JP5803754B2 - Manufacturing method of molten metal plated steel strip - Google Patents

Manufacturing method of molten metal plated steel strip Download PDF

Info

Publication number
JP5803754B2
JP5803754B2 JP2012052745A JP2012052745A JP5803754B2 JP 5803754 B2 JP5803754 B2 JP 5803754B2 JP 2012052745 A JP2012052745 A JP 2012052745A JP 2012052745 A JP2012052745 A JP 2012052745A JP 5803754 B2 JP5803754 B2 JP 5803754B2
Authority
JP
Japan
Prior art keywords
steel strip
amount
shielding plate
molten metal
splash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012052745A
Other languages
Japanese (ja)
Other versions
JP2013185227A (en
Inventor
優 伊藤
優 伊藤
玄太郎 武田
玄太郎 武田
小林 弘和
弘和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012052745A priority Critical patent/JP5803754B2/en
Publication of JP2013185227A publication Critical patent/JP2013185227A/en
Application granted granted Critical
Publication of JP5803754B2 publication Critical patent/JP5803754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、溶融金属めっき鋼帯の製造方法に関する。   The present invention relates to a method for producing a molten metal plated steel strip.

近年、溶融金属めっき処理、特に溶融亜鉛めっき処理は耐食性を確保する安価な手段として普及している。それに伴って、めっき品質の向上や生産性の向上を目的に、多くの改善が試みられており、溶融金属めっきの優れた特性によってより多くの分野に今後もますます利用されようとしている。   In recent years, hot-dip metal plating, particularly hot-dip galvanizing, has become widespread as an inexpensive means for ensuring corrosion resistance. Along with this, many improvements have been attempted for the purpose of improving plating quality and productivity, and they are increasingly used in more fields in the future due to the excellent characteristics of molten metal plating.

ところで、生産性の向上と共にめっき品質の確保を図ることができるということから、ワイピング部の雰囲気を制御しながらめっきする方法が種々提案されている。例えば、酸素濃度を下げて雰囲気を非酸化性とすることによってワイピング部の亜鉛の酸化を防ぎ、トップドロスの発生、ノズル目詰まり、そしてゼロスパングル製品製造時のめっき面のさざなみ模様生成を防止しようとする方法が提案されている(特許文献1〜3参照)。
また、特許文献4ではガスワイピングノズルを覆う主シールボックスと、更に主シールボックスを覆う副シールボックスを設け、かつ各シールボックスを別個に昇降可能とすることで、ラインを停止することなくトップドロスをシールボックス外へ除去している。特許文献5では、ガスワイピングノズルから噴き出す非酸化性ガスを100℃以上に加熱してから非酸化性ガスに水蒸気を100ppm以上含有させることにより、トップドロスの発生だけでなくシールボックス内のZn蒸気の発生を抑制している。
By the way, various methods of plating while controlling the atmosphere of the wiping portion have been proposed because it is possible to ensure the plating quality while improving the productivity. For example, by reducing the oxygen concentration and making the atmosphere non-oxidizing, prevent oxidization of zinc in the wiping part, and prevent top dross generation, nozzle clogging, and generation of ripple patterns on the plating surface when manufacturing zero spangle products. Has been proposed (see Patent Documents 1 to 3).
Further, in Patent Document 4, a main seal box that covers the gas wiping nozzle and a sub seal box that covers the main seal box are provided, and each seal box can be moved up and down separately, so that the top dross can be achieved without stopping the line. Is removed from the seal box. In Patent Document 5, the non-oxidizing gas ejected from the gas wiping nozzle is heated to 100 ° C. or higher, and the non-oxidizing gas contains 100 ppm or more of water vapor, so that not only top dross is generated but also Zn vapor in the seal box. Is suppressed.

特公昭57−53429号公報Japanese Patent Publication No.57-53429 特開昭57−203764号公報Japanese Unexamined Patent Publication No. 57-203964 特開平2−285060号公報JP-A-2-285060 特開平4−285148号公報JP-A-4-285148 特開昭62−37361号公報JP-A-62-37361

しかしながら、特許文献1〜3に記載の方法では、トップドロス発生量は削減できるものの、めっき浴から引き上げられた鋼帯にワイピングガスを吹きつける際に、鋼帯に衝突した噴流の乱れによって溶融金属が周囲に飛び散る、いわゆるスプラッシュが、シールボックス内で跳ね返ることでワイピング後のめっき面に付着してしまい、めっき鋼帯の表面外観を著しく阻害することとなる。また、特許文献4に記載の方法では、用いる装置が複雑となり現実的ではない。さらに特許文献5に記載の方法では、シールボックス内の露点も制御しなければならないため、装置が煩雑かつ高価になってしまう。   However, in the methods described in Patent Documents 1 to 3, although the amount of top dross generated can be reduced, when the wiping gas is blown onto the steel strip pulled up from the plating bath, the molten metal is caused by the turbulence of the jet colliding with the steel strip. The so-called splash, which scatters around, rebounds in the seal box and adheres to the plated surface after wiping, which significantly impairs the surface appearance of the plated steel strip. In addition, the method described in Patent Document 4 is not practical because the apparatus used is complicated. Furthermore, in the method described in Patent Document 5, since the dew point in the seal box must also be controlled, the apparatus becomes complicated and expensive.

本発明は、上記従来技術の問題点を解消するために案出されたものであり、簡易的な装置でトップドロス発生領域の酸素濃度を抑制し、なおかつ鋼帯へのスプラッシュ付着量低減を可能とした溶融金属めっき鋼帯の製造方法を提供することを目的とする。その要旨は以下の通りである。
[1]溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、前記鋼帯を挟んでその両面に対向配置したガスワイピングノズルから不活性ガスを吹きつける際に、前記鋼帯の幅より狭く鋼帯長さ方向に少なくとも50mm以上の長さを有する一対の遮蔽板を、前記遮蔽板上端の位置が前記ガスワイピングノズルの噴出口から下方50mm以上150mm以下の位置になるように前記鋼帯を挟んで前記鋼帯の両面に対向配置して前記鋼帯にめっきを行うことを特徴する溶融金属めっき鋼帯の製造方法。
[2]前記遮蔽板の下端から溶融金属めっき浴面までの距離を30mm以上100mm以下とすることを特徴とする[1]に記載の溶溶融金属めっき鋼帯の製造方法。
[3]前記遮蔽板の幅と前記鋼帯の幅との差は50mm以上120mm以下であることを特徴とする[1]または[2]に記載の溶融金属めっき鋼帯の製造方法。
[4]前記鋼帯と前記遮蔽板との距離を30mm以上80mm以下とすることを特徴とする[1]〜[3]のいずれか1項に記載の溶融金属めっき鋼帯の製造方法。
[5]前記不活性ガスが鋼帯に衝突する位置における前記不活性ガスの温度を溶融金属の融点以上とすることを特徴とする[1]〜[4]のいずれか1項に記載の溶融金属めっき鋼帯の製造方法。
なお、本発明の溶融金属めっき鋼帯の製造方法は、亜鉛、アルミニウム等の各種溶融金属めっき鋼帯の製造方法に適用することができる。
The present invention has been devised to solve the above-described problems of the prior art, and it is possible to suppress the oxygen concentration in the top dross generation region with a simple device and reduce the amount of splash adhesion to the steel strip. An object of the present invention is to provide a method for producing a hot-dip plated steel strip. The summary is as follows.
[1] When an inert gas is blown from the gas wiping nozzle disposed on both surfaces of the steel strip, which is continuously pulled up from the molten metal plating bath, with the steel strip sandwiched therebetween, the width of the steel strip A pair of shielding plates narrowly having a length of at least 50 mm in the length direction of the steel strip, the steel strip so that the position of the upper end of the shielding plate is 50 mm or more and 150 mm or less below the jet port of the gas wiping nozzle A method for producing a hot-dip metal-plated steel strip, wherein the steel strip is plated while being opposed to both surfaces of the steel strip.
[2] The method for producing a molten metal plated steel strip according to [1], wherein a distance from a lower end of the shielding plate to a molten metal plating bath surface is 30 mm or more and 100 mm or less.
[3] The method for producing a molten metal-plated steel strip according to [1] or [2], wherein a difference between the width of the shielding plate and the width of the steel strip is 50 mm or more and 120 mm or less.
[4] The method for producing a molten metal-plated steel strip according to any one of [1] to [3], wherein a distance between the steel strip and the shielding plate is 30 mm or more and 80 mm or less.
[5] The melting according to any one of [1] to [4], wherein the temperature of the inert gas at a position where the inert gas collides with a steel strip is equal to or higher than a melting point of the molten metal. A method for producing a metal-plated steel strip.
In addition, the manufacturing method of the molten metal plating steel strip of this invention is applicable to the manufacturing method of various hot metal plating steel strips, such as zinc and aluminum.

本発明によれば、従来のシールボックスと比較して簡易的な遮蔽板を使用することにより、トップドロス発生領域の酸素濃度を抑制でき、トップドロス発生量を減少できる。さらに鋼帯へのスプラッシュ付着量を低減させることで美麗な表面外観をもつ溶融金属めっき鋼帯を製造できる。   According to the present invention, by using a simple shielding plate as compared with the conventional seal box, the oxygen concentration in the top dross generation region can be suppressed, and the amount of top dross generation can be reduced. Furthermore, by reducing the amount of splash adhering to the steel strip, a hot-dip metal-plated steel strip having a beautiful surface appearance can be produced.

本発明の一実施形態である溶融亜鉛めっき鋼帯の製造方法における溶融亜鉛めっき装置を示す断面図である。It is sectional drawing which shows the hot dip galvanizing apparatus in the manufacturing method of the hot dip galvanized steel strip which is one Embodiment of this invention. 本発明の一実施形態である遮蔽板とガスワイピングノズルとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the shielding board which is one Embodiment of this invention, and a gas wiping nozzle. 本発明の一実施形態である遮蔽板の正面図である。It is a front view of the shielding board which is one Embodiment of this invention. ノズル噴出口から遮蔽板上端までの距離(Lo)と、トップドロス量、スプラッシュ量との関係を示すグラフである。It is a graph which shows the relationship between the distance (Lo) from a nozzle jet nozzle to the shielding board upper end, the amount of top dross, and the amount of splashes. 遮蔽板下端から浴面までの距離(L)と、トップドロス量、スプラッシュ量との関係を示すグラフである。It is a graph which shows the relationship between the distance (L) from a lower end of a shielding board to a bath surface, a top dross amount, and a splash amount. 鋼帯の幅と遮蔽板の幅との差(W)と、トップドロス量、スプラッシュ量との関係を示すグラフである。It is a graph which shows the relationship between the difference (W) of the width | variety of a steel strip, and the width | variety of a shielding board, the amount of top dross, and the amount of splashes. 鋼帯と遮蔽板との距離(D)と、トップドロス量、スプラッシュ量との関係を示すグラフである。It is a graph which shows the relationship between the distance (D) of a steel strip and a shielding board, a top dross amount, and a splash amount. ガスワイピングノズルから噴出される不活性ガスの衝突位置における、ガス温度(T)と、トップドロス量、スプラッシュ量との関係を示すグラフである。It is a graph which shows the relationship between the gas temperature (T), the top dross amount, and the splash amount in the collision position of the inert gas ejected from the gas wiping nozzle.

本発明の溶融金属めっき鋼帯の製造方法では、溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、鋼帯を挟んでその両面に対向配置したガスワイピングノズルからガスを吹き付けて鋼帯にめっきを行う。その際、遮蔽板を用いることを特徴とする。   In the method for producing a molten metal-plated steel strip of the present invention, the steel strip is blown with gas from a gas wiping nozzle disposed on both sides of the steel strip across the surface of the steel strip that is continuously pulled up from the molten metal plating bath. Plating. At that time, a shielding plate is used.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明を実施するのに好適な溶融亜鉛めっき装置を示す断面図である。図1において、1は鋼帯、2は連続炉、3はスナウト、4はめっき浴槽、5は亜鉛浴、6はパス周回ロール、7はサポートロール、8はガスワイピングノズル、9はトップロール、10は遮蔽板である。遮蔽板10は、ガスワイピングノズル8の下方に配置される。遮蔽板10は一対となって鋼帯1の両面に対向配置される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a hot dip galvanizing apparatus suitable for carrying out the present invention. In FIG. 1, 1 is a steel strip, 2 is a continuous furnace, 3 is a snout, 4 is a plating bath, 5 is a zinc bath, 6 is a pass roll, 7 is a support roll, 8 is a gas wiping nozzle, 9 is a top roll, Reference numeral 10 denotes a shielding plate. The shielding plate 10 is disposed below the gas wiping nozzle 8. A pair of shielding plates 10 are disposed opposite to both surfaces of the steel strip 1.

本発明の遮蔽板の作用を図2および図3を用いて説明する。図2は、本発明の一実施形態である遮蔽板とガスワイピングノズルとの位置を示す断面図である。図3は、本発明の一実施形態である遮蔽板を鋼帯面の正面から見た図である。   The effect | action of the shielding board of this invention is demonstrated using FIG. 2 and FIG. FIG. 2 is a cross-sectional view showing the positions of the shielding plate and the gas wiping nozzle according to an embodiment of the present invention. Drawing 3 is a figure which looked at the shielding board which is one embodiment of the present invention from the front of the steel strip surface.

本発明では、遮蔽板10をガスワイピングノズル8の下方に配置することを特徴とする。ガスワイピングノズル8の不活性ガス噴出口から遮蔽板10の上端までの距離Lo(mm)は、50mm以上150mm以下である。距離Loが150mmを超えると、遮蔽板10と鋼帯1との間の空間へ外気(酸素)が流れ込むためトップドロスが発生する。一方、距離Loが50mm未満では、最も風速の高いガスワイピングノズル8の直下でスプラッシュが多量に発生し、遮蔽板で反射して鋼帯に付着する。このため、スプラッシュ付着量を低減することができない。   The present invention is characterized in that the shielding plate 10 is disposed below the gas wiping nozzle 8. The distance Lo (mm) from the inert gas outlet of the gas wiping nozzle 8 to the upper end of the shielding plate 10 is not less than 50 mm and not more than 150 mm. When the distance Lo exceeds 150 mm, a top dross is generated because outside air (oxygen) flows into the space between the shielding plate 10 and the steel strip 1. On the other hand, if the distance Lo is less than 50 mm, a large amount of splash is generated directly under the gas wiping nozzle 8 having the highest wind speed, and the light is reflected by the shielding plate and adheres to the steel strip. For this reason, the amount of splash adhesion cannot be reduced.

本発明では、遮蔽板10の下端から亜鉛浴面までの距離L(mm)は30mm以上100mm以下であることが好ましい。距離Lが100mmを超えると、外気(酸素)が流れ込むため、トップドロス発生量が増加する。一方、距離Lが30mm未満では、発生したトップドロスが遮蔽板10で遮られ、遮蔽板10と鋼帯1との間に積層し、鋼帯に付着する可能性が高い。   In the present invention, the distance L (mm) from the lower end of the shielding plate 10 to the zinc bath surface is preferably 30 mm or more and 100 mm or less. When the distance L exceeds 100 mm, the outside air (oxygen) flows in, and the amount of top dross generated increases. On the other hand, when the distance L is less than 30 mm, the generated top dross is blocked by the shielding plate 10, and is likely to be laminated between the shielding plate 10 and the steel strip 1 and adhere to the steel strip.

本発明では、遮蔽板10の幅と鋼帯1の幅との差W(mm)は、50mm以上120mm以下であることが好ましい。なお、本発明における差Wとは、図3に示すように、鋼帯1の幅方向の端部から遮蔽板の幅方向の端部までの距離を示す。差Wが120mmを超えると、外部から酸素を含む外気が流れ込むため、トップドロス発生量が増加する。一方、差Wが50mm未満では、鋼帯エッジ部で多量に発生するスプラッシュが遮蔽板で反射し鋼帯に付着する可能性が高い。
なお、鋼帯幅800mm〜940mmの範囲では遮蔽板幅700mm、鋼帯幅940mm〜1080mmでは遮蔽板幅840mm、鋼帯幅1080mm〜1220mmでは遮蔽板幅980mmと、鋼帯幅に対して140mmピッチで遮蔽板の幅を変更可能な形状が望まれる。
In the present invention, the difference W (mm) between the width of the shielding plate 10 and the width of the steel strip 1 is preferably 50 mm or more and 120 mm or less. In addition, the difference W in this invention shows the distance from the edge part of the width direction of the steel strip 1 to the edge part of the width direction of a shielding board, as shown in FIG. When the difference W exceeds 120 mm, the amount of generated top dross increases because the outside air containing oxygen flows from the outside. On the other hand, if the difference W is less than 50 mm, there is a high possibility that splash generated in a large amount at the steel strip edge portion is reflected by the shielding plate and adheres to the steel strip.
The steel strip width is 800mm to 940mm, the shield plate width is 700mm, the steel strip width is 940mm to 1080mm, the shield plate width is 840mm, the steel strip width is 1080mm to 1220mm, and the shield plate width is 980mm. A shape that can change the width of the shielding plate is desired.

本発明では、鋼帯1と遮蔽板10との距離D(mm)は30mm以上80mm以下であることが好ましい。なお、本発明における距離Dとは、図2に示されるように平行に配置される際の鋼帯と遮蔽板との間隔をいう。距離Dが80mmを超えると、鋼帯1と遮蔽板10との間の空間が広がるため、外気(酸素)の影響を無視できない。一方、距離Dが30mm未満では、スプラッシュが遮蔽板10で反射して鋼帯に付着しやすくなる。   In the present invention, the distance D (mm) between the steel strip 1 and the shielding plate 10 is preferably 30 mm or more and 80 mm or less. In addition, the distance D in this invention means the space | interval of the steel strip at the time of arrange | positioning in parallel, as FIG. 2 shows. If the distance D exceeds 80 mm, the space between the steel strip 1 and the shielding plate 10 widens, so the influence of outside air (oxygen) cannot be ignored. On the other hand, when the distance D is less than 30 mm, the splash is reflected by the shielding plate 10 and easily adheres to the steel strip.

本発明では、不活性ガスが鋼帯に衝突する位置において、ガスワイピングノズルから噴出される不活性ガスの温度(ワイピングガス温度)が、めっき浴中の溶融金属の融点よりも高いことが好ましい。
本発明において、不活性ガスの温度が溶融金属の融点よりも高いと、鋼帯上の溶融金属の冷却を抑制することができる。その結果、ワイピングガスにより分離した溶融亜鉛の冷却を抑制できるため、冷却した溶融亜鉛に基づくトップドロスを減少させることができる。一方、不活性ガスの温度が溶融金属の融点よりも低いと、ワイピングガスにより分離した溶融亜鉛が固体になるため、冷却した溶融亜鉛がトップドロスの一部となり、その結果トップドロスの減少効果を得ることができない。
In the present invention, it is preferable that the temperature of the inert gas ejected from the gas wiping nozzle (wiping gas temperature) at a position where the inert gas collides with the steel strip is higher than the melting point of the molten metal in the plating bath.
In the present invention, when the temperature of the inert gas is higher than the melting point of the molten metal, cooling of the molten metal on the steel strip can be suppressed. As a result, since cooling of the molten zinc separated by the wiping gas can be suppressed, the top dross based on the cooled molten zinc can be reduced. On the other hand, when the temperature of the inert gas is lower than the melting point of the molten metal, the molten zinc separated by the wiping gas becomes a solid, so the cooled molten zinc becomes a part of the top dross, and as a result, the effect of reducing the top dross is reduced. Can't get.

本発明において、不活性ガスとしては、非酸化性雰囲気をもたらすものであれば、特に制限されず、例えば、窒素、ヘリウム、二酸化炭素が挙げられる。不活性ガスのガス圧力の制限は無いが、50kPa以上150kPa以下であることが好ましい。不活性ガスの温度としては、20℃以上700℃以下が好ましい。   In the present invention, the inert gas is not particularly limited as long as it provides a non-oxidizing atmosphere, and examples thereof include nitrogen, helium, and carbon dioxide. Although there is no restriction | limiting of the gas pressure of an inert gas, It is preferable that it is 50 kPa or more and 150 kPa or less. The temperature of the inert gas is preferably 20 ° C. or higher and 700 ° C. or lower.

本発明において、遮蔽板の長さは、操作性の点から50mm以上とする。また、遮蔽板の素材としては、SS、SUS、セラミックスなど、熱変形しにくい素材であればよい。また、遮蔽板の板厚は、0.7mm以上5mm以下が好ましい。なお、遮蔽板の形状としては、操業中板幅が変更しても対応できるように、遮蔽板の横幅を折りたためる構造が適していると考えられる。   In this invention, the length of a shielding board shall be 50 mm or more from the point of operativity. Moreover, as a raw material of a shielding board, what is necessary is just a material which is hard to thermally deform, such as SS, SUS, ceramics. The thickness of the shielding plate is preferably 0.7 mm or more and 5 mm or less. In addition, it is thought that the structure which folds the horizontal width of a shielding board is suitable as a shape of a shielding board so that it can respond even if the board width changes in operation.

本発明において、鋼帯としては特に制限されず、通常溶融金属めっき用に使用される鋼板であればよい。   In this invention, it does not restrict | limit especially as a steel strip, What is necessary is just a steel plate normally used for molten metal plating.

本発明において、溶融金属めっき浴としては、亜鉛浴、アルミニウム浴等が挙げられる。   In the present invention, examples of the molten metal plating bath include a zinc bath and an aluminum bath.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

溶融亜鉛めっき鋼帯製造ライン(以下CGL)に、遮蔽板を設置し、トップドロス発生量およびスプラッシュ付着量を測定して遮蔽板の効果を検証した。2枚の遮蔽板を、ガスワイピングノズルの下方に鋼帯を対称面として平行に設置した。遮蔽板の板厚は5mmとした。また、ガスワイピングノズルから噴出される不活性ガスとして、窒素を使用した。溶融亜鉛めっき浴にて行い、ライン速度150mpm、不活性ガス温度20℃、不活性ガス圧75kPa、鋼帯の幅1000mm、鋼帯の板厚0.8mmとした。   A shield plate was installed in a hot dip galvanized steel strip production line (hereinafter CGL), and the effect of the shield plate was verified by measuring the amount of top dross generated and the amount of splash attached. Two shielding plates were installed in parallel below the gas wiping nozzle with the steel strip as the plane of symmetry. The thickness of the shielding plate was 5 mm. Further, nitrogen was used as an inert gas ejected from the gas wiping nozzle. It was carried out in a hot dip galvanizing bath, with a line speed of 150 mpm, an inert gas temperature of 20 ° C., an inert gas pressure of 75 kPa, a steel strip width of 1000 mm, and a steel strip thickness of 0.8 mm.

なお、トップドロス発生量については、1時間で発生するトップドロスの量を測定して評価を行った。具体的には、操業1時間後に浴面に浮いているトップドロスをかき集め、冷却させた後にその重量を測定した。遮蔽板を設置しない通常操業(ライン速度150mpm、不活性ガス温度20℃、不活性ガス圧75kPa、鋼帯の幅1000mm、鋼帯の板厚0.8mm)で1時間に発生するトップドロスの量を1として、遮蔽板設置時と比較した。
また、スプラッシュ付着量については、鋼帯とガスワイピングノズルを含めた周囲をシールした場合に鋼板に付着したスプラッシュ数をカウントした。カウントする面積は、鋼帯幅(今回は1000mm)×単位長さ(1000mm)の両面とした。通板後、鋼帯を巻きほぐし、目視にてカウントした。遮蔽板を設置しない通常操業時のスプラッシュ付着量を1として、検証結果を比較した。
The amount of top dross generated was evaluated by measuring the amount of top dross generated in one hour. Specifically, the top dross floating on the bath surface was collected after 1 hour of operation, and the weight was measured after cooling. The amount of top dross generated in one hour in normal operation without a shielding plate (line speed 150mpm, inert gas temperature 20 ° C, inert gas pressure 75kPa, steel strip width 1000mm, steel strip thickness 0.8mm) As 1, it was compared with when the shielding plate was installed.
Moreover, about the splash adhesion amount, when the circumference | surroundings including a steel strip and a gas wiping nozzle were sealed, the number of splashes adhering to the steel plate was counted. The area to be counted was a steel strip width (1000 mm in this case) × unit length (1000 mm). After passing, the steel strip was unwound and counted visually. The amount of splash adhesion during normal operation without a shielding plate was set as 1, and the verification results were compared.

まず、ガスワイピングノズルの不活性ガス噴出口から遮蔽板上端までの距離Loと、トップドロス発生量、スプラッシュ付着量との関係について調べた。結果を図4に示す。図4中の黒抜きはトップドロス発生量を示しトップドロス量と表記する。また、白抜きはスプラッシュ付着量を示し、スプラッシュ量と表記する。なお、条件としては、遮蔽板下端と浴面の距離Lは30mm、鋼帯の幅と遮蔽板の幅との差Wは50mm、鋼帯と遮蔽板との距離Dは50mmとして実験を行った。
図4から、Lo=0mmで最もトップドロス量が少ない。これは、吹き付けられる不活性ガスの風速が最も高いガスワイピングノズル直下における酸素濃度を低下することができたためと考えられる。また、トップドロス量は、0≦Lo≦150の範囲では緩やかに増加し、150≦Loで急激に増加した。これは、Loが増加するにつれて、遮蔽板と鋼帯との間の空間へ酸素濃度が高い外気が流れ込むためと考えられる。一方、Lo=0で最もスプラッシュ量が高くなっている。これは、最も不活性ガスの風速の高いガスワイピングノズル直下でスプラッシュが多量に発生し、その結果、遮蔽板で反射して鋼帯に付着したと考えられる。また、Loが増加するにつれて、スプラッシュ量は減少した。これは、ガスワイピングノズルと遮蔽板上方との間にできる空間にスプラッシュが飛散したためと考えられる。なお、鋼帯の両端で発生するエッジスプラッシュは解消できなかったため、スプラッシュ量は皆無とはならなかった。トップドロス量は0.5以下、スプラッシュ量は0.4以下の両方を満たす場合、美麗な表面外観を得られた。以上の結果から、距離Loとしては、50mm以上150mm以下と導き出すことができる。なお、L、W、Dが上記以外の条件であっても、距離Loについて、同様の結果となった。
First, the relationship between the distance Lo from the inert gas ejection port of the gas wiping nozzle to the upper end of the shielding plate, the amount of generated top dross, and the amount of splash adhesion was examined. The results are shown in FIG. Black in FIG. 4 indicates the amount of top dross generated and is expressed as the amount of top dross. Also, the white outline indicates the amount of splash adhesion and is expressed as the splash amount. The experiment was conducted with the distance L between the lower end of the shielding plate and the bath surface being 30 mm, the difference W between the width of the steel strip and the width of the shielding plate was 50 mm, and the distance D between the steel strip and the shielding plate was 50 mm. .
From FIG. 4, the top dross amount is the smallest when Lo = 0 mm. This is presumably because the oxygen concentration just below the gas wiping nozzle with the highest wind speed of the inert gas blown could be reduced. Moreover, the amount of top dross increased moderately in the range of 0 ≦ Lo ≦ 150, and rapidly increased when 150 ≦ Lo. This is considered to be because outside air having a high oxygen concentration flows into the space between the shielding plate and the steel strip as Lo increases. On the other hand, the splash amount is highest at Lo = 0. This is probably because a large amount of splash was generated directly under the gas wiping nozzle with the highest wind speed of the inert gas, and as a result, it was reflected by the shielding plate and adhered to the steel strip. Moreover, the amount of splash decreased as Lo increased. This is presumably because splash was scattered in a space formed between the gas wiping nozzle and the upper part of the shielding plate. In addition, since the edge splash which generate | occur | produced at the both ends of a steel strip was not able to be eliminated, the amount of splash was not completely absent. A beautiful surface appearance was obtained when the top dross amount was 0.5 or less and the splash amount was 0.4 or less. From the above results, the distance Lo can be derived as 50 mm or more and 150 mm or less. In addition, even if L, W, and D were conditions other than the above, the same result was obtained for the distance Lo.

次に、遮蔽板下端から浴面までの距離Lと、トップドロス量、スプラッシュ量との関係について調べた。結果を図5に示す。なお、条件としては、W=50mm、Lo=100mm、D=50mmとして実験を行った。Lが増加するにつれて、トップドロス量は徐々に増加し、L=100から急激に増加した。これはLが増加するにつれて、外部から外気が流れ込み酸素濃度が増加したためと考えられる。一方で、L≦100の範囲ではトップドロス量はあまり増加しなかった。これは、浴面付近の風速がガスワイピングノズル直下に比べて低いためと考えられる。なお、スプラッシュはLに依存せず、ほぼ一定値であった。トップドロス量は0.5以下、スプラッシュ量は0.4以下の両方を満たす場合、美麗な表面外観を得られた。以上の結果から、距離Lは30mm以上100mm以下が好ましい。なお、Lo、W、Dが上記以外の条件であっても、距離Lについて、同様の結果となった。   Next, the relationship between the distance L from the lower end of the shielding plate to the bath surface, the amount of top dross, and the amount of splash was examined. The results are shown in FIG. The experiment was conducted under the conditions of W = 50 mm, Lo = 100 mm, and D = 50 mm. As L increased, the amount of top dross increased gradually, increasing rapidly from L = 100. This is thought to be because the outside air flowed in from the outside and the oxygen concentration increased as L increased. On the other hand, the amount of top dross did not increase so much in the range of L ≦ 100. This is presumably because the wind speed near the bath surface is lower than that immediately below the gas wiping nozzle. In addition, the splash did not depend on L and was a substantially constant value. A beautiful surface appearance was obtained when the top dross amount was 0.5 or less and the splash amount was 0.4 or less. From the above results, the distance L is preferably 30 mm or more and 100 mm or less. In addition, even if Lo, W, and D were conditions other than the above, the same result was obtained for the distance L.

次に、鋼帯の幅と遮蔽板の幅との差Wと、トップドロス量、スプラッシュ量との関係について調べた。結果を図6に示す。なお、条件としては、Lo=100mmm、L=30mm、D=50mmとして実験を行った。Wが増加するにつれて、外部から酸素を含む外気が流れ込むため、トップドロス量が増加している。一方、スプラッシュ量は、Wが増加するにつれて急激に減少している。これは、鋼帯の両端で発生するエッジスプラッシュが、鋼帯と遮蔽板との間から飛散するため、遮蔽板で反射するスプラッシュが減少したためと考えられる。トップドロス量は0.5以下、スプラッシュ量は0.4以下の両方を満たす場合、美麗な表面外観を得られた。以上の結果から、差Wは50mm以上120mm以下が好ましい。なお、Lo、L、Dが上記以外の条件であっても、差Wについて、同様の結果となった。   Next, the relationship between the difference W between the width of the steel strip and the width of the shielding plate, the amount of top dross, and the amount of splash was examined. The results are shown in FIG. The experiment was conducted under the conditions of Lo = 100 mm, L = 30 mm, and D = 50 mm. As W increases, the amount of top dross increases because outside air containing oxygen flows from the outside. On the other hand, the amount of splash decreases rapidly as W increases. This is presumably because the edge splash generated at both ends of the steel strip is scattered from between the steel strip and the shielding plate, and the splash reflected by the shielding plate is reduced. A beautiful surface appearance was obtained when the top dross amount was 0.5 or less and the splash amount was 0.4 or less. From the above results, the difference W is preferably 50 mm or more and 120 mm or less. Even if Lo, L, and D were conditions other than the above, the same result was obtained for the difference W.

次に、鋼帯と遮蔽板との距離Dと、トップドロス量、スプラッシュ量との関係をについて調べた。結果を図7に示す。なお、条件としてはW=50mm、Lo=100mm、L=30mmとして実験を行った。Dが増加するにつれて、トップドロス量は増加した。これは、鋼帯と遮蔽板との間の空間が広くなるため、酸素を効果的に低減することが困難となるためと考えられる。一方、Dの値が小さいと、トップドロス量は少ないものの、スプラッシュ量が増加した。スプラッシュ量が増加したのは、スプラッシュが遮蔽板で反射して鋼帯に付着したためと考えられる。トップドロス量は0.5以下、スプラッシュ量は0.4以下の両方を満たす場合、美麗な表面外観を得られた。以上の結果から、距離Dは30mm以上80以下が好ましい。なお、Lo、L、Wが上記以外の条件であっても、距離Dについて、同様の結果となった。   Next, the relationship between the distance D between the steel strip and the shielding plate and the amount of top dross and splash was examined. The results are shown in FIG. The experiment was conducted under the conditions of W = 50 mm, Lo = 100 mm, and L = 30 mm. As D increased, the amount of top dross increased. This is presumably because it becomes difficult to effectively reduce oxygen because the space between the steel strip and the shielding plate becomes wide. On the other hand, when the value of D was small, although the amount of top dross was small, the amount of splash increased. The splash amount increased because the splash was reflected by the shielding plate and adhered to the steel strip. A beautiful surface appearance was obtained when the top dross amount was 0.5 or less and the splash amount was 0.4 or less. From the above results, the distance D is preferably 30 mm or more and 80 or less. In addition, even if Lo, L, and W were conditions other than the above, the same result was obtained for the distance D.

次に、ワイピングガス温度Tと、トップドロス量、スプラッシュ量との関係について調べた。結果を図8に示す。なお、条件としては、W=50mm、Lo=100mm、L=30mm、D=50mmとして実験を行った。溶融亜鉛金属の融点である420℃未満では、トップドロス量はほぼ一定であったが、ワイピングガスを溶融亜鉛金属の融点である420℃に加熱したところ、トップドロスは0.09まで減少した。これは、鋼帯上の溶融亜鉛金属の冷却を抑制できたためと考えられる。また、スプラッシュ量はガス温度の変化に関わらず一定となった。   Next, the relationship between the wiping gas temperature T, the top dross amount, and the splash amount was examined. The results are shown in FIG. The experiment was conducted under the conditions of W = 50 mm, Lo = 100 mm, L = 30 mm, and D = 50 mm. When the melting point of molten zinc metal was less than 420 ° C, the amount of top dross was almost constant, but when the wiping gas was heated to 420 ° C, which is the melting point of molten zinc metal, the top dross decreased to 0.09. This is considered to be because the cooling of the molten zinc metal on the steel strip could be suppressed. The splash amount was constant regardless of the change in gas temperature.

1 鋼帯
2 連続炉
3 スナウト
4 めっき浴槽
5 亜鉛浴
6 パス周回ロール(シンクロール)
7 サポートロール
8 ガスワイピングノズル
9 トップロール
10 遮蔽板
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Continuous furnace 3 Snout 4 Plating bath 5 Zinc bath 6 Pass circulation roll (sink roll)
7 Support roll 8 Gas wiping nozzle 9 Top roll 10 Shield plate

Claims (5)

溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、前記鋼帯を挟んでその両面に対向配置したガスワイピングノズルから不活性ガスを吹きつける際に、前記鋼帯の幅より狭く鋼帯長さ方向に少なくとも50mm以上の長さを有する一対の遮蔽板を、前記遮蔽板上端の位置が前記ガスワイピングノズルの噴出口から下方50mm以上150mm以下の位置になるように前記鋼帯を挟んで前記鋼帯の両面に対向配置して前記鋼帯にめっきを行うことを特徴する溶融金属めっき鋼帯の製造方法。   When an inert gas is blown from the gas wiping nozzle disposed opposite to both surfaces of the steel strip that is continuously pulled up from the molten metal plating bath, the steel strip is narrower than the width of the steel strip. A pair of shielding plates having a length of at least 50 mm in the length direction is sandwiched between the steel strips so that the position of the upper end of the shielding plate is 50 mm or more and 150 mm or less below the jet port of the gas wiping nozzle. A method for producing a hot-dip metal-plated steel strip, wherein the steel strip is plated so as to face both surfaces of the steel strip. 前記遮蔽板の下端から溶融金属めっき浴面までの距離を30mm以上100mm以下とすることを特徴とする請求項1に記載の溶融金属めっき鋼帯の製造方法。   2. The method for producing a molten metal plated steel strip according to claim 1, wherein the distance from the lower end of the shielding plate to the molten metal plating bath surface is 30 mm or more and 100 mm or less. 前記遮蔽板の幅と前記鋼帯の幅との差は50mm以上120mm以下であることを特徴とする請求項1または2に記載の溶融金属めっき鋼帯の製造方法。   The method for producing a hot-dip metal-plated steel strip according to claim 1 or 2, wherein the difference between the width of the shielding plate and the width of the steel strip is 50 mm or more and 120 mm or less. 前記鋼帯と前記遮蔽板との距離を30mm以上80mm以下とすることを特徴とする請求項1〜3のいずれか1項に記載の溶融金属めっき鋼帯の製造方法。   The distance between the steel strip and the shielding plate is 30 mm or more and 80 mm or less, The method for producing a hot-dip metal-plated steel strip according to any one of claims 1 to 3. 前記不活性ガスが鋼帯に衝突する位置における前記不活性ガスの温度を溶融金属の融点以上とすることを特徴とする請求項1〜4のいずれか1項に記載の溶融金属めっき鋼帯の製造方法。   The temperature of the inert gas at the position where the inert gas collides with the steel strip is equal to or higher than the melting point of the molten metal, and the molten metal-plated steel strip according to any one of claims 1 to 4 Production method.
JP2012052745A 2012-03-09 2012-03-09 Manufacturing method of molten metal plated steel strip Active JP5803754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052745A JP5803754B2 (en) 2012-03-09 2012-03-09 Manufacturing method of molten metal plated steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052745A JP5803754B2 (en) 2012-03-09 2012-03-09 Manufacturing method of molten metal plated steel strip

Publications (2)

Publication Number Publication Date
JP2013185227A JP2013185227A (en) 2013-09-19
JP5803754B2 true JP5803754B2 (en) 2015-11-04

Family

ID=49386924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052745A Active JP5803754B2 (en) 2012-03-09 2012-03-09 Manufacturing method of molten metal plated steel strip

Country Status (1)

Country Link
JP (1) JP5803754B2 (en)

Also Published As

Publication number Publication date
JP2013185227A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
KR101367291B1 (en) Gas wiping device
KR20100040954A (en) Apparatus for manufacturing hot-dip metal plated steel band
JP5418550B2 (en) Manufacturing method of molten metal plated steel strip
JP4734081B2 (en) Method for producing hot-dip galvanized steel sheet
TWI717807B (en) Manufacturing method of molten metal-coated steel strip and continuous molten metal coating equipment
JP5565368B2 (en) Wiping apparatus and hot dipping apparatus using the same
JP5803754B2 (en) Manufacturing method of molten metal plated steel strip
JP4816105B2 (en) Manufacturing method of molten metal plated steel strip
JP2602757B2 (en) Continuous hot-dip galvanizing method
JP4835072B2 (en) Method for producing molten metal plated steel strip and continuous molten metal plating apparatus
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JP5375150B2 (en) Manufacturing equipment for molten metal plated steel strip
JP2008231484A (en) Continuous hot dip galvanization apparatus
JPH042756A (en) Gas wiping method for continuous hot dipping
JP2011068951A (en) Coating weight control device for continuous hot dip metal plating
JP4835073B2 (en) Manufacturing method of molten metal plated steel strip
JP4046042B2 (en) Wiping equipment for continuous hot dipping
JP5386779B2 (en) Method and apparatus for manufacturing hot-dip galvanized steel sheet
JP4855166B2 (en) Method for producing hot-dip galvanized steel sheet with a clean appearance
US20210115546A1 (en) Method and apparatus for manufacturing hot-dip metal plated steel strip
JP7147793B2 (en) Manufacturing equipment and manufacturing method for continuous hot-dip metal plated steel strip
JPH07157854A (en) Method for cleaning inside of snout of hot dip metal coating
JPH04247861A (en) Continuous galvanizing method and device
JP2001140050A (en) Device for preventing winding-up bottom dross in continuous hot-dipping metal coating vessel
JPH07113154A (en) Method and device for hot-dipping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250