JP5798799B2 - High pressure fuel supply pump with electromagnetically driven suction valve - Google Patents
High pressure fuel supply pump with electromagnetically driven suction valve Download PDFInfo
- Publication number
- JP5798799B2 JP5798799B2 JP2011119848A JP2011119848A JP5798799B2 JP 5798799 B2 JP5798799 B2 JP 5798799B2 JP 2011119848 A JP2011119848 A JP 2011119848A JP 2011119848 A JP2011119848 A JP 2011119848A JP 5798799 B2 JP5798799 B2 JP 5798799B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- pressure fuel
- fuel supply
- supply pump
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Fuel-Injection Apparatus (AREA)
Description
本発明は、電磁駆動型の吸入弁を備えた高圧燃料供給ポンプに関し、特に電磁駆動型の吸入弁がバルブシートの加圧室側にバルブを備えた、所謂外開きタイプの弁で構成されるものに関する。 The present invention relates to a high-pressure fuel supply pump having an electromagnetically driven intake valve, and in particular, the electromagnetically driven intake valve is configured as a so-called outwardly-opening type valve having a valve on the pressure chamber side of a valve seat. About things.
従来この種のタイプの高圧燃料供給ポンプは、例えば特開2009−203987号公報に記載されるように、高圧圧送される燃料の量はソレノイドへのON(通電)タイミングを制御することより調節する。高圧燃料供給ポンプのピストンプランジャによる圧縮工程の途中でソレノイドをON(通電)すると、吸入弁が閉弁し燃料の高圧圧送が開始される。高圧圧送開始直後、ピストンプランジャによる次の吸入工程が始まる前に、ソレノイドをOFF(通電終了)すると、吸入行程の開始と同期して吸入弁はばねの付勢力により開弁する。 Conventionally, in this type of high-pressure fuel supply pump, as described in, for example, Japanese Patent Laid-Open No. 2009-203987, the amount of high-pressure pumped fuel is adjusted by controlling the ON (energization) timing to the solenoid. . When the solenoid is turned on (energized) during the compression process by the piston plunger of the high pressure fuel supply pump, the intake valve is closed and high pressure pumping of fuel is started. Immediately after the start of high-pressure pumping and before the next suction process by the piston plunger starts, the solenoid is turned off (energization is completed), and the suction valve is opened by the biasing force of the spring in synchronization with the start of the suction stroke.
吸入行程の開始と共に吸入弁は開弁運動を開始し、完全に開弁すると吸入弁は例えばストッパに衝突をして開弁運動を終了するが、特に静粛性が求められる車輛のアイドリング状態などで、この衝突による音が大きいと言う問題があった。他の従来技術では、電磁機構のプランジャが固定コア部に衝突して音を発生するものもある。 As soon as the intake stroke starts, the intake valve starts opening, and when the intake valve opens completely, the intake valve collides with the stopper and ends the opening movement.However, especially when the vehicle is idling, where quietness is required. There was a problem that the sound of this collision was loud. In another conventional technique, a plunger of an electromagnetic mechanism collides with a fixed core portion to generate sound.
本発明の目的は、吸入弁が開弁運動をする際の速度を小さくし、吸入弁あるいはプランジャが他の部材と衝突する時に発生する衝突音を低減することである。 An object of the present invention is to reduce the speed at which the suction valve opens, and to reduce the collision sound generated when the suction valve or the plunger collides with another member.
上記目的を達成するために本発明は、高圧燃料供給ポンプのピストンプランジャによる圧縮工程の途中でソレノイドをON(通電)した後、通電状態がピストンプランジャによる次の吸入工程の途中まで継続するようにした。そして、吸入工程中のソレノイドへの通電電流によって生じる磁気吸引力が、吸入弁を開弁させるための作用力を弱くするように構成した。 In order to achieve the above object, according to the present invention, after the solenoid is turned on (energized) during the compression process by the piston plunger of the high-pressure fuel supply pump, the energized state continues until the next intake process by the piston plunger. did. The magnetic attraction force generated by the energization current to the solenoid during the suction process is configured to weaken the acting force for opening the suction valve.
上記のように構成した本発明によれば次のような効果が得られる。 According to the present invention configured as described above, the following effects can be obtained.
吸入工程中にソレノイドへ通電される電流によって発生する磁気力は吸入弁の開弁方向と反対方向に作用するが、吸入弁を開弁する力よりも弱いので吸入弁は開弁運動を開始し、ゆっくり開弁して、吸入弁あるいはプランジャが例えばストッパのような固定部材に衝突して運動を停止する。衝突直前の吸入弁の速度は磁気力の分だけ遅くなるので、吸入弁あるいはプランジャが固定部材に衝突することによって発生する音を小さくすることができる。 The magnetic force generated by the current applied to the solenoid during the suction process acts in the direction opposite to the opening direction of the suction valve, but it is weaker than the force to open the suction valve, so the suction valve starts to open. Then, the valve is opened slowly, and the suction valve or the plunger collides with a fixed member such as a stopper to stop the movement. Since the speed of the suction valve immediately before the collision is reduced by the amount of the magnetic force, it is possible to reduce the sound generated when the suction valve or the plunger collides with the fixed member.
以下、図面を参照して、本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
〔第1実施例〕
図1乃至図8に基づき本発明が実施される高圧燃料供給ポンプの第1実施例を説明する。
[First embodiment]
A first embodiment of a high-pressure fuel supply pump in which the present invention is implemented will be described with reference to FIGS.
図1は細部に符号を付すことができないので、説明中の符号で図1にその符号がないものは図2ないし図7の拡大図にその符号が記載されている。 Since the reference numerals in FIG. 1 cannot be attached to the details, the reference numerals in the description that are not shown in FIG. 1 are shown in the enlarged views of FIGS.
ポンプハウジング1には、一端が開放された有底の筒状空間を形成する窪み部12Aが設けられ、当該窪み部12Aには開放端側からシリンダ20が挿入されている。シリンダ20の外周とポンプハウジング1の間は圧接部20Aによってシールされている。またシリンダ20にはピストンプランジャ2が滑合しているので、シリンダ20の内周面とピストンプランジャ2の外周面との間は滑合面間に侵入する燃料でシールされる。その結果、ピストンプランジャ2の先端と窪み部12Aの内壁面およびシリンダ20の外周面の間に加圧室12が画成されている。 The pump housing 1 is provided with a recess 12A that forms a bottomed cylindrical space with one end open, and a cylinder 20 is inserted into the recess 12A from the open end side. The outer periphery of the cylinder 20 and the pump housing 1 are sealed by a pressure contact portion 20A. Since the piston plunger 2 is slidingly engaged with the cylinder 20, the space between the inner peripheral surface of the cylinder 20 and the outer peripheral surface of the piston plunger 2 is sealed with fuel that enters between the sliding surfaces. As a result, the pressurizing chamber 12 is defined between the tip of the piston plunger 2, the inner wall surface of the recess 12A, and the outer peripheral surface of the cylinder 20.
ポンプハウジング1の周壁から加圧室12に向けて筒状の孔200Hが形成されており、この筒状の孔200Hには電磁駆動型吸入弁機構200の吸入弁部INVおよび電磁駆動機構部EMDの一部が挿入されている。電磁駆動型吸入弁機構200の外周面と筒状の孔200Hとの接合面200Rがレーザ溶接によって接合されことで、ポンプハウジング1の内部が大気から密閉されている。電磁駆動型吸入弁機構200が取付けられることによって密封された筒状の孔200Hは低圧燃料室10Aとして機能する。 A cylindrical hole 200H is formed from the peripheral wall of the pump housing 1 toward the pressurizing chamber 12, and the cylindrical hole 200H has a suction valve portion INV and an electromagnetic drive mechanism portion EMD of the electromagnetically driven suction valve mechanism 200. A part of is inserted. The joint surface 200R between the outer peripheral surface of the electromagnetically driven suction valve mechanism 200 and the cylindrical hole 200H is joined by laser welding, so that the inside of the pump housing 1 is sealed from the atmosphere. The cylindrical hole 200H sealed by attaching the electromagnetically driven intake valve mechanism 200 functions as the low pressure fuel chamber 10A.
加圧室12を挟んで筒状の孔200Hと対向する位置にはポンプハウジング1の周壁から加圧室12に向けて筒状の孔60Hが設けられている。この筒状の孔60Hには吐出弁ユニット60が装着されている。吐出弁ユニット60は先端にバルブシート61が形成され、中心に吐出通路となる通孔11Aを備えたバルブシート部材61Bを備える。バルブシート部材61Bの外周にはバルブシート61側周囲を包囲するバルブホルダー62が固定されている。バルブホルダー62内にはバルブ63とこのバルブ63をバルブシート61に押し付ける方向に付勢するばね64が設けられている。筒状の孔60Hの反加圧室側開口部はポンプハウジング1に溶接で固定された吐出ジョイント11が設けられている。 A cylindrical hole 60 </ b> H is provided from the peripheral wall of the pump housing 1 toward the pressurizing chamber 12 at a position facing the cylindrical hole 200 </ b> H across the pressurizing chamber 12. A discharge valve unit 60 is mounted in the cylindrical hole 60H. The discharge valve unit 60 includes a valve seat member 61B having a valve seat 61 formed at the tip and a through hole 11A serving as a discharge passage at the center. A valve holder 62 surrounding the periphery of the valve seat 61 is fixed to the outer periphery of the valve seat member 61B. A valve 63 and a spring 64 that urges the valve 63 in a direction to press the valve 63 against the valve seat 61 are provided in the valve holder 62. A discharge joint 11 fixed to the pump housing 1 by welding is provided at the opening portion on the side opposite to the pressure chamber of the cylindrical hole 60H.
電磁駆動型吸入弁機構200は電磁的に駆動されるプランジャロッド201を備える。プランジャロッド201の先端にはバルブ203が設けられ、電磁駆動型吸入弁機構200の端部に設けられたバルブハウジング214に形成されたバルブシート214Sと対面している。 The electromagnetically driven suction valve mechanism 200 includes a plunger rod 201 that is electromagnetically driven. A valve 203 is provided at the tip of the plunger rod 201 and faces a valve seat 214 </ b> S formed on a valve housing 214 provided at an end of the electromagnetically driven intake valve mechanism 200.
プランジャロッド201の他端には、プランジャロッド付勢ばね202が設けられており、バルブ203がバルブシート214Sから離れる方向にプランジャロッドを付勢している。バルブハウジング214の先端内周部にはバルブストッパS0が固定されている。バルブ203はバルブシート214SとバルブストッパS0との間に往復動可能に保持されている。バルブ203とバルブストッパS0との間にはバルブ付勢ばねS4が配置されており、バルブ203はバルブ付勢ばねS4によってバルブストッパS0から離れる方向に付勢されている。 A plunger rod biasing spring 202 is provided at the other end of the plunger rod 201, and the valve 203 biases the plunger rod in a direction away from the valve seat 214S. A valve stopper S 0 is fixed to the inner peripheral portion of the tip of the valve housing 214. The valve 203 is held between the valve seat 214S and the valve stopper S0 so as to be able to reciprocate. A valve urging spring S4 is disposed between the valve 203 and the valve stopper S0, and the valve 203 is urged in a direction away from the valve stopper S0 by the valve urging spring S4.
バルブ203とプランジャロッド201の先端とは互いに反対方向にそれぞれのばねで付勢されているが、プランジャロッド付勢ばね202の方が強いばねで構成してあるので、プランジャロッド201がバルブ付勢ばねS4の力に抗してバルブ203がバルブシートから離れる方向(図面右方向)に押し、結果的にバルブ203をバルブストッパS0に押し付けている。 The valve 203 and the tip of the plunger rod 201 are urged by respective springs in opposite directions. However, since the plunger rod urging spring 202 is formed of a stronger spring, the plunger rod 201 is urged by the valve. The valve 203 is pressed against the force of the spring S4 in a direction away from the valve seat (right direction in the drawing), and as a result, the valve 203 is pressed against the valve stopper S0.
このため、プランジャロッド201は、電磁駆動型吸入弁機構200がOFF時(電磁コイル204に通電されていないとき)には、プランジャロッド付勢ばね202によってプランジャロッド201を介して、バルブ203を開弁する方向に付勢している。従って電磁駆動型吸入弁機構200がOFF時には、図1,図2,図3(A)のように、プランジャロッド201,バルブ203は開弁位置に維持される(詳細構成は後述する)。 Therefore, the plunger rod 201 opens the valve 203 via the plunger rod 201 by the plunger rod biasing spring 202 when the electromagnetically driven suction valve mechanism 200 is OFF (when the electromagnetic coil 204 is not energized). It is energizing in the direction of valve. Therefore, when the electromagnetically driven suction valve mechanism 200 is OFF, the plunger rod 201 and the valve 203 are maintained in the valve open position as shown in FIGS. 1, 2, and 3A (detailed configuration will be described later).
燃料は、燃料タンク50から低圧ポンプ51によってポンプハウジング1の燃料導入口としての吸入ジョイント10へ導かれている。 The fuel is guided from the fuel tank 50 to the suction joint 10 as the fuel inlet of the pump housing 1 by the low pressure pump 51.
コモンレール53には、複数のインジェクタ54,圧力センサ56が装着されている。インジェクタ54は、エンジンの気筒数にあわせて装着されており、エンジンコントロールユニット(ECU)600の信号に応じてコモンレール53に送られてきた高圧燃料を各気筒に噴射する。また、ポンプハウジング1に内蔵されたリリーフ弁機構(図示しない)は、コモンレール53内の圧力が所定値を超えたとき開弁して余剰高圧燃料を吐出弁6の上流側に戻す。 A plurality of injectors 54 and pressure sensors 56 are attached to the common rail 53. The injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject high-pressure fuel sent to the common rail 53 into each cylinder in response to a signal from an engine control unit (ECU) 600. A relief valve mechanism (not shown) built in the pump housing 1 opens when the pressure in the common rail 53 exceeds a predetermined value, and returns excess high-pressure fuel to the upstream side of the discharge valve 6.
ピストンプランジャ2の下端に設けられたリフタ3は、ばね4にてカム7に圧接されている。ピストンプランジャ2はシリンダ20に摺動可能に保持されており、エンジンカムシャフト等により回転されるカム7により、往復運動して加圧室12内の容積を変化させる。シリンダ20はその下端部外周がシリンダホルダ21で保持され、シリンダホルダ21をポンプハウジング1に固定することによってポンプハウジング1にメタルシール部20Aで圧接される。 A lifter 3 provided at the lower end of the piston plunger 2 is pressed against a cam 7 by a spring 4. The piston plunger 2 is slidably held by the cylinder 20 and reciprocates by the cam 7 rotated by an engine cam shaft or the like to change the volume in the pressurizing chamber 12. The outer periphery of the lower end of the cylinder 20 is held by a cylinder holder 21, and the cylinder holder 21 is fixed to the pump housing 1 and is pressed against the pump housing 1 by a metal seal portion 20 </ b> A.
シリンダホルダ21にはピストンプランジャ2の下端部側に形成された小径部2Aの外周をシールするプランジャシール5が装着されている。加圧室内にシリンダ20とピストンプランジャ2の組体を挿入し、シリンダホルダ21の外周に形成した雄ねじ部21Aをポンプハウジング1の窪み12Aの開放側端部内周に形成した雌ねじ部のねじ部1Aにねじ込む。シリンダホルダ21の段部21Dがシリンダ20の反加圧室側端部周縁に係止した状態でシリンダホルダ21がシリンダ20を加圧室側に押すことで、シリンダ20のシール用段部20Aをポンプハウジング1に押し付けて、メタル接触によるシール部を形成する。 The cylinder holder 21 is provided with a plunger seal 5 that seals the outer periphery of the small diameter portion 2A formed on the lower end side of the piston plunger 2. The assembly of the cylinder 20 and the piston plunger 2 is inserted into the pressurizing chamber, and the male thread portion 21A formed on the outer periphery of the cylinder holder 21 is the thread portion 1A of the female thread portion formed on the inner periphery of the open side end of the recess 12A of the pump housing 1. Screw in. The cylinder holder 21 pushes the cylinder 20 toward the pressurizing chamber while the stepped portion 21D of the cylinder holder 21 is engaged with the peripheral edge of the cylinder 20 on the side opposite to the pressurizing chamber. It is pressed against the pump housing 1 to form a seal portion by metal contact.
Oリング21BはエンジンブロックENBに形成された取付け孔EHの内周面とシリンダホルダ21の外周面との間をシールする。Oリング21Cはポンプハウジング1の窪み12Aの反加圧室側端部内周面とシリンダホルダ21の外周面との間をねじ部21A(1A)の反加圧室側の位置でシールする。 The O-ring 21B seals between the inner peripheral surface of the mounting hole EH formed in the engine block ENB and the outer peripheral surface of the cylinder holder 21. The O-ring 21 </ b> C seals the space between the inner peripheral surface of the recess 12 </ b> A of the recess 12 </ b> A of the pump housing 1 and the outer peripheral surface of the cylinder holder 21 at the position of the screw portion 21 </ b> A (1 </ b> A) on the anti-pressurization chamber side.
ポンプハウジング1の反加圧室側端部外周に溶接部1Cで固定された取付けフランジ1Dはシリンダホルダ21の端部外周をエンジンブロックENBの取付け孔EHに挿入した状態で、ねじ固定補助スリーブ1Eを介してねじ1Fでエンジンブロックにねじ止めされ、これによってポンプがエンジンブロックに固定される。 The mounting flange 1D fixed to the outer periphery of the end of the pump housing 1 on the side opposite to the pressurization chamber by the welded portion 1C is inserted into the mounting hole EH of the engine block ENB and the screw fixing auxiliary sleeve 1E. And screwed to the engine block with a screw 1F, whereby the pump is fixed to the engine block.
吸入ジョイント10から低圧燃料室10Aまでの通路の途中にはダンパ室10Bが形成されており、この中に二枚金属ダイアフラム式の金属ダイアフラムダンパ80がダンパホルダ30(上側ダンパホルダ30A,下側ダンパホルダ30B)に挟持された状態で収納されている。ダンパ室10Bはポンプハウジング1の上面外壁部に形成された環状の窪みの外周部にダンパカバー40の筒状側壁の下端部を溶接接合することで形成される。この実施例では吸入ジョイント10はダンパカバー40の中央に溶接により固定されている。 A damper chamber 10B is formed in the middle of the passage from the suction joint 10 to the low-pressure fuel chamber 10A, and a double metal diaphragm type metal diaphragm damper 80 is provided in the damper holder 30 (upper damper holder 30A, lower damper holder 30B). It is stored in a state of being sandwiched between the two. The damper chamber 10 </ b> B is formed by welding and joining the lower end portion of the cylindrical side wall of the damper cover 40 to the outer peripheral portion of an annular recess formed in the upper surface outer wall portion of the pump housing 1. In this embodiment, the suction joint 10 is fixed to the center of the damper cover 40 by welding.
二枚式金属ダイアフラムダンパ80は、上下一対の金属ダイアフラム80Aと80Bとを突合せその外周部を全周に亘って溶接して内部をシールしている。上側ダンパホルダ30Aの内周側下端の環状端縁部が二枚式金属ダイアフラムダンパ80の溶接部80Cより内側で二枚式金属ダイアフラムダンパ80の上側の環状縁部に当接している。下側ダンパホルダ30の内周側上端の環状端縁部が二枚式金属ダイアフラムダンパ80の溶接部80Cより内側で二枚式金属ダイアフラムダンパ80の下側の環状縁部に当接している。かくして二枚式金属ダイアフラムダンパ80は環状縁部の上下面で上側ダンパホルダ30A,下側ダンパホルダ30Bに挟み付けられている。 The double metal diaphragm damper 80 has a pair of upper and lower metal diaphragms 80 </ b> A and 80 </ b> B butted together and welded around the entire circumference to seal the inside. The annular end edge of the lower end on the inner peripheral side of the upper damper holder 30 </ b> A is in contact with the upper annular edge of the double metal diaphragm damper 80 on the inner side of the welded portion 80 </ b> C of the double metal diaphragm damper 80. The annular edge at the upper end on the inner peripheral side of the lower damper holder 30 is in contact with the annular edge at the lower side of the double metal diaphragm damper 80 inside the welded portion 80C of the double metal diaphragm damper 80. Thus, the double metal diaphragm damper 80 is sandwiched between the upper damper holder 30A and the lower damper holder 30B at the upper and lower surfaces of the annular edge.
ダンパカバー40の外周は筒状に構成され、ポンプハウジング1の筒状部1Gに嵌合され、このときダンパカバー40の内周面が上側ダンパホルダ30Aの上端環状面に当接して二枚式金属ダイアフラムダンパ80をダンパホルダ30ごとポンプハウジング1の段部1Hに押し付けることで、二枚式金属ダイアフラムダンパ80はダンパ室内に固定される。この状態で、ダンパカバー40の周囲がレーザ溶接され、ダンパカバー40がポンプハウジング1に接合され固定される。 The outer periphery of the damper cover 40 is formed in a cylindrical shape and is fitted into the cylindrical portion 1G of the pump housing 1, and at this time, the inner peripheral surface of the damper cover 40 abuts on the upper annular surface of the upper damper holder 30A and is a double metal By pressing the diaphragm damper 80 together with the damper holder 30 against the step portion 1H of the pump housing 1, the double metal diaphragm damper 80 is fixed in the damper chamber. In this state, the periphery of the damper cover 40 is laser welded, and the damper cover 40 is joined and fixed to the pump housing 1.
二枚式金属ダイアフラム80Aと80Bによって形成された中空部にはアルゴンのような不活性ガスが封入されており、外部の圧力変化に応じてこの中空部が体積変化をすることによって、脈動減衰機能を奏する。二枚式金属ダイアフラムダンパ80とダンパカバー40との間の燃料通路80Uは上ダンパホルダ30Aに形成された通路30Pと、上ダンパホルダ30Aの外周とポンプハウジング1の内周面との間に形成された通路80Pを介して燃料通路としてのダンパ室10Bと繋がっている。ダンパ室10Bはダンパ室10Bの底壁としてのポンプハウジング1に形成した連通孔10Cによって電磁駆動型の吸入弁200の低圧燃料室10Aと連通されている。 An inert gas such as argon is sealed in the hollow portion formed by the two-plate metal diaphragms 80A and 80B, and the volume of the hollow portion changes in response to an external pressure change. Play. A fuel passage 80U between the double metal diaphragm damper 80 and the damper cover 40 is formed between a passage 30P formed in the upper damper holder 30A, and the outer periphery of the upper damper holder 30A and the inner peripheral surface of the pump housing 1. It is connected to a damper chamber 10B as a fuel passage through a passage 80P. The damper chamber 10B is communicated with the low pressure fuel chamber 10A of the electromagnetically driven suction valve 200 through a communication hole 10C formed in the pump housing 1 as a bottom wall of the damper chamber 10B.
ピストンプランジャ2の小径部2Aとシリンダ20と滑合する大径部2Bとのつながり部は円錐面2Kで繋がっている。円錐面の周囲にはプランジャシールとシリンダ20の下端面との間に燃料副室250が形成されている。燃料副室250はシリンダ20とピストンプランジャ2との滑合面から漏れてくる燃料を捕獲する。 A connecting portion between the small-diameter portion 2A of the piston plunger 2 and the large-diameter portion 2B that slides on the cylinder 20 is connected by a conical surface 2K. A fuel sub chamber 250 is formed between the plunger seal and the lower end surface of the cylinder 20 around the conical surface. The fuel sub chamber 250 captures fuel leaking from the sliding surface between the cylinder 20 and the piston plunger 2.
ポンプハウジング1の内周面とシリンダ20の外周面とシリンダホルダ21の上端面との間に区画形成された環状通路21Gは、ポンプハウジング1に貫通形成された縦通路250Bによって一端がダンパ室10Bに接続され、シリンダホルダ21に形成された燃料通路250Aを介して燃料副室250に繋がっている。かくして、ダンパ室10Bと燃料副室250とは縦通路250B,環状通路21G,燃料通路250Aによって連通されている。 An annular passage 21G defined between the inner peripheral surface of the pump housing 1, the outer peripheral surface of the cylinder 20, and the upper end surface of the cylinder holder 21 has a damper chamber 10B at one end by a vertical passage 250B formed through the pump housing 1. And is connected to the fuel sub chamber 250 via a fuel passage 250 </ b> A formed in the cylinder holder 21. Thus, the damper chamber 10B and the fuel sub chamber 250 communicate with each other by the longitudinal passage 250B, the annular passage 21G, and the fuel passage 250A.
ピストンプランジャ2が上下(往復動)するとテーパー面2Kが燃料副室の中で往復動するので燃料副室250の容積が変化する。燃料副室250の容積が増加するとき、縦通路250B,環状通路21G,燃料通路250Aを介してダンパ室10Bから燃料副室250に燃料が流れ込む。燃料副室250の容積が減少するとき、縦通路250B,環状通路21G,燃料通路250Aを介して燃料副室250からダンパ室10Bへ燃料が流れ込む。 When the piston plunger 2 moves up and down (reciprocating), the taper surface 2K reciprocates in the fuel sub chamber, so that the volume of the fuel sub chamber 250 changes. When the volume of the fuel sub chamber 250 increases, fuel flows from the damper chamber 10B to the fuel sub chamber 250 through the vertical passage 250B, the annular passage 21G, and the fuel passage 250A. When the volume of the fuel sub chamber 250 decreases, fuel flows from the fuel sub chamber 250 into the damper chamber 10B via the vertical passage 250B, the annular passage 21G, and the fuel passage 250A.
バルブ203が開弁位置に維持された状態(コイル204が無通電状態)でピストンプランジャ2が下死点から上昇すると、加圧室内に吸入された燃料は開弁中のバルブ203から低圧燃料室10Aに溢流(スピル)し、連通孔10Cを介してダンパ室10Bに流れる。かくしてダンパ室10Bでは吸入ジョイント10からの燃料、燃料副室250からの燃料、加圧室12からの溢流燃料、さらにはリリーフ弁(図示しない)からの燃料が合流するように構成されている。その結果それぞれの燃料が有する燃料脈動がダンパ室10Bで合流し、二枚式金属ダイアフラムダンパ80によって吸収される。 When the piston plunger 2 rises from the bottom dead center in a state where the valve 203 is maintained at the valve open position (the coil 204 is not energized), the fuel sucked into the pressurized chamber is transferred from the valve 203 being opened to the low pressure fuel chamber. It overflows (spills) to 10A and flows into the damper chamber 10B through the communication hole 10C. Thus, in the damper chamber 10B, the fuel from the suction joint 10, the fuel from the fuel sub chamber 250, the overflow fuel from the pressurizing chamber 12, and the fuel from the relief valve (not shown) are combined. . As a result, the fuel pulsations of the respective fuels merge in the damper chamber 10B and are absorbed by the two-piece metal diaphragm damper 80.
図2において、破線で囲んだ部分が図1のポンプ本体部分を示す。電磁駆動型吸入弁機構200は環状に形成されたコイル204の内周側に、電磁駆動機構部EMDのボディを兼ねた有底のカップ状のヨーク205を備える。ヨーク205は内周部に固定コア206、とアンカー207がプランジャロッド付勢ばね202を挟んで収納されている。図3(A)に詳細に示されるように固定コア206はヨーク205の有底部に圧入によって強固に固定されている。アンカー207はプランジャロッド201の反バルブ側端部に圧入により固定され、固定コア206との間に磁気空隙GPを介して対面している。コイル204はカップ状のサイドヨーク204Yの中に収納されており、サイドヨーク204Yの開放端部の内周面をヨーク205の環状フランジ部205Fの外周部で圧入嵌合することで両者が固定されている。ヨーク205とサイドヨーク204Y,固定コア206,アンカー207によって磁気空隙GPを横切る閉磁路CMPがコイル204の周囲に形成されている。ヨーク205の磁気空隙GPの周囲に対面する部分は肉厚が薄く形成されており、磁気絞り205Sを形成している。これにより、ヨーク205を通って漏洩する磁束が少なくなり、磁気空隙GPを通る磁束を増加することができる。 In FIG. 2, the portion surrounded by a broken line indicates the pump body portion of FIG. The electromagnetically driven suction valve mechanism 200 includes a cup-shaped yoke 205 with a bottom that also serves as the body of the electromagnetically driven mechanism EMD on the inner peripheral side of the annularly formed coil 204. In the yoke 205, a fixed core 206 and an anchor 207 are accommodated in an inner peripheral portion with a plunger rod biasing spring 202 interposed therebetween. As shown in detail in FIG. 3A, the fixed core 206 is firmly fixed to the bottomed portion of the yoke 205 by press fitting. The anchor 207 is fixed to the end of the plunger rod 201 on the side opposite to the valve by press fitting, and faces the fixed core 206 via a magnetic gap GP. The coil 204 is housed in a cup-shaped side yoke 204Y, and the inner peripheral surface of the open end portion of the side yoke 204Y is press-fitted and fitted to the outer peripheral portion of the annular flange portion 205F of the yoke 205, so that both are fixed. ing. A closed magnetic path CMP that crosses the magnetic gap GP is formed around the coil 204 by the yoke 205, the side yoke 204Y, the fixed core 206, and the anchor 207. The portion of the yoke 205 that faces the periphery of the magnetic gap GP is formed with a small thickness, and forms a magnetic diaphragm 205S. Thereby, the magnetic flux leaking through the yoke 205 is reduced, and the magnetic flux passing through the magnetic gap GP can be increased.
図3(A),図3(B)に示すようにヨーク205の開放側端部筒状部205Gの内周部には軸受部214Bを有するバルブハウジング214が圧入により固定されており、プランジャロッド201はこの軸受209を貫通してバルブハウジング214の反軸受209側端部内周部に設けられたバルブ203のところまで延びている。 As shown in FIGS. 3A and 3B, a valve housing 214 having a bearing portion 214B is fixed by press-fitting to the inner peripheral portion of the open-side end tubular portion 205G of the yoke 205, and the plunger rod 201 extends through the bearing 209 to the valve 203 provided at the inner peripheral portion of the end of the valve housing 214 on the side opposite to the bearing 209.
図4(A)に拡大して示すようにバルブハウジング214の反軸受214B側端部の環状段付内周面214DにはバルブストッパS0の3つの圧入面部SP1−SP3が圧入されレーザ溶接によって固定されている。内周面214Dの圧入段部の幅と3つの圧入面部SP1−SP3の圧入方向の幅は同一寸法に形成されている。 As shown in an enlarged view in FIG. 4A, three press-fitting surface portions SP1-SP3 of the valve stopper S0 are press-fitted into the annular stepped inner peripheral surface 214D at the end of the valve housing 214 opposite to the bearing 214B and fixed by laser welding. Has been. The width of the press-fitting step portion of the inner peripheral surface 214D and the width of the three press-fitting surface portions SP1-SP3 in the press-fitting direction are formed to have the same dimension.
プランジャロッド201の先端部とバルブストッパS0の間にはバルブ203がバルブ付勢ばねS4を挟んで往復動可能に装着されている。バルブ203は一側の面がバルブハウジング214に形成されたバルブシート214Sに対面し、他側の面がバルブストッパS0に対面する環状面部203Rを備える。環状面部203Rの中心部にはプランジャロッド201の先端まで延びる有底の筒状部を有し、有底の筒状部は底部平面部203Fと円筒部203Hとから構成されている。円筒部203Hはバルブシート214Sの内側においてバルブハウジング214に形成される開口部214Pを通って低圧燃料室10A内まで突出している。 A valve 203 is mounted between the tip of the plunger rod 201 and the valve stopper S0 so as to be able to reciprocate with a valve biasing spring S4 interposed therebetween. The valve 203 includes an annular surface portion 203R whose one surface faces a valve seat 214S formed on the valve housing 214 and whose other surface faces the valve stopper S0. A center portion of the annular surface portion 203R has a bottomed cylindrical portion extending to the tip of the plunger rod 201, and the bottomed cylindrical portion is composed of a bottom plane portion 203F and a cylindrical portion 203H. The cylindrical portion 203H protrudes into the low pressure fuel chamber 10A through the opening 214P formed in the valve housing 214 inside the valve seat 214S.
プランジャロッド201の先端は低圧燃料室10Aでバルブ203のプランジャロッド側端部の平面部203Fの表面に当接している。バルブハウジング214の軸受214Bと開口部214Pとの間の筒状部には周方向に4つの燃料通孔214Qが等間隔に設けられている。この4つの燃料通孔214Qはバルブハウジング214の内外の低圧燃料室10Aを連通している。円筒部203Hの外周面と開口部214Pの周面との間にはバルブシート214Sと環状面部203Rとの間の環状燃料通路10Sに繋がる筒状の燃料導入通路10Pが形成されている。 The distal end of the plunger rod 201 is in contact with the surface of the flat portion 203F at the plunger rod side end of the valve 203 in the low pressure fuel chamber 10A. Four fuel passage holes 214Q are provided at equal intervals in the cylindrical portion between the bearing 214B and the opening 214P of the valve housing 214 in the circumferential direction. These four fuel passage holes 214Q communicate with the low-pressure fuel chamber 10A inside and outside the valve housing 214. A cylindrical fuel introduction passage 10P connected to the annular fuel passage 10S between the valve seat 214S and the annular surface portion 203R is formed between the outer peripheral surface of the cylindrical portion 203H and the peripheral surface of the opening 214P.
バルブストッパS0は環状面部S3の中心部にバルブ203の有底筒状部側に突出する円筒面部SGを備えた突出部STを有し、当該円筒面部SGがバルブ203の軸方向へのストロークをガイドするガイド部として機能する(円筒面部SGをバルブガイドSGとも呼ぶ)。 The valve stopper S0 has a projecting portion ST having a cylindrical surface portion SG projecting toward the bottomed cylindrical portion of the valve 203 at the center of the annular surface portion S3, and the cylindrical surface portion SG has a stroke in the axial direction of the valve 203. It functions as a guide portion for guiding (the cylindrical surface portion SG is also referred to as a valve guide SG).
バルブ付勢ばねS4はバルブストッパS0の突出部STのバルブ側端面SHとバルブ203の有底筒状部の底面との間に保持されている。 The valve urging spring S4 is held between the valve-side end surface SH of the protruding portion ST of the valve stopper S0 and the bottom surface of the bottomed cylindrical portion of the valve 203.
バルブ203がバルブストッパS0の円筒面部SGでガイドされて全開位置にストロークすると、バルブ203の環状面部203Rの中心部に形成された環状突起部203SがバルブストッパS0の環状面部S3(幅HS3)の受け面S2(幅HS2)に接触する。このとき環状突起部203Sの周囲には環状空隙SGPが形成される。この環状空隙SGPはバルブ203が閉弁方向に移動を始める際に加圧室側の燃料の圧力P4をバルブ203に作用させて、バルブ203が素早くバルブストッパS0から離れるようにする早離れ機能を奏する。 When the valve 203 is guided by the cylindrical surface portion SG of the valve stopper S0 and strokes to the fully open position, the annular protrusion 203S formed at the center of the annular surface portion 203R of the valve 203 becomes the annular surface portion S3 (width HS3) of the valve stopper S0. It contacts the receiving surface S2 (width HS2). At this time, an annular gap SGP is formed around the annular protrusion 203S. This annular gap SGP has a function of quickly separating the valve 203 by quickly applying the pressure P4 of the fuel on the pressurizing chamber side to the valve 203 when the valve 203 starts to move in the valve closing direction so that the valve 203 can be quickly separated from the valve stopper S0. Play.
図4(B)に示すようにバルブストッパS0はバルブストッパS0の外周面に特定の間隔を置いて3箇所に形成された圧入面部SP1−SP3を備える。また圧入面部SP1(SP2,SP3)相互の間には周方向に角度θで径方向の幅がH1の切り欠きSN1−SN3を備える。バルブストッパS0の複数の圧入面部SP1−SP3はバルブシート214Sの下流側でバルブハウジング214の円筒内周面に圧入嵌合されており、圧入嵌合部と圧入嵌合部の間には、バルブストッパS0の周面と前記バルブハウジング214の内周面との間に周方向に角度θに亘って幅H1の3個のバルブシート下流側燃料通路S6が形成されている。このバルブシート下流側燃料通路S6はバルブ203の外周面のさらに外側に面積の大きい燃料通路として形成されるので、バルブシート214Sに形成される環状燃料通路10Sより通路面積を大きくできる。その結果、加圧室への燃料の流入や、加圧室からの燃料のスピルに対して通路抵抗にならないので、燃料の流れがスムースになる。 As shown in FIG. 4B, the valve stopper S0 includes press-fitting surface portions SP1-SP3 formed at three positions with a specific interval on the outer peripheral surface of the valve stopper S0. Further, a notch SN1-SN3 having an angle θ in the circumferential direction and a radial width H1 is provided between the press-fit surface portions SP1 (SP2, SP3). The plurality of press-fitting surface portions SP1-SP3 of the valve stopper S0 are press-fitted and fitted to the cylindrical inner peripheral surface of the valve housing 214 on the downstream side of the valve seat 214S, and between the press-fitting fitting portion and the press-fitting fitting portion, Between the circumferential surface of the stopper S0 and the inner circumferential surface of the valve housing 214, three valve seat downstream side fuel passages S6 having a width H1 are formed in the circumferential direction over an angle θ. Since the valve seat downstream side fuel passage S6 is formed as a fuel passage having a larger area further outside the outer peripheral surface of the valve 203, the passage area can be made larger than the annular fuel passage 10S formed in the valve seat 214S. As a result, there is no passage resistance against the inflow of fuel into the pressurizing chamber and the fuel spill from the pressurizing chamber, so that the fuel flow is smooth.
図4(B)においてバルブ203の外周面の直径D1はバルブストッパS0の切り欠き部の直径D3よりわずかに小さく構成されている。その結果図3(B)において、燃料が燃料流R5に沿って加圧室から低圧燃料室、ダンパ室10Bに流れるスピル状態のとき、バルブ203の環状面部203Rに矢印P4で示す加圧室12側の燃料の静的および動的流体力が作用しにくい。したがってこの状態でバルブ203をバルブストッパS0に押し付ける力を付与するプランジャロッド付勢ばね202の力は流体力P4に打勝つ必要がないのでその分だけ弱いばねを用いることができる。その結果バルブ203の閉弁タイミングでプランジャロッド付勢ばね202の力に抗してアンカー207を磁気的に固定コア206に吸引して、図4(A)に示すようにプランジャロッド201をバルブ203から引き離す際の電磁力が小さくてすむ。これはコイル204の巻き数を少なくでき、その分だけ電磁駆動機構部EMDを小型にできることを意味する。 In FIG. 4B, the diameter D1 of the outer peripheral surface of the valve 203 is slightly smaller than the diameter D3 of the notch of the valve stopper S0. As a result, in FIG. 3B, when the fuel is in a spill state where the fuel flows along the fuel flow R5 from the pressurizing chamber to the low pressure fuel chamber and the damper chamber 10B, the pressurizing chamber 12 indicated by the arrow P4 on the annular surface portion 203R of the valve 203 is shown. The static and dynamic fluid forces of the side fuel are difficult to act. Therefore, in this state, the force of the plunger rod biasing spring 202 that applies the force for pressing the valve 203 against the valve stopper S0 does not need to overcome the fluid force P4, and thus a weaker spring can be used. As a result, the anchor 207 is magnetically attracted to the fixed core 206 against the force of the plunger rod urging spring 202 at the valve closing timing, and the plunger rod 201 is moved to the valve 203 as shown in FIG. The electromagnetic force when pulling away from the machine is small. This means that the number of turns of the coil 204 can be reduced, and the electromagnetic drive mechanism EMD can be made smaller by that amount.
図3(A),図3(B)および図4(A),図4(B)に示すように、バルブ203の環状面部203R直径D1はその中心部に設けられたバルブストッパS0の突出部STの円筒面部SGによって形成されるバルブガイドを受け入れる内周面の直径D2の1.5〜3倍に構成した。またその外側に形成したバルブストッパS0の環状面部S3(幅HS3)の受け面S2(幅HS2)に接触する環状突起部203Sの放射方向の幅VS1はその外側に形成されている環状空隙SGPの幅VS2より小さく構成した。さらにまたバルブシート214Sはバルブ203の環状面部203Rの外周から内側に幅VS3の部分に形成されている。その結果バルブ203が開弁するときの低圧燃料室10A側からの燃料の作用力とバルブ203の閉弁動作時に加圧室側からバルブに作用する燃料の作用力もバルブ203の半径方向に均一にバランス良く作用するのでバルブ203の径方向のガタ付きもバルブ203の中心軸に対して傾斜方向に傾倒させる力も少なくなり、バルブストッパS0の円筒面部SGによるガイドとの相乗効果でバルブ203の開閉弁動作がスムースになる。これは直径が数ミリメートルで重さが数グラムの小さなバルブを流速の速いしかも短時間の間に流れの方向が反転する場所で使用する際には重要な効果である。 As shown in FIGS. 3 (A), 3 (B), 4 (A), and 4 (B), the annular surface portion 203R diameter D1 of the valve 203 is a protruding portion of the valve stopper S0 provided at the center thereof. It was configured to be 1.5 to 3 times the diameter D2 of the inner peripheral surface that receives the valve guide formed by the cylindrical surface portion SG of ST. Further, the radial width VS1 of the annular projection 203S that contacts the receiving surface S2 (width HS2) of the annular surface portion S3 (width HS3) of the valve stopper S0 formed on the outer side thereof is the annular gap SGP formed on the outside thereof. It was configured to be smaller than the width VS2. Furthermore, the valve seat 214S is formed in the portion of the width VS3 from the outer periphery of the annular surface portion 203R of the valve 203 to the inside. As a result, the acting force of the fuel from the low pressure fuel chamber 10A side when the valve 203 is opened and the acting force of the fuel acting on the valve from the pressurizing chamber side when the valve 203 is closed are also uniform in the radial direction of the valve 203. Since the valve 203 operates in a well-balanced manner, the radial backlash of the valve 203 and the force to tilt the valve 203 in the tilt direction are reduced, and the opening / closing valve of the valve 203 is synergistic with the guide by the cylindrical surface portion SG of the valve stopper S0. The operation becomes smooth. This is an important effect when a small valve with a diameter of several millimeters and a weight of several grams is used in a place where the flow direction is reversed in a short time with a high flow rate.
図4(A)に示すようにこの実施例ではバルブ203が閉弁した瞬間にはプランジャロッド201は電磁力で図面左方に吸引されているのでその先端はバルブ203の平面部203Fから離れ両者間に隙間201Gが形成される。このとき低圧燃料室10A内の圧力はピストンプランジャ2が下死点から上昇中のため燃料副室250内の容積が増加した分だけダンパ室10Bおよび低圧燃料室10Aから燃料を補充することになるので低圧燃料室10A内の圧力はその分だけ燃料副室250の容積が減少していたときより低くなる。この低くなった圧力はバルブ203の平面部203Fのプランジャロッド201の先端が接触していた面積部分にも作用するので加圧室側と低圧室側の圧力差が大きくなり、バルブ203の閉弁動作はより素早くなる。 As shown in FIG. 4A, in this embodiment, at the moment when the valve 203 is closed, the plunger rod 201 is attracted to the left in the drawing by electromagnetic force. A gap 201G is formed between them. At this time, the pressure in the low pressure fuel chamber 10A is replenished with fuel from the damper chamber 10B and the low pressure fuel chamber 10A as much as the volume in the fuel sub chamber 250 is increased because the piston plunger 2 is rising from the bottom dead center. Therefore, the pressure in the low pressure fuel chamber 10A becomes lower than that when the volume of the fuel sub chamber 250 is reduced accordingly. This reduced pressure also acts on the area where the tip of the plunger rod 201 of the flat surface portion 203F of the valve 203 is in contact, so that the pressure difference between the pressure chamber side and the low pressure chamber side becomes large, and the valve 203 is closed. The movement is faster.
また吸入弁部INVが差し込まれる直径DS1の挿入孔200Hは差込み方向の中間部にテーパー部TAを備え、このテーパー部TAよりも加圧室側の直径DS3は直径DS1より小径に構成している。吸入弁部INVの先端部に位置するバルブハウジング214の円筒状部214F,214Gの外径は先端部外周の区間SF2(円筒状部214G)で区間SF1(円筒状部214F)より小径に構成している。区間SF1の区間においては円筒状部214Fの外径が挿通孔200Hの直径DS1とよりも大きくなっていて、締まり嵌めでポンプハウジング1の挿通孔200Hに嵌合される。区間SF2では円筒状部214Gの外径が挿通孔200Hの直径DS1よりも小さくなっていて、この部分では遊嵌されている。これは吸入弁部INVを挿通孔200Hに挿通する際入口部のテーパー部TOでバルブハウジング214の先端部を自動求心して挿入しやすくし、さらに内部のテーパー部TAで自動求心して傾いた状態で挿通されないようにするための工夫である。これによって、自動組立てする際の歩留まりが向上した。また円筒状部214Fの締まり嵌め部(区間SF1)において加圧室12側と低圧燃料室10A側の流体シールを圧入嵌合作業だけで達成することで、自動組立ての作業性を改善するものである。 Further, the insertion hole 200H having a diameter DS1 into which the suction valve portion INV is inserted has a taper portion TA at an intermediate portion in the insertion direction, and the diameter DS3 on the pressurizing chamber side from the taper portion TA is smaller than the diameter DS1. . The outer diameters of the cylindrical portions 214F and 214G of the valve housing 214 located at the distal end portion of the intake valve portion INV are configured to be smaller in the section SF2 (cylindrical portion 214G) on the outer periphery of the distal end portion than the section SF1 (cylindrical portion 214F). ing. In the section SF1, the outer diameter of the cylindrical portion 214F is larger than the diameter DS1 of the insertion hole 200H, and is fitted into the insertion hole 200H of the pump housing 1 by an interference fit. In the section SF2, the outer diameter of the cylindrical portion 214G is smaller than the diameter DS1 of the insertion hole 200H, and this portion is loosely fitted. This is because when the suction valve portion INV is inserted into the insertion hole 200H, the tip portion of the valve housing 214 is automatically centered by the tapered portion TO at the inlet portion, and is easy to insert, and further is automatically tilted by the internal tapered portion TA. It is a device to prevent it from being inserted. This improved the yield during automatic assembly. In addition, in the interference fitting portion (section SF1) of the cylindrical portion 214F, the fluid seal on the pressurizing chamber 12 side and the low pressure fuel chamber 10A side is achieved only by press fitting operation, thereby improving the workability of automatic assembly. is there.
バルブハウジング214の先端エッジ部がテーパーTAに差し込まれた直後にヨーク205の先端エッジ部205ZがテーパーTOに差し込まれるように寸法を構成すると組立て時の求心作用がスムースに行える。つまり吸入弁部INVの求心が完了した後に電磁駆動機構部EMDが自動求心を行うので、吸入弁部INVの求心作用と電磁駆動機構部EMDの求心作用とが互いに干渉することがない。その結果自動組立てにおける求心作業がスムースに行え、組立て不良が低減する。 If the dimensions are such that the tip edge portion 205Z of the yoke 205 is inserted into the taper TO immediately after the tip edge portion of the valve housing 214 is inserted into the taper TA, the centripetal action during assembly can be performed smoothly. That is, since the electromagnetic drive mechanism EMD performs automatic centering after completion of the centripetal operation of the suction valve unit INV, the centripetal operation of the suction valve unit INV and the centripetal operation of the electromagnetic drive mechanism unit EMD do not interfere with each other. As a result, the centripetal operation in the automatic assembly can be performed smoothly, and assembly defects are reduced.
挿通孔200Hに差し込まれるヨーク205の先端部の外径は挿通孔200Hの内径DS1より小径に構成し、両者間を遊嵌状態にしている。これは吸入弁部INVが先端に取付けられたヨーク205の挿入力をできるだけ低減して電磁駆動機構部EMDの挿入時に吸入弁部INVに無理な力が作用することを防止する効果と共に、自動挿入作業の作業時間を短縮する効果がある。ヨーク205が挿入孔200Hに完全に差し込まれるとヨーク205の接合端面205Jがポンプハウジング1の取付け面に当接する。この状態で接合部W1において全周をレーザ溶接して内部を密封すると共に電磁駆動機構部EMDをポンプハウジング1に固定する。 The outer diameter of the tip of the yoke 205 inserted into the insertion hole 200H is smaller than the inner diameter DS1 of the insertion hole 200H, and the two are loosely fitted. This automatically reduces the insertion force of the yoke 205 attached to the tip of the suction valve portion INV as much as possible, and prevents the force from acting on the suction valve portion INV when the electromagnetic drive mechanism portion EMD is inserted. This has the effect of shortening the work time. When the yoke 205 is completely inserted into the insertion hole 200H, the joining end surface 205J of the yoke 205 comes into contact with the mounting surface of the pump housing 1. In this state, the entire circumference is laser-welded at the joint W1 to seal the inside, and the electromagnetic drive mechanism EMD is fixed to the pump housing 1.
バルブハウジング214の軸受部214Bの外径は、軸受部214Bのバルブ203側の外周の圧入部214Jの外径の方が反バルブ203側の先端部214Nの外径より大径に構成してある。これはヨーク205の先端に形成された筒状突起部205Nの内周面に軸受部214Bを圧入嵌合する際の自動求心効果を得るものである。軸受部214Bには燃料通孔214Kが複数本形成されている。アンカー207が往復動するとこの燃料通孔214Kを通して燃料が出入りすることでアンカー207の動作がスムースになる。 The outer diameter of the bearing portion 214B of the valve housing 214 is such that the outer diameter of the press-fit portion 214J on the outer periphery of the bearing portion 214B on the valve 203 side is larger than the outer diameter of the tip portion 214N on the counter valve 203 side. . This obtains an automatic centripetal effect when the bearing 214B is press-fitted into the inner peripheral surface of the cylindrical projection 205N formed at the tip of the yoke 205. A plurality of fuel passage holes 214K are formed in the bearing portion 214B. When the anchor 207 reciprocates, the fuel enters and exits through the fuel passage hole 214K, so that the operation of the anchor 207 becomes smooth.
さらに燃料はプランジャロッド201内に形成した燃料通孔201K,プランジャロッド付勢ばね202が収容されている固定コア206とアンカー207との間の空間206Kおよびアンカー207の周囲を通って出入りする。これによりさらにアンカー207の動作がスムースになる。燃料通孔201Kがなければ、固定コア206とアンカー207が接触している時は、空間206Kが完全密閉状態になってしまう。この状態ではアンカー207およびプランジャロッド201がプランジャロッド付勢ばね202によって図中右側に開弁運動を開始する際、一瞬、空間206Kの圧力が低下してしまい開弁が遅れたり、開弁運動が不安定になってしまうといった問題があったが、上記構成によりこれを解消することができた。 Further, the fuel enters and exits through a fuel passage hole 201 </ b> K formed in the plunger rod 201, a space 206 </ b> K between the fixed core 206 in which the plunger rod biasing spring 202 is accommodated and the anchor 207, and the periphery of the anchor 207. As a result, the operation of the anchor 207 becomes smoother. Without the fuel through hole 201K, when the fixed core 206 and the anchor 207 are in contact, the space 206K is completely sealed. In this state, when the anchor 207 and the plunger rod 201 start the valve opening movement to the right side in the figure by the plunger rod biasing spring 202, the pressure in the space 206K decreases for a moment, the valve opening is delayed, or the valve opening movement is not performed. Although there was a problem of becoming unstable, this configuration could solve this problem.
図1,図2,図3(A),図3(B)、および図4(A),図4(B)に基づき第一実施例の動作を説明する。 The operation of the first embodiment will be described with reference to FIGS. 1, 2, 3A, 3B, 4A, and 4B.
≪燃料吸入状態≫
まず、図3(A),図3(B)により燃料吸入状態を説明する。ピストンプランジャ2が図2の破線で示す上死点位置から矢印Q2に示す方向に下降する吸入工程では、コイル204は非通電状態である。プランジャロッド付勢ばね202の付勢力SP1は矢印に示すようにバルブ203に向かってプランジャロッド201を付勢する。一方バルブ付勢ばねS4の付勢力SP2はバルブ203を矢印に示す方向へ付勢する。プランジャロッド付勢ばね202の付勢力がバルブ付勢ばねS4の付勢力SP2の付勢力より大きく設定されているので両ばねの付勢力はこのときバルブ203を開弁方向に付勢する。また低圧燃料室10A内に位置するバルブ203の平面部203Fに代表されるバルブ203の外表面に作用する燃料の静圧P1と加圧室内の燃料の圧力P12との圧力差によってバルブ203は開弁方向の力を受ける。さらに燃料導入通路10Pを通って矢印R4に沿って加圧室12に流入する燃料流とバルブ203の円筒部203Hの周面との間に発生する流体摩擦力P2はバルブ203を開弁方向に付勢する。さらに、バルブシート214Sとバルブ203の環状面部203Rとの間に形成される環状燃料通路10Sを通る燃料流の動圧P3はバルブ203の環状面部203Rに作用してバルブ203を開弁方向に付勢する。重量数ミリグラムのバルブ203はこれらの付勢力によって、ピストンプランジャ2が下降し始めると素早く開弁し、ストッパSTに衝突するまでストロークする。
≪Fuel intake state≫
First, the fuel suction state will be described with reference to FIGS. 3 (A) and 3 (B). In the suction process in which the piston plunger 2 descends from the top dead center position indicated by the broken line in FIG. 2 in the direction indicated by the arrow Q2, the coil 204 is in a non-energized state. The biasing force SP1 of the plunger rod biasing spring 202 biases the plunger rod 201 toward the valve 203 as indicated by an arrow. On the other hand, the urging force SP2 of the valve urging spring S4 urges the valve 203 in the direction indicated by the arrow. Since the urging force of the plunger rod urging spring 202 is set larger than the urging force of the urging force SP2 of the valve urging spring S4, the urging force of both springs urges the valve 203 in the valve opening direction at this time. Further, the valve 203 is opened by the pressure difference between the static pressure P1 of the fuel acting on the outer surface of the valve 203 represented by the flat portion 203F of the valve 203 located in the low pressure fuel chamber 10A and the fuel pressure P12 in the pressurized chamber. Receives force in the valve direction. Further, the fluid frictional force P2 generated between the fuel flow flowing into the pressurizing chamber 12 along the arrow R4 through the fuel introduction passage 10P and the peripheral surface of the cylindrical portion 203H of the valve 203 causes the valve 203 to open in the valve opening direction. Energize. Further, the dynamic pressure P3 of the fuel flow passing through the annular fuel passage 10S formed between the valve seat 214S and the annular surface portion 203R of the valve 203 acts on the annular surface portion 203R of the valve 203 to attach the valve 203 in the valve opening direction. Rush. The valve 203 having a weight of several milligrams is quickly opened when the piston plunger 2 starts to descend by these urging forces, and strokes until it collides with the stopper ST.
バルブシート214Sは、バルブ203の円筒部203H,燃料導入通路10Pよりも直径方向で外側に形成されている。これによりP1,P2,P3が作用する面積を大きくすることが可能となり、バルブ203の開弁速度を速くすることができる。 The valve seat 214S is formed outside in the diametrical direction from the cylindrical portion 203H of the valve 203 and the fuel introduction passage 10P. As a result, the area on which P1, P2, and P3 act can be increased, and the valve opening speed of the valve 203 can be increased.
このときプランジャロッド201およびアンカー207の周囲は滞留した燃料で満たされていること、および軸受214Bとの摩擦力が作用することによって、プランジャロッド201およびアンカー207はバルブ203の開弁速度よりわずかに図面右方向へのストロークが遅れる。その結果プランジャロッド201の先端面とバルブ203の平面部203Fとの間にわずかな隙間ができる。このためプランジャロッド201から付与される開弁力が一瞬低下する。しかし、この隙間には低圧燃料室10A内の燃料の圧力P1が遅れなく作用するので、プランジャロッド201(プランジャロッド付勢ばね202)から付与される開弁力の低下をこのバルブ203を開弁する方向の流体力が補う。かくして、バルブ203の開弁時にはバルブ203の低圧燃料室10A側の全表面に流体の静圧および動圧が作用するので、開弁速度が速くなる。 At this time, the plunger rod 201 and the anchor 207 are filled with the staying fuel, and the friction force with the bearing 214B acts, so that the plunger rod 201 and the anchor 207 are slightly more than the valve opening speed of the valve 203. The stroke to the right of the drawing is delayed. As a result, a slight gap is formed between the distal end surface of the plunger rod 201 and the flat portion 203F of the valve 203. For this reason, the valve opening force provided from the plunger rod 201 falls for a moment. However, since the pressure P1 of the fuel in the low pressure fuel chamber 10A acts without delay in this gap, the valve 203 is opened to reduce the valve opening force applied from the plunger rod 201 (plunger rod biasing spring 202). The fluid force in the direction is compensated. Thus, when the valve 203 is opened, the static pressure and dynamic pressure of the fluid act on the entire surface of the valve 203 on the low pressure fuel chamber 10A side, so that the valve opening speed is increased.
バルブ203の開弁時は、バルブ203の円筒部203Hの内周面をバルブストッパS0の突出部STの円筒面部SGによって形成されるバルブガイドでガイドされ、バルブ203は径方向に変位することなくスムースにストロークする。バルブガイドを形成する円筒面部SGはバルブシート214Sが配置された面を挟んでその上流側および下流側に形成されており、バルブ203のストロークを十分に支持できるだけでなく、バルブ203の内周側のデッドスペースを有効に利用できるので、吸入弁部INVの軸方向の寸法を短くできる。 When the valve 203 is opened, the inner peripheral surface of the cylindrical portion 203H of the valve 203 is guided by a valve guide formed by the cylindrical surface portion SG of the protruding portion ST of the valve stopper S0, and the valve 203 is not displaced in the radial direction. Stroke smoothly. The cylindrical surface portion SG forming the valve guide is formed on the upstream side and the downstream side with respect to the surface on which the valve seat 214S is arranged, and not only can sufficiently support the stroke of the valve 203 but also the inner peripheral side of the valve 203. Since the dead space can be effectively used, the axial dimension of the suction valve portion INV can be shortened.
また、バルブ付勢ばねS4はバルブストッパS0の端面SHとバルブ203の平面部203FのバルブストッパS0側底面部との間に設置されているので、開口部214Pとバルブの円筒部203Hとの間に形成される燃料導入通路10Pの通路面積を十分確保しながら開口部214Pの内側にバルブ203とバルブ付勢ばねS4を配置できる。また燃料導入通路10Pを形成する開口部214Pの内側に位置するバルブ203の内周側のデッドスペースを有効に利用してバルブ付勢ばねS4を配置できるので、吸入弁部INVの軸方向の寸法を短くできる。 Further, since the valve urging spring S4 is disposed between the end surface SH of the valve stopper S0 and the bottom surface of the flat surface portion 203F of the valve 203 on the valve stopper S0 side, the valve urging spring S4 is provided between the opening 214P and the cylindrical portion 203H of the valve. The valve 203 and the valve urging spring S4 can be arranged inside the opening 214P while ensuring a sufficient passage area of the fuel introduction passage 10P formed in the above. Further, since the valve biasing spring S4 can be arranged by effectively using the dead space on the inner peripheral side of the valve 203 located inside the opening 214P that forms the fuel introduction passage 10P, the dimension in the axial direction of the intake valve INV Can be shortened.
バルブ203はその中心部にバルブガイド(SG)を有し、バルブガイド(SG)のすぐ外周でバルブストッパS0の環状面部S3の受け面S2に接触する環状突起部203Sを有する。さらにその径方向外側の位置にバルブシート214Sが形成されており、環状空隙SGPはさらにその半径方向外側まで広がっており、環状空隙SGPの外側(つまり、バルブ203,バルブストッパS0の外周側)にバルブハウジングの内周面で形成される燃料通路S6が順次形成されている。燃料通路S6がバルブシート214Sの径方向外側に形成されているので、燃料通路S6を十分に大きく取れる利点がある。燃料通路S6を十分に大きく取れることで、吸入動作時に吸入燃料の流速が極端に早くなってソニック現象を生じたり、燃料通路S6や加圧室内でキャビテーションが発生したりすることを抑制できる。その結果、燃料通路S6や加圧室内の金属のエッジ部にエロージョンが発生するのを抑制できる。 The valve 203 has a valve guide (SG) at its center, and has an annular protrusion 203S that contacts the receiving surface S2 of the annular surface S3 of the valve stopper S0 on the outer periphery of the valve guide (SG). Further, a valve seat 214S is formed at a position outside in the radial direction, and the annular gap SGP further extends to the outside in the radial direction, and outside the annular gap SGP (that is, on the outer peripheral side of the valve 203 and the valve stopper S0). A fuel passage S6 formed on the inner peripheral surface of the valve housing is sequentially formed. Since the fuel passage S6 is formed on the radially outer side of the valve seat 214S, there is an advantage that the fuel passage S6 can be made sufficiently large. By making the fuel passage S6 sufficiently large, it is possible to suppress the occurrence of a sonic phenomenon due to the extremely high flow rate of the intake fuel during the intake operation and the occurrence of cavitation in the fuel passage S6 and the pressurized chamber. As a result, it is possible to suppress the occurrence of erosion in the fuel passage S6 and the metal edge portion in the pressurizing chamber.
また、環状空隙SGPの内側でバルブシート214Sの内側にバルブストッパS0の受け面S2に接触する環状突起部203Sを設けたので、後述する閉弁動作時に環状空隙SGPへ加圧室側の流体圧力P4を速やかに作用させてバルブ203をバルブシート214Sに押し付ける際の閉弁速度を上げることができる。 Further, since the annular protrusion 203S that contacts the receiving surface S2 of the valve stopper S0 is provided inside the annular seat SGP inside the annular seat SGP, the fluid pressure on the pressurizing chamber side is applied to the annular seat SGP during the valve closing operation described later. It is possible to increase the valve closing speed when pressing the valve 203 against the valve seat 214S by causing P4 to act quickly.
≪燃料スピル状態≫
燃料スピル状態を図2、および図3(B)により説明する。ピストンプランジャ2が下死点位置から転じて矢印Q1方向に上昇し始めるが、コイル204は非通電状態であるので、一端加圧室12内に吸入された燃料の一部が燃料通路S6,環状燃料通路10Sおよび燃料導入通路10Pを通して低圧燃料室10Aにスピル(溢流)される。燃料通路S6における燃料の流れが矢印R4方向からR5方向へ切り替わる際、一瞬燃料の流れが止り、環状空隙SGPの圧力が上がるがこのときはプランジャ付勢ばね202がバルブ203をバルブストッパS0に押し付ける。むしろ、バルブシート214Sの環状燃料通路10Sに流れ込む燃料の動圧によってバルブ203をバルブストッパS0側に押し付ける流体力と環状空隙SGPの外周を流れる燃料流の吸出し効果でバルブ203とバルブストッパS0とを引き付けるように作用する流体力によってバルブ203はしっかりとバルブストッパS0に押し付けられる。
≪Fuel spill condition≫
The fuel spill state will be described with reference to FIGS. 2 and 3B. The piston plunger 2 turns from the bottom dead center position and begins to rise in the direction of the arrow Q1, but the coil 204 is in a non-energized state. The fuel is spilled (overflowed) into the low pressure fuel chamber 10A through the fuel passage 10S and the fuel introduction passage 10P. When the fuel flow in the fuel passage S6 switches from the arrow R4 direction to the R5 direction, the fuel flow stops for a moment and the pressure in the annular gap SGP increases. At this time, the plunger biasing spring 202 presses the valve 203 against the valve stopper S0. . Rather, the valve 203 and the valve stopper S0 are connected by the fluid force that presses the valve 203 toward the valve stopper S0 by the dynamic pressure of the fuel flowing into the annular fuel passage 10S of the valve seat 214S and the suction effect of the fuel flow that flows around the outer periphery of the annular gap SGP. The valve 203 is firmly pressed against the valve stopper S0 by the fluid force acting to attract.
燃料流がR5方向に切り替わった瞬間から加圧室12内の燃料は、燃料通路S6,環状燃料通路10Sおよび燃料導入通路10Pの順で低圧燃料室10Aに流れる。ここで、環状燃料通路10Sの燃料流路断面積は燃料通路S6、および燃料導入通路10Pの燃料流路断面積よりも小さく設定されている。すなわち、環状燃料通路10Sで最も燃料流路断面積が小さく設定されている。そのため、環状燃料通路10Sで圧力損失が発生し加圧室12内の圧力が上昇し始めるが、その流体圧力P4はバルブストッパS0の加圧室側の環状面で受けて、バルブ203には作用しにくい。 From the moment when the fuel flow is switched in the R5 direction, the fuel in the pressurizing chamber 12 flows into the low pressure fuel chamber 10A in the order of the fuel passage S6, the annular fuel passage 10S and the fuel introduction passage 10P. Here, the fuel passage cross-sectional area of the annular fuel passage 10S is set smaller than the fuel passage cross-sectional area of the fuel passage S6 and the fuel introduction passage 10P. That is, the smallest fuel flow path cross-sectional area is set in the annular fuel path 10S. For this reason, pressure loss occurs in the annular fuel passage 10S and the pressure in the pressurizing chamber 12 starts to rise. However, the fluid pressure P4 is received by the annular surface of the valve stopper S0 on the pressurizing chamber side and acts on the valve 203. Hard to do.
環状空隙SGPにはスピル状態では低圧燃料室10Aから、4つの燃料通孔214Qを介してダンパ室10Bへ流れる。一方ピストンプランジャ2が上昇することで、副燃料室250の容積が増加するので、縦通路250B,環状通路21Gおよび燃料通路250Aを通る矢印R8の下方矢印方向への燃料流により、ダンパ室10Bから燃料副室250へ燃料の一部が導入される。かくして燃料副室に冷たい燃料が供給されるので、ピストンプランジャ2とシリンダ20との摺動部が冷却される。 In the spill state, the annular gap SGP flows from the low pressure fuel chamber 10A to the damper chamber 10B through the four fuel passage holes 214Q. On the other hand, as the piston plunger 2 moves up, the volume of the auxiliary fuel chamber 250 increases, so that the fuel flow in the downward arrow direction of the arrow R8 passing through the longitudinal passage 250B, the annular passage 21G and the fuel passage 250A causes Part of the fuel is introduced into the fuel sub chamber 250. Thus, since the cold fuel is supplied to the fuel sub chamber, the sliding portion between the piston plunger 2 and the cylinder 20 is cooled.
≪燃料吐出状態≫
燃料吐出状態を図4を用いて説明する。前述の燃料スピル状態においてエンジン制御装置ECUからの指令に基づきコイル204に通電されると、閉磁路CMPが図3(A)に示すごとく生起される。閉磁路CMPが形成されると磁気空隙GPにおいて、固定コア206とアンカー207の対抗面間に磁気吸引力が発生する。この磁気吸引力はプランジャロッド付勢ばね202の付勢力に打勝ってアンカー207とこれに固定されているプランジャロッド201を固定コア205に引き付ける。このとき、磁気空隙GP、プランジャロッド付勢ばね202の収納室206K内の燃料は燃料通路201Kおよびアンカー207の周囲を通して燃料通路214Kから低圧通路に排出される。これにより、アンカー207とプランジャロッド201はスムースに固定コア206側に変位する。アンカー207が固定コア206に接触すると、アンカー207とプランジャロッド201は運動を停止する。
≪Fuel discharge state≫
The fuel discharge state will be described with reference to FIG. When the coil 204 is energized based on a command from the engine control unit ECU in the fuel spill state described above, a closed magnetic circuit CMP is generated as shown in FIG. When the closed magnetic path CMP is formed, a magnetic attractive force is generated between the opposing surfaces of the fixed core 206 and the anchor 207 in the magnetic gap GP. This magnetic attraction force overcomes the biasing force of the plunger rod biasing spring 202 and attracts the anchor 207 and the plunger rod 201 fixed thereto to the fixed core 205. At this time, the fuel in the storage chamber 206K of the magnetic gap GP and the plunger rod biasing spring 202 is discharged from the fuel passage 214K to the low-pressure passage through the periphery of the fuel passage 201K and the anchor 207. As a result, the anchor 207 and the plunger rod 201 are smoothly displaced toward the fixed core 206 side. When the anchor 207 contacts the fixed core 206, the anchor 207 and the plunger rod 201 stop moving.
プランジャロッド201が固定コア206に引き寄せられて、バルブ203をバルブストッパS0側に押し付けていた付勢力がなくなるので、バルブ203はバルブ付勢ばねS4の付勢力によってバルブストッパS0から離れる方向に付勢されバルブ203は閉弁運動を開始する。このとき、環状突起部203Sの外周側に位置する環状空隙SGP内の圧力は、加圧室12内の圧力上昇に伴って低圧燃料室10A側の圧力よりも高くなり、かくしてバルブ203の閉弁運動を助ける。バルブ203がバルブシート214Sに接触し、閉弁状態となる。この状態が図4(A)に示されている。ピストンプランジャ2が引き続いて上昇するので加圧室12の容積が減少し、加圧室12内の圧力が上昇すると図1および図2に示すように、吐出バルブユニット60の吐出バルブ63が吐出バルブ付勢ばね64の力に打勝ってバルブシート61から離れ吐出通路11Aから吐出ジョイント11を通して、矢印R6,矢印R7に沿った方向に燃料が吐出する。 Since the plunger rod 201 is attracted to the fixed core 206 and the urging force that presses the valve 203 to the valve stopper S0 side disappears, the valve 203 is urged away from the valve stopper S0 by the urging force of the valve urging spring S4. Then, the valve 203 starts a valve closing motion. At this time, the pressure in the annular gap SGP located on the outer peripheral side of the annular protrusion 203S becomes higher than the pressure on the low pressure fuel chamber 10A side as the pressure in the pressurizing chamber 12 increases, and thus the valve 203 is closed. Help exercise. The valve 203 comes into contact with the valve seat 214S, and the valve is closed. This state is shown in FIG. As the piston plunger 2 continues to rise, the volume of the pressurizing chamber 12 decreases, and when the pressure in the pressurizing chamber 12 rises, as shown in FIGS. 1 and 2, the discharge valve 63 of the discharge valve unit 60 becomes the discharge valve. The fuel is discharged in the direction along the arrows R6 and R7 through the discharge joint 11 from the discharge passage 11A by overcoming the force of the urging spring 64.
このように、環状空隙SGPはバルブ203の閉弁運動を助ける効果が有る。バルブ付勢ばねS4のみでは、吸入弁の閉弁力が小さすぎるので閉弁運動が安定しないと言う問題があったが、実施例ではこの問題が解消できた。 Thus, the annular gap SGP has an effect of assisting the valve closing movement of the valve 203. Only the valve urging spring S4 has a problem that the valve closing motion is not stable because the closing force of the suction valve is too small, but this problem can be solved in the embodiment.
バルブ203がバルブシート214Sに接触し完全な閉弁状態になった瞬間はプランジャロッド201が固定コア206側に完全に引き寄せられてプランジャロッド201の先端がバルブ203の低圧燃料室10A側端面から離れており、空隙201Gが形成されている。これにより、バルブ203の閉弁動作時にバルブ203がプランジャロッド201によって開弁方向へ力を受けることがないので、閉弁動作が速くなる。また、バルブ203の閉弁動作時にバルブ203がプランジャロッド201に衝突することがなく打撃音が発生しないので静粛なバルブ機構が得られる。 At the moment when the valve 203 comes into contact with the valve seat 214S and is completely closed, the plunger rod 201 is completely drawn toward the fixed core 206, and the tip of the plunger rod 201 is separated from the end surface of the valve 203 on the low pressure fuel chamber 10A side. The gap 201G is formed. As a result, the valve 203 is not subjected to force in the valve opening direction by the plunger rod 201 during the valve closing operation of the valve 203, so that the valve closing operation is accelerated. Further, since the valve 203 does not collide with the plunger rod 201 during the closing operation of the valve 203 and no striking sound is generated, a quiet valve mechanism can be obtained.
バルブ203が完全に閉弁し加圧室12内の圧力が上昇して高圧吐出が開始された後、コイル204への通電は断たれる。固定コア206とアンカー207の対抗面間に発生していた磁気吸引力が消滅し、アンカー207とプランジャロッド201はプランジャロッド付勢ばね202の付勢力によってバルブ203側へ移動を開始し、プランジャロッド201がバルブ203の底部平面部203Fと接触すると運動を止める。既に加圧室12内の圧力による閉弁力がプランジャロッド付勢ばね202の作用力よりも十分大きくなっているので、プランジャロッド201がバルブ203の低圧燃料室10A側表面を押してもバルブ203は開弁することはない。この状態はピストンプランジャ2が上死点から下降方向Q2へ転じた瞬間にプランジャロッド201がバルブ203を開弁方向へ付勢する準備動作となる。空隙201Gは数十〜数百ミクロンオーダのわずかな空隙であることと、加圧室12内の圧力でバルブ203が付勢されてバルブ203が剛体となっていることにより、プランジャロッド201のバルブ203へ衝突するときの衝突音はその周波数が可聴周波数より高くまたエネルギーも小さいので騒音にはならない。 After the valve 203 is completely closed and the pressure in the pressurizing chamber 12 rises and high pressure discharge is started, the energization to the coil 204 is cut off. The magnetic attractive force generated between the opposing surfaces of the fixed core 206 and the anchor 207 disappears, and the anchor 207 and the plunger rod 201 start moving toward the valve 203 side by the biasing force of the plunger rod biasing spring 202. When 201 comes into contact with the bottom flat part 203F of the valve 203, the movement is stopped. Since the valve closing force due to the pressure in the pressurizing chamber 12 is already sufficiently larger than the acting force of the plunger rod urging spring 202, the valve 203 does not move even if the plunger rod 201 presses the surface of the valve 203 on the low pressure fuel chamber 10A side. It will not open. This state is a preparatory operation in which the plunger rod 201 biases the valve 203 in the valve opening direction at the moment when the piston plunger 2 turns from the top dead center in the downward direction Q2. The gap 201G is a slight gap on the order of several tens to several hundreds of microns, and the valve 203 is urged by the pressure in the pressurizing chamber 12 to make the valve 203 a rigid body. The collision sound when colliding with 203 does not become noise because its frequency is higher than the audible frequency and its energy is small.
以下図8に基づき第1実施例の静音制御について詳細に説明する。 Hereinafter, the silent control of the first embodiment will be described in detail with reference to FIG.
ピストンプランジャ2の下降運動によって加圧室12の容積は増加し圧力が減少し、加圧室12の圧力が低圧燃料室10aの圧力よりも小さくなると、加圧室12内の圧力によるバルブ203の閉弁力は消滅し、低圧燃料室10aの圧力による開弁力が発生する。この開弁力がバルブ付勢ばねS4より大きくなるとバルブ203は開弁運動を開始し、バルブストッパS0と衝突して開弁運動を止める。ピストンプランジャ2が上死点から下降方向Q2へ転じた後も、コイル204には静音電流が印加された状態を維持するが、静音電流によって発生する磁気吸引力は、プランジャロッド付勢ばね202の付勢力より弱い。このため、加圧室12の圧力が低圧燃料室10aの圧力よりも小さくなり加圧室12内の圧力によるバルブ203の閉弁力が消滅すると、アンカー207とプランジャロッド201はバルブ203と同様に図中右側へ開弁運動を開始する。このとき、静音電流による磁気吸引力のためにアンカー207とプランジャロッド201の開弁運動はバルブ203の開弁運動よりも遅いので、開弁運動中はバルブ203とプランジャロッド201は分離しそれぞれ独立に開弁運動を行い、バルブ203がバルブストッパS0と衝突して開弁運動を止めた後に、プランジャロッド201とバルブ203が接触してアンカー207とプランジャロッド201も運動を止める。バルブ203,アンカー207、およびプランジャロッド201の三部材が運動を停止した後にコイル通電を完全にOFFし、静音電流を消滅させる。 When the piston plunger 2 descends, the volume of the pressurizing chamber 12 increases and the pressure decreases, and when the pressure in the pressurizing chamber 12 becomes smaller than the pressure in the low pressure fuel chamber 10a, The valve closing force disappears, and a valve opening force due to the pressure in the low pressure fuel chamber 10a is generated. When this valve opening force becomes larger than the valve urging spring S4, the valve 203 starts the valve opening movement and collides with the valve stopper S0 to stop the valve opening movement. Even after the piston plunger 2 turns from the top dead center in the descending direction Q2, the state where the silent current is applied to the coil 204 is maintained, but the magnetic attractive force generated by the silent current is generated by the plunger rod biasing spring 202. Weaker than energizing force. Therefore, when the pressure in the pressurizing chamber 12 becomes smaller than the pressure in the low pressure fuel chamber 10 a and the valve closing force of the valve 203 due to the pressure in the pressurizing chamber 12 disappears, the anchor 207 and the plunger rod 201 are similar to the valve 203. The valve opening movement is started to the right in the figure. At this time, because of the magnetic attractive force due to the silent current, the opening movement of the anchor 207 and the plunger rod 201 is slower than the opening movement of the valve 203. Therefore, during the opening movement, the valve 203 and the plunger rod 201 are separated and independent. After the valve 203 collides with the valve stopper S0 and stops the valve opening movement, the plunger rod 201 and the valve 203 come into contact with each other, and the anchor 207 and the plunger rod 201 also stop moving. After the three members of the valve 203, the anchor 207, and the plunger rod 201 stop moving, the coil energization is completely turned off to eliminate the silent current.
本実施例の制御装置は、高圧燃料供給ポンプの電磁駆動型の吸入弁を制御するものである。高圧燃料供給ポンプは加圧室を備えたポンプハウジング,当該ポンプハウジングに支持され、加圧室内で往復動作を繰り返すことで加圧室内に流体を吸入し、加圧して加圧室から流体を吐出するピストンプランジャ,ポンプハウジングに取付けられた電磁駆動型の吸入弁を備える。電磁駆動型の吸入弁は加圧室の入口に設けられた吸入弁と当該吸入弁の開閉時期を制御する電磁駆動機構とから構成される。電磁駆動型の吸入弁は電磁駆動機構に通電することで、吸入弁が閉弁位置に移行し、加圧室から流体の吐出を開始するよう制御される。 The control device of this embodiment controls an electromagnetically driven suction valve of a high-pressure fuel supply pump. The high-pressure fuel supply pump is supported by a pump housing having a pressurizing chamber and the pump housing. By reciprocating in the pressurizing chamber, fluid is sucked into the pressurizing chamber, pressurized and discharged from the pressurizing chamber. And an electromagnetically driven suction valve attached to the pump housing. The electromagnetically driven suction valve is composed of a suction valve provided at the inlet of the pressurizing chamber and an electromagnetic drive mechanism for controlling the opening / closing timing of the suction valve. The electromagnetically driven suction valve is controlled such that when the electromagnetic drive mechanism is energized, the suction valve moves to the closed position and starts to discharge fluid from the pressurizing chamber.
ピストンプランジャが上死点を通過して下死点に向かう動作に入った後も一定区間、吸入弁の開弁方向への動作を緩慢にする電磁力を発生するための通電状態が維持される。 Even after the piston plunger passes through the top dead center and moves toward the bottom dead center, the energized state for generating an electromagnetic force that slows down the operation of the intake valve in the valve opening direction is maintained for a certain period. .
一定区間の通電状態は吸入弁がフル開弁するまで続くよう制御される。 The energized state in a certain section is controlled so as to continue until the intake valve is fully opened.
電磁駆動機構に通電した後、ピストンプランジャが上死点を通過して下死点に向かう前に、電磁駆動機構への通電電流値が弱められ、ピストンプランジャが上死点を通過して下死点に向かう動作に入った後、一定区間の通電状態へ移行するよう制御される。 After energizing the electromagnetic drive mechanism, before the piston plunger passes through the top dead center and goes to the bottom dead center, the current value to the electromagnetic drive mechanism is weakened, and the piston plunger passes through the top dead center and goes down to the bottom dead center. After entering the operation toward the point, control is performed so as to shift to the energized state in a certain section.
弱められた通電電流値と一定区間の通電状態での電流値とが同じ値になるよう制御される。弱められた通電電流値は一定区間の通電状態での電流値より大きく、ピーク電流値より小さい値になるよう制御されても良い。 Control is performed so that the weakened energization current value and the current value in the energization state in a certain section are the same value. The weakened energization current value may be controlled to be larger than the current value in the energization state in a certain section and smaller than the peak current value.
従来技術では、プランジャロッド付勢ばね202の付勢力によって、バルブ203,アンカー207、およびプランジャロッド201の三部材が一体となって開弁運動をし、バルブ203がバルブストッパS0と衝突して開弁運動を止めた。そのため、衝突の際に発生する音も大きくなるという問題があった。本実施例のようにすることで、バルブ203がバルブストッパS0と衝突して停止し、次いでアンカー207とプランジャロッド201がバルブ203に衝突して停止する。衝突を二回に分離して、それぞれの衝突で発生する音を低減できる。さらに静音電流によってアンカー207、およびプランジャロッド201の開弁力を小さくできるので、衝突による音をさらに低減できる効果がある。 In the prior art, the urging force of the plunger rod urging spring 202 causes the valve 203, the anchor 207, and the plunger rod 201 to integrally open, and the valve 203 collides with the valve stopper S0 to open. The valve movement was stopped. For this reason, there is a problem that the sound generated at the time of a collision also increases. In this embodiment, the valve 203 collides with the valve stopper S0 and stops, and then the anchor 207 and the plunger rod 201 collide with the valve 203 and stop. By separating the collision twice, the sound generated in each collision can be reduced. Furthermore, since the valve opening force of the anchor 207 and the plunger rod 201 can be reduced by the silent current, there is an effect that the sound due to the collision can be further reduced.
前述の静音電流は、特に静粛性が求められる車輛のアイドリング状態などで特に有効であり、アイドリング状態のような特定の条件でのみ適用しても良い。 The above-described silent current is particularly effective in the idling state of a vehicle in which quietness is particularly required, and may be applied only under specific conditions such as an idling state.
エンジン制御装置ECUからの指令に基づきコイル204に通電するタイミングを制御することにより、高圧に加圧される燃料を調節することができる。ピストンプランジャ2が下死点から上死点へと上昇運動に転じた直後にバルブ203が閉弁するよう通電タイミングを制御すれば、スピルされる燃料が少なく高圧吐出される燃料が多くなる。ピストンプランジャ2が上死点から下死点へと下降運動に転じた直前にバルブ203が閉弁するよう通電タイミングを制御すれば、スピルされる燃料が多くなり高圧吐出される燃料が少なくなる。 By controlling the timing of energizing the coil 204 based on a command from the engine control unit ECU, the fuel pressurized to a high pressure can be adjusted. If the energization timing is controlled so that the valve 203 is closed immediately after the piston plunger 2 starts to move upward from the bottom dead center to the top dead center, the fuel to be spilled is reduced and the fuel to be discharged at a high pressure is increased. If the energization timing is controlled so that the valve 203 is closed immediately before the piston plunger 2 starts to move downward from the top dead center to the bottom dead center, more fuel is spilled and less fuel is discharged at high pressure.
図5ないし図6を用いて吸入弁部INVの組立て手順を説明する。 A procedure for assembling the intake valve portion INV will be described with reference to FIGS.
図5ないし図6の部分断面斜視図は中心軸に向かって90度カットした断面を示す。有底筒状のヨーク205の中心の円筒状空間部205Hに有底筒状の固定コア206の有底部側から挿入されその外周が円筒状空間部205Hの内周面に圧入固定される。固定コア206の有底部には圧入時の空気抜きとして機能する貫通孔206Hが形成されており、内部には筒状の空間206Kが形成されている。固定コア206の開放側端部はヨーク205の外周に形成された磁気絞り205Sの内側に位置する。 The partial cross-sectional perspective views of FIGS. 5 to 6 show a cross section cut by 90 degrees toward the central axis. A bottomed cylindrical fixed core 206 is inserted into the cylindrical space 205H at the center of the bottomed cylindrical yoke 205 from the bottomed side, and the outer periphery thereof is press-fitted and fixed to the inner peripheral surface of the cylindrical space 205H. A through hole 206H that functions as an air vent during press-fitting is formed in the bottomed portion of the fixed core 206, and a cylindrical space 206K is formed inside. The open side end portion of the fixed core 206 is positioned inside the magnetic diaphragm 205 </ b> S formed on the outer periphery of the yoke 205.
アンカー207とプランジャロッド201は予め圧入嵌合して固定されている。アンカー207の内部には仕切り207Jが設けられ、この仕切り207Jの中心にはアンカー207の内部に形成されてプランジャ付勢ばね202の収容空間の一部を形成する円筒状空間部207Kとプランジャロッド201の中心に形成された燃料通路201Kとを連通する開口207Hが設けられている。プランジャロッド付勢ばね202を固定コア206の筒状の空間部206Kに収納し、プランジャロッド201が圧入嵌合されたアンカー207の反プランジャロッド201側の円筒状空間部207Kにプランジャロッド付勢ばね202の半分の部分が収納されるようにしてアンカー207の反プランジャロッド201側の外周をヨーク205の円筒状空間部205Hに遊嵌する。アンカー207の反プランジャロッド201側の端部はヨーク205の磁気絞り205Sの内側の部分で固定コア206の端面と磁気空隙GRを挟んで対面する。 The anchor 207 and the plunger rod 201 are fixed by press-fitting in advance. A partition 207 </ b> J is provided inside the anchor 207, and a cylindrical space 207 </ b> K and a plunger rod 201 are formed in the anchor 207 at the center of the partition 207 </ b> J to form a part of the accommodation space of the plunger biasing spring 202. Is provided with an opening 207H that communicates with the fuel passage 201K formed at the center. The plunger rod biasing spring 202 is housed in the cylindrical space portion 206K of the fixed core 206, and the plunger rod biasing spring is inserted into the cylindrical space portion 207K on the side opposite to the plunger rod 201 of the anchor 207 into which the plunger rod 201 is press-fitted. The outer periphery of the anchor 207 on the side opposite to the plunger rod 201 is loosely fitted into the cylindrical space 205H of the yoke 205 so that the half of 202 is accommodated. The end of the anchor 207 on the side opposite to the plunger rod 201 faces the end surface of the fixed core 206 with the magnetic gap GR interposed between the yoke 205 and the magnetic diaphragm 205S.
ヨーク205の環状フランジ部205Fは図3(A)に示すサイドヨーク204Yの開放端側内周面に圧入嵌合される周面205Yが設けられている。サイドヨーク204Yとヨーク205の外周との間にはコイル204が装着されるので、環状フランジ部205Fの径方向の幅はコイル204の径方向の幅に見合った幅に形成されている。環状フランジ部205Fの反固定コア206側にはポンプハウジング1の取付け面に当接する接合端面205J(環状フランジ部205Fより小径)を備えた段付部205Kが設けられており、さらにこの接合端面205Jから突出する小径の筒状突起部205Nが設けられている。筒状突起部205Nはポンプハウジング1の筒状の挿通孔200Hの開放端側から、接合端面205Jがポンプハウジング1の取付け面に当接するまでポンプハウジング1の筒状の挿通孔200Hの内部に嵌挿される。 The annular flange portion 205F of the yoke 205 is provided with a peripheral surface 205Y that is press-fitted into the open end side inner peripheral surface of the side yoke 204Y shown in FIG. Since the coil 204 is mounted between the side yoke 204Y and the outer periphery of the yoke 205, the radial width of the annular flange portion 205F is formed to match the radial width of the coil 204. A stepped portion 205K having a joining end surface 205J (smaller diameter than the annular flange portion 205F) that contacts the mounting surface of the pump housing 1 is provided on the side opposite to the fixed core 206 of the annular flange portion 205F. A cylindrical projection 205N having a small diameter protruding from the center is provided. The cylindrical protrusion 205N is fitted into the cylindrical insertion hole 200H of the pump housing 1 from the open end side of the cylindrical insertion hole 200H of the pump housing 1 until the joining end surface 205J contacts the mounting surface of the pump housing 1. Inserted.
吸入弁部INVは予めバルブハウジング214,バルブ203,バルブ付勢ばねS4,バルブストッパS0が組付けることによって形成されている。バルブハウジング214の開口部214Pにバルブ203の円筒部203Hを挿通してバルブシート214Sにバルブ203環状面部203Rが対面するように組付ける。次にバルブ203の円筒部203Hの内部にバルブ付勢ばねS4を挿入する。最後にバルブストッパS0の円筒面部SGを備えた突出部STをバルブ203の円筒部203Hの内周に挿通してバルブストッパS0の圧入面部SP1−SP3をバルブハウジングの環状段付部214Dに圧入嵌合して吸入弁部INVを構成する。 The intake valve portion INV is formed in advance by assembling the valve housing 214, the valve 203, the valve urging spring S4, and the valve stopper S0. The cylindrical portion 203H of the valve 203 is inserted into the opening 214P of the valve housing 214, and assembled so that the valve 203 annular surface portion 203R faces the valve seat 214S. Next, the valve biasing spring S4 is inserted into the cylindrical portion 203H of the valve 203. Finally, the projecting portion ST provided with the cylindrical surface portion SG of the valve stopper S0 is inserted into the inner periphery of the cylindrical portion 203H of the valve 203, and the press-fitting surface portions SP1-SP3 of the valve stopper S0 are press-fitted into the annular stepped portion 214D of the valve housing. Together, this constitutes the intake valve portion INV.
固定コア206,プランジャロッド付勢ばね202及びアンカー207とプランジャロッド201の組体をこの順に組付けたヨーク205の筒状突起部205Nの内周に、バルブハウジング214の軸受部214Bの外周が圧入嵌合により固定されることで、吸入弁部INVと電磁駆動機構部EMDとが一体に組付けられる。この状態で、軸受部214Bの中心の軸受孔214Hにはプランジャロッド201の反アンカー207側端部が挿通され、往復動可能に支持される。 The outer periphery of the bearing portion 214B of the valve housing 214 is press-fitted into the inner periphery of the cylindrical protrusion 205N of the yoke 205 in which the fixed core 206, the plunger rod biasing spring 202, and the assembly of the anchor 207 and the plunger rod 201 are assembled in this order. By being fixed by fitting, the suction valve portion INV and the electromagnetic drive mechanism portion EMD are assembled together. In this state, the end of the plunger rod 201 on the side opposite to the anchor 207 is inserted into the bearing hole 214H at the center of the bearing 214B, and is supported so as to be able to reciprocate.
かくして組立てられた電磁駆動型吸入弁機構200はポンプハウジング1の挿通穴200Hに吸入弁部INVを圧入嵌合し、電磁駆動機構部EMDの筒状突起部205Nの外周205Xを挿通し、接合面部205Jの外周をレーザ溶接することでポンプハウジングに固定される。このように、ヨーク205の片側内周部にプランジャロッド201の組体や吸入弁部INVを順次組付け、他側の外周部にコイル204とサイドヨーク204Yを順次組付けることで電磁駆動型吸入弁機構200を形成することができ、自動化に適した組立て構成が得られた。 The electromagnetically driven intake valve mechanism 200 assembled in this way press-fits the intake valve portion INV into the insertion hole 200H of the pump housing 1, and inserts the outer periphery 205X of the cylindrical projection 205N of the electromagnetic drive mechanism portion EMD to join the joint surface portion. The outer periphery of 205J is fixed to the pump housing by laser welding. In this way, the assembly of the plunger rod 201 and the suction valve portion INV are sequentially assembled to the inner peripheral portion of one side of the yoke 205, and the coil 204 and the side yoke 204Y are sequentially assembled to the outer peripheral portion of the other side. The valve mechanism 200 can be formed, and an assembly configuration suitable for automation is obtained.
〔第2実施例〕
図9に第2の実施例を示す。高圧燃料供給ポンプの構成は第1実施例と同一である。第1実施例では、電流がピーク電流と静音電流の二段電流であった。第2実施例ではピーク電流,保持電流,静音電流の三段電流となっている。
[Second Embodiment]
FIG. 9 shows a second embodiment. The configuration of the high-pressure fuel supply pump is the same as that of the first embodiment. In the first embodiment, the current was a two-stage current of a peak current and a silent current. In the second embodiment, the three-stage current is a peak current, a holding current, and a silent current.
ピーク電流の設定値は第1実施例と同じである。すなわち、磁気空隙GLにおいて固定コア206とアンカー207の対抗面間に発生する磁気吸引力がプランジャロッド付勢ばね202の付勢力よりも大きくなる様にピーク電流は設定されており、アンカー207が固定コア206と接触して閉弁運動を停止した後、電流を保持電流へと切り替える。保持電流は、固定コア206とアンカー207が接触した状態で発生する磁気保持力がプランジャロッド付勢ばね202の付勢力よりも大きくなる様に設定されているが、保持電流はピーク電流よりも小さく設定可能である。これは、保持電流の際は磁気空隙GLが存在しないので、より少ない電流でプランジャロッド付勢ばね202の付勢力よりも大きい磁気保持力を得ることができるためである。そして、加圧室12内の圧力が上昇して高圧圧送が開始されると電流を静音電流に切り替える。静音電流は、保持電流よりもさらに小さい。以上の様に制御することで、コイルで発生する発熱量を更に小さくすることができるので、コイルの焼損と言った不具合を無くすことができる。 The set value of the peak current is the same as in the first embodiment. That is, the peak current is set so that the magnetic attractive force generated between the opposing surfaces of the fixed core 206 and the anchor 207 in the magnetic gap GL is larger than the biasing force of the plunger rod biasing spring 202, and the anchor 207 is fixed. After contacting the core 206 and stopping the valve closing motion, the current is switched to the holding current. The holding current is set so that the magnetic holding force generated when the fixed core 206 and the anchor 207 are in contact with each other is larger than the biasing force of the plunger rod biasing spring 202, but the holding current is smaller than the peak current. It can be set. This is because the magnetic gap GL does not exist at the time of holding current, so that a magnetic holding force larger than the biasing force of the plunger rod biasing spring 202 can be obtained with a smaller current. Then, when the pressure in the pressurizing chamber 12 rises and high-pressure pumping is started, the current is switched to the silent current. The silent current is even smaller than the holding current. By controlling as described above, the amount of heat generated in the coil can be further reduced, so that a problem such as burning of the coil can be eliminated.
以下本実施例の実施態様を列挙すると以下の通りである。 The embodiments of this example are listed as follows.
実施の態様1
加圧室を備えたポンプハウジング、
当該ポンプハウジングに支持され、前記加圧室内で往復動作を繰り返すことで前記加圧室内に流体を吸入し、加圧して前記加圧室から前記流体を吐出するピストンプランジャ、 前記ポンプハウジングに取付けられた電磁駆動型の吸入弁を備え、
前記電磁駆動型の吸入弁が、前記加圧室の入口に設けられた吸入弁と当該吸入弁の開閉時期を制御する電磁駆動機構とから構成され、
前記吸入弁はバルブハウジングに設けられたバルブシートに対して前記加圧室側に配置されるバルブと、
前記バルブを前記バルブシート側に付勢するバルブ付勢ばねを備えたものにおいて、
前記バルブは前記バルブシートに当接して燃料吸入通路を遮断する環状当接面と当該環状当接面の内周側に設けられた有底筒状部を備え、
当該有底筒状部は、前記バルブシートの内側において前記バルブハウジングに形成された燃料導入孔に挿通され、前記有底筒状部の端部の外側表面が前記燃料導入孔の上流の低圧燃料室の燃料内に晒されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 1
A pump housing with a pressure chamber,
A piston plunger that is supported by the pump housing and sucks fluid into the pressurizing chamber by repeating reciprocating operation in the pressurizing chamber, pressurizes and discharges the fluid from the pressurizing chamber, and is attached to the pump housing Equipped with an electromagnetically driven suction valve,
The electromagnetically driven suction valve is composed of a suction valve provided at the inlet of the pressurizing chamber and an electromagnetic drive mechanism that controls the opening and closing timing of the suction valve;
The suction valve is a valve disposed on the pressure chamber side with respect to a valve seat provided in a valve housing; and
In what comprises a valve biasing spring that biases the valve toward the valve seat,
The valve includes an annular contact surface that contacts the valve seat and blocks the fuel intake passage, and a bottomed cylindrical portion provided on the inner peripheral side of the annular contact surface,
The bottomed cylindrical portion is inserted into a fuel introduction hole formed in the valve housing inside the valve seat, and an outer surface of an end portion of the bottomed cylindrical portion is a low-pressure fuel upstream of the fuel introduction hole. A high-pressure fuel supply pump equipped with an electromagnetically driven suction valve exposed to the fuel in the chamber.
実施の態様2
実施の態様1に記載したものにおいて、
前記電磁駆動機構は電磁的に制御されて往復動するプランジャロッドを備え、
当該プランジャロッドの先端は前記低圧燃料室に突出する前記バルブの前記有底筒状部の端部の外側表面に当接する
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 2
In what is described in Embodiment 1,
The electromagnetic drive mechanism includes a plunger rod that is electromagnetically controlled to reciprocate,
A high-pressure fuel supply pump comprising an electromagnetically driven suction valve that has a tip of the plunger rod in contact with an outer surface of an end of the bottomed cylindrical portion of the valve protruding into the low-pressure fuel chamber.
実施の態様3
実施の態様1に記載のものにおいて、
前記電磁駆動機構は電磁的に制御されて往復動するプランジャロッドを備え、
当該プランジャロッドと前記バルブとが一体に形成されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 3
In the embodiment described in Embodiment 1,
The electromagnetic drive mechanism includes a plunger rod that is electromagnetically controlled to reciprocate,
A high-pressure fuel supply pump comprising an electromagnetically driven suction valve in which the plunger rod and the valve are integrally formed.
実施の態様4
実施の態様2若しくは3のいずれかに記載したものにおいて、
前記電磁駆動機構は前記プランジャロッドを前記バルブに向かって付勢するプランジャロッド付勢ばねを有する
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 4
In any one of Embodiments 2 and 3,
The electromagnetic drive mechanism is a high-pressure fuel supply pump including an electromagnetically driven suction valve having a plunger rod biasing spring that biases the plunger rod toward the valve.
実施の態様5
実施の態様1に記載のものにおいて、
前記バルブは前記バルブシートと当該バルブシートの加圧室側に設けられたバルブストッパとの間に配置されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 5
In the embodiment described in Embodiment 1,
The valve is a high-pressure fuel supply pump provided with an electromagnetically driven intake valve disposed between the valve seat and a valve stopper provided on the pressure chamber side of the valve seat.
実施の態様6
実施の態様5に記載されたものにおいて、
前記バルブストッパがその中心部に前記バルブの有底筒状部側に突出する円筒面を備えた突出部を有し、当該円筒面が前記バルブの軸方向へのストロークをガイドするガイド部として機能する
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 6
In what is described in Embodiment 5,
The valve stopper has a protruding portion with a cylindrical surface protruding toward the bottomed cylindrical portion of the valve at the center, and the cylindrical surface functions as a guide portion for guiding the stroke of the valve in the axial direction. High-pressure fuel supply pump equipped with an electromagnetically driven suction valve.
実施の態様7
実施の態様6に記載されたものにおいて、
前記バルブと前記バルブストッパとの間には前記バルブを閉弁方向に付勢するバルブ付勢ばねを備える
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 7
In what is described in Embodiment 6,
A high-pressure fuel supply pump including an electromagnetically driven intake valve including a valve biasing spring that biases the valve in a valve closing direction between the valve and the valve stopper.
実施の態様8
実施の態様7に記載したものにおいて、
前記バルブ付勢ばねが前記バルブストッパの前記突出部のバルブ側端面と前記バルブの有底筒状部の底面との間に保持されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 8
In what is described in Embodiment 7,
A high pressure fuel supply pump comprising an electromagnetically driven intake valve in which the valve biasing spring is held between a valve side end surface of the protruding portion of the valve stopper and a bottom surface of the bottomed cylindrical portion of the valve.
実施の態様9
実施の態様7に記載したものにおいて、
前記バルブストッパの前記突出部が前記バルブ側に開口を有する有底の筒状部で形成され、
前記バルブ付勢ばねが前記バルブストッパの前記突出部の有底の筒状部の内側において、前記バルブと前記バルブストッパとの間に配置されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 9
In what is described in Embodiment 7,
The protruding portion of the valve stopper is formed of a bottomed cylindrical portion having an opening on the valve side,
High-pressure fuel supply in which the valve biasing spring includes an electromagnetically driven intake valve disposed between the valve and the valve stopper inside the bottomed cylindrical portion of the protruding portion of the valve stopper pump.
実施の態様10
実施の態様5に記載のものにおいて、
前記バルブストッパは当該バルブストッパの外周面に特定の間隔を置いて複数箇所形成された圧入面部を備え、当該圧入面部の一つとこれに隣接する別の圧入面部との間には周方向に延びる切り欠きを備え、
前記バルブストッパの複数の圧入面部は前記バルブハウジングの前記バルブシート下流側に形成された前記バルブハウジングの円筒内周面に圧入嵌合されており、
前記一つの圧入嵌合部とこれに隣接する前記別の圧入嵌合部の間には、前記バルブストッパの周面と前記バルブハウジングの内周面との間に周方向に延びる複数のバルブシート下流側燃料通路が形成されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 10
In the device according to Embodiment 5,
The valve stopper includes press-fitting surface portions formed at a plurality of positions on the outer peripheral surface of the valve stopper at a specific interval, and extends in the circumferential direction between one of the press-fitting surface portions and another press-fitting surface portion adjacent thereto. With notches,
A plurality of press-fitting surface portions of the valve stopper are press-fitted to a cylindrical inner peripheral surface of the valve housing formed on the valve seat downstream side of the valve housing;
A plurality of valve seats extending in a circumferential direction between the peripheral surface of the valve stopper and the inner peripheral surface of the valve housing between the one press-fit fitting portion and the other press-fit fitting portion adjacent thereto. A high-pressure fuel supply pump having an electromagnetically driven intake valve in which a downstream fuel passage is formed.
実施の態様11
実施の態様5に記載のものにおいて、
前記バルブストッパと前記バルブとの間には前記バルブが全開位置に移動したときに接触する接触面と空隙部とが形成されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 11
In the device according to Embodiment 5,
A high-pressure fuel supply pump provided with an electromagnetically driven suction valve in which a contact surface and a gap are formed between the valve stopper and the valve so as to contact each other when the valve moves to a fully open position.
実施の態様12
実施の態様11に記載されたものにおいて、
前記接触面は前記バルブシートより内側において環状に形成されており、
前記バルブストッパと前記バルブとの間の空隙部は前記環状の接触面の外側において環状に形成されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 12
In what is described in Embodiment 11
The contact surface is formed in an annular shape inside the valve seat,
A high pressure fuel supply pump comprising an electromagnetically driven suction valve in which a gap between the valve stopper and the valve is formed in an annular shape outside the annular contact surface.
実施の態様13
実施の態様10に記載されたものにおいて、
前記バルブシート下流側の前記複数の燃料通路は前記環状の空隙部の外周部に形成されている
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 13
In what is described in Embodiment 10
The high-pressure fuel supply pump including an electromagnetically driven intake valve in which the plurality of fuel passages on the downstream side of the valve seat are formed in an outer peripheral portion of the annular gap.
実施の態様14
実施の態様1に記載のものにおいて、
前記ポンプハウジングの側面から前記加圧室に貫通する貫通孔に、前記電磁駆動型の吸入弁を挿通して前記貫通孔の前記ポンプハウジングの側面側当接面で溶接して内部をシールすると共に、前記バルブハウジングの周面を前記ポンプハウジングの前記貫通孔の内周面に圧入嵌合させて加圧室と低圧燃料室とをシールする
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 14
In the embodiment described in Embodiment 1,
The electromagnetically driven suction valve is inserted into a through hole penetrating from the side surface of the pump housing into the pressurizing chamber, and the inside is sealed by welding at the side surface contact surface side of the pump housing of the through hole. A high-pressure fuel supply pump comprising an electromagnetically driven suction valve that seals the pressurizing chamber and the low-pressure fuel chamber by press-fitting the peripheral surface of the valve housing into the inner peripheral surface of the through hole of the pump housing.
実施の態様15
請求項14に記載のものにおいて、
前記貫通孔が入り口から加圧室側端部まで同一径で、前記貫通孔の端部が同一径の加圧室の燃料入口開口を形成している
電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ。
Embodiment 15
The thing of Claim 14 WHEREIN:
High-pressure fuel having an electromagnetically driven intake valve in which the through hole has the same diameter from the inlet to the pressurizing chamber side end, and the end of the through hole forms the fuel inlet opening of the pressurizing chamber having the same diameter Supply pump.
1 ポンプハウジング
2 ピストンプランジャ
3 リフタ
4 ばね
5 プランジャシール
6 吐出弁
7 カム
10 吸入ジョイント
10A 低圧燃料室
10B ダンパ室
10P 燃料導入通路
10S 環状燃料通路
11 吐出ジョイント
12 加圧室
20 シリンダ
21 シリンダホルダ
22 シールホルダ
30 ダンパホルダ
40 ダンパカバー
50 燃料タンク
51 低圧ポンプ
53 コモンレール
54 インジェクタ
56 圧力センサ
80 金属ダイアフラムダンパ(組体)
200 電磁駆動型吸入弁機構
201 プランジャロッド
203 バルブ
203H 円筒部
214 バルブハウジング
214S バルブシート
214P 開口部
250 燃料副室
600 エンジンコントロールユニット(ECU)
EMD 電磁駆動機構部
INV 吸入弁部
S0 バルブストッパ
SG 円筒面部(バルブガイド)
1 Pump housing 2 Piston plunger 3 Lifter 4 Spring 5 Plunger seal 6 Discharge valve 7 Cam 10 Suction joint 10A Low pressure fuel chamber 10B Damper chamber 10P Fuel introduction passage 10S Annular fuel passage
11 Discharge joint 12 Pressure chamber 20 Cylinder 21 Cylinder holder 22 Seal holder 30 Damper holder 40 Damper cover 50 Fuel tank 51 Low pressure pump 53 Common rail 54 Injector 56 Pressure sensor 80 Metal diaphragm damper (assembly)
200 Electromagnetic Drive Type Suction Valve Mechanism 201 Plunger Rod 203 Valve 203H Cylindrical Part 214 Valve Housing 214S Valve Seat 214P Opening 250 Fuel Subchamber 600 Engine Control Unit (ECU)
EMD Electromagnetic drive mechanism INV Suction valve part S0 Valve stopper SG Cylindrical surface part (valve guide)
Claims (12)
当該ポンプハウジングに支持され、前記加圧室内で往復動作を繰り返すことで前記加圧室内に流体を吸入し、加圧して前記加圧室から前記流体を吐出するピストンプランジャ、
前記ポンプハウジングに取付けられた電磁駆動型の吸入弁を備え、
前記電磁駆動型の吸入弁が、前記加圧室の入口に設けられた吸入弁と当該吸入弁の開閉時期を制御する電磁駆動機構とから構成される高圧燃料供給ポンプの電磁駆動型の吸入弁の制御装置であって、前記電磁駆動機構に通電して前記加圧室から前記流体の吐出を開始するものにおいて、
前記吸入弁は、アンカー及びプランジャロッドと、前記プランジャロッドと別体のバルブを有し、
前記ピストンプランジャが上死点を通過する前後の一定区間、吸入弁の開弁方向への動作を緩慢にする電磁力を発生するための静音電流状態を維持する高圧燃料供給ポンプの電磁駆動型の吸入弁の制御装置。 A pump housing with a pressure chamber,
A piston plunger which is supported by the pump housing and sucks fluid into the pressurizing chamber by repeating reciprocating motion in the pressurizing chamber, pressurizes and discharges the fluid from the pressurizing chamber;
Comprising an electromagnetically driven suction valve attached to the pump housing;
The electromagnetically driven intake valve is an electromagnetically driven intake valve of a high-pressure fuel supply pump that includes an intake valve provided at the inlet of the pressurizing chamber and an electromagnetic drive mechanism that controls the opening and closing timing of the intake valve. A controller for energizing the electromagnetic drive mechanism to start discharging the fluid from the pressurizing chamber,
The intake valve has an anchor and a plunger rod, and a valve separate from the plunger rod,
An electromagnetically driven type of high pressure fuel supply pump that maintains a silent current state for generating an electromagnetic force that slows down the operation of the intake valve in the valve opening direction, before and after the piston plunger passes through the top dead center. Inlet valve control device.
前記一定区間の静音電流状態は前記吸入弁がフル開弁するまで続くよう制御する高圧燃料供給ポンプの電磁駆動型の吸入弁の制御装置。 In the control apparatus of the solenoid valve of the high-pressure fuel supply pump according to claim 1,
A control device for an electromagnetically driven intake valve of a high pressure fuel supply pump that controls the silent current state of the predetermined section to continue until the intake valve is fully opened.
前記電磁駆動機構に通電した後、前記ピストンプランジャが上死点を通過して下死点に向かう前に、前記電磁駆動機構への通電電流値が弱められ、前記ピストンプランジャが上死点を通過して下死点に向かう動作に入った後、前記一定区間の静音電流状態へ移行するよう制御する高圧燃料供給ポンプの電磁駆動型の吸入弁の制御装置。 In the control apparatus of the solenoid valve of the high-pressure fuel supply pump according to claim 1,
After energizing the electromagnetic drive mechanism, before the piston plunger passes through the top dead center and moves toward the bottom dead center, the energization current value to the electromagnetic drive mechanism is weakened and the piston plunger passes through the top dead center. Then, after entering the operation toward the bottom dead center, the control device for the electromagnetically driven intake valve of the high-pressure fuel supply pump that controls to shift to the silent current state of the predetermined section.
前記弱められた通電電流値と前記一定区間の静音電流状態での電流値とが同じ値になるよう制御する高圧燃料供給ポンプの電磁駆動型の吸入弁の制御装置。 In the control apparatus of the solenoid valve of the high pressure fuel supply pump according to claim 3,
A control device for an electromagnetically driven intake valve of a high-pressure fuel supply pump that controls the weakened energization current value and the current value in the silent current state of the constant section to be the same value.
前記弱められた通電電流値は前記一定区間の静音電流状態での電流値より大きく、ピーク電流値より小さい値になるよう制御する高圧燃料供給ポンプの電磁駆動型の吸入弁の制御装置。 In the control apparatus of the solenoid valve of the high pressure fuel supply pump according to claim 3,
A control device for an electromagnetically driven intake valve of a high-pressure fuel supply pump, wherein the weakened energization current value is controlled to be larger than a current value in a silent current state of the certain section and smaller than a peak current value.
当該ポンプハウジングに支持され、前記加圧室内で往復動作を繰り返すことで前記加圧室内に流体を吸入し、加圧して前記加圧室から前記流体を吐出するピストンプランジャ、
前記ポンプハウジングに取付けられた電磁駆動型の吸入弁を備え、
前記吸入弁は、アンカー及びプランジャロッドと、前記プランジャロッドと別体のバルブを有し、
前記電磁駆動型の吸入弁が、前記加圧室の入口に設けられた吸入弁と当該吸入弁の開閉時期を制御する電磁駆動機構とから構成されたものにおいて、
前記吸入弁を閉弁する為に前記電磁駆動機構に通電して前記加圧室からの前記流体の吐出を開始し、吐出が終了した後も吸入弁の静音制御区間の間は吸入弁の開弁方向への動作を緩慢にする電磁力を発生するための静音電流状態を維持していることを特徴とする高圧燃料供給ポンプ。 A pump housing with a pressure chamber,
A piston plunger which is supported by the pump housing and sucks fluid into the pressurizing chamber by repeating reciprocating motion in the pressurizing chamber, pressurizes and discharges the fluid from the pressurizing chamber;
Comprising an electromagnetically driven suction valve attached to the pump housing;
The intake valve has an anchor and a plunger rod, and a valve separate from the plunger rod,
The electromagnetically driven suction valve is composed of a suction valve provided at the inlet of the pressurizing chamber and an electromagnetic drive mechanism that controls the opening and closing timing of the suction valve.
In order to close the suction valve, the electromagnetic drive mechanism is energized to start discharging the fluid from the pressurizing chamber. Even after the discharge is completed, the suction valve is opened during the silent control period of the suction valve. A high-pressure fuel supply pump characterized by maintaining a silent current state for generating an electromagnetic force that slows the operation in a valve direction .
前記電磁駆動機構に通電される電流が複数段階になっていることを特徴とする高圧燃料供給ポンプ。 What is described in claim 6,
A high-pressure fuel supply pump characterized in that a current supplied to the electromagnetic drive mechanism has a plurality of stages.
第一段階目の値が最終段階目の値よりも大きいことを特徴とする高圧燃料供給ポンプ。 What is described in claim 7,
A high-pressure fuel supply pump characterized in that the value of the first stage is larger than the value of the last stage.
最終段階への切り替えタイミングが、前記加圧からの前記流体の吐出が終了する前であることを特徴とする高圧燃料供給ポンプ。 What is described in claim 8,
The high-pressure fuel supply pump according to claim 1, wherein the switching timing to the final stage is before the discharge of the fluid from the pressurization ends.
前記電磁駆動機構に通電される電流が2段階になっていることを特徴とする高圧燃料供給ポンプ。 In any of claims 7 or 8,
The high-pressure fuel supply pump is characterized in that the current supplied to the electromagnetic drive mechanism has two stages.
前記静音制御区間の終端において前記吸入弁が当接するストッパを有する高圧燃料供給ポンプ。 What is described in claim 6,
A high-pressure fuel supply pump having a stopper with which the suction valve abuts at the end of the silent control section.
前記吸入弁はばねにより開弁位置に付勢されており、前記電磁駆動機構は前記ばねに抗する付勢力を発生する高圧燃料供給ポンプ。 What is described in claim 6,
The suction valve is biased to a valve open position by a spring, and the electromagnetic drive mechanism is a high-pressure fuel supply pump that generates a biasing force against the spring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011119848A JP5798799B2 (en) | 2011-05-30 | 2011-05-30 | High pressure fuel supply pump with electromagnetically driven suction valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011119848A JP5798799B2 (en) | 2011-05-30 | 2011-05-30 | High pressure fuel supply pump with electromagnetically driven suction valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012246852A JP2012246852A (en) | 2012-12-13 |
JP5798799B2 true JP5798799B2 (en) | 2015-10-21 |
Family
ID=47467528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011119848A Active JP5798799B2 (en) | 2011-05-30 | 2011-05-30 | High pressure fuel supply pump with electromagnetically driven suction valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5798799B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015017553A (en) * | 2013-07-11 | 2015-01-29 | 株式会社デンソー | Control method of high-pressure pump |
JP6194739B2 (en) * | 2013-10-16 | 2017-09-13 | 株式会社デンソー | Control device |
JP6160514B2 (en) * | 2014-02-28 | 2017-07-12 | トヨタ自動車株式会社 | Fuel pump |
JP6461203B2 (en) * | 2015-01-21 | 2019-01-30 | 日立オートモティブシステムズ株式会社 | High pressure fuel supply device for internal combustion engine |
JP2016191341A (en) * | 2015-03-31 | 2016-11-10 | 株式会社デンソー | Pump control device |
JP6432471B2 (en) * | 2015-09-08 | 2018-12-05 | 株式会社デンソー | High pressure fuel pump solenoid valve control device and high pressure fuel pump solenoid valve control method |
US10337480B2 (en) | 2015-09-30 | 2019-07-02 | Hitachi Automotive Systems, Ltd. | High-pressure fuel pump and control device |
JP7172756B2 (en) * | 2019-03-08 | 2022-11-16 | 株式会社デンソー | high pressure pump controller |
JP7303764B2 (en) * | 2020-02-28 | 2023-07-05 | 日立Astemo株式会社 | High pressure fuel pump controller |
CN114962106B (en) * | 2022-05-25 | 2022-12-06 | 安徽腾达汽车科技有限公司 | Valve mechanism and oil pump |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10148218B4 (en) * | 2001-09-28 | 2005-08-25 | Robert Bosch Gmbh | Method for operating an internal combustion engine, computer program, control and / or regulating device, and fuel system for an internal combustion engine |
JP4528821B2 (en) * | 2007-10-29 | 2010-08-25 | 日立オートモティブシステムズ株式会社 | Fuel supply controller |
JP4587133B2 (en) * | 2008-06-04 | 2010-11-24 | 株式会社デンソー | Fuel supply device |
DE102008054512B4 (en) * | 2008-12-11 | 2021-08-05 | Robert Bosch Gmbh | Method for operating a fuel injection system of an internal combustion engine |
EP2453122B1 (en) * | 2010-11-12 | 2016-09-07 | Hitachi, Ltd. | Method and control apparatus for controlling a high-pressure fuel supply pump configured to supply pressurized fuel to an internal combustion engine |
-
2011
- 2011-05-30 JP JP2011119848A patent/JP5798799B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012246852A (en) | 2012-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5658968B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP5702984B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP5798799B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP5639970B2 (en) | Control method for electromagnetic valve, control method for electromagnetic suction valve of high-pressure fuel supply pump, and control device for electromagnetic drive mechanism of electromagnetic suction valve | |
JP6173959B2 (en) | Solenoid valve, high pressure fuel supply pump equipped with solenoid valve, and fuel injection valve | |
JP5677329B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
WO2012165555A1 (en) | High-pressure fuel supply pump with electromagnetic suction valve | |
EP3064760B1 (en) | High-pressure fuel pump | |
JP6453374B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP2015218675A (en) | High-pressure fuel supply pump | |
JP6180741B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP5989075B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP2016075198A (en) | Electromagnetic suction valve for high-pressure fuel pump | |
JP6182506B2 (en) | High pressure fuel supply pump | |
JP6118790B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP6438920B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP6527995B2 (en) | High-pressure fuel supply pump with an electromagnetically driven suction valve | |
JP2019148262A (en) | High pressure fuel supply pump including electromagnetic drive-type suction valve | |
JP6663971B2 (en) | High pressure fuel supply pump with electromagnetically driven suction valve | |
JP2017096216A (en) | High pressure fuel supply pump | |
JP6047648B2 (en) | High pressure fuel supply pump with electromagnetic suction valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130821 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150324 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150728 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150824 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5798799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |