JP5802991B2 - Insulation resistance measuring device - Google Patents

Insulation resistance measuring device Download PDF

Info

Publication number
JP5802991B2
JP5802991B2 JP2011188307A JP2011188307A JP5802991B2 JP 5802991 B2 JP5802991 B2 JP 5802991B2 JP 2011188307 A JP2011188307 A JP 2011188307A JP 2011188307 A JP2011188307 A JP 2011188307A JP 5802991 B2 JP5802991 B2 JP 5802991B2
Authority
JP
Japan
Prior art keywords
discharge
insulation resistance
discharge sound
insulator
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011188307A
Other languages
Japanese (ja)
Other versions
JP2012168158A (en
Inventor
邦彦 日高
邦彦 日高
亜紀子 熊田
亜紀子 熊田
鈴木 正美
正美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2011188307A priority Critical patent/JP5802991B2/en
Publication of JP2012168158A publication Critical patent/JP2012168158A/en
Application granted granted Critical
Publication of JP5802991B2 publication Critical patent/JP5802991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

本発明は、電気機器の絶縁物の絶縁抵抗を測定する絶縁抵抗測定装置に関する。   The present invention relates to an insulation resistance measuring apparatus for measuring an insulation resistance of an insulator of an electric device.

一般に、電気機器の絶縁物の絶縁抵抗値は新品ほど高く、老朽化に伴い低下する傾向がある。従って、現状の絶縁抵抗を把握することは電気機器を構成する絶縁物の良し悪しを把握することと同じであり、電気機器の交換時期を把握することにも役立つため、例えば、受電電圧6600Vの自家用電気工作物の定期点検では必ず実施される測定となっている。また、極端に絶縁抵抗値が低下すると地絡事故を起こす危険性もあるため、電気事故防止の観点からも絶縁抵抗測定は極めて重要な測定項目となっている。   In general, the insulation resistance value of an insulator of an electric device is as high as that of a new product, and tends to decrease with age. Therefore, grasping the current insulation resistance is the same as grasping the quality of the insulators that make up the electrical equipment, and is useful for grasping the replacement timing of the electrical equipment. It is a measurement that must be carried out during regular inspections of private electrical works. In addition, since there is a risk of causing a ground fault if the insulation resistance value is extremely lowered, insulation resistance measurement is an extremely important measurement item from the viewpoint of preventing electrical accidents.

例えば、高圧受電設備において遮断器や開閉器の絶縁材料として不飽和ポリエステルが用いられている。この不飽和ポリエステルを絶縁材料とする機器の不良指摘数は、全体の6割程度と他の絶縁材料(絶縁油、架橋ポリエチレンなど)の電気機器に比べ最も高いことから、不飽和ポリエステルの絶縁状態を管理することは設備全体の保全を維持する上でも重要な管理項目である。通常、電気機器の絶縁物の絶縁抵抗は、電気機器への通電を停止して電気機器の絶縁物に電圧測定用電圧を印加し、絶縁物に流れる電流に基づいて測定対象体の抵抗値を測定するようにしている(例えば、特許文献1参照)。   For example, unsaturated polyester is used as an insulating material for circuit breakers and switches in high-voltage power receiving equipment. The number of defects indicated for equipment using insulating polyester as an insulating material is about 60% of the total, which is the highest compared to electrical equipment using other insulating materials (insulating oil, cross-linked polyethylene, etc.). It is an important management item to maintain the maintenance of the entire equipment. In general, the insulation resistance of an electrical equipment insulator is determined by applying a voltage measurement voltage to the electrical equipment insulation by stopping energization of the electrical equipment and determining the resistance value of the measurement object based on the current flowing through the insulation. Measurement is performed (see, for example, Patent Document 1).

特開2010−8401号公報JP 2010-8401 A

しかし、電気機器の絶縁物の絶縁抵抗は、電気機器への通電を停止して行っているので、停電による設備稼働率の低下を招くことになる。また、電気機器の絶縁物に電圧測定用電圧を印加して行っているので、電路に測定器具を接触させて実施することになり、誤操作による感電事故を引き起こす危険性もある。   However, since the insulation resistance of the insulator of the electrical equipment is performed by stopping energization of the electrical equipment, the facility operation rate is reduced due to a power failure. In addition, since the voltage measurement voltage is applied to the insulator of the electric equipment, the measurement instrument is brought into contact with the electric circuit, which may cause an electric shock accident due to an erroneous operation.

本発明の目的は、電気機器への通電を行った状態で非接触にて絶縁抵抗値を測定でき、設備の稼働率向上および点検作業の作業性向上や安全性向上を図ることができる絶縁抵抗測定装置を提供することである。   It is an object of the present invention to measure an insulation resistance value in a non-contact state while energizing an electrical device, and to improve the operating rate of equipment, improve the workability of inspection work, and improve safety. It is to provide a measuring device.

請求項1の発明に係る絶縁抵抗測定装置は、通電されている状態の電気機器の絶縁物の放電音強度と前記絶縁物の表面絶縁抵抗値との関係式を予め記憶した記憶装置と、前記電気機器の絶縁物の放電音を検出する放電音検出器と、前記放電音検出器で検出された放電音に対して高速フーリエ変換またはバンドパスフィルタを用いて放電音の周波数成分を抽出する振動音成分抽出手段と、前記振動音成分抽出手段で抽出された特性の周波数領域の放電音強度及び前記記憶装置に記憶した関係式に基づいて前記絶縁物の表面絶縁抵抗値を求める抵抗演算手段とを備えたことを特徴とする。 An insulation resistance measuring device according to the invention of claim 1 is a storage device that stores in advance a relational expression between a discharge sound intensity of an insulator of an electrical device in an energized state and a surface insulation resistance value of the insulator; A discharge sound detector for detecting a discharge sound of an insulator of an electric device, and a vibration for extracting a frequency component of the discharge sound by using a fast Fourier transform or a band-pass filter for the discharge sound detected by the discharge sound detector Sound component extraction means; and resistance calculation means for obtaining a surface insulation resistance value of the insulator based on the discharge sound intensity in the frequency domain of the characteristic extracted by the vibration sound component extraction means and the relational expression stored in the storage device; It is provided with.

請求項2の発明に係る絶縁抵抗測定装置は、通電されている状態の電気機器の絶縁物の放電音強度と前記絶縁物の表面絶縁抵抗値との関係式を予め記憶した記憶装置と、前記電気機器の絶縁物の放電音を検出する放電音検出器と、前記放電音検出器で検出された放電音に対して高速フーリエ変換またはバンドパスフィルタを用いて放電音の周波数成分を抽出する振動音成分抽出手段と、前記電気機器を撮影する撮影装置と、前記撮影装置で撮影した画像を解析し放電発光の有無を判定する放電判定手段と、前記振動音成分抽出手段で抽出された特性の周波数領域の放電音強度及び前記記憶装置に記憶した関係式に基づいて前記絶縁物の表面絶縁抵抗値を求める抵抗演算手段と、前記放電判定手段で放電発光が有りと判定されたときは前記抵抗演算手段で求められた表面絶縁抵抗値が予め定めた所定値以下であるかどうか判定する演算抵抗値確認手段とを備えたことを特徴とする。 An insulation resistance measuring device according to the invention of claim 2 is a storage device that stores in advance a relational expression between the discharge sound intensity of an insulator of an electrical device in an energized state and the surface insulation resistance value of the insulator; A discharge sound detector for detecting a discharge sound of an insulator of an electric device, and a vibration for extracting a frequency component of the discharge sound by using a fast Fourier transform or a band-pass filter for the discharge sound detected by the discharge sound detector A sound component extracting unit; a photographing device that photographs the electrical device; a discharge determining unit that analyzes an image photographed by the photographing device to determine the presence or absence of discharge light emission; and a characteristic extracted by the vibration sound component extracting unit. A resistance calculation means for obtaining a surface insulation resistance value of the insulator based on a discharge sound intensity in a frequency domain and a relational expression stored in the storage device; and when the discharge determination means determines that there is discharge light emission, the resistance Wherein the surface insulation resistance value obtained by the calculation means comprising a determining whether the computed resistance value confirmation unit is less than a predetermined value determined in advance.

請求項3の発明に係る絶縁抵抗測定装置は、請求項1または2の発明において、
前記関係式は、既知の異なる表面絶縁抵抗値の複数の絶縁物を用意し、用意した各々の絶縁物に対して所定電圧を印加して放電音検出器で放電音を検出し、前記放電音検出器で測定した放電音に対して高速フーリエ変換またはバンドパスフィルタを用いて放電音強度が大きい特定の周波数領域の放電音強度を抽出し、抽出した放電音強度と表面絶縁抵抗値との相関グラフに基づいて予め求めることを特徴とする。
The insulation resistance measuring apparatus according to the invention of claim 3 is the invention of claim 1 or 2,
The relational expression is that a plurality of insulators having different known surface insulation resistance values are prepared, a predetermined voltage is applied to each of the prepared insulators, a discharge sound is detected by a discharge sound detector, and the discharge sound is detected. Using the fast Fourier transform or bandpass filter for the discharge sound measured by the detector, the discharge sound intensity in a specific frequency region where the discharge sound intensity is high is extracted, and the correlation between the extracted discharge sound intensity and the surface insulation resistance value It is obtained beforehand based on a graph.

請求項4の発明に係る絶縁抵抗測定装置は、請求項1乃至3のいずれか一の発明において、前記絶縁物は、不飽和ポリエステル、磁器、アクリルであることを特徴とする。   According to a fourth aspect of the present invention, there is provided the insulation resistance measuring apparatus according to any one of the first to third aspects, wherein the insulator is unsaturated polyester, porcelain, or acrylic.

請求項1の発明によれば、通電されている状態の電気機器の絶縁物の放電音強度と絶縁物の表面絶縁抵抗値との関係式を予め記憶しておき、電気機器の絶縁物の放電音を検出して特性の周波数領域の放電音強度を抽出し、放電音強度及び関係式に基づいて絶縁物の表面絶縁抵抗値を求めるので、非接触で絶縁抵抗の把握をすることができる。従って、電気機器の通電状態で絶縁抵抗を検出できるので、顧客設備の稼働率向上や点検作業の作業性向上を図れる。   According to the first aspect of the present invention, the relational expression between the discharge sound intensity of the insulator of the electric device in the energized state and the surface insulation resistance value of the insulator is stored in advance, and the discharge of the insulator of the electric device is stored. Since the sound is detected to extract the discharge sound intensity in the characteristic frequency domain and the surface insulation resistance value of the insulator is obtained based on the discharge sound intensity and the relational expression, the insulation resistance can be grasped in a non-contact manner. Accordingly, since the insulation resistance can be detected in the energized state of the electric equipment, the operating rate of customer facilities can be improved and the workability of inspection work can be improved.

請求項2の発明によれば、電気機器の画像を解析して放電発光の有無を判定し、放電発光が有りと判定されたときに、放電音強度及び関係式に基づいて求めた絶縁物の表面絶縁抵抗値が所定値以下かどうかを判定し、演算された表面絶縁抵抗値を確認するので、求めた絶縁抵抗の精度が向上する。   According to the second aspect of the present invention, the presence or absence of discharge light emission is determined by analyzing an image of an electrical device, and when it is determined that there is discharge light emission, the insulation obtained based on the discharge sound intensity and the relational expression Since it is determined whether or not the surface insulation resistance value is equal to or less than a predetermined value and the calculated surface insulation resistance value is confirmed, the accuracy of the obtained insulation resistance is improved.

請求項3の発明によれば、既知の異なる表面絶縁抵抗値の複数の絶縁物を用意し、用意した各々の絶縁物に対して、放電音強度と表面絶縁抵抗値と関係式を求めるので、精度の良い放電音強度と表面絶縁抵抗値との関係が得られる。   According to the invention of claim 3, a plurality of insulators having different known surface insulation resistance values are prepared, and for each of the prepared insulators, a discharge sound intensity and a surface insulation resistance value and a relational expression are obtained. An accurate relationship between the discharge sound intensity and the surface insulation resistance value can be obtained.

請求項4の発明によれば、不飽和ポリエステル、磁器、アクリルなどの絶縁物に対して絶縁抵抗を測定できる。   According to invention of Claim 4, an insulation resistance can be measured with respect to insulators, such as unsaturated polyester, porcelain, and an acryl.

請求項5の発明によれば、高速フーリエ変換に代えて、バンドパスフィルタを用いても放電音検出器で検出された放電音の周波数成分を抽出できる。   According to the invention of claim 5, the frequency component of the discharge sound detected by the discharge sound detector can be extracted even if a band pass filter is used instead of the fast Fourier transform.

本発明の第1の実施形態に係る絶縁抵抗測定装置の構成図。The block diagram of the insulation resistance measuring apparatus which concerns on the 1st Embodiment of this invention. 不飽和ポリエステルの絶縁低下指摘件数及び平均湿度を月別に展開したグラフ。The graph which developed the number of indications of insulation decrease of unsaturated polyester and the average humidity every month. 累積等価塩分付着量と月数との予測結果を示すグラフ。The graph which shows the prediction result of a cumulative equivalent salt adhesion amount and the number of months. 等価塩分付着量が0.044 mg/cm2における絶縁抵抗値を100MΩから0.1MΩまで徐々に低下させていった場合の各絶縁抵抗値における周波数成分の沿面放電音スペクトルの写真図。The photograph of the creeping discharge sound spectrum of the frequency component in each insulation resistance value when the insulation resistance value is gradually decreased from 100 MΩ to 0.1 MΩ when the equivalent salt content is 0.044 mg / cm 2 . 周波数をパラメータとした絶縁抵抗値と放電音強度との相関グラフ。Correlation graph between insulation resistance value and discharge sound intensity with frequency as parameter. 高圧充電中の実機の絶縁物における周波数成分の沿面放電音スペクトルの写真図。The photograph figure of the creeping discharge sound spectrum of the frequency component in the insulator of the real machine under high voltage charge. 本発明の第2の実施形態に係る絶縁抵抗測定装置の構成図。The block diagram of the insulation resistance measuring apparatus which concerns on the 2nd Embodiment of this invention. 等価塩分付着量が0.044 mg/cm2における絶縁抵抗値を100MΩから0.1MΩまで徐々に低下させていった場合の各絶縁抵抗値における絶縁体の放電発生画像の写真図。The photograph figure of the discharge generation | occurrence | production image of the insulator in each insulation resistance value when the insulation resistance value in the equivalent salt adhesion amount is 0.044 mg / cm 2 is gradually decreased from 100 MΩ to 0.1 MΩ. 放電発光が確認できた絶縁抵抗値と等価塩分付着量との関係を示すグラフ。The graph which shows the relationship between the insulation resistance value which has confirmed discharge light emission, and an equivalent salt content. 絶縁物としてその抵抗値が1MΩの不飽和ポリエステル、高圧ピンがいし、アクリルである場合の周波数成分の沿面放電音スペクトルの写真図。The photograph of the creeping discharge sound spectrum of the frequency component in the case of the unsaturated polyester whose resistance value is 1 MΩ as an insulator, a high voltage pin, and an acrylic.

以下、本発明の実施形態を説明する。図1は本発明の第1の実施形態に係る絶縁抵抗測定装置の構成図である。絶縁抵抗測定装置はコンピュータで構成され、例えば、パーソナルコンピュータで構成される。すなわち、入力装置11、演算制御装置12、記憶装置13、及び表示装置14から構成されるコンピュータに、プログラムがインストールされ、演算制御装置12がプログラムを実行処理することで、図1に示す機能ブロックが実現される。また、演算制御装置12には放電音検出器15が接続されている。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an insulation resistance measuring apparatus according to the first embodiment of the present invention. The insulation resistance measuring device is composed of a computer, for example, a personal computer. That is, the function block shown in FIG. 1 is installed when a program is installed in a computer including the input device 11, the arithmetic control device 12, the storage device 13, and the display device 14, and the arithmetic control device 12 executes the program. Is realized. A discharge sound detector 15 is connected to the arithmetic control device 12.

入力装置11はキーボードやマウスなどであり、演算制御装置12に対する操作指令や表示装置14への出力指令などの各種の指令を入力するものである。放電音検出器15は、例えばマイクなど音を検出するものであり、本発明の実施形態では、電気機器の絶縁物の近傍に設置され、電気機器の絶縁物の放電音を検出する。通電されている電気機器の絶縁物には電圧が印加されており、絶縁物が劣化しているときは放電を発生するので、放電音検出器15は、その放電が発生したときの放電音を検出する。   The input device 11 is a keyboard, a mouse, or the like, and inputs various commands such as an operation command to the arithmetic control device 12 and an output command to the display device 14. The discharge sound detector 15 detects sound such as a microphone, for example. In the embodiment of the present invention, the discharge sound detector 15 is installed in the vicinity of the insulator of the electric device and detects the discharge sound of the insulator of the electric device. Since a voltage is applied to the insulator of the electrical equipment that is energized and a discharge occurs when the insulator is deteriorated, the discharge sound detector 15 generates a discharge sound when the discharge occurs. To detect.

放電音検出器15で検出された放電音は、演算制御装置12の入力処理部16に入力され、時系列のデジタル信号として記憶装置13に記憶されるとともに、振動音成分抽出手段17に入力される。振動音成分抽出手段17は、放電音検出器15で検出された放電音を高速フーリエ変換し、放電音の周波数成分を抽出するものであり、放電音強度の大きい周波数成分を抽出する。振動音成分抽出手段17で抽出された特性の周波数領域の放電音は、抵抗演算手段18に入力されるとともに、必要に応じて記憶装置13に記憶される。   The discharge sound detected by the discharge sound detector 15 is input to the input processing unit 16 of the arithmetic control device 12 and is stored in the storage device 13 as a time-series digital signal and also input to the vibration sound component extraction means 17. The The vibration sound component extraction means 17 performs fast Fourier transform on the discharge sound detected by the discharge sound detector 15 to extract the frequency component of the discharge sound, and extracts a frequency component having a high discharge sound intensity. The discharge sound in the frequency domain of the characteristic extracted by the vibration sound component extraction means 17 is input to the resistance calculation means 18 and stored in the storage device 13 as necessary.

抵抗演算手段18は、振動音成分抽出手段17で抽出された特性の周波数領域の放電音を入力すると、その放電音強度を記憶装置13に予め記憶された関係式に代入し、絶縁物の表面絶縁抵抗値を演算し、その演算結果を出力処理部19を介して表示装置14に表示出力する。これにより、絶縁物の絶縁抵抗値が表示装置14に表示される。   When the resistance calculation means 18 inputs the discharge sound in the frequency domain of the characteristic extracted by the vibration sound component extraction means 17, the resistance calculation means 18 substitutes the discharge sound intensity into the relational expression stored in advance in the storage device 13, and the surface of the insulator The insulation resistance value is calculated, and the calculation result is displayed on the display device 14 via the output processing unit 19. Thereby, the insulation resistance value of the insulator is displayed on the display device 14.

ここで、記憶装置13には、通電されている状態の電気機器の絶縁物の放電音強度と絶縁物の表面絶縁抵抗値との関係式が予め記憶されている。この放電音強度と表面絶縁抵抗値との関係式は、以下のようにして予め求められたものである。   Here, the storage device 13 stores in advance a relational expression between the discharge sound intensity of the insulator of the electrical device that is energized and the surface insulation resistance value of the insulator. The relational expression between the discharge sound intensity and the surface insulation resistance value is obtained in advance as follows.

まず、既知の異なる表面絶縁抵抗値の複数の絶縁物を用意する。そして、用意した各々の絶縁物に対して所定電圧を印加して放電音検出器で放電音を検出する。これにより、表面絶縁抵抗値が異なる絶縁物ごとの放電音データが得られる。そして、表面絶縁抵抗値が異なる絶縁物ごとの放電音データを高速フーリエ変換して放電音強度が大きい特定の周波数領域の放電音強度を抽出する。これにより、放電音強度が大きい特定の周波数をパラメータとした放電音強度と表面絶縁抵抗値とをプロットした相関グラフが得られる。この相関グラフから放電音強度と絶縁物の表面絶縁抵抗値との関係式を求める。   First, a plurality of insulators having different known surface insulation resistance values are prepared. And a predetermined voltage is applied with respect to each prepared insulator, and a discharge sound is detected with a discharge sound detector. Thereby, discharge sound data for each insulator having different surface insulation resistance values can be obtained. Then, the discharge sound data for each insulator having different surface insulation resistance values is subjected to fast Fourier transform to extract the discharge sound intensity in a specific frequency region where the discharge sound intensity is high. As a result, a correlation graph is obtained in which the discharge sound intensity and the surface insulation resistance value are plotted with a specific frequency having a high discharge sound intensity as a parameter. From this correlation graph, a relational expression between the discharge sound intensity and the surface insulation resistance value of the insulator is obtained.

(1)既知の異なる表面絶縁抵抗値の複数の絶縁物の用意について
まず、本発明で対象とする絶縁物は不飽和ポリエステルであり、この不飽和ポリエステルの劣化要因は、以下のようであると考えられる。不飽和ポリエステル表面は、高湿度条件下における加水分解によって析出した炭酸カルシウムが大気中のNOxやSOxと接触することによりイオン化する性質があると考えられる。
(1) Regarding preparation of a plurality of insulators having different known surface insulation resistance values First, the insulator targeted in the present invention is unsaturated polyester, and the deterioration factors of this unsaturated polyester are as follows: Conceivable. The unsaturated polyester surface is considered to have the property of ionizing when calcium carbonate deposited by hydrolysis under high humidity conditions comes into contact with NOx and SOx in the atmosphere.

2NO2+H2O→HNO3+HNO2
CaCO3+2HNO3→Ca(NO3)2+H2O+CO2
Ca(NO3)2は潮解性のイオン化化合物であり、高湿度条件下において絶縁低下を引き起こすものと考えられる。図2は、不飽和ポリエステルの絶縁低下指摘件数及び平均湿度を月別に展開したグラフである。棒グラフが絶縁低下指摘件数、折れ線グラフが平均湿度である。
2NO 2 + H 2 O → HNO 3 + HNO 2
CaCO 3 + 2HNO 3 → Ca (NO 3 ) 2 + H 2 O + CO 2
Ca (NO 3 ) 2 is a deliquescent ionized compound and is considered to cause a decrease in insulation under high humidity conditions. FIG. 2 is a graph in which the number of insulation deterioration indications and the average humidity of the unsaturated polyester are expanded by month. The bar graph shows the number of insulation deterioration indications, and the line graph shows the average humidity.

通常、高圧受電設備の遮断器や開閉器等の機器は、配電箱内に収納されており、直接の風雨に曝されることがないが、外気を取り入れやすい構造となっており、外部の湿度の影響を受けやすいと考えられる。図2から分かるように、絶縁低下指摘件数は平均湿度との相関があり、前述のイオン化化合物Ca(NO3)2の析出と湿度とによる劣化要因の結果が実際に起こっているものと考えられる。 Normally, devices such as circuit breakers and switches in high-voltage power receiving equipment are housed in distribution boxes and are not exposed to direct wind and rain, but are structured to easily take in outside air, and have external humidity. It is thought that it is easy to be affected. As can be seen from FIG. 2, the number of indications of insulation decrease correlates with the average humidity, and it is thought that the above-mentioned deterioration factor results due to precipitation of the ionized compound Ca (NO 3 ) 2 and humidity. .

そこで、既知の異なる表面絶縁抵抗値の複数の絶縁物を以下のようにして用意した。実験用サンプルとして顧客設備で使用されていた高圧交流負荷開閉器(LBS)を用意した。通常、高圧交流負荷開閉器は変圧器の過負荷保護や小容量の受電設備の主開閉器として使用されており、絶縁部分に不飽和ポリエステルが使われている。   Therefore, a plurality of insulators having different known surface insulation resistance values were prepared as follows. A high-voltage AC load switch (LBS) that was used in customer facilities was prepared as an experimental sample. Usually, high-voltage AC load switches are used as main switches for overload protection of transformers and small-capacity power receiving equipment, and unsaturated polyester is used for the insulation.

そして、社団法人日本電機工業会技術資料JEM-TR194「高圧遮断器の使用環境に対する検討指針」のキュービクル構造と汚損についての測定結果をもとに、25ヶ月から60ヶ月までの当月汚損量を過去3ヵ月の回帰直線を求めて予測した。図3は累積等価塩分付着量と月数との予測結果を示すグラフである。曲線S1は強制換気の場合の累積等価塩分付着量の曲線、曲線S2は自然換気の場合の累積等価塩分付着量の曲線である。   Based on the measurement results on the cubicle structure and pollution in JEM-TR194 “Guidelines for Examining High-Voltage Circuit Breaker Usage Conditions”, JEM-TR194, the Japan Electrical Manufacturers' Association Technical Report A three-month regression line was obtained and predicted. FIG. 3 is a graph showing a prediction result of the accumulated equivalent salt adhesion amount and the number of months. A curve S1 is a curve of the accumulated equivalent salt adhesion amount in the case of forced ventilation, and a curve S2 is a curve of the accumulated equivalent salt adhesion amount in the case of natural ventilation.

図3をもとに、設備稼働時間が12ヶ月から60ヶ月まで12ヶ月おきの等価塩分付着量の変化に合わせ、サンプル絶縁物の表面積に応じた濃度の食塩水を均一に塗布したのち乾燥させ、絶縁抵抗値が十分回復していることを確認する。次に食塩を付着させた部分に精製水を噴霧し、所定の絶縁抵抗値にした。実験を行った等価塩分付着量は表1のとおりである。
Based on Fig. 3, according to the change in the amount of equivalent salt deposits every 12 months from 12 months to 60 months, uniformly apply a salt solution with a concentration according to the surface area of the sample insulator and then dry. Confirm that the insulation resistance has recovered sufficiently. Next, purified water was sprayed on the part to which the salt was adhered to obtain a predetermined insulation resistance value. Table 1 shows the amount of equivalent salinity deposited in the experiment.

(2)放電音の検出について
絶縁抵抗値が安定したことを確認したら、その両端に所定電圧AC3810Vを印加する。そして、印加直後の放電音の計測を行う。実験では換気方式別に12ヶ月ごとの累積等価塩分付着量について絶縁抵抗値を徐々に低下させていった場合の放電音を録音した。放電音の計測には、デジタル録音が可能な放電音検出器を用い、そのサンプリング周波数は96kHzとした。
(2) Detection of discharge sound When it is confirmed that the insulation resistance value is stable, a predetermined voltage AC3810V is applied to both ends thereof. And the discharge sound immediately after application is measured. In the experiment, a discharge sound was recorded when the insulation resistance value was gradually decreased for the accumulated equivalent salt adhesion amount every 12 months for each ventilation method. The discharge sound was measured using a discharge sound detector capable of digital recording, and the sampling frequency was 96 kHz.

図4は等価塩分付着量が0.044 mg/cm2における絶縁抵抗値を100MΩから0.1MΩまで徐々に低下させていった場合の各絶縁抵抗値における周波数成分の沿面放電音スペクトルの写真図である。縦軸は周波数×104[Hz]、横軸は時間[sec]である。なお、0.1MΩの横軸(時間軸)の0.6秒付近に垂直に現れる周波数成分は遮断器の投入音である。 FIG. 4 is a photograph of a creeping discharge sound spectrum of frequency components at each insulation resistance value when the insulation resistance value is gradually decreased from 100 MΩ to 0.1 MΩ at an equivalent salt adhesion amount of 0.044 mg / cm 2 . The vertical axis represents frequency × 10 4 [Hz], and the horizontal axis represents time [sec]. The frequency component that appears vertically around 0.6 seconds on the horizontal axis (time axis) of 0.1 MΩ is the circuit breaker sound.

(3)特定の周波数領域の放電音強度の抽出及び関係式について
次に、計測した放電音にはどのような周波数成分が含まれているのかを調べるため、高速フーリエ変換して放電音強度が大きい特定の周波数領域の放電音強度を抽出した。
(3) Extraction of discharge sound intensity in specific frequency region and relational expression Next, in order to investigate what frequency component is included in the measured discharge sound, the discharge sound intensity is obtained by fast Fourier transform. The discharge sound intensity in a large specific frequency region was extracted.

図5は周波数をパラメータとした絶縁抵抗値と放電音強度との相関グラフである。図5では、実験によって特に強く特徴が現れた10kHzから15kHz成分を抽出し、絶縁抵抗値を100MΩから0.1MΩ程度まで低下させていった場合の放電音強度の変化を周波数をパラメータとしてプロットしたものを示している。また、曲線は各周波数における測定値の累乗近似曲線である。   FIG. 5 is a correlation graph between the insulation resistance value and the discharge sound intensity with the frequency as a parameter. In Fig. 5, 10kHz to 15kHz components, which showed particularly strong characteristics in experiments, were extracted, and the change in discharge sound intensity when the insulation resistance value was reduced from 100MΩ to about 0.1MΩ was plotted using the frequency as a parameter. Is shown. The curve is a power approximation curve of the measured value at each frequency.

高速フーリエ変換FFTによって沿面放電音の可視化を行った結果、等価塩分付着量を変化させた場合であっても、可聴周波数領域に常に特徴が現れることが分かった。   As a result of visualizing creeping discharge sound by fast Fourier transform FFT, it was found that the characteristics always appeared in the audible frequency region even when the amount of equivalent salt deposition was changed.

図6は、高圧充電中の実機の絶縁物における周波数成分の沿面放電音スペクトルの写真図である。縦軸は周波数×104[Hz]、横軸は時間[sec]である。図6から分かるように、実機における自然劣化による沿面放電音を計測する場合には、沿面放電時の表面水分量が少なくなることから、実験(人工汚損)における10kHzから15kHz成分より低周波領域の5kHzから10kHz成分の抽出、特に自然劣化が顕著な場合は、8kHzから9kHzに成分の抽出を行い、劣化診断を行うことが有効であることが分かった。 FIG. 6 is a photograph of a creeping discharge sound spectrum of frequency components in an actual insulator during high voltage charging. The vertical axis represents frequency × 10 4 [Hz], and the horizontal axis represents time [sec]. As can be seen from Fig. 6, when measuring creeping discharge noise due to natural degradation in an actual machine, the surface moisture content during creeping discharge is reduced, so in the frequency range lower than the 10kHz to 15kHz component in the experiment (artificial fouling). Extraction of components from 5kHz to 10kHz, especially when natural deterioration is remarkable, it was found effective to extract components from 8kHz to 9kHz and perform deterioration diagnosis.

表面絶縁抵抗値の変化に対しても特徴が現れる周波数帯に大きな変化は見られなかったが、放電音強度が変化していることに着目し、累乗近似曲線に基づいて絶縁抵抗値と放電音強度との関係式を導き出した。絶縁抵抗値の対数的増加に伴い、放電音強度は直線的に低下する傾向があり、累乗関数によるフィッティングが最も適合している。すなわち、近似式は放電音強度をW[dB]、表面絶縁抵抗値をR[MΩ]とすると、(1)式のように表される。   Although there was no significant change in the frequency band where the characteristics appeared even with changes in the surface insulation resistance value, focusing on the fact that the discharge sound intensity changed, the insulation resistance value and the discharge sound were calculated based on the power approximation curve. A relational expression with strength was derived. As the insulation resistance value increases logarithmically, the discharge sound intensity tends to decrease linearly, and fitting by a power function is most suitable. That is, the approximate expression is expressed as the following expression (1), where the discharge sound intensity is W [dB] and the surface insulation resistance value is R [MΩ].

W=aR−b …(1)
等価塩分付着量ESDDごとに(1)式の定数aおよびb、R-2乗値を求めると表2のとおりとなる。
W = aR− b (1)
Table 2 shows the constants a and b and the R-2 power of equation (1) for each equivalent salt adhesion amount ESDD.

定数aは放電音検出器の検出ゲインの大きさで定まる定数である。この(1)式に、定数a、bを代入して、放電音強度と絶縁物の表面絶縁抵抗値との関係式とし、予め記憶装置13に記憶しておく。   The constant a is a constant determined by the magnitude of the detection gain of the discharge sound detector. The constants a and b are substituted into the equation (1) to obtain a relational expression between the discharge sound intensity and the surface insulation resistance value of the insulator, which is stored in the storage device 13 in advance.

以上の説明では、振動音成分抽出手段17は放電音検出器15で検出された放電音を高速フーリエ変換し、放電音の周波数成分を抽出するようにしたが、高速フーリエ変換に代えて、バンドパスフィルタを用いて放電音の周波数成分を抽出するようにしてもよい。   In the above description, the vibration sound component extracting means 17 performs the fast Fourier transform on the discharge sound detected by the discharge sound detector 15 and extracts the frequency component of the discharge sound. The frequency component of the discharge sound may be extracted using a pass filter.

第1の実施形態によれば、電気機器の絶縁物の放電音強度と絶縁物の表面絶縁抵抗値との関係式を予め記憶装置13に記憶しておき、電気機器の絶縁物の放電音を検出して特性の周波数領域の放電音強度を抽出し、放電音強度及び関係式に基づいて絶縁物の表面絶縁抵抗値を求めるので、非接触で絶縁抵抗の把握をすることができる。これにより、顧客設備の稼働率向上や点検作業の作業性向上、さらには安全性向上を図れる。   According to the first embodiment, a relational expression between the discharge sound intensity of the insulator of the electrical device and the surface insulation resistance value of the insulator is stored in the storage device 13 in advance, and the discharge sound of the insulator of the electrical device is stored. By detecting and extracting the discharge sound intensity in the frequency domain of the characteristic and obtaining the surface insulation resistance value of the insulator based on the discharge sound intensity and the relational expression, the insulation resistance can be grasped in a non-contact manner. As a result, it is possible to improve the operating rate of customer facilities, improve the workability of inspection work, and improve safety.

次に、本発明の第2の実施形態を説明する。図7は本発明の第2の実施形態に係る絶縁抵抗測定装置の構成図である。この第2の実施の形態は、図1に示した第1の実施形態に対し、電気機器を撮影する撮影装置20と、撮影装置20で撮影した画像を解析し放電発光の有無を判定する放電判定手段21と、放電判定手段21で放電発光が有りと判定されたときは、抵抗演算手段18で求められた表面絶縁抵抗値が予め定めた所定値以下であるかどうか判定する演算抵抗値確認手段22とを追加して設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   Next, a second embodiment of the present invention will be described. FIG. 7 is a configuration diagram of an insulation resistance measuring apparatus according to the second embodiment of the present invention. This second embodiment is different from the first embodiment shown in FIG. 1 in that a photographing device 20 that photographs an electrical device and a discharge that analyzes the image photographed by the photographing device 20 and determines the presence or absence of discharge light emission. When the determination means 21 and the discharge determination means 21 determine that there is discharge light emission, it is determined whether or not the surface insulation resistance value obtained by the resistance calculation means 18 is equal to or less than a predetermined value. Means 22 are additionally provided. The same elements as those in FIG.

撮影装置20は、例えばCCDカメラや高感度映像増幅管などであり、電気機器の外観映像を撮影するものである。電気機器の外観映像を撮影するのは、放電による発光を検出するためである。   The imaging device 20 is, for example, a CCD camera or a high-sensitivity video amplification tube, and captures an external image of an electrical device. The reason why the appearance image of the electric device is photographed is to detect light emission due to discharge.

図8は等価塩分付着量が0.044 mg/cm2における絶縁抵抗値を100MΩから0.1MΩまで徐々に低下させていった場合の各絶縁抵抗値における絶縁体の放電発生画像の写真図である。絶縁抵抗値が小さくなるにつれて放電発光が鮮明になっていることが分かる。 FIG. 8 is a photograph of an image of discharge occurrence of an insulator at each insulation resistance value when the insulation resistance value is gradually reduced from 100 MΩ to 0.1 MΩ at an equivalent salt adhesion amount of 0.044 mg / cm 2 . It can be seen that the discharge emission becomes clearer as the insulation resistance value decreases.

撮影装置20で撮影された画像は、入力処理部16を介して放電判定手段21に入力される。放電判定手段21は、撮影装置20で撮影した画像を解析し、放電発光の有無を判定する。絶縁物の放電発生画像中において、明度が大きい箇所は放電が発生しているので、絶縁物の表面で明度の大きい箇所があるかどうかを判定することで、放電発光の有無を判定する。   An image photographed by the photographing device 20 is input to the discharge determination means 21 via the input processing unit 16. The discharge determination unit 21 analyzes an image captured by the imaging device 20 and determines the presence or absence of discharge light emission. In the discharge occurrence image of the insulator, since the discharge is generated at a portion having a high brightness, it is determined whether there is a discharge light emission by determining whether there is a portion having a high brightness on the surface of the insulator.

次に、放電発光が確認できた絶縁抵抗値を等価塩分付着量ごとにプロットしてグラフを作成した。図9は、放電発光が確認できた絶縁抵抗値と等価塩分付着量との関係を示すグラフである。図9では、等価塩分付着量の増加に伴い放電の起こる絶縁抵抗値はほぼ一定となる傾向があることが分かった。すなわち、経年によって絶縁物表面の等価塩分付着量が増加したとしても、沿面放電が開始する絶縁抵抗値は変わらないと言える。   Next, a graph was created by plotting the insulation resistance value at which discharge light emission was confirmed for each equivalent salt content. FIG. 9 is a graph showing the relationship between the insulation resistance value at which discharge light emission was confirmed and the equivalent salt content. In FIG. 9, it was found that the insulation resistance value at which discharge occurs tends to be substantially constant with the increase in the amount of equivalent salt adhesion. That is, it can be said that the insulation resistance value at which creeping discharge starts does not change even when the equivalent salt content on the surface of the insulator increases with time.

また、同時に絶縁物表面の絶縁抵抗値が100MΩである場合には、すべての等価塩分付着量において沿面放電が生じないことが分かり、絶縁抵抗値の管理による開閉器設備のメンテナンスは30MΩ程度以下になった場合に実施の必要性が高まることが分かった。   At the same time, when the insulation resistance value on the surface of the insulator is 100 MΩ, it can be seen that creeping discharge does not occur at all equivalent salt deposits, and maintenance of the switchgear equipment by controlling the insulation resistance value is less than about 30 MΩ. It became clear that the need for implementation would increase.

そこで、放電が発生するのは30MΩ程度であることから、放電が発生したことを放電判定手段21が検出したときは、演算抵抗値確認手段22は、抵抗演算手段18で求められた表面絶縁抵抗値が30MΩ程度であるかどうかを判定する。すなわち、所定値として予め30MΩを設定しておき、演算抵抗値確認手段22は、抵抗演算手段18で求められた表面絶縁抵抗値が30MΩ以下であるかどうか判定する。30MΩ以下であるときは、抵抗演算手段18で求められた表面絶縁抵抗値は妥当であると判定される。   Therefore, since the discharge is generated at about 30 MΩ, when the discharge determination means 21 detects that the discharge has occurred, the calculated resistance value confirmation means 22 determines the surface insulation resistance obtained by the resistance calculation means 18. Determine if the value is about 30MΩ. That is, 30 MΩ is set in advance as a predetermined value, and the calculated resistance value confirmation unit 22 determines whether the surface insulation resistance value obtained by the resistance calculation unit 18 is 30 MΩ or less. When it is 30 MΩ or less, it is determined that the surface insulation resistance value obtained by the resistance calculation means 18 is appropriate.

一方、30MΩ以上であるときは、抵抗演算手段18で求められた表面絶縁抵抗値は妥当ではないと判定される。そして、判定結果は出力処理部19を介して表示装置14に表示出力される。抵抗演算手段18で求められた表面絶縁抵抗値が妥当でないと判定されたときは、(1)式の定数a、bの設定が適切でない可能性があるので、(1)式の定数a、bを見直すことになる。   On the other hand, when it is 30 MΩ or more, it is determined that the surface insulation resistance value obtained by the resistance calculating means 18 is not appropriate. Then, the determination result is displayed on the display device 14 via the output processing unit 19. When it is determined that the surface insulation resistance value obtained by the resistance calculation means 18 is not appropriate, the constants a and b in the equation (1) may not be set appropriately. b will be reviewed.

第2の実施形態によれば、電気機器の画像を解析して放電発光の有無を判定し、放電発光が有りと判定されたときに、放電音強度及び関係式に基づいて求めた絶縁物の表面絶縁抵抗値が妥当であるか否かを判定するので、求めた絶縁抵抗の精度が向上する。   According to the second embodiment, an image of an electrical device is analyzed to determine the presence or absence of discharge light emission, and when it is determined that there is discharge light emission, the insulating material obtained based on the discharge sound intensity and the relational expression is determined. Since it is determined whether or not the surface insulation resistance value is appropriate, the accuracy of the obtained insulation resistance is improved.

以上の説明では、絶縁物として不飽和ポリエステルである場合について説明したが、高圧ピンがいしやアクリルである場合も同様に適用できる。図10は、絶縁物としてその抵抗値が1MΩの不飽和ポリエステル、高圧ピンがいし、アクリルである場合の周波数成分の沿面放電音スペクトルの写真図である。高圧ピンがいし及びアクリルの横軸(時間軸)の0.3秒付近に垂直に現れる周波数成分は遮断器の投入音である。   In the above description, the case where the insulating material is unsaturated polyester has been described. However, the present invention can be similarly applied to the case where the high-pressure pin is an insulator or acrylic. FIG. 10 is a photograph of the creeping discharge sound spectrum of the frequency component in the case where the insulator is an unsaturated polyester having a resistance value of 1 MΩ, a high-pressure pin, and acrylic. The frequency component that appears vertically in the vicinity of 0.3 seconds on the high-pressure pin insulator and the horizontal axis (time axis) of acrylic is the input sound of the circuit breaker.

高圧ピンがいしでは可聴周波数領域である8kHzから15 kHz成分に強いスペクトルが現れていることが分かり、アクリルにおいても微少ながら可聴周波数帯に特徴が現れていることが分かった。これにより、不飽和ポリエステルのみならず、磁器などの絶縁物に対しても可聴領域による絶縁低下の検知が可能となる。   It was found that a strong spectrum appeared in the 8 kHz to 15 kHz component, which is the audible frequency range, with the high-voltage pin insulator, and that the characteristics appeared in the audible frequency band in the acrylic as well. As a result, it is possible to detect a decrease in insulation due to the audible region not only for unsaturated polyester but also for insulators such as porcelain.

11…入力装置、12…演算制御装置、13…記憶装置、14…表示装置、15…放電音検出器、16…入力処理部、17…振動音成分抽出手段、18…抵抗演算手段、19…出力処理部、20…撮影装置、21…放電判定手段、22…演算抵抗値確認手段 DESCRIPTION OF SYMBOLS 11 ... Input device, 12 ... Arithmetic controller, 13 ... Memory | storage device, 14 ... Display apparatus, 15 ... Discharge sound detector, 16 ... Input processing part, 17 ... Vibration sound component extraction means, 18 ... Resistance calculation means, 19 ... Output processing unit, 20 ... photographing apparatus, 21 ... discharge determining means, 22 ... calculated resistance value checking means

Claims (4)

通電されている状態の電気機器の絶縁物の放電音強度と前記絶縁物の表面絶縁抵抗値との関係式を予め記憶した記憶装置と、前記電気機器の絶縁物の放電音を検出する放電音検出器と、前記放電音検出器で検出された放電音に対して高速フーリエ変換またはバンドパスフィルタを用いて放電音の周波数成分を抽出する振動音成分抽出手段と、前記振動音成分抽出手段で抽出された特性の周波数領域の放電音強度及び前記記憶装置に記憶した関係式に基づいて前記絶縁物の表面絶縁抵抗値を求める抵抗演算手段とを備えたことを特徴とする絶縁抵抗測定装置。 A storage device that stores in advance a relational expression between a discharge sound intensity of an insulator of an electric device that is energized and a surface insulation resistance value of the insulator, and a discharge sound that detects a discharge sound of the insulator of the electric device A detector, a vibration sound component extracting means for extracting a frequency component of the discharge sound using a fast Fourier transform or a bandpass filter for the discharge sound detected by the discharge sound detector, and the vibration sound component extracting means. An insulation resistance measuring device comprising: resistance calculation means for obtaining a surface insulation resistance value of the insulator based on the discharge sound intensity in the frequency domain of the extracted characteristic and the relational expression stored in the storage device. 通電されている状態の電気機器の絶縁物の放電音強度と前記絶縁物の表面絶縁抵抗値との関係式を予め記憶した記憶装置と、前記電気機器の絶縁物の放電音を検出する放電音検出器と、前記放電音検出器で検出された放電音に対して高速フーリエ変換またはバンドパスフィルタを用いて放電音の周波数成分を抽出する振動音成分抽出手段と、前記電気機器を撮影する撮影装置と、前記撮影装置で撮影した画像を解析し放電発光の有無を判定する放電判定手段と、前記振動音成分抽出手段で抽出された特性の周波数領域の放電音強度及び前記記憶装置に記憶した関係式に基づいて前記絶縁物の表面絶縁抵抗値を求める抵抗演算手段と、前記放電判定手段で放電発光が有りと判定されたときは前記抵抗演算手段で求められた表面絶縁抵抗値が予め定めた所定値以下であるかどうか判定する演算抵抗値確認手段とを備えたことを特徴とする絶縁抵抗測定装置。 A storage device that stores in advance a relational expression between a discharge sound intensity of an insulator of an electric device that is energized and a surface insulation resistance value of the insulator, and a discharge sound that detects a discharge sound of the insulator of the electric device Detector, vibration sound component extracting means for extracting frequency component of discharge sound using fast Fourier transform or bandpass filter for discharge sound detected by discharge sound detector, and photographing for photographing electric device Apparatus, discharge determination means for analyzing the image taken by the photographing apparatus to determine the presence or absence of discharge light emission, discharge sound intensity in the frequency domain of the characteristic extracted by the vibration sound component extraction means, and stored in the storage device A resistance calculation means for obtaining a surface insulation resistance value of the insulator based on a relational expression, and a surface insulation resistance value obtained by the resistance calculation means when the discharge determination means determines that there is discharge light emission in advance. Meta insulation resistance measuring apparatus characterized by comprising a determining operation resistance check means if it is less than a predetermined value. 前記関係式は、既知の異なる表面絶縁抵抗値の複数の絶縁物を用意し、用意した各々の絶縁物に対して所定電圧を印加して放電音検出器で放電音を検出し、前記放電音検出器で測定した放電音に対して高速フーリエ変換またはバンドパスフィルタを用い放電音強度が大きい特定の周波数領域の放電音強度を抽出し、抽出した放電音強度と表面絶縁抵抗値との相関グラフに基づいて予め求めることを特徴とする請求項1または2記載の絶縁抵抗測定装置。 The relational expression is that a plurality of insulators having different known surface insulation resistance values are prepared, a predetermined voltage is applied to each of the prepared insulators, a discharge sound is detected by a discharge sound detector, and the discharge sound is detected. Using the fast Fourier transform or bandpass filter for the discharge sound measured by the detector, the discharge sound intensity in a specific frequency region where the discharge sound intensity is high is extracted, and the correlation between the extracted discharge sound intensity and the surface insulation resistance value 3. The insulation resistance measuring apparatus according to claim 1, wherein the insulation resistance measuring apparatus is obtained in advance based on a graph. 前記絶縁物は、不飽和ポリエステル、磁器、アクリルであることを特徴とする請求項1乃至3のいずれか一に記載の絶縁抵抗測定装置。   The insulation resistance measuring apparatus according to any one of claims 1 to 3, wherein the insulator is unsaturated polyester, porcelain, or acrylic.
JP2011188307A 2011-01-25 2011-08-31 Insulation resistance measuring device Active JP5802991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188307A JP5802991B2 (en) 2011-01-25 2011-08-31 Insulation resistance measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011012934 2011-01-25
JP2011012934 2011-01-25
JP2011188307A JP5802991B2 (en) 2011-01-25 2011-08-31 Insulation resistance measuring device

Publications (2)

Publication Number Publication Date
JP2012168158A JP2012168158A (en) 2012-09-06
JP5802991B2 true JP5802991B2 (en) 2015-11-04

Family

ID=46972443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188307A Active JP5802991B2 (en) 2011-01-25 2011-08-31 Insulation resistance measuring device

Country Status (1)

Country Link
JP (1) JP5802991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291283A (en) * 2016-08-18 2017-01-04 济南学泰电子科技有限公司 A kind of insulator monitoring instrument and monitoring method
CN114114016B (en) * 2021-11-16 2023-05-09 江西伟德智能电气有限公司 Power performance detection device of power distribution cabinet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360774A (en) * 1980-04-07 1982-11-23 Allegheny Ludlum Steel Corporation Apparatus for measuring the surface insulation characteristics of coatings on magnetic materials
JPH0886829A (en) * 1994-09-14 1996-04-02 Tokin Corp Withstand voltage measuring method and apparatus for electronic component
JPH09229993A (en) * 1996-02-27 1997-09-05 Techno Create Kk Corona-noise detection apparatus and partial-discharge detection apparatus
JP2002214278A (en) * 2001-01-22 2002-07-31 Toshiba Corp Apparatus for diagnosing high voltage machinery and diagnostic method using the same

Also Published As

Publication number Publication date
JP2012168158A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
US9581632B2 (en) Apparatus and method for remote monitoring of partial discharge in electrical apparatus
EP2806518B1 (en) Serial arc detection based on harmonic content of DC current signal
JP2021064384A (en) Automatic security check system for cubicles (high-voltage power receiving equipment)
JP2010154738A (en) Arc detection using detailed and approximate coefficients of discrete wavelet transforms
US20170363675A1 (en) Partial discharge determination method, partial discharge determination apparatus, and partial discharge determination system for power device, and method for manufacturing power device including the partial discharge determination method
US20170184655A1 (en) Method of detecting an electric arc by analysis of its acoustic signature
JP5802991B2 (en) Insulation resistance measuring device
EP2463975A3 (en) Method, system, and apparatus for detecting an arc event using breaker status
JP2018112452A (en) Device and method for partial discharge monitoring
CN102540025B (en) Ultraviolet photon counting method based on width ratio module
Shahid et al. Health diagnosis scheme for in-service low voltage Aerial Bundled Cables using super-heterodyned airborne Ultrasonic testing
US10958060B2 (en) Method and device for detecting an electric arc in a photovoltaic installation
CN102095765A (en) System for measuring content of micro water in transformer oil on line
KR101864639B1 (en) Method of Insulation Risk in GIS
US20160003886A1 (en) Method and device for detecting arcing in electrical installation for dc power
KR101308003B1 (en) Mehthod of arc detection based on wavelet
JPH09127181A (en) Detecting device for corona discharge of electric power equipment
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JP2018189620A (en) Insulator remaining life measurement device by discharge amount detection of partial discharging, corona discharging, and creeping discharging (hereinafter, referred to as corona discharging)
US10509067B2 (en) Method for AC arc fault detection using multidimensional energy points
KR102483821B1 (en) Switchgear with Hybrid Monitoring Device Based on Web using Electric Device Deterioration Status Sensing and Electric-accident Prevention Function
JP6030518B2 (en) Method for measuring cathodic protection of buried pipelines
KR200451226Y1 (en) Portable discharging UV analyzer
JP4353840B2 (en) Method for detecting partial discharge of electric circuit
Li et al. Surface discharge detection method of contaminated insulators based on ultraviolet images' parameters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150807

R150 Certificate of patent or registration of utility model

Ref document number: 5802991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350