” shown in FIG. 1 indicates that the intensity of the ultrasonic echo from the reflection source is sufficiently larger than the noise intensity, and the data plotted with “×” indicates the intensity of the ultrasonic echo from the reflection source. Shows the case where the noise intensity could not be distinguished from the noise intensity. As shown in FIG. 1, it can be seen that in order to obtain sufficient intensity of the ultrasonic echo from the reflection source, it is necessary to increase the projection area of the reflection source in accordance with the distance from the ultrasonic transceiver.
In particular, when transmitting and receiving ultrasonic waves from one ultrasonic transmitter / receiver to a plurality of reflection sources, the depth of the hole as a reflection source (dimension in the thickness direction of the mold copper plate) according to the distance from the ultrasonic transmitter / receiver Therefore, the position of the center of the reflection source (the position in the thickness direction of the casting copper plate) changes depending on the distance from the ultrasonic transceiver.

図2は、鋳型銅板の厚み方向の温度分布と、反射源の中心位置との関係を示す図である。図2に示す「溶融金属面」とは鋳型銅板の溶融金属との近接面を意味し、「冷却面」とは鋳型銅板用の冷却水と接する面を意味する。
仮に、超音波振動子と対向する反射源の面全体から超音波エコーが反射し、この反射した超音波エコー全体を使って鋳型銅板の温度を測定するとすれば、特許文献2に記載の方法では、反射源の中心位置が変わると、測温している鋳型銅板の厚み方向の位置が変わることになる。従って、図2に示すように、仮に鋳型銅板の厚み方向の温度分布が鋳型銅板の高さ方向に一様であるとしても、超音波送受信子からの反射源の位置(鋳型銅板の高さ方向の位置)に応じて測温値が異なることになってしまう。図2に示す例では、反射源R1からの超音波エコーで算出した温度と、これよりも遠方に設けられた反射源R2からの超音波エコーで算出した温度とが異なることになる。より具体的には、反射源R1の中心位置に比べて反射源R2の中心位置の方が溶融金属との近接面に近づくため、反射源R2からの超音波エコーで算出した温度の方が反射源R1からの超音波エコーで算出した温度よりも高くなる。
FIG. 2 is a diagram showing the relationship between the temperature distribution in the thickness direction of the mold copper plate and the center position of the reflection source. The “molten metal surface” shown in FIG. 2 means a surface of the mold copper plate close to the molten metal, and the “cooling surface” means a surface in contact with the cooling water for the mold copper plate.
If the ultrasonic echo is reflected from the entire surface of the reflection source facing the ultrasonic transducer and the temperature of the mold copper plate is measured using the entire reflected ultrasonic echo, the method described in Patent Document 2 When the center position of the reflection source is changed, the position in the thickness direction of the temperature-measured mold copper plate is changed. Therefore, as shown in FIG. 2, even if the temperature distribution in the thickness direction of the mold copper plate is uniform in the height direction of the mold copper plate, the position of the reflection source from the ultrasonic transceiver (the height direction of the mold copper plate). The temperature measurement value will be different depending on the position of. In the example shown in FIG. 2, the temperature calculated by the ultrasonic echo from the reflection source R1 is different from the temperature calculated by the ultrasonic echo from the reflection source R2 provided farther than this. More specifically, since the center position of the reflection source R2 is closer to the proximity surface to the molten metal than the center position of the reflection source R1, the temperature calculated by the ultrasonic echo from the reflection source R2 is reflected. It becomes higher than the temperature calculated by the ultrasonic echo from the source R1.

特許第3797088号公報Japanese Patent No. 3797088 特開2009−78298号公報JP 2009-78298 A

本発明は、斯かる従来技術の問題を解決するためになされたものであり、溶融金属の連続鋳造用鋳型を構成する鋳型銅板の温度を超音波を用いて測定する方法及び装置であって、超音波の反射源として、鋳型銅板の溶融金属との近接面に対向する面で開口し、前記鋳型銅板の内部に延びる孔を設けた場合において、当該孔の深さに関わらず、精度良く鋳型銅板の温度を測定し得る方法及び装置を提供することを課題とする。   The present invention was made in order to solve such problems of the prior art, and is a method and apparatus for measuring the temperature of a mold copper plate constituting a mold for continuous casting of molten metal using ultrasonic waves, As an ultrasonic reflection source, when a hole is formed on the surface of the mold copper plate facing the surface close to the molten metal, and a hole extending inside the mold copper plate is provided, the mold is accurately obtained regardless of the depth of the hole. It is an object to provide a method and an apparatus capable of measuring the temperature of a copper plate.

前記課題を解決するため、本発明者らは鋭意検討した結果、超音波を用いて算出した鋳型銅板の温度と、反射源の中心の位置と、鋳型銅板の冷却条件によって定まる鋳型銅板と鋳型銅板用の冷却水との熱伝達率、鋳型銅板による鋳片の鋳造幅、鋳型銅板入側の冷却水の温度及び鋳型銅板出側の冷却水の温度とに基づき、鋳型銅板の厚み方向(溶融金属との対向方向)の温度分布を推定できることを見出した。そして、前記算出した鋳型銅板の温度を、鋳型銅板の厚み方向の温度分布を用いて補正すれば、前記課題を解決できることに想到し、本発明を完成した。
すなわち、本発明は、溶融金属の連続鋳造用鋳型を構成する鋳型銅板の温度を測定する方法であって、超音波の反射源として、前記鋳型銅板の溶融金属との近接面に対向する面で開口し、前記鋳型銅板の内部に延びる孔を設ける第1の手順と、前記反射源に向けて、超音波送受信子から前記鋳型銅板の溶融金属との近接面に対して略平行な方向に超音波を伝搬させる第2の手順と、前記反射源で反射し前記超音波送受信子によって検出した超音波エコーの伝搬時間と、超音波の伝搬速度の温度依存性とに基づき、前記鋳型銅板の温度を算出する第3の手順と、前記第3の手順で算出した前記鋳型銅板の温度と、前記反射源の中心の位置と、前記鋳型銅板の冷却条件によって定まる前記鋳型銅板と前記鋳型銅板用の冷却水との熱伝達率、前記鋳型銅板による鋳片の鋳造幅、前記鋳型銅板入側の前記冷却水の温度及び前記鋳型銅板出側の前記冷却水の温度とに基づき、前記鋳型銅板の前記溶融金属との対向方向の温度分布を推定し、前記第3の手順で算出した前記鋳型銅板の温度を前記推定した温度分布を用いて、前記鋳型銅板の前記溶融金属との対向方向の任意の位置の温度に補正する第4の手順と、を含むことを特徴とする連続鋳造用鋳型銅板の温度測定方法を提供する。
In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, the mold copper plate and the mold copper plate determined by the temperature of the mold copper plate calculated using ultrasonic waves, the position of the center of the reflection source, and the cooling condition of the mold copper plate. The thickness direction of the mold copper plate (molten metal) based on the heat transfer coefficient with the cooling water for the mold, the casting width of the slab by the mold copper plate, the temperature of the cooling water on the inlet side of the mold copper plate and the temperature of the cooling water on the outlet side of the mold copper plate It was found that the temperature distribution in the opposite direction) can be estimated. Then, the present invention has been completed by conceiving that the problem can be solved by correcting the calculated temperature of the mold copper plate using the temperature distribution in the thickness direction of the mold copper plate.
That is, the present invention is a method for measuring the temperature of a mold copper plate that constitutes a mold for continuous casting of molten metal, and as a reflection source of ultrasonic waves, the surface of the mold copper plate facing a surface close to the molten metal. A first step of opening and providing a hole extending inside the mold copper plate; and toward the reflection source, the ultrasonic wave is transmitted in a direction substantially parallel to the proximity surface of the mold copper plate with the molten metal of the mold copper plate. Based on the second procedure for propagating the sound wave, the propagation time of the ultrasonic echo reflected by the reflection source and detected by the ultrasonic transceiver, and the temperature dependence of the propagation speed of the ultrasonic wave, the temperature of the mold copper plate For the mold copper plate and the mold copper plate determined by the temperature of the mold copper plate calculated in the third procedure, the position of the center of the reflection source, and the cooling condition of the mold copper plate. Heat transfer coefficient with cooling water, the casting Based on the casting width of the slab by the copper plate, the temperature of the cooling water on the mold copper plate entrance side, and the temperature of the cooling water on the mold copper plate exit side, the temperature distribution of the mold copper plate in the direction facing the molten metal is estimated, the third temperature of the mold copper plate, which is calculated in the procedure, using the temperature distribution the estimated, the fourth correcting the temperature of any position in the opposing direction of the molten metal in the mold copper plate And a temperature measuring method for a continuous casting mold copper plate.

本発明によれば、第1の手順〜第3の手順を実行することにより、鋳型銅板の温度(鋳型銅板への超音波の入射点から反射源までの間の平均温度)を算出可能である。ただし、この算出した鋳型銅板の温度は、反射源としての孔の深さ(鋳型銅板と溶融金属との対向方向の寸法)の影響を受けている。そこで、本発明では、第4の手順において、まず最初に、算出した鋳型銅板の温度と、反射源の中心の位置と、鋳型銅板の冷却条件によって定まる鋳型銅板と鋳型銅板用の冷却水との熱伝達率、鋳型銅板による鋳片の鋳造幅、鋳型銅板入側の冷却水の温度及び鋳型銅板出側の冷却水の温度とに基づき、鋳型銅板の溶融金属との対向方向の温度分布を推定(直線近似)する。次に、算出した鋳型銅板の温度を推定した温度分布を用いて補正する。これにより、反射源としての孔の深さの大小に関わらず、鋳型銅板の厚み方向(溶融金属との対向方向)の任意の位置での温度を算出することが可能である。 According to the present invention, by executing the first to third procedures, the temperature of the casting copper plate (the average temperature from the incident point of the ultrasonic wave to the casting copper plate to the reflection source) can be calculated. . However, the calculated temperature of the mold copper plate is affected by the depth of the hole as a reflection source (the dimension in the opposing direction of the mold copper plate and the molten metal). Therefore, in the present invention, in the fourth procedure, first, the calculated mold copper plate temperature, the position of the center of the reflection source, and the mold copper plate determined by the cooling condition of the mold copper plate and the cooling water for the mold copper plate are used. Estimate the temperature distribution in the direction of the mold copper plate facing the molten metal based on the heat transfer coefficient, the casting width of the slab by the mold copper plate, the temperature of the cooling water on the inlet side of the mold copper plate and the temperature of the cooling water on the outlet side of the mold copper plate (Linear approximation). Next, the calculated temperature of the mold copper plate is corrected using the estimated temperature distribution. Thereby, it is possible to calculate the temperature at an arbitrary position in the thickness direction of the casting copper plate (direction facing the molten metal) regardless of the depth of the hole serving as the reflection source.

また、前記課題を解決するため、本発明は、溶融金属の連続鋳造用鋳型を構成し、溶融金属との近接面に対向する面で開口し内部に延びる孔が超音波の反射源として設けられた鋳型銅板の温度を測定する装置であって、前記反射源に向けて、前記鋳型銅板の溶融金属との近接面に対して略平行な方向に超音波を伝搬させる超音波送受信子と、前記反射源で反射し前記超音波送受信子によって検出した超音波エコーの伝搬時間と、超音波の伝搬速度の温度依存性とに基づき、前記鋳型銅板の温度を算出する演算手段とを備え、前記演算手段は、前記算出した前記鋳型銅板の温度と、前記反射源の中心の位置と、前記鋳型銅板の冷却条件によって定まる前記鋳型銅板と前記鋳型銅板用の冷却水との熱伝達率、前記鋳型銅板による鋳片の鋳造幅、前記鋳型銅板入側の前記冷却水の温度及び前記鋳型銅板出側の前記冷却水の温度とに基づき、前記鋳型銅板の前記溶融金属との対向方向の温度分布を推定し、前記算出した前記鋳型銅板の温度を前記推定した温度分布を用いて、前記鋳型銅板の前記溶融金属との対向方向の任意の位置の温度に補正することを特徴とする連続鋳造用鋳型銅板の温度測定装置としても提供される。 Further, in order to solve the above-mentioned problems, the present invention constitutes a mold for continuous casting of molten metal, and a hole that opens at a surface facing a surface close to the molten metal and extends inside is provided as an ultrasonic reflection source. An apparatus for measuring the temperature of the mold copper plate, the ultrasonic transceiver for propagating ultrasonic waves in a direction substantially parallel to a surface near the molten metal of the mold copper plate toward the reflection source, A calculation means for calculating a temperature of the mold copper plate based on a propagation time of an ultrasonic echo reflected by a reflection source and detected by the ultrasonic transceiver and a temperature dependence of an ultrasonic propagation speed; The means includes the calculated temperature of the mold copper plate, the position of the center of the reflection source, the heat transfer coefficient between the mold copper plate and the cooling water for the mold copper plate determined by the cooling condition of the mold copper plate, the mold copper plate Casting width of slab by, before Based on the temperature of the cooling water on the mold copper plate entry side and the temperature of the cooling water on the mold copper plate exit side, the temperature distribution of the mold copper plate facing the molten metal is estimated, and the calculated mold copper plate is calculated. The temperature of the mold is corrected to a temperature at an arbitrary position in the facing direction of the mold copper plate with respect to the molten metal using the estimated temperature distribution. Is done.

本発明に係る連続鋳造用鋳型銅板の温度測定方法及び装置によれば、超音波の反射源として、鋳型銅板の溶融金属との近接面に対向する面で開口し、前記鋳型銅板の内部に延びる孔を設けた場合において、当該孔の深さに関わらず、精度良く鋳型銅板の温度を測定することが可能である。   According to the method and apparatus for measuring the temperature of a continuous casting mold copper plate according to the present invention, an opening is formed on the surface of the mold copper plate facing the proximity surface of the molten metal of the mold copper plate, and extends into the mold copper plate. When a hole is provided, it is possible to accurately measure the temperature of the mold copper plate regardless of the depth of the hole.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について、溶融金属が溶鋼であり、連続鋳造用鋳型が四角筒状で鋳型銅板が平板状である場合を例に挙げて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings, taking as an example a case where the molten metal is molten steel, the continuous casting mold is a rectangular tube shape, and the mold copper plate is a flat plate shape.

図3は、本発明に係る連続鋳造用鋳型銅板の温度測定装置(以下、適宜「温度測定装置」と略称する)の構成例を模式的に示す図である。図3(a)は温度測定装置の概略構成を鋳型銅板の幅方向から見た図を、図3(b)は温度測定装置の概略構成を鋳型銅板の背面側(溶鋼との近接面に対向する面側)から見た図を、図3(c)は温度測定装置の概略構成を鋳型銅板の上方から見た図を示す。なお、図3(a)では反射源R1〜R7及び熱電対TCを透過して図示している。図3(c)では反射源R1〜R7を透過して図示している。図3(b)、(c)では送受信制御装置2及び演算制御装置3の図示を省略している。
図3に示すように、本実施形態に係る温度測定装置100は、溶鋼Mとの近接面C1に対向する面C2で開口し内部に延びる孔が超音波の反射源Rとして設けられた鋳型銅板Cの温度を測定する装置である。対向面C2には、鋳型銅板Cを冷却するための冷却水路WCが所定のピッチで設けられている。本実施形態に係る温度測定装置100は、反射源Rに向けて、鋳型銅板Cの溶鋼Mとの近接面C1に対して略平行な方向に超音波Uを伝搬させる超音波送受信子1と、反射源Rで反射し超音波送受信子1によって検出した超音波エコーの伝搬時間と、超音波の伝搬速度の温度依存性とに基づき、鋳型銅板Cの温度を算出する演算手段とを備えている。
FIG. 3 is a diagram schematically showing a configuration example of a temperature measuring device for a continuous casting mold copper plate according to the present invention (hereinafter, abbreviated as “temperature measuring device” as appropriate). FIG. 3A is a diagram showing the schematic configuration of the temperature measuring device viewed from the width direction of the mold copper plate, and FIG. 3B is the schematic configuration of the temperature measuring device facing the back side of the mold copper plate (facing the surface close to the molten steel). 3 (c) shows a schematic configuration of the temperature measuring device viewed from above the mold copper plate. In FIG. 3A, the reflection sources R1 to R7 and the thermocouple TC are shown. In FIG. 3C, the light is transmitted through the reflection sources R1 to R7. In FIG. 3B and FIG. 3C, the transmission / reception control device 2 and the arithmetic control device 3 are not shown.
As shown in FIG. 3, the temperature measuring apparatus 100 according to the present embodiment is a mold copper plate in which a hole opened as a surface C2 facing the proximity surface C1 with the molten steel M and extending inward is provided as an ultrasonic reflection source R. This is a device for measuring the temperature of C. On the facing surface C2, cooling water channels WC for cooling the mold copper plate C are provided at a predetermined pitch. The temperature measuring apparatus 100 according to the present embodiment has an ultrasonic transmitter / receiver 1 that propagates an ultrasonic wave U in a direction substantially parallel to a proximity surface C1 with the molten steel M of the mold copper plate C toward the reflection source R; Calculation means for calculating the temperature of the mold copper plate C based on the propagation time of the ultrasonic echo reflected by the reflection source R and detected by the ultrasonic transceiver 1 and the temperature dependence of the propagation speed of the ultrasonic wave is provided. .

また、図3に示すように、本実施形態に係る温度測定装置100は、超音波送受信子1による超音波Uの送受信を制御する送受信制御装置2と、送受信制御装置2を駆動制御すると共に、送受信制御装置2からの出力信号を演算処理する演算制御手段3とを備えている。本実施形態では、演算制御装置3が具備する演算部が前述した演算手段としての機能を奏する。   As shown in FIG. 3, the temperature measurement apparatus 100 according to the present embodiment drives and controls the transmission / reception control apparatus 2 that controls transmission / reception of the ultrasonic wave U by the ultrasonic transmission / reception element 1, and the transmission / reception control apparatus 2. Computation control means 3 for computing the output signal from the transmission / reception control device 2 is provided. In the present embodiment, the calculation unit included in the calculation control device 3 functions as the calculation means described above.

超音波送受信子1及び送受信制御装置2の具体的な構成は、前述した特許文献2に記載の構成と同様である。また、反射源Rの具体的な構成についても、前述した特許文献2に記載の構成と同様である。このため、ここではこれらの具体的な構成についての説明は省略する。
以下、演算制御装置3の演算部(演算手段)における演算内容について、順次説明する。
Specific configurations of the ultrasonic transmitter / receiver 1 and the transmission / reception control device 2 are the same as those described in Patent Document 2 described above. The specific configuration of the reflection source R is also the same as the configuration described in Patent Document 2 described above. For this reason, the description about these specific structures is abbreviate | omitted here.
Hereinafter, the calculation contents in the calculation unit (calculation means) of the calculation control device 3 will be sequentially described.

演算制御装置3の演算部には、超音波送受信子1から反射源Rまでの距離(超音波入射点である鋳型銅板Cの上面から反射源Rまでの距離)Lや、予め求めた鋳型銅板Cにおける超音波の伝搬速度の温度依存性(伝搬速度と温度の対応関係)が予め記憶されている。
演算部は、送受信制御装置2から出力されたエコー信号に基づき、反射源Rで反射し超音波送受信子1によって検出した超音波エコーの伝搬時間Tを算出する。
次に、演算部は、算出した伝搬時間Tと、超音波送受信子1から反射源Rまでの距離Lとに基づいて、以下の式(1)により超音波の伝搬速度を求める。
超音波の伝搬速度=(反射源Rまでの距離L)×2/伝搬時間T ・・・(1)
最後に、演算部は、この伝搬速度と、予め記憶された超音波の伝搬速度の温度依存性とに基づき、鋳型銅板Cの温度を算出する。この算出した温度は、超音波入射点(鋳型銅板Cの上面)から反射源Rまでの間の平均温度に相当する。
なお、鋳型銅板Cにおける超音波の伝搬速度の温度依存性の求め方としては、前述した特許文献2に記載の方法と同様の方法を用いることができる。
The calculation unit of the calculation control device 3 includes a distance L from the ultrasonic transmitter / receiver 1 to the reflection source R (a distance from the upper surface of the mold copper plate C to the reflection source R, which is an ultrasonic incident point) L, and a previously obtained mold copper plate. The temperature dependence of the ultrasonic wave propagation speed in C (correspondence between propagation speed and temperature) is stored in advance.
Based on the echo signal output from the transmission / reception control device 2, the calculation unit calculates the propagation time T of the ultrasonic echo reflected by the reflection source R and detected by the ultrasonic transceiver 1.
Next, the calculation unit obtains the ultrasonic wave propagation speed by the following equation (1) based on the calculated propagation time T and the distance L from the ultrasonic transceiver 1 to the reflection source R.
Ultrasonic propagation speed = (distance L to the reflection source R) × 2 / propagation time T (1)
Finally, the calculation unit calculates the temperature of the mold copper plate C based on the propagation speed and the temperature dependence of the ultrasonic propagation speed stored in advance. This calculated temperature corresponds to the average temperature from the ultrasonic incident point (the upper surface of the casting copper plate C) to the reflection source R.
As a method for obtaining the temperature dependence of the ultrasonic wave propagation speed in the mold copper plate C, a method similar to the method described in Patent Document 2 described above can be used.

以上のようにして鋳型銅板Cの温度を算出した後、演算制御装置3の演算部は、算出した鋳型銅板Cの温度Tuと、鋳型銅板Cの冷却条件によって定まる鋳型銅板Cと鋳型銅板C用の冷却水との熱伝達率α、鋳型銅板Cによる鋳片(溶鋼M)の鋳造幅W、鋳型銅板C入側の冷却水の温度Ti及び鋳型銅板C出側の冷却水の温度Toとに基づき、鋳型銅板Cの溶鋼Mとの対向方向(鋳型銅板Cの厚み方向)の温度分布Tmpを推定し、前記算出した鋳型銅板Cの温度Tuを推定した温度分布Tmpを用いて補正する。   After calculating the temperature of the mold copper plate C as described above, the calculation unit of the calculation control device 3 uses the calculated temperature Cu of the mold copper plate C and the cooling condition of the mold copper plate C for the mold copper plate C and the mold copper plate C. The heat transfer coefficient α with the cooling water, the casting width W of the slab (molten steel M) from the mold copper plate C, the temperature Ti of the cooling water on the inlet side of the mold copper plate C, and the temperature To of the cooling water on the outlet side of the mold copper plate C Based on the estimated temperature distribution Tmp of the mold copper plate C facing the molten steel M (the thickness direction of the mold copper plate C), the temperature distribution Tmp of the calculated mold copper plate C is corrected.

図4は、鋳型銅板Cの溶融金属(溶鋼M)との対向方向(鋳型銅板Cの厚み方向)の温度分布Tmpを推定する方法を説明する説明図である。
鋳型銅板Cは、溶鋼Mから鋳型銅板C用の冷却水に熱を伝える役目を奏する。このため、鋳型銅板Cの厚み方向の温度分布Tmpを推定するに際し、鋳型銅板C内での熱量を推定する必要がある。溶鋼Mから鋳型銅板Cへの単位時間当たりの入熱量は、溶鋼Mの温度と鋳造速度とによって変化する。一方、鋳型銅板Cからの単位時間当たりの抜熱量は、鋳型銅板C用の冷却水の水量、鋳型銅板C入側の冷却水の温度Ti及び鋳型銅板C出側の冷却水の温度Toによって変化する。また、抜熱量は、鋳片の鋳造幅Wによっても変化する。仮に、鋳型で鋳造され得る鋳片の最大鋳造幅Wmaxが2000mmであり、これに対応するため鋳型銅板Cを冷却するための冷却水路WCを鋳型銅板Cの幅方向に2000mmに亘って設けられているとする。この場合、実際の鋳片の鋳造幅Wが2000mmの場合と1000mmの場合とでは、実際に抜熱に寄与する冷却水路WCが変化するため、鋳型銅板Cからの抜熱量も変化することになる。このため、例えば、鋳型銅板C入側の冷却水の温度Tiと鋳型銅板C出側の冷却水の温度Toとの差が5℃であっても、鋳型銅板Cの厚み方向の温度分布Tmpは大きく異なることになる。
従って、鋳型銅板Cの厚み方向の温度分布Tmpを推定するには、鋳型銅板C用の冷却水の水量(換言すれば、鋳型銅板Cと鋳型銅板C用の冷却水との熱伝達率α)、鋳型銅板Cによる鋳片(溶鋼M)の鋳造幅W、鋳型銅板C入側の冷却水の温度Ti及び鋳型銅板C出側の冷却水の温度Toが必要である。
FIG. 4 is an explanatory diagram for explaining a method for estimating the temperature distribution Tmp in the direction of the mold copper plate C facing the molten metal (molten steel M) (the thickness direction of the mold copper plate C).
The mold copper plate C plays a role of transferring heat from the molten steel M to the cooling water for the mold copper plate C. For this reason, when estimating the temperature distribution Tmp in the thickness direction of the mold copper plate C, it is necessary to estimate the amount of heat in the mold copper plate C. The amount of heat input per unit time from the molten steel M to the mold copper plate C varies depending on the temperature of the molten steel M and the casting speed. On the other hand, the amount of heat removed from the mold copper plate C per unit time varies depending on the amount of cooling water for the mold copper plate C, the temperature Ti of the cooling water on the inlet side of the mold copper plate C, and the temperature To of the cooling water on the outlet side of the mold copper plate C. To do. Further, the heat removal amount also varies depending on the casting width W of the slab. Temporarily, the maximum casting width Wmax of the slab which can be cast with a mold is 2000 mm, and a cooling water channel WC for cooling the mold copper plate C is provided over 2000 mm in the width direction of the mold copper plate C to cope with this. Suppose that In this case, since the cooling water channel WC that actually contributes to heat removal changes between the case where the actual casting width W of the slab is 2000 mm and 1000 mm, the amount of heat removed from the mold copper plate C also changes. . For this reason, for example, even if the difference between the cooling water temperature Ti on the mold copper plate C entry side and the cooling water temperature To on the mold copper plate C exit side is 5 ° C., the temperature distribution Tmp in the thickness direction of the mold copper plate C is It will be very different.
Therefore, in order to estimate the temperature distribution Tmp in the thickness direction of the mold copper plate C, the amount of cooling water for the mold copper plate C (in other words, the heat transfer coefficient α between the mold copper plate C and the cooling water for the mold copper plate C). The casting width W of the slab (molten steel M) from the mold copper plate C, the cooling water temperature Ti on the mold copper plate C entry side, and the cooling water temperature To on the mold copper plate C exit side are required.

以上に述べたような考えに基づき、具体的には、図4に示すように、溶融金属(溶鋼M)との近接面C1からの距離(鋳型銅板Cの厚み方向の距離)Zを横軸とし、鋳型銅板Cの温度Tを縦軸とした場合に、(Zu,Tu)、(Zb,Tw)の2点を通る直線で、鋳型銅板Cの温度分布Tmpを近似する。より具体的には、温度分布Tmpは、以下の式(2)〜(6)で表わされる。
Tmp=aa×Z+bb ・・・(2)
aa=G1(Tw−Tu)/(Zb−Zu)+G2 ・・・(3)
Tw=(Ti−To)×Wmax/W ・・・(4)
Zb=f(α)+G3 ・・・(5)
bb=Tw−aa×Zb ・・・(6)
ここで、Zuは反射源Rの中心の位置(鋳型銅板Cの厚み方向の位置)、Tuは前述のようにして算出した鋳型銅板Cの温度Tuを意味する。また、Zbは温度Twが得られると考えられる鋳型銅板Cの厚み方向の位置を意味し、鋳型銅板Cの冷却条件(冷却水の水量や、冷却水路WCの深さ、ピッチ、溶鋼Mとの近接面C1からの距離など)によって定まる熱伝達率αの関数f(α)で表わされる。さらに、G1、G2、G3は定数(後述する実施例では、G1=1、G2=G3=0)である。
Based on the idea as described above, specifically, as shown in FIG. 4, the distance (distance in the thickness direction of the mold copper plate C) Z from the adjacent surface C1 to the molten metal (molten steel M) is represented by the horizontal axis. When the temperature T of the mold copper plate C is the vertical axis, the temperature distribution Tmp of the mold copper plate C is approximated by a straight line passing through two points (Zu, Tu) and (Zb, Tw). More specifically, the temperature distribution Tmp is expressed by the following formulas (2) to (6).
Tmp = aa × Z + bb (2)
aa = G1 (Tw−Tu) / (Zb−Zu) + G2 (3)
Tw = (Ti−To) × Wmax / W (4)
Zb = f (α) + G3 (5)
bb = Tw−aa × Zb (6)
Here, Zu means the center position of the reflection source R (position in the thickness direction of the mold copper plate C), and Tu means the temperature Tu of the mold copper plate C calculated as described above. Zb means the position in the thickness direction of the mold copper plate C where the temperature Tw is considered to be obtained, and the cooling conditions of the mold copper plate C (the amount of cooling water, the depth of the cooling water channel WC, the pitch, and the molten steel M It is represented by a function f (α) of the heat transfer coefficient α determined by the distance from the proximity surface C1). Furthermore, G1, G2, and G3 are constants (in the embodiment described later, G1 = 1, G2 = G3 = 0).

Zbを求めるには、例えば、以下のような方法が考えられる。まず、オフラインにて、鋳型銅板Cの冷却条件を種々変更して(すなわち、熱伝達率αを種々の値に変更して)、熱電対TCで鋳型銅板Cの厚み方向に異なる複数の位置の温度を測定する。次に、これらの測温結果を用いて差分法等の伝熱計算を行い、温度Twが得られる鋳型銅板Cの厚み方向の位置Zbを熱伝達率α毎に決定する。最後に、この決定した位置とこの位置が得られたときの熱伝達率αとをパラメータとして回帰計算を行い、両者の関係を算出する。すなわち、Zbを熱伝達率αの関数として表わす。   In order to obtain Zb, for example, the following method can be considered. First, various cooling conditions of the mold copper plate C are changed offline (that is, the heat transfer coefficient α is changed to various values), and a plurality of positions different in the thickness direction of the mold copper plate C by the thermocouple TC are set. Measure the temperature. Next, heat transfer calculation such as a difference method is performed using these temperature measurement results, and a position Zb in the thickness direction of the mold copper plate C at which the temperature Tw is obtained is determined for each heat transfer coefficient α. Finally, regression calculation is performed using the determined position and the heat transfer coefficient α when the position is obtained as parameters, and the relationship between the two is calculated. That is, Zb is expressed as a function of the heat transfer coefficient α.

なお、熱伝達率αは、以下の式(7)で表わされる。
α=Nu×λ/L ・・・(7)
ここで、Nuはヌセルト数、λは水の熱伝導率、Lは冷却水路WCの代表長さを意味する。具体的には、Lは以下の式(8)で表わされる。
L=4×(冷却水路WCの横断面積)/(冷却水路WCの濡れ縁長さ) ・・・(8)
The heat transfer coefficient α is expressed by the following formula (7).
α = Nu × λ / L (7)
Here, Nu is the Nusselt number, λ is the thermal conductivity of water, and L is the representative length of the cooling water channel WC. Specifically, L is represented by the following formula (8).
L = 4 × (cross-sectional area of cooling water channel WC) / (wetting edge length of cooling water channel WC) (8)

また、ヌセルト数Nuは、円管内乱流の場合、以下の式(9)(Colburnの式)で表わされる。
Nu=0.023×Re4/5×Pr(冷却するときはn=0.3) ・・・(9)
ここで、Reはレイノルズ数であり、冷却水路WC内の冷却水の流速をU、水の動粘性係数をν、前述のように冷却水路WCの代表長さをLとしたとき、以下の式(10)で表わされる。また、Prはプラントル数を意味する。
Re=U×L/ν ・・・(10)
The Nusselt number Nu is expressed by the following equation (9) (Colburn equation) in the case of turbulent pipe flow.
Nu = 0.023 × Re 4/5 × Pr n (when cooling, n = 0.3) (9)
Here, Re is the Reynolds number, the flow rate of cooling water in the cooling water channel WC is U, the kinematic viscosity coefficient of water is ν, and the representative length of the cooling water channel WC is L as described above, the following equation: It is represented by (10). Pr means the Prandtl number.
Re = U × L / ν (10)

以上のようにして、鋳型銅板Cの厚み方向の温度分布Tmpを推定すれば、算出した鋳型銅板Cの温度Tuが、溶鋼Mとの近接面C1からの距離がZuの位置(反射源Rの中心位置がZu)における温度であったとしても、鋳型銅板Cの厚み方向の任意の位置Zにおける温度に補正することが可能である。すなわち、温度を算出したい位置Zを前述した式(2)に代入することにより、その位置Zにおける温度Tmpを算出可能である。   As described above, if the temperature distribution Tmp in the thickness direction of the mold copper plate C is estimated, the calculated temperature Tu of the mold copper plate C is the position where the distance from the proximity surface C1 to the molten steel M is Zu (of the reflection source R). Even if the center position is the temperature at Zu), it is possible to correct the temperature at an arbitrary position Z in the thickness direction of the mold copper plate C. That is, the temperature Tmp at the position Z can be calculated by substituting the position Z where the temperature is to be calculated into the above-described equation (2).

以下、垂直曲げ型の連続鋳造機で連続鋳造試験を行い、本実施形態に係る温度測定装置100を用いて、鋳型銅板Cの温度を測定した結果の一例について説明する。
図3に示すように、鋳型銅板Cの上面に計7つの超音波送受信子1を設置し、各超音波送受信子1から送信される超音波Uの伝搬経路中に反射源R(R1〜R7)を1つずつ設けた。反射源R1、R2は、鋳型銅板Cの幅方向についての互いの離間距離を20mmに近接させると共に、鋳型銅板Cの上面からの距離を200mmとした。また、反射源R3〜R5は、鋳型銅板Cの幅方向についての互いの離間距離を20mmに近接させると共に、鋳型銅板Cの上面からの距離を300mmとした。さらに、反射源R6、R7は、鋳型銅板Cの幅方向についての互いの離間距離を20mmに近接させると共に、鋳型銅板Cの上面からの距離を500mmとした。反射源R5、R7の中心位置(鋳型銅板Cの厚み方向の位置)は溶鋼Mとの近接面C1から13mmとした。また、反射源R1、R4、R6の中心位置(鋳型銅板Cの厚み方向の位置)は溶鋼Mとの近接面C1から18mmとした。さらに、反射源R2、R3の中心位置(鋳型銅板Cの厚み方向の位置)は溶鋼Mとの近接面C1から23mmとした。
また、温度測定装置100による測温結果を比較検証するために、各反射源Rの近傍に熱電対TCを設置した。熱電対TCの測温点(熱電対TCの先端)は、溶鋼Mとの近接面C1から18mmに配置した。
Hereinafter, an example of a result obtained by performing a continuous casting test using a vertical bending type continuous casting machine and measuring the temperature of the mold copper plate C using the temperature measuring apparatus 100 according to the present embodiment will be described.
As shown in FIG. 3, a total of seven ultrasonic transceivers 1 are installed on the upper surface of the mold copper plate C, and the reflection sources R (R1 to R7) are included in the propagation path of the ultrasonic wave U transmitted from each ultrasonic transceiver 1. ) Are provided one by one. In the reflection sources R1 and R2, the distance from each other in the width direction of the mold copper plate C was set to 20 mm, and the distance from the upper surface of the mold copper plate C was set to 200 mm. In addition, the reflection sources R3 to R5 have a distance of 20 mm from each other in the width direction of the mold copper plate C and a distance from the upper surface of the mold copper plate C of 300 mm. Further, in the reflection sources R6 and R7, the distance from each other in the width direction of the mold copper plate C is set close to 20 mm, and the distance from the upper surface of the mold copper plate C is set to 500 mm. The center position of the reflection sources R5 and R7 (position in the thickness direction of the casting copper plate C) was 13 mm from the proximity surface C1 with the molten steel M. The center position of the reflection sources R1, R4, and R6 (position in the thickness direction of the mold copper plate C) was set to 18 mm from the proximity surface C1 with the molten steel M. Furthermore, the center position of the reflection sources R2 and R3 (position in the thickness direction of the mold copper plate C) was 23 mm from the proximity surface C1 with the molten steel M.
Further, in order to compare and verify the temperature measurement results obtained by the temperature measuring device 100, a thermocouple TC was installed in the vicinity of each reflection source R. The temperature measuring point of the thermocouple TC (the tip of the thermocouple TC) was placed 18 mm from the proximity surface C1 with the molten steel M.

各反射源R1〜R7から反射し各超音波送受信子1によって検出した超音波エコーに基づき鋳型銅板Cの温度を算出した結果(条件1〜7)と、条件2、3、5、7で算出した温度を、推定した温度分布Tmpを用いて補正した結果(条件8〜11)を表1に示す。

Figure 0005804384
Results of calculating the temperature of the mold copper plate C based on the ultrasonic echoes reflected from the respective reflection sources R1 to R7 and detected by the respective ultrasonic transceivers 1 (conditions 1 to 7), and calculated according to the conditions 2, 3, 5, and 7. Table 1 shows the results (conditions 8 to 11) of correcting the calculated temperature using the estimated temperature distribution Tmp.
Figure 0005804384

表1に示すように、反射源R1の中心位置(鋳型銅板Cの厚み方向の位置)が熱電対TCの測温点と等しい(双方共に、溶鋼Mとの近接面C1から18mm)条件1では、測温値が熱電対TCの指示とほぼ同じになっている。しかしながら、反射源R2の中心位置が熱電対TCの測温点よりも溶鋼Mとの近接面C1から遠い(溶鋼Mとの近接面C1から23mm)条件2では、測温値が熱電対TCの指示よりも低くなっている。   As shown in Table 1, the center position of the reflection source R1 (position in the thickness direction of the mold copper plate C) is equal to the temperature measuring point of the thermocouple TC (both are 18 mm from the proximity surface C1 with the molten steel M). The temperature measurement value is almost the same as the instruction of the thermocouple TC. However, in the condition 2 where the center position of the reflection source R2 is farther from the proximity surface C1 with the molten steel M than the temperature measurement point of the thermocouple TC (23 mm from the proximity surface C1 with the molten steel M), the temperature measurement value is that of the thermocouple TC. Lower than indicated.

これに対し、条件2で算出した温度を、推定した温度分布Tmpを用いて補正した条件8では、測温値が熱電対TCの指示とほぼ同じになっている。
条件8での補正の手順は、具体的には以下のとおりである。
まず、鋳型銅板Cの冷却条件を種々変更して行ったオフライン試験に基づき、前述した式(5)を求めたところ(G3=0とした)、以下の式(5)’が得られた。
Zb=2.62×10−5×α×14.38 ・・・(5)’
そして、条件2での鋳型銅板Cの冷却条件(条件8も同じ冷却条件)から前述した式(7)〜(10)を用いて導出した熱伝達率αを上記式(5)’に代入すると、Zb=28.4mmが得られた。
また、条件2では、反射源R2の中心位置Zu=23mm、測温値Tu=67℃である。
さらに、条件2では(条件8も同じ)、鋳型銅板C入側と出側の冷却水の温度差Ti−To=38℃、最大鋳造幅Wmax=1250mm、実際の鋳造幅W=1200mmであったため、前述した式(4)より、Tw=36℃であった。
上記のTw=36℃、Tu=67℃、Zb=28.4mm、Zu=23mmを前述した式(3)(G1=1、G2=0とした)に代入すると、aa=−5.74が得られた。また、上記のTw=36℃、aa=−5.74、Zb=28.4mmを前述した式(6)に代入すると、bb=199が得られた。
従って、前述した式(2)より、温度分布Tmpは、以下の式(2)’で推定される。
Tmp=−5.74×Z+199 ・・・(2)’
この(2)’式において、Zを熱電対TCの測温点と等しい18mmにすると、Tmp=96℃となる。
以上のように、条件8は、条件2での測温値を、温度分布Tmpを用いて熱電対TCの測温点に等しい位置での温度に補正したものであり、これにより、補正後の測温値が熱電対TCの指示とほぼ同じになることがわかる。同様に、条件9は条件3での測温値を、条件10は条件5での測温値を、条件11は条件7での測温値を、それぞれ推定した温度分布Tmpを用いて熱電対TCの測温点に等しい位置での温度に補正したものであり、補正後の測温値が熱電対TCの指示とほぼ同じになることがわかる。
On the other hand, in the condition 8 in which the temperature calculated in the condition 2 is corrected using the estimated temperature distribution Tmp, the temperature measurement value is almost the same as the instruction of the thermocouple TC.
The procedure for correction under condition 8 is specifically as follows.
First, when the above-described equation (5) was obtained (G3 = 0) based on an off-line test performed by variously changing the cooling conditions of the mold copper plate C, the following equation (5) ′ was obtained.
Zb = 2.62 × 10 −5 × α × 14.38 (5) ′
When the heat transfer coefficient α derived from the above-described equations (7) to (10) from the cooling condition of the mold copper plate C under the condition 2 (the same cooling condition as the condition 8) is substituted into the above equation (5) ′. Zb = 28.4 mm was obtained.
In condition 2, the center position Zu of the reflection source R2 is 23 mm, and the temperature measurement value Tu is 67 ° C.
Furthermore, in Condition 2 (Condition 8 is the same), the temperature difference Ti-To = 38 ° C., the maximum casting width Wmax = 1250 mm, and the actual casting width W = 1200 mm of the cooling water on the inlet side and the outlet side of the mold copper plate C. From the above-described formula (4), Tw = 36 ° C.
Substituting the above Tw = 36 ° C., Tu = 67 ° C., Zb = 28.4 mm, and Zu = 23 mm into the above-described equation (3) (G1 = 1, G2 = 0), aa = −5.74 is obtained. Obtained. Moreover, when Tw = 36 ° C., aa = −5.74, and Zb = 28.4 mm were substituted into the above-described formula (6), bb = 199 was obtained.
Accordingly, the temperature distribution Tmp is estimated by the following equation (2) ′ from the above equation (2).
Tmp = −5.74 × Z + 199 (2) ′
In this equation (2) ′, when Z is 18 mm, which is equal to the temperature measuring point of the thermocouple TC, Tmp = 96 ° C.
As described above, the condition 8 is obtained by correcting the temperature measurement value in the condition 2 to a temperature at a position equal to the temperature measurement point of the thermocouple TC using the temperature distribution Tmp. It can be seen that the temperature measurement value is almost the same as the instruction of the thermocouple TC. Similarly, Condition 9 is a temperature measurement value under Condition 3, Condition 10 is a temperature measurement value under Condition 5, and Condition 11 is a temperature measurement value under Condition 7, using the estimated temperature distribution Tmp. It is corrected to the temperature at a position equal to the temperature measurement point of TC, and it can be seen that the temperature measurement value after correction is almost the same as the instruction of the thermocouple TC.

図5は、250トンの溶鋼Mを連続鋳造した際の鋳型銅板Cの測温結果の一例を示す。図5に示す条件1、2、8の条件(反射源Rの位置)は、前述した表1に示すものと同じである。図5に示すように、条件1と条件2では、反射源Rの位置に応じて測温値に大きな差が生じているが、推定した温度分布Tmpを用いて補正する(条件8が補正後の測温値)ことで、測温値の差がほぼ生じない結果となることがわかる。   FIG. 5 shows an example of the temperature measurement result of the mold copper plate C when 250 tons of molten steel M is continuously cast. The conditions 1, 2 and 8 shown in FIG. 5 (the position of the reflection source R) are the same as those shown in Table 1 described above. As shown in FIG. 5, there is a large difference in the measured temperature value depending on the position of the reflection source R between the condition 1 and the condition 2, but the temperature measurement value Tmp is used for correction (condition 8 is corrected) (Temperature measurement value)), it can be seen that the difference in temperature measurement value hardly occurs.

図1は、超音波送受信子から反射源までの距離と、超音波伝搬方向から見た反射源の投影面積と、超音波エコーの検出可否との関係を実際に調査した結果の一例を示す図である。FIG. 1 is a diagram showing an example of a result of an actual investigation on a relationship between a distance from an ultrasonic transmitter / receiver to a reflection source, a projection area of the reflection source viewed from the ultrasonic wave propagation direction, and whether ultrasonic echoes can be detected. It is. 図2は、鋳型銅板の厚み方向の温度分布と、反射源の中心位置との関係を示す図である。FIG. 2 is a diagram showing the relationship between the temperature distribution in the thickness direction of the mold copper plate and the center position of the reflection source. 図3は、本発明に係る連続鋳造用鋳型銅板の温度測定装置の構成例を模式的に示す図である。FIG. 3 is a diagram schematically showing a configuration example of a temperature measuring device for a continuous casting mold copper plate according to the present invention. 図4は、鋳型銅板の溶融金属との対向方向の温度分布を推定する方法を説明する説明図である。FIG. 4 is an explanatory diagram for explaining a method for estimating a temperature distribution in a direction in which the mold copper plate faces the molten metal. 図5は、250トンの溶鋼Mを連続鋳造した際の鋳型銅板の測温結果の一例を示す。FIG. 5 shows an example of the temperature measurement result of the mold copper plate when 250 tons of molten steel M is continuously cast.

1・・・超音波送受信子
2・・・送受信制御装置
3・・・演算制御装置(演算手段)
100・・・連続鋳造用鋳型銅板の温度測定装置
C・・・鋳型銅板
M・・・溶融金属(溶鋼)
R・・・反射源
U・・・超音波
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic transmitter / receiver 2 ... Transmission / reception control apparatus 3 ... Calculation control apparatus (calculation means)
100 ... Temperature measuring device C for mold copper plate for continuous casting C ... Mold copper plate M ... Molten metal (molten steel)
R ... Reflection source
U ... Ultrasonic

Claims (2)

溶融金属の連続鋳造用鋳型を構成する鋳型銅板の温度を測定する方法であって、
超音波の反射源として、前記鋳型銅板の溶融金属との近接面に対向する面で開口し、前記鋳型銅板の内部に延びる孔を設ける第1の手順と、
前記反射源に向けて、超音波送受信子から前記鋳型銅板の溶融金属との近接面に対して略平行な方向に超音波を伝搬させる第2の手順と、
前記反射源で反射し前記超音波送受信子によって検出した超音波エコーの伝搬時間と、超音波の伝搬速度の温度依存性とに基づき、前記鋳型銅板の温度を算出する第3の手順と、
前記第3の手順で算出した前記鋳型銅板の温度と、前記反射源の中心の位置と、前記鋳型銅板の冷却条件によって定まる前記鋳型銅板と前記鋳型銅板用の冷却水との熱伝達率、前記鋳型銅板による鋳片の鋳造幅、前記鋳型銅板入側の前記冷却水の温度及び前記鋳型銅板出側の前記冷却水の温度とに基づき、前記鋳型銅板の前記溶融金属との対向方向の温度分布を推定し、前記第3の手順で算出した前記鋳型銅板の温度を前記推定した温度分布を用いて、前記鋳型銅板の前記溶融金属との対向方向の任意の位置の温度に補正する第4の手順と、を含むことを特徴とする連続鋳造用鋳型銅板の温度測定方法。
A method for measuring the temperature of a mold copper plate constituting a continuous casting mold for molten metal,
As a reflection source of ultrasonic waves, a first procedure is provided in which a hole is opened on a surface of the mold copper plate that faces a surface close to the molten metal and extends into the mold copper plate;
A second procedure for propagating ultrasonic waves from the ultrasonic transmitter / receiver toward the reflection source in a direction substantially parallel to a surface near the molten metal of the mold copper plate;
A third procedure for calculating the temperature of the mold copper plate based on the propagation time of the ultrasonic echo reflected by the reflection source and detected by the ultrasonic transceiver and the temperature dependence of the propagation speed of the ultrasonic wave;
The temperature of the mold copper plate calculated in the third procedure, the position of the center of the reflection source, and the heat transfer coefficient between the mold copper plate and the cooling water for the mold copper plate determined by the cooling condition of the mold copper plate, Based on the casting width of the slab by the mold copper plate, the temperature of the cooling water on the mold copper plate entrance side and the temperature of the cooling water on the mold copper plate exit side, the temperature distribution in the direction of the mold copper plate facing the molten metal And the temperature of the mold copper plate calculated in the third procedure is corrected to a temperature at an arbitrary position in the direction of facing the molten metal of the mold copper plate using the estimated temperature distribution. And a temperature measurement method for a continuous casting mold copper plate.
溶融金属の連続鋳造用鋳型を構成し、溶融金属との近接面に対向する面で開口し内部に延びる孔が超音波の反射源として設けられた鋳型銅板の温度を測定する装置であって、
前記反射源に向けて、前記鋳型銅板の溶融金属との近接面に対して略平行な方向に超音波を伝搬させる超音波送受信子と、
前記反射源で反射し前記超音波送受信子によって検出した超音波エコーの伝搬時間と、超音波の伝搬速度の温度依存性とに基づき、前記鋳型銅板の温度を算出する演算手段とを備え、
前記演算手段は、前記算出した前記鋳型銅板の温度と、前記反射源の中心の位置と、前記鋳型銅板の冷却条件によって定まる前記鋳型銅板と前記鋳型銅板用の冷却水との熱伝達率、前記鋳型銅板による鋳片の鋳造幅、前記鋳型銅板入側の前記冷却水の温度及び前記鋳型銅板出側の前記冷却水の温度とに基づき、前記鋳型銅板の前記溶融金属との対向方向の温度分布を推定し、前記算出した前記鋳型銅板の温度を前記推定した温度分布を用いて、前記鋳型銅板の前記溶融金属との対向方向の任意の位置の温度に補正することを特徴とする連続鋳造用鋳型銅板の温度測定装置。
A device for measuring the temperature of a mold copper plate, which comprises a mold for continuous casting of molten metal, and has a hole opened as a reflection source of ultrasonic waves, which is opened at a surface facing a surface close to the molten metal and extends inside,
An ultrasonic transmitter / receiver for propagating ultrasonic waves in a direction substantially parallel to a surface near the molten metal of the mold copper plate toward the reflection source;
Based on the propagation time of the ultrasonic echo reflected by the reflection source and detected by the ultrasonic transceiver and the temperature dependence of the propagation speed of the ultrasonic wave, the calculation means for calculating the temperature of the mold copper plate,
The calculation means includes the calculated temperature of the mold copper plate, the position of the center of the reflection source, and the heat transfer coefficient between the mold copper plate and the cooling water for the mold copper plate determined by the cooling condition of the mold copper plate, Based on the casting width of the slab by the mold copper plate, the temperature of the cooling water on the mold copper plate entrance side and the temperature of the cooling water on the mold copper plate exit side, the temperature distribution in the direction of the mold copper plate facing the molten metal And the calculated temperature of the mold copper plate is corrected to a temperature at an arbitrary position in the direction of facing the molten metal of the mold copper plate using the estimated temperature distribution. Temperature measuring device for mold copper plate.
JP2012188522A 2012-08-29 2012-08-29 Method and apparatus for measuring temperature of continuous casting mold copper plate Active JP5804384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188522A JP5804384B2 (en) 2012-08-29 2012-08-29 Method and apparatus for measuring temperature of continuous casting mold copper plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188522A JP5804384B2 (en) 2012-08-29 2012-08-29 Method and apparatus for measuring temperature of continuous casting mold copper plate

Publications (2)

Publication Number Publication Date
JP2014046312A JP2014046312A (en) 2014-03-17
JP5804384B2 true JP5804384B2 (en) 2015-11-04

Family

ID=50606536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188522A Active JP5804384B2 (en) 2012-08-29 2012-08-29 Method and apparatus for measuring temperature of continuous casting mold copper plate

Country Status (1)

Country Link
JP (1) JP5804384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211234B2 (en) * 2019-04-11 2023-01-24 日本製鉄株式会社 Installation structure of thermocouple for continuous casting mold, method for measuring temperature of continuous casting mold, and continuous casting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031180A (en) * 2007-07-30 2009-02-12 Central Res Inst Of Electric Power Ind Method and device for measuring internal temperature
JP5029954B2 (en) * 2007-09-27 2012-09-19 住友金属工業株式会社 Method and apparatus for measuring temperature of continuous casting mold copper plate

Also Published As

Publication number Publication date
JP2014046312A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
WO2010106633A1 (en) Temperature measuring method and device for continuous-casting mold copper plate
JP2011245507A (en) Estimating method for in-mold condition in continuous casting, device, and program
WO2013094194A1 (en) Method for estimating slab temperature in continuous casting, method for estimating coagulation completion state of slab, and method for continuous casting
JP5387508B2 (en) Continuous casting method, continuous casting control device and program
JP2006192473A (en) Method for measuring level of molten steel in casting mold of continuous casting facility
JP5804384B2 (en) Method and apparatus for measuring temperature of continuous casting mold copper plate
JP5092631B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP5690230B2 (en) Method for measuring molten layer thickness of mold powder for continuous casting
JP5949315B2 (en) Manufacturing method of continuous cast slab
JP2008070340A (en) Temperature measuring method using ultrasonic wave
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP2000246413A (en) Method for estimating flowing speed of molten steel in mold for continuous casting
JP5029954B2 (en) Method and apparatus for measuring temperature of continuous casting mold copper plate
JP5800241B2 (en) Measuring method of molten metal level and mold powder thickness in continuous casting mold
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
KR101089648B1 (en) Apparatus for wave soldering
JP2009068914A (en) Inner state measuring instrument, inner state measuring method, program and computer readable storage medium
JP2007033077A (en) Metal mold material surface temperature measuring method and its instrument, and mold release agent evaluation method and its device
JP5408040B2 (en) Continuous casting method, continuous casting control device and program
JP4296946B2 (en) Method and device for detecting solidification completion position of continuous cast slab
JP2010214432A (en) Apparatus for measuring surface temperature of thick steel plate and method of judging material of the same
JP2005262283A (en) Method for detecting solidifying condition in mold during continuous casting
JP5768700B2 (en) Slab temperature estimation method and slab temperature estimation device
JP2005010139A (en) Residual thickness measuring method and device for furnace refractory using elastic wave
TW201331550A (en) Ultrasonic measurement method and device for measuring thickness of cooling wall of blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R151 Written notification of patent or utility model registration

Ref document number: 5804384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350